1
|
Koko M, Elseed MA, Mohammed IN, Hamed AA, Abd Allah ASI, Yahia A, Siddig RA, Altmüller J, Toliat MR, Elmahdi EO, Amin M, Ahmed EA, Eltazi IZM, Elmugadam FA, Abdelgadir WA, Eltaraifee E, Ibrahim MOM, Ali NMH, Malik HM, Babai AM, Bakhit YH, Nürnberg P, Ibrahim ME, Salih MA, Schubert J, Elsayed LEO, Lerche H. Bi-allelic PRRT2 variants may predispose to Self-limited Familial Infantile Epilepsy. Eur J Hum Genet 2024; 32:1338-1342. [PMID: 38316952 PMCID: PMC11500335 DOI: 10.1038/s41431-024-01541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Heterozygous PRRT2 variants are frequently implicated in Self-limited Infantile Epilepsy, whereas homozygous variants are so far linked to severe presentations including developmental and epileptic encephalopathy, movement disorders, and intellectual disability. In a study aiming to explore the genetics of epilepsy in the Sudanese population, we investigated several families including a consanguineous family with three siblings diagnosed with self-limited infantile epilepsy. We evaluated both dominant and recessive inheritance using whole exome sequencing and genomic arrays. We identified a pathogenic homozygous splice-site variant in the first intron of PRRT2 [NC_000016.10(NM_145239.3):c.-65-1G > A] that segregated with the phenotype in this family. This work taps into the genetics of epilepsy in an underrepresented African population and suggests that the phenotypes of homozygous PRRT2 variants may include milder epilepsy presentations without movement disorders.
Collapse
Affiliation(s)
- Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Maha A Elseed
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohammed
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ahlam A Hamed
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Amal S I Abd Allah
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Rayan A Siddig
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Berlin Institute of Health at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Esra O Elmahdi
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mutaz Amin
- Department of Biochemistry, Faculty of Medicine, Al-Neelain University, Khartoum, Sudan
| | - Elhami A Ahmed
- UNESCO Chair on Bioethics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Isra Z M Eltazi
- Department of Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima A Elmugadam
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Sciences and Technology, Al-Neelain University, Khartoum, Sudan
| | - Esraa Eltaraifee
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed O M Ibrahim
- Department of Biochemistry, Faculty of Medicine, Sudan University of Science and Technology, Khartoum, Sudan
| | - Nabila M H Ali
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hiba M Malik
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Arwa M Babai
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Yousuf H Bakhit
- Department of Neurology, Neurobiology Division, University Hospital Bonn, Bonn, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Muntaser E Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Iwanami N, Nagaki S, Gen A, Azuma D, Yamamoto T, Matsunaga T. Three siblings with self-limited familial infantile epilepsy with PRRT2 mutation: A case series. SAGE Open Med Case Rep 2024; 12:2050313X241264959. [PMID: 39055674 PMCID: PMC11271107 DOI: 10.1177/2050313x241264959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
We report three sisters with self-limited familial infantile epilepsy, caused by a mutation in proline-rich transmembrane protein2. Self-limited familial infantile epilepsy has been established as a distinct epileptic syndrome characterized by focal seizures in clusters of infantile-onset. The seizure types of our cases were focal with or without secondary generalization. The seizures manifested at 3-5 months of age, and each lasted 1-2 min. All three sisters fulfilled the criteria for self-limited familial infantile epilepsy, except in one case who showed interictal spikes in the right central area. The seizures were controlled with carbamazepine. When carbamazepine treatment was started, one case developed a rash, and her treatment was switched to valproic acid. However, the seizures persisted in this case such that carbamazepine was restarted. The rash did not recur. Electroencephalography showed spikes in only one case on interictal electroencephalography. All three sisters were developmentally normal, and no dyskinesia was observed during follow-up. All three sisters and their father, but not their mother, had the following pathogenic variant in proline-rich transmembrane protein2: NM_001256442.2(PRRT2): c.649dup[p.(Arg217Profs*8)]. This mutation has been identified in the majority of families with self-limited familial infantile epilepsy, paroxysmal kinesigenic dyskinesia, and/or infantile convulsion and choreoathetosis. Their father had no history of either self-limited familial infantile epilepsy or paroxysmal kinesigenic dyskinesia. The lack of a clear genotype-phenotype correlation was demonstrated in our cases with this proline-rich transmembrane protein2 mutation.
Collapse
Affiliation(s)
- Naoto Iwanami
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
| | - Shigeru Nagaki
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
- Nagaki Children’s Clinic, Tokyo, Japan
| | - Aki Gen
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
| | - Daisuke Azuma
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Tamotsu Matsunaga
- Department of Pediatrics, Toda Chuo General Hospital, Saitama, Japan
| |
Collapse
|
3
|
McTague A, Scheffer IE, Kullmann DM, Sisodiya S. Epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 203:157-184. [PMID: 39174247 DOI: 10.1016/b978-0-323-90820-7.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Recent advances in genetic diagnosis have revealed the underlying etiology of many epilepsies and have identified pathogenic, causative variants in numerous ion and ligand-gated channel genes. This chapter describes the clinical presentations of epilepsy associated with different channelopathies including classic electroclinical syndromes and emerging gene-specific phenotypes. Also discussed are the archetypal epilepsy channelopathy, SCN1A-Dravet syndrome, considering the expanding phenotype. Clinical presentations where a channelopathy is suspected, such as sleep-related hypermotor epilepsy and epilepsy in association with movement disorders, are reviewed. Channelopathies pose an intriguing problem for the development of gene therapies. Design of targeted therapies requires physiologic insights into the often multifaceted impact of a pathogenic variant, coupled with an understanding of the phenotypic spectrum of a gene. As gene-specific novel therapies come online for the channelopathies, it is essential that clinicians are able to recognize epilepsy phenotypes likely to be due to channelopathy and institute early genetic testing in both children and adults. These findings are likely to have immediate management implications and to inform prognostic and reproductive counseling.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom.
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, University of Melbourne, Melbourne, VIC, Australia
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| |
Collapse
|
4
|
Johannesen KM, Tümer Z, Weckhuysen S, Barakat TS, Bayat A. Solving the unsolved genetic epilepsies: Current and future perspectives. Epilepsia 2023; 64:3143-3154. [PMID: 37750451 DOI: 10.1111/epi.17780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Many patients with epilepsy undergo exome or genome sequencing as part of a diagnostic workup; however, many remain genetically unsolved. There are various factors that account for negative results in exome/genome sequencing for patients with epilepsy: (1) the underlying cause is not genetic; (2) there is a complex polygenic explanation; (3) the illness is monogenic but the causative gene remains to be linked to a human disorder; (4) family segregation with reduced penetrance; (5) somatic mosaicism or the complexity of, for example, a structural rearrangement; or (6) limited knowledge or diagnostic tools that hinder the proper classification of a variant, resulting in its designation as a variant of unknown significance. The objective of this review is to outline some of the diagnostic options that lie beyond the exome/genome, and that might become clinically relevant within the foreseeable future. These options include: (1) re-analysis of older exome/genome data as knowledge increases or symptoms change; (2) looking for somatic mosaicism or long-read sequencing to detect low-complexity repeat variants or specific structural variants missed by traditional exome/genome sequencing; (3) exploration of the non-coding genome including disruption of topologically associated domains, long range non-coding RNA, or other regulatory elements; and finally (4) transcriptomics, DNA methylation signatures, and metabolomics as complementary diagnostic methods that may be used in the assessment of variants of unknown significance. Some of these tools are currently not integrated into standard diagnostic workup. However, it is reasonable to expect that they will become increasingly available and improve current diagnostic capabilities, thereby enabling precision diagnosis in patients who are currently undiagnosed.
Collapse
Affiliation(s)
- Katrine M Johannesen
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
| | - Zeynep Tümer
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Lee J, Kim YO, Lim BC, Lee J. PRRT2-positive self-limited infantile epilepsy: Initial seizure characteristics and response to sodium channel blockers. Epilepsia Open 2023. [PMID: 36775847 DOI: 10.1002/epi4.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/04/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE Self-limited infantile epilepsy (SeLIE) has distinctive clinical features, and the PRRT2 gene is known to be a considerable genetic cause. There have been a few studies on PRRT2-positive SeLIE only, and anti-seizure medications are often required due to frequent seizures at initial seizure onset. This study aimed to provide clinical information for the early recognition of patients with PRRT2-positive SeLIE and to propose effective anti-seizure medications for seizure control. METHODS We retrospectively reviewed 36 patients diagnosed with SeLIE with genetically confirmed pathogenic variants of PRRT2. In addition, six atypical cases with neonatal-onset seizures and unremitting after 3 years of age were included to understand the expanded clinical spectrum of PRRT2-related epilepsy. We analyzed the initial presentation, clinical course, and seizure control response to anti-seizure medications. RESULTS Patients with PRRT2-related epilepsy had characteristic seizure semiology at the initial presentation, including all afebrile, clustered (n = 23, 63.9%), short-duration (n = 33, 91.7%), and bilateral tonic-clonic seizures (n = 26, 72.2%). Genetic analysis revealed that c. 649dupC was the most common variant, and six patients had a 16p11.2 microdeletion containing the PRRT2 gene. One-third of the patients were sporadic cases without a family history of epilepsy or paroxysmal movement disorders. In the 33 patients treated with anti-seizure medications, sodium channel blockers, such as carbamazepine, were the most effective in seizure control. SIGNIFICANCE Our results delineated the clinical characteristics of PRRT2-positive SeLIE, differentiating it from other genetic infantile epilepsies and discovered the effective anti-seizure medications for initial clustered seizure control. If afebrile bilateral tonic-clonic seizures develop in a normally developed infant as a clustered pattern, PRRT2-positive SeLIE should be considered as a possible diagnosis, and sodium channel blockers should be administered as the first medication for seizure control.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Ok Kim
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Mahdiannasser M, Rashidi-Nezhad A, Badv RS, Akrami SM. Exploring the genetic etiology of drug-resistant epilepsy: incorporation of exome sequencing into practice. Acta Neurol Belg 2022; 122:1457-1468. [PMID: 36127562 DOI: 10.1007/s13760-022-02095-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND By affecting about 50 million people worldwide, epilepsy is considered a global concern in neurology. Intolerable enough, up to ¼ of all patients do not respond to antiepileptic drugs and have recurring seizures. Therefore, revealing the underlying etiology is quite demanding in a clinical context to improve diagnosis and disease management. METHODS Initially, 85 patients suspected of epilepsy underwent thorough clinical and paraclinical evaluation and 24 individuals with drug-resistant epilepsy entered the study. Using whole-exome sequencing, the genetic etiology of drug-resistant epilepsy was investigated and discerned whether this method could facilitate the management of drug-resistant epilepsy through personalized medicine. Eventually, functional annotation was performed and drug-gene interaction networks were constructed to find potential therapeutic targets. RESULTS We found eleven novel variants in various genes including IRF2BPL, ST3GAL3, and GPAA1, for which a few epilepsy-related variants are available in public databases. The overall diagnostic yield for likely pathogenic and pathogenic variants and the detection rate of novel variants were 25% and 84.6%, respectively. Based on the results, two patients were considered potential candidates for personalized medicine. The highest number of interaction with drugs was demonstrated for SCN1A, SCN2A, and GRIN2A genes. CONCLUSIONS This study highlighted the importance of consanguineous marriage in drug-resistant epilepsy and suggested the possibility of reduced penetrance and variable expressivity in some of the autosomal dominant cases. We also suggest that whole-exome sequencing could facilitate personalized management of drug-resistant epilepsy. Regarding drug-gene interactions, some genes such as SCN1A and SCN2A might serve as therapeutic targets in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Mojdeh Mahdiannasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina St., P.O. Box:14176-13151, Tehran, Iran
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Genetics Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina St., P.O. Box:14176-13151, Tehran, Iran.
| |
Collapse
|
7
|
Sansevere AJ, Harini C. Neonate/Infant with Seizures. SYMPTOM-BASED APPROACH TO PEDIATRIC NEUROLOGY 2022:117-140. [DOI: 10.1007/978-3-031-10494-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Walker MA. Etiology. HANDBOOK OF PEDIATRIC EPILEPSY 2022:31-49. [DOI: 10.1007/978-3-319-08290-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
I D, Aysina V. The coincidence of benign non-familial infantile seizures type 2 with osteogenesis imperfecta type 1. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:128-131. [DOI: 10.17116/jnevro2022122051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Xiang J, Ding Y, Yang F, Gao A, Zhang W, Tang H, Mao J, He Q, Zhang Q, Wang T. Genetic Analysis of Children With Unexplained Developmental Delay and/or Intellectual Disability by Whole-Exome Sequencing. Front Genet 2021; 12:738561. [PMID: 34858471 PMCID: PMC8631448 DOI: 10.3389/fgene.2021.738561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Whole-exome sequencing (WES) has been recommended as a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders (NDDs). We aimed to identify the genetic causes of 17 children with developmental delay (DD) and/or intellectual disability (ID). Methods: WES and exome-based copy number variation (CNV) analysis were performed for 17 patients with unexplained DD/ID. Results: Single-nucleotide variant (SNV)/small insertion or deletion (Indel) analysis and exome-based CNV calling yielded an overall diagnostic rate of 58.8% (10/17), of which diagnostic SNVs/Indels accounted for 41.2% (7/17) and diagnostic CNVs accounted for 17.6% (3/17). Conclusion: Our findings expand the known mutation spectrum of genes related to DD/ID and indicate that exome-based CNV analysis could improve the diagnostic yield of patients with DD/ID.
Collapse
Affiliation(s)
- Jingjing Xiang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Yang Ding
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Fei Yang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Ang Gao
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Wei Zhang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Hui Tang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Jun Mao
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Quanze He
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Qin Zhang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Ting Wang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
11
|
Chen Y, Chen D, Zhao S, Liu G, Li H, Wu ZY. Penetrance estimation of PRRT2 variants in paroxysmal kinesigenic dyskinesia and infantile convulsions. Front Med 2021; 15:877-886. [PMID: 34825340 DOI: 10.1007/s11684-021-0863-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/25/2021] [Indexed: 11/30/2022]
Abstract
Proline-rich transmembrane protein 2 (PRRT2) is the leading cause of paroxysmal kinesigenic dyskinesia (PKD), benign familial infantile epilepsy (BFIE), and infantile convulsions with choreoathetosis (ICCA). Reduced penetrance of PRRT2 has been observed in previous studies, whereas the exact penetrance has not been evaluated well. The objective of this study was to estimate the penetrance of PRRT2 and determine its influencing factors. We screened 222 PKD index patients and their available relatives, identified 39 families with pathogenic or likely pathogenic (P/LP) PRRT2 variants via Sanger sequencing, and obtained 184 PKD/BFIE/ICCA families with P/LP PRRT2 variants from the literature. Penetrance was estimated as the proportion of affected variant carriers. PRRT2 penetrance estimate was 77.6% (95% confidence interval (CI) 74.5%-80.7%) in relatives and 74.5% (95% CI 70.2%-78.8%) in obligate carriers. In addition, we first observed that penetrance was higher in truncated than in non-truncated variants (75.8% versus 50.0%, P = 0.01), higher in Asian than in Caucasian carriers (81.5% versus 68.5%, P = 0.004), and exhibited no difference in gender or parental transmission. Our results are meaningful for genetic counseling, implying that approximately three-quarters of PRRT2 variant carriers will develop PRRT2-related disorders, with patients from Asia or carrying truncated variants at a higher risk.
Collapse
Affiliation(s)
- Yulan Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Dianfu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Shaoyun Zhao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Gonglu Liu
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Hongfu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
12
|
de la Jara J, Vásquez-Hernández C, Ramírez-Rojo E, Moya-Vilches J. Uncommon epileptic syndromes in children: a review. Seizure 2021; 90:17-27. [PMID: 34023208 DOI: 10.1016/j.seizure.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
|
13
|
Epilepsy Syndromes in the First Year of Life and Usefulness of Genetic Testing for Precision Therapy. Genes (Basel) 2021; 12:genes12071051. [PMID: 34356067 PMCID: PMC8307222 DOI: 10.3390/genes12071051] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
The high pace of gene discovery has resulted in thrilling advances in the field of epilepsy genetics. Clinical testing with comprehensive gene panels, exomes, or genomes are now increasingly available and have led to a significant higher diagnostic yield in early-onset epilepsies and enabled precision medicine approaches. These have been instrumental in providing insights into the pathophysiology of both early-onset benign and self-limited syndromes and devastating developmental and epileptic encephalopathies (DEEs). Genetic heterogeneity is seen in many epilepsy syndromes such as West syndrome and epilepsy of infancy with migrating focal seizures (EIMFS), indicating that two or more genetic loci produce the same or similar phenotypes. At the same time, some genes such as SCN2A can be associated with a wide range of epilepsy syndromes ranging from self-limited familial neonatal epilepsy at the mild end to Ohtahara syndrome, EIFMS, West syndrome, Lennox–Gastaut syndrome, or unclassifiable DEEs at the severe end of the spectrum. The aim of this study was to review the clinical and genetic heterogeneity associated with epilepsy syndromes starting in the first year of life including: Self-limited familial neonatal, neonatal-infantile or infantile epilepsies, genetic epilepsy with febrile seizures plus spectrum, myoclonic epilepsy in infancy, Ohtahara syndrome, early myoclonic encephalopathy, West syndrome, Dravet syndrome, EIMFS, and unclassifiable DEEs. We also elaborate on the advantages and pitfalls of genetic testing in such conditions. Finally, we describe how a genetic diagnosis can potentially enable precision therapy in monogenic epilepsies and emphasize that early genetic testing is a cornerstone for such therapeutic strategies.
Collapse
|
14
|
Aj F, T M, C I, C BM, Kj N, H L, A N, Sm V, Y-H F, Lj P. Age-dependent neurological phenotypes in a mouse model of PRRT2-related diseases. Neurogenetics 2021; 22:171-185. [PMID: 34101060 PMCID: PMC8241743 DOI: 10.1007/s10048-021-00645-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
Paroxysmal kinesigenic dyskinesia is an episodic movement disorder caused by dominant mutations in the proline-rich transmembrane protein PRRT2, with onset in childhood and typically with improvement or resolution by middle age. Mutations in the same gene may also cause benign infantile seizures, which begin in the first year of life and typically remit by the age of 2 years. Many details of PRRT2 function at the synapse, and the effects of mutations on neuronal excitability in the pathophysiology of epilepsy and dyskinesia, have emerged through the work of several groups over the last decade. However, the age dependence of the phenotypes has not been explored in detail in transgenic models. Here, we report our findings in heterozygous and homozygous Prrt2 knockout mice that recapitulate the age dependence of dyskinesia seen in the human disease. We show that Prrt2 deletion reduces the levels of synaptic proteins in a dose-dependent manner that is most pronounced at postnatal day 5 (P5), attenuates at P60, and disappears by P180. In a test for foot slippage while crossing a balance beam, transient loss of coordination was most pronounced at P60 and less prominent at age extremes. Slower traverse time was noted in homozygous knockout mice only, consistent with the ataxia seen in rare individuals with biallelic loss of function mutations in Prrt2. We thus identify three age-dependent phenotypic windows in the mouse model, which recapitulate the pattern seen in humans with PRRT2-related diseases.
Collapse
Affiliation(s)
- Fay Aj
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - McMahon T
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Im C
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Bair-Marshall C
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Niesner Kj
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Li H
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, 94143, USA.,Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, 94143, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 548F Rock Hall, MC-2922, 1550 4th Street, San Francisco, CA, 94143, USA
| | - Nelson A
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA.,Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, 94143, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 548F Rock Hall, MC-2922, 1550 4th Street, San Francisco, CA, 94143, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Voglmaier Sm
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, 94143, USA.,Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, 94143, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 548F Rock Hall, MC-2922, 1550 4th Street, San Francisco, CA, 94143, USA
| | - Fu Y-H
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA.,Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, 94143, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 548F Rock Hall, MC-2922, 1550 4th Street, San Francisco, CA, 94143, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ptáček Lj
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA. .,Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, 94143, USA. .,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 548F Rock Hall, MC-2922, 1550 4th Street, San Francisco, CA, 94143, USA. .,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
15
|
Massimino CR, Portale L, Sapuppo A, Pizzo F, Sciuto L, Romano C, Salafia S, Falsaperla R. PRRT2 Related Epilepsies: A Gene Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
PRRT2 encodes for proline-rich transmembrane protein 2 involved in synaptic vesicle fusion and presynaptic neurotransmitter release. Mutations in human PRRT2 have been related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with choreoathetosis, benign familial infantile epilepsies, and hemiplegic migraine. PRRT2 mutations cause neuronal hyperexcitability, which could be related to basal ganglia or cortical circuits dysfunction, leading to paroxysmal disorders. PRRT2 is expressed in the cerebral cortex, basal ganglia, and cerebellum. Approximately, 90% of pathogenic variants are inherited and 10% are de novo. Paroxysmal attacks in PKD are characterized by dystonia, choreoathetosis, and ballismus. In the benign familial infantile epilepsy (BFIE), seizures are usually focal with or without generalization, usually begin between 3 and 12 months of age and remit by 2 years of age. In 30% of cases of PRRT2-associated PKD, there is an association with BFIE, and this entity is referred to as PKD with infantile convulsions (PKD/IC). PRRT2 mutations are the cause of benign family childhood epilepsy and PKD/IC. On the other hand, PRRT2 mutations do not seem to correlate with other types of epilepsy. The increasing incidence of hemiplegic migraine in families with PRRT2-associated PKD or PKD/IC suggests a common disease pathway, and it is possible to assert that BFIE, paroxysmal kinesigenic dyskinesia, and PKD with IC belong to a continuous disease spectrum of PRRT2-associated diseases.
Collapse
Affiliation(s)
- Carmela Rita Massimino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Portale
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Annamaria Sapuppo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Catia Romano
- Italian Blind Union, Catania section, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
16
|
Luo HY, Xie LL, Hong SQ, Li XJ, Li M, Hu Y, Ma JN, Wu P, Zhong M, Cheng M, Li TS, Jiang L. The Genotype and Phenotype of Proline-Rich Transmembrane Protein 2 Associated Disorders in Chinese Children. Front Pediatr 2021; 9:676616. [PMID: 34041212 PMCID: PMC8141857 DOI: 10.3389/fped.2021.676616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: To study the genetic and clinical characteristics of Chinese children with pathogenic proline-rich transmembrane protein 2 (PRRT2) gene-associated disorders. Methods: Targeted next generation sequencing (NGS) was used to identify pathogenic PRRT2 variations in Chinese children with epilepsy and/or kinesigenic dyskinesia. Patients with confirmed PRRT2-associated disorders were monitored and their clinical data were analyzed. Results: Forty-four patients with pathogenic PRRT2 variants were recruited. Thirty-five of them (79.5%) had heterozygous mutations, including 30 frameshifts, three missenses, one nonsense, and one splice site variant. The c.649dupC was the most common variant (56.8%). Eight patients (18.2%) showed whole gene deletions, and one patient (2.3%) had 16p11.2 microdeletion. Thirty-four cases (97.1%) were inherited and one case (2.9%) was de novo. Forty patients were diagnosed with benign familial infantile epilepsy (BFIE), two patients had paroxysmal kinesigenic dyskinesia (PKD) and two had infantile convulsions and choreoathetosis (ICCA). Patients with whole gene deletions had a later remission than patients with heterozygous mutations (13.9 vs. 7.1 months, P = 0.001). Forty-two patients were treated with antiseizure medications (ASMs). At last follow-up, 35 patients, including one who did not receive therapy, were asymptomatic, and one patient without ASMs died of status epilepticus at 12 months of age. One patient developed autism, and one patient showed mild developmental delay/intellectual disability. Conclusion: Our data suggested that patients with whole gene deletions could have more severe manifestations in PRRT2-associated disorders. Conventional ASMs, especially Oxcarbazepine, showed a good treatment response.
Collapse
Affiliation(s)
- Han-Yu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling-Ling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Si-Qi Hong
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiu-Juan Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mei Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jian-Nan Ma
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Peng Wu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Min Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ting-Song Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
17
|
A Novel PRRT2 Variant in Chinese Patients Suffering from Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsion. Behav Neurol 2020; 2020:2097059. [PMID: 32509037 PMCID: PMC7251426 DOI: 10.1155/2020/2097059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
PRRT2 mutations are the major causative agent of paroxysmal kinesigenic dyskinesia with infantile convulsion (PKD/IC). The study is aimed at screening PRRT2 gene mutations in patients who suffered from PKD/IC in Chinese population. Thirteen Chinese patients with PKD/IC were screened randomly for coding exons of the PRRT2 gene mutation along with 50 ethnically coordinated control people. Nine (2 unaffected) and 4 of the patients showed familial PKD/IC and apparently sporadic cases, respectively. We identified 5 different PRRT2 mutations in 10 individuals, including 8 familial and 2 apparently sporadic cases. However, no mutations were found in the 50 ethnically matched controls. Unknown (novel) NM_145239.2:c.686G>A and previously reported NM_145239.2:c.743G>C variants were identified in two familial and sporadic patients. All affected members of family A showed mutation NM_145239.2:c.650_670delinsCAATGGTGCCACCACTGGGTTA. The previously identified NM_145239.2:c.412 C>G and NM_145239.2:c.709G>A variants are seen in two individuals assessed in family B. Other than the previously identified variants, some of the patients with PRRT2-PKD/IC showed a new PRRT2 substitution variant. Thus, the spectrum of PRRT2 variants is expanded. The possible role and probability of PRRT2 variants involved in PKD/IC are highlighted.
Collapse
|
18
|
Huang XJ, Wang SG, Guo XN, Tian WT, Zhan FX, Zhu ZY, Yin XM, Liu Q, Yin KL, Liu XR, Zhang Y, Liu ZG, Liu XL, Zheng L, Wang T, Wu L, Rong TY, Wang Y, Zhang M, Bi GH, Tang WG, Zhang C, Zhong P, Wang CY, Tang JG, Lu W, Zhang RX, Zhao GH, Li XH, Li H, Chen T, Li HY, Luo XG, Song YY, Tang HD, Luan XH, Zhou HY, Tang BS, Chen SD, Cao L. The Phenotypic and Genetic Spectrum of Paroxysmal Kinesigenic Dyskinesia in China. Mov Disord 2020; 35:1428-1437. [PMID: 32392383 DOI: 10.1002/mds.28061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Paroxysmal kinesigenic dyskinesia is a spectrum of involuntary dyskinetic disorders with high clinical and genetic heterogeneity. Mutations in proline-rich transmembrane protein 2 have been identified as the major pathogenic factor. OBJECTIVES We analyzed 600 paroxysmal kinesigenic dyskinesia patients nationwide who were identified by the China Paroxysmal Dyskinesia Collaborative Group to summarize the clinical phenotypes and genetic features of paroxysmal kinesigenic dyskinesia in China and to provide new thoughts on diagnosis and therapy. METHODS The China Paroxysmal Dyskinesia Collaborative Group was composed of departments of neurology from 22 hospitals. Clinical manifestations and proline-rich transmembrane protein 2 screening results were recorded using unified paroxysmal kinesigenic dyskinesia registration forms. Genotype-phenotype correlation analyses were conducted in patients with and without proline-rich transmembrane protein 2 mutations. High-knee exercises were applied in partial patients as a new diagnostic test to induce attacks. RESULTS Kinesigenic triggers, male predilection, dystonic attacks, aura, complicated forms of paroxysmal kinesigenic dyskinesia, clustering in patients with family history, and dramatic responses to antiepileptic treatment were the prominent features in this multicenter study. Clinical analysis showed that proline-rich transmembrane protein 2 mutation carriers were prone to present at a younger age and have longer attack duration, bilateral limb involvement, choreic attacks, a complicated form of paroxysmal kinesigenic dyskinesia, family history, and more forms of dyskinesia. The new high-knee-exercise test efficiently induced attacks and could assist in diagnosis. CONCLUSIONS We propose recommendations regarding diagnostic criteria for paroxysmal kinesigenic dyskinesia based on this large clinical study of paroxysmal kinesigenic dyskinesia. The findings offered some new insights into the diagnosis and treatment of paroxysmal kinesigenic dyskinesia and might help in building standardized paroxysmal kinesigenic dyskinesia clinical evaluations and therapies. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiao-Jun Huang
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Shi-Ge Wang
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Xia-Nan Guo
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.,McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China.,Department of Nephrology, the First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Wo-Tu Tian
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Fei-Xia Zhan
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Ze-Yu Zhu
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Xiao-Meng Yin
- Department of Neurology, Xiangya Hospital, Central South University, State Key Laboratory of Medical Genetics, Changsha, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Kai-Li Yin
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.,McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Yu Zhang
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Zhen-Guo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Xiao-Li Liu
- Department of Neurology, Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital South Campus, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Lan Zheng
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Tian Wang
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Li Wu
- Department of Neurology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Tian-Yi Rong
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Yan Wang
- Department of Neurology, The First Hospital Affiliated to Anhui University of Science and Technology, Huainan, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Mei Zhang
- Department of Neurology, The First Hospital Affiliated to Anhui University of Science and Technology, Huainan, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Guang-Hui Bi
- Department of Neurology, Dongying People's Hospital, Dongying, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Wei-Guo Tang
- Department of Neurology, Zhoushan Hospital, Zhoushan, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Chao Zhang
- Department of Neurology, Suzhou Municipal Hospital, Suzhou, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Ping Zhong
- Department of Neurology, Suzhou Municipal Hospital, Suzhou, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Chun-Yu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Jian-Guang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Ru-Xu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Guo-Hua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Xun-Hua Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Hua Li
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Tao Chen
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Hai-Yan Li
- Department of Neurology, Anyang People's Hospital, Anyang, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Xiao-Guang Luo
- Department of Neurology, Shenzhen People's Hospital, Shenzhen, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Yan-Yan Song
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Dong Tang
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Xing-Hua Luan
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Hai-Yan Zhou
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, State Key Laboratory of Medical Genetics, Changsha, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Sheng-Di Chen
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| | - Li Cao
- Department of Neurology, Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,China Paroxysmal Dyskinesia Collaborative Group (CPDCG), Shanghai, China
| |
Collapse
|
19
|
The clinical and genetic spectrum in infants with (an) unprovoked cluster(s) of focal seizures. Eur J Paediatr Neurol 2020; 24:148-153. [PMID: 31901402 DOI: 10.1016/j.ejpn.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Self-limited (familial) infantile epilepsy (S(F)IE), formerly known as benign (familial) infantile convulsions (B(F)IC), is an infantile cluster epilepsy with in rule a complete recovery. This form of epilepsy is most often caused by variations in the PRRT2 gene (OMIM #605751). AIM To describe the clinical and genetic spectrum of sudden onset clusters of focal seizures in infancy. METHODS We retrospectively reviewed all individuals, who presented with unprovoked infantile seizures and selected all infants who had unprovoked clustered focal seizures between 1 and 20 months of age. We described the clinical and genetic spectrum of this cohort. RESULTS The data of 23 patients from 21 families were collected. All had an initial diagnosis of S(F)IE which was adjusted in 5 individuals. In 12 individuals a pathogenic variation in PRRT2 gene or complete deletion was identified. Pathogenic variants in PCDH19 and KCNQ2 were found in respectively 3 and 1 individuals. One individual had a non-pathogenic variant in ATP1A3 and in 6 others no variants were identified. The mean cluster duration was 2.9 days (range 1-13) (see Table 1). Twelve infants had only one cluster. All patients had focal motor or non-motor seizures, in 12 (52%) followed by bilateral (tonic)clonic seizures. Positive family history was present in 74% of individuals. In 11/12 (92%) tested families, ≥1 family member carried the pathogenic PRRT2 variant. Age of seizure onset (ASO) averaged 6.2 months (range 2-20 months). Age of latest seizure averaged 16 months (range 2-92). In several interictal EEG (electroencephalogram) recordings multifocal spikes or spike-wave abnormalities were detected. Ictal EEG recordings detected primary focal abnormalities. CONCLUSION We described 23 individuals with unprovoked cluster(s) of focal seizures at infancy. It appears to be a heterogeneous group. Half of them had a pathogenic variation in PRRT2 gene. Most had only one cluster of seizures. When clusters reoccur frequently, when seizures are more therapy-resistant and when seizures persist beyond the age of 2 years, another diagnosis or causative gene is likely.
Collapse
|
20
|
PRRT2 mutations in Japanese patients with benign infantile epilepsy and paroxysmal kinesigenic dyskinesia. Seizure 2019; 71:1-5. [DOI: 10.1016/j.seizure.2019.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/23/2022] Open
|
21
|
Tsai M, Nian F, Hsu M, Liu W, Liu Y, Liu C, Lin P, Hwang D, Chuang Y, Tsai J. PRRT
2
missense mutations cluster near C‐terminus and frequently lead to protein mislocalization. Epilepsia 2019; 60:807-817. [DOI: 10.1111/epi.14725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/19/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Meng‐Han Tsai
- Department of NeurologyCollege of MedicineKaohsiung Chang Gung Memorial HospitalChang Gung University Kaohsiung Taiwan
| | - Fang‐Shin Nian
- Institute of Brain ScienceSchool of MedicineNational Yang‐Ming University Taipei Taiwan
- Program in Molecular MedicineNational Yang‐Ming University and Academia Sinica Taipei Taiwan
| | - Mei‐Hsin Hsu
- Department of PediatricsKaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Wei‐Szu Liu
- Department of Life SciencesNational Yang‐Ming University Taipei Taiwan
| | - Yo‐Tsen Liu
- Institute of Brain ScienceSchool of MedicineNational Yang‐Ming University Taipei Taiwan
- Department of NeurologyNeurological InstituteTaipei Veterans General Hospital Taipei Taiwan
- Department of MedicineSchool of MedicineNational Yang‐Ming University Taipei Taiwan
- Brain Research CenterNational Yang‐Ming University Taipei Taiwan
| | - Chen Liu
- Institute of Brain ScienceSchool of MedicineNational Yang‐Ming University Taipei Taiwan
| | - Po‐Hsi Lin
- Department of MedicineSchool of MedicineNational Yang‐Ming University Taipei Taiwan
| | - Daw‐Yang Hwang
- Division of NephrologyKaohsiung Medical University HospitalKaohsiung Medical University Kaohsiung Taiwan
| | - Yao‐Chung Chuang
- Department of NeurologyCollege of MedicineKaohsiung Chang Gung Memorial HospitalChang Gung University Kaohsiung Taiwan
| | - Jin‐Wu Tsai
- Institute of Brain ScienceSchool of MedicineNational Yang‐Ming University Taipei Taiwan
- Brain Research CenterNational Yang‐Ming University Taipei Taiwan
- Biophotonics and Molecular Imaging Research CenterNational Yang‐Ming University Taipei Taiwan
| |
Collapse
|
22
|
Koch H, Weber YG. The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav 2019; 91:90-93. [PMID: 30076047 DOI: 10.1016/j.yebeh.2018.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 01/15/2023]
Abstract
The glucose transporter type 1 (Glut1) is the most important energy carrier of the brain across the blood-brain barrier. In the early nineties, the first genetic defect of Glut1 was described and known as the Glut1 deficiency syndrome (Glut1-DS). It is characterized by early infantile seizures, developmental delay, microcephaly, and ataxia. Recently, milder variants have also been described. The clinical picture of Glut1 defects and the understanding of the pathophysiology of this disease have significantly grown. A special form of transient movement disorders, the paroxysmal exertion-induced dyskinesia (PED), absence epilepsies particularly with an early onset absence epilepsy (EOAE) and childhood absence epilepsy (CAE), myoclonic astatic epilepsy (MAE), episodic choreoathetosis and spasticity (CSE), and focal epilepsy can be based on a Glut1 defect. Despite the rarity of these diseases, the Glut1 syndromes are of high clinical interest since a very effective therapy, the ketogenic diet, can improve or reverse symptoms especially if it is started as early as possible. The present article summarizes the clinical features of Glut1 syndromes and discusses the underlying genetic mutations, including the available data on functional tests as well as the genotype-phenotype correlations. This article is part of the Special Issue "Individualized Epilepsy Management: Medicines, Surgery and Beyond".
Collapse
Affiliation(s)
- Henner Koch
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Mo J, Wang B, Zhu X, Wu X, Liu Y. PRRT2 deficiency induces paroxysmal kinesigenic dyskinesia by influencing synaptic function in the primary motor cortex of rats. Neurobiol Dis 2019; 121:274-285. [DOI: 10.1016/j.nbd.2018.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023] Open
|
24
|
Ma H, Feng S, Deng X, Wang L, Zeng S, Wang C, Ma X, Sun H, Chen R, Du S, Mao J, Zhang X, Ma C, Jiang H, Zhang L, Tang B, Liu JY. APRRT2variant in a Chinese family with paroxysmal kinesigenic dyskinesia and benign familial infantile seizures results in loss of interaction withSTX1B. Epilepsia 2018; 59:1621-1630. [DOI: 10.1111/epi.14511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/14/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Hongying Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Shenglei Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Xuejun Deng
- Department of Neurology; Union Hospital of Huazhong University of Science and Technology; Wuhan China
| | - Li Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Sheng Zeng
- Department of Neurology, Xiangya Hospital; Key Laboratory of Hunan Province in Neurodegenerative Disorders; Central South University; Changsha China
| | - Cheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Xixiang Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Hao Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Rui Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Shiyue Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Jinglin Mao
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Xianwei Zhang
- Department of Anesthesiology; Tongji Hospital of Huazhong University of Science and Technology; Wuhan China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital; Key Laboratory of Hunan Province in Neurodegenerative Disorders; Central South University; Changsha China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital; Key Laboratory of Hunan Province in Neurodegenerative Disorders; Central South University; Changsha China
| | - Jing Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
25
|
Lee EH. Epilepsy syndromes during the first year of life and the usefulness of an epilepsy gene panel. KOREAN JOURNAL OF PEDIATRICS 2018; 61:101-107. [PMID: 29713355 PMCID: PMC5924840 DOI: 10.3345/kjp.2018.61.4.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/24/2018] [Accepted: 03/28/2018] [Indexed: 01/25/2023]
Abstract
Recent advances in genetics have determined that a number of epilepsy syndromes that occur in the first year of life are associated with genetic etiologies. These syndromes range from benign familial epilepsy syndromes to early-onset epileptic encephalopathies that lead to poor prognoses and severe psychomotor retardation. An early genetic diagnosis can save time and overall cost by reducing the amount of time and resources expended to reach a diagnosis. Furthermore, a genetic diagnosis can provide accurate prognostic information and, in certain cases, enable targeted therapy. Here, several early infantile epilepsy syndromes with strong genetic associations are briefly reviewed, and their genotype-phenotype correlations are summarized. Because the clinical presentations of these disorders frequently overlap and have heterogeneous genetic causes, next-generation sequencing (NGS)-based gene panel testing represents a more powerful diagnostic tool than single gene testing. As genetic information accumulates, genetic testing will likely play an increasingly important role in diagnosing pediatric epilepsy. However, the efforts of clinicians to classify phenotypes in nondiagnosed patients and improve their ability to interpret genetic variants remain important in the NGS era.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Pediatrics, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
26
|
Li C, Ma Y, Zhang K, Gu J, Tang F, Chen S, Cao L, Li S, Jin Y. Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells. Oncotarget 2018; 7:53611-53627. [PMID: 27449084 PMCID: PMC5288209 DOI: 10.18632/oncotarget.10680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is an episodic movement disorder with autosomal-dominant inheritance and marked variability in clinical manifestations. Proline-rich transmembrane protein 2 (PRRT2) has been identified as a causative gene of PKD, but the molecular mechanism underlying the pathogenesis of PKD still remains a mystery. The phenotypes and transcriptional patterns of the PKD disease need further clarification. Here, we report the generation and neural differentiation of iPSC lines from two familial PKD patients with c.487C>T (p. Gln163X) and c.573dupT (p. Gly192Trpfs*8) PRRT2 mutations, respectively. Notably, an extremely lower efficiency in neural conversion from PKD-iPSCs than control-iPSCs is observed by a step-wise neural differentiation method of dual inhibition of SMAD signaling. Moreover, we show the high expression level of PRRT2 throughout the human brain and the expression pattern of PRRT2 in other human tissues for the first time. To gain molecular insight into the development of the disease, we conduct global gene expression profiling of PKD cells at four different stages of neural induction and identify altered gene expression patterns, which peculiarly reflect dysregulated neural transcriptome signatures and a differentiation tendency to mesodermal development, in comparison to control-iPSCs. Additionally, functional and signaling pathway analyses indicate significantly different cell fate determination between PKD-iPSCs and control-iPSCs. Together, the establishment of PKD-specific in vitro models and the illustration of transcriptome features in PKD cells would certainly help us with better understanding of the defects in neural conversion as well as further investigations in the pathogenesis of the PKD disease.
Collapse
Affiliation(s)
- Chun Li
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Ma
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Cao
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
27
|
Liu YT, Nian FS, Chou WJ, Tai CY, Kwan SY, Chen C, Kuo PW, Lin PH, Chen CY, Huang CW, Lee YC, Soong BW, Tsai JW. PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects. Oncotarget 2018; 7:39184-39196. [PMID: 27172900 PMCID: PMC5129924 DOI: 10.18632/oncotarget.9258] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/26/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in the proline-rich transmembrane protein 2 (PRRT2) gene cause a wide spectrum of neurological diseases, ranging from paroxysmal kinesigenic dyskinesia (PKD) to mental retardation and epilepsy. Previously, seven PKD-related PRRT2 heterozygous mutations were identified in the Taiwanese population: P91QfsX, E199X, S202HfsX, R217PfsX, R217EfsX, R240X and R308C. This study aimed to investigate the disease-causing mechanisms of these PRRT2 mutations. We first documented that Prrt2 was localized at the pre- and post-synaptic membranes with a close spatial association with SNAP25 by synaptic membrane fractionation and immunostaining of the rat neurons. Our results then revealed that the six truncating Prrt2 mutants were accumulated in the cytoplasm and thus failed to target to the cell membrane; the R308C missense mutant had significantly reduced protein expression, suggesting loss-of function effects generated by these mutations. Using in utero electroporation of shRNA into cortical neurons, we further found that knocking down Prrt2 expression in vivo resulted in a delay in neuronal migration during embryonic development and a marked decrease in synaptic density after birth. These pathologic effects and novel disease-causing mechanisms may contribute to the severe clinical symptoms in PRRT2–related diseases.
Collapse
Affiliation(s)
- Yo-Tsen Liu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Fang-Shin Nian
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Ju Chou
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Yin Tai
- Istitute of Pharmaceutics, Development Center for Biotechnology, New Taipei City, Taiwan
| | - Shang-Yeong Kwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chien Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Pei-Wen Kuo
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsi Lin
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chin-Yi Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Wei Huang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
28
|
Zhao G, Liu X, Zhang Q, Wang K. PRRT2 mutations in a cohort of Chinese families with paroxysmal kinesigenic dyskinesia and genotype-phenotype correlation reanalysis in literatures. Int J Neurosci 2018; 128:751-760. [PMID: 29285950 DOI: 10.1080/00207454.2017.1418345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF THE STUDY Though rare, children are susceptible to paroxysmal dyskinesias such as paroxysmal kinesigenic dyskinesia, and infantile convulsions and choreoathetosis. Recent studies showed that the cause of paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis could be proline-rich transmembrane protein 2 (PRRT2) gene mutations. MATERIAL AND METHODS This study analysed PRRT2 gene mutations in 51 families with paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis by direct sequencing. In particular, we characterize the genotype-phenotype correlation between age at onset and the types of PRRT2 mutations in all published cases. RESULTS Direct sequencing showed that 12 out of the 51 families had three different pathogenic mutations (c.649dupC, c.776dupG, c.649C>T) in the PRRT2 gene. No significant difference of age at onset between the patients with and without PRRT2 mutations was found in this cohort of patients. A total of 97 different PRRT2 mutations have been reported in 87 studies till now. The PRRT2 mutation classes are wide, and most mutations are frameshift mutations but the most common mutation remains c.649dupC. Comparisons of the age at onset in paroxysmal kinesigenic dyskinesia or infantile convulsions patients with different types of mutations showed no significant difference. CONCLUSIONS This study expands the clinical and genetic spectrums of Chinese patients with paroxysmal kinesigenic dyskinesia and infantile convulsions and choreoathetosis. No clear genotype-phenotype correlation between the age at onset and the types of mutations has been determined.
Collapse
Affiliation(s)
- Guohua Zhao
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| | - Xiaomin Liu
- b Department of Neurology, Qianfoshan Hospital , Shandong University, Jinan, China
| | - Qiong Zhang
- c Department of Psychology and Behavioral Sciences , Zhejiang University, Hangzhou, China
| | - Kang Wang
- d Department of Neurology, First Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Genetic analysis of benign familial epilepsies in the first year of life in a Chinese cohort. J Hum Genet 2017; 63:9-18. [PMID: 29215089 PMCID: PMC8075886 DOI: 10.1038/s10038-017-0359-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022]
Abstract
Benign familial epilepsies that present themselves in the first year of life include benign familial neonatal epilepsy (BFNE), benign familial neonatal-infantile epilepsy (BFNIE) and benign familial infantile epilepsy (BFIE). We used Sanger sequencing and targeted next-generation sequencing to detect gene mutations in a Chinese cohort of patients with these three disorders. A total of 79 families were collected, including 4 BFNE, 7 BFNIE, and 68 BFIE. Genetic testing led to the identification of gene mutations in 60 families (60 out of 79, 75.9%). A total of 42 families had PRRT2 mutations, 9 had KCNQ2 mutations, 8 had SCN2A mutations, and 1 had a GABRA6 mutation. In total three of four BFNE families were detected with KCNQ2 mutations. Mutations were detected in all BFNIE families, including 3 KCNQ2 mutations, 3 SCN2A mutations, and 1 PRRT2 mutation. Gene mutations were identified in 50 out of 68 BFIE families (73.5%), including 41 PRRT2 mutations (41 out of 68, 60.3%), 5 SCN2A mutations, 3 KCNQ2 mutations, and 1 GABRA6 mutation. Our results confirmed that mutations in KCNQ2, SCN2A, and PRRT2 are major genetic causes of benign familial epilepsy in the first year of life in the Chinese population. KCNQ2 is the major gene related to BFNE. PRRT2 is the main gene responsible for BFIE.
Collapse
|
30
|
Tan GH, Liu YY, Wang L, Li K, Zhang ZQ, Li HF, Yang ZF, Li Y, Li D, Wu MY, Yu CL, Long JJ, Chen RC, Li LX, Yin LP, Liu JW, Cheng XW, Shen Q, Shu YS, Sakimura K, Liao LJ, Wu ZY, Xiong ZQ. PRRT2 deficiency induces paroxysmal kinesigenic dyskinesia by regulating synaptic transmission in cerebellum. Cell Res 2017; 28:90-110. [PMID: 29056747 PMCID: PMC5752836 DOI: 10.1038/cr.2017.128] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 01/22/2023] Open
Abstract
Mutations in the proline-rich transmembrane protein 2 (PRRT2) are associated with paroxysmal kinesigenic dyskinesia (PKD) and several other paroxysmal neurological diseases, but the PRRT2 function and pathogenic mechanisms remain largely obscure. Here we show that PRRT2 is a presynaptic protein that interacts with components of the SNARE complex and downregulates its formation. Loss-of-function mutant mice showed PKD-like phenotypes triggered by generalized seizures, hyperthermia, or optogenetic stimulation of the cerebellum. Mutant mice with specific PRRT2 deletion in cerebellar granule cells (GCs) recapitulate the behavioral phenotypes seen in Prrt2-null mice. Furthermore, recording made in cerebellar slices showed that optogenetic stimulation of GCs results in transient elevation followed by suppression of Purkinje cell firing. The anticonvulsant drug carbamazepine used in PKD treatment also relieved PKD-like behaviors in mutant mice. Together, our findings identify PRRT2 as a novel regulator of the SNARE complex and provide a circuit mechanism underlying the PRRT2-related behaviors.
Collapse
Affiliation(s)
- Guo-He Tan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Human Anatomy, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Collaborative Innovation Center of Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuan-Yuan Liu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kui Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ze-Qiang Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhong-Fei Yang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Yue Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun-Lei Yu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juan-Juan Long
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ren-Chao Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Xi Li
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lu-Ping Yin
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji-Wei Liu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue-Wen Cheng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Shen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - You-Sheng Shu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Lu-Jian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Usluer S, Kayserili MA, Eken AG, Yiş U, Leu C, Altmüller J, Thiele H, Nürnberg P, Sander T, Çağlayan SH. Association of a synonymous SCN1B variant affecting splicing efficiency with Benign Familial Infantile Epilepsy (BFIE). Eur J Paediatr Neurol 2017; 21:773-782. [PMID: 28566192 DOI: 10.1016/j.ejpn.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/26/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022]
Abstract
Benign Familial Infantile Epilepsy (BFIE) is clinically characterized by clusters of brief partial seizures progressing to secondarily generalized seizures with onset at the age of 3-7 months and with favorable outcome. PRRT2 mutations are the most common cause of BFIE, and found in about 80% of BFIE families. In this study, we analyzed a large multiplex BFIE family by linkage and whole exome sequencing (WES) analyses. Genome-wide linkage analysis revealed significant evidence for linkage in the chromosomal region 19p12-q13 (LOD score 3.48). Mutation screening of positional candidate genes identified a synonymous SCN1B variant (c.492T>C, p.Tyr164Tyr) affecting splicing by the removal of a splicing silencer sequence, shown by in silico analysis, as the most likely causative mutation. In addition, the PRRT2 frameshift mutation (c.649dupC/p.Arg217Profs*8) was observed, showing incomplete, but high segregation with the phenotype. In vitro splicing assay of SCN1B expression confirmed the in silico findings showing a splicing imbalance between wild type and mutant exons. Herein, the involvement of the SCN1B gene in the etiology of BFIE, contributing to the disease phenotype as a modifier or part of an oligogenic predisposition, is shown for the first time.
Collapse
Affiliation(s)
- Sunay Usluer
- Formerly Affiliated with the Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Melek Aslı Kayserili
- Formerly Affiliated with the Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Aslı Gündoğdu Eken
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Uluc Yiş
- Department of Pediatrics, Division of Child Neurology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Costin Leu
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Thomas Sander
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - S Hande Çağlayan
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
32
|
Weber YG, Biskup S, Helbig KL, Von Spiczak S, Lerche H. The role of genetic testing in epilepsy diagnosis and management. Expert Rev Mol Diagn 2017; 17:739-750. [PMID: 28548558 DOI: 10.1080/14737159.2017.1335598] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. More than 500 epilepsy-associated genes have been described in the literature. Most of these genes play an important role in neuronal excitability, cortical development or synaptic transmission. A growing number of genetic variations have implications on diagnosis and prognostic or therapeutic advice in terms of a personalized medicine. Area covered: The review presents the different forms of genetic epilepsies with respect to their underlying genetic and functional pathophysiology and aims to give advice for recommended genetic testing. Moreover, it discusses ethical and legal guidelines, costs and technical limitations which should be considered. Expert commentary: Genetic testing is an important component in the diagnosis and treatment of many forms of epilepsy.
Collapse
Affiliation(s)
- Yvonne G Weber
- a Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research , University of Tübingen , Tubingen , Germany
| | - Saskia Biskup
- b CeGaT GmbH , Center for Genomics and Transcriptomics , Tübingen , Germany
| | - Katherine L Helbig
- c Division of Clinical Genomics , Ambry Genetics , Aliso Viejo , CA , USA
| | - Sarah Von Spiczak
- d Department of Neuropediatrics , University Medical Center Schleswig-Holstein, Christian Albrechts University , Kiel , Germany.,e Northern German Epilepsy Center for Children and Adolescents , Schwentinental-Raisdorf , Germany
| | - Holger Lerche
- a Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research , University of Tübingen , Tubingen , Germany
| |
Collapse
|
33
|
Wang HX, Li HF, Liu GL, Wen XD, Wu ZY. Mutation Analysis of MR-1, SLC2A1, and CLCN1 in 28 PRRT2-negative Paroxysmal Kinesigenic Dyskinesia Patients. Chin Med J (Engl) 2017; 129:1017-21. [PMID: 27098784 PMCID: PMC4852666 DOI: 10.4103/0366-6999.180529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Paroxysmal kinesigenic dyskinesia (PKD) is the most common subtype of paroxysmal dyskinesias and is caused by mutations in PRRT2 gene. The majority of familial PKD was identified to harbor PRRT2 mutations. However, over two-third of sporadic PKD patients did not carry anyPRRT2 mutation, suggesting an existence of additional genetic mutations or possible misdiagnosis due to clinical overlap. METHODS A cohort of 28 Chinese patients clinically diagnosed with sporadic PKD and excluded PRRT2 mutations were recruited. Clinical features were evaluated, and all subjects were screened for MR-1, SLC2A1, and CLCN1 genes, which are the causative genes of paroxysmal nonkinesigenic dyskinesia (PNKD), paroxysmal exertion-induced dyskinesia, and myotonia congenita (MC), respectively. In addition, 200 genetically matched healthy individuals were recruited as controls. RESULTS A total of 16 genetic variants including 4 in MR-1 gene, 8 in SLC2A1 gene, and 4 in CLCN1 gene were detected. Among them, SLC2A1 c.363G>A mutation was detected in one case, and CLCN1 c.1205C>T mutation was detected in other two cases. Neither of them was found in 200 controls as well as 1000 Genomes database and ExAC database. Both mutations were predicted to be pathogenic by SIFT and PolyPhen2. The SLC2A1 c.363G>A mutation was novel. CONCLUSIONS The phenotypic overlap may lead to the difficulty in distinguishing PKD from PNKD and MC. For those PRRT2- negative PKD cases, screening of SLC2A1 and CLCN1 genes are useful in confirming the diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Ying Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040; Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
34
|
Kishk NA, Sharaf-Eldin WE, Saher H, Essawi M. Case report: Homozygous PRRT2 mutation in ICCA Egyptian family with reduced penetrance. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
35
|
Che XQ, Sun ZF, Mao X, Xia K, Yan XX, Jiang H, Shen L, Li N, Tang BS. Mutation screening of the PRRT2 gene for benign epilepsy with centrotemporal spikes in Chinese mainland population. Int J Neurosci 2016; 127:10-13. [PMID: 26954261 DOI: 10.3109/00207454.2015.1136886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proline-rich transmembrane protein 2 gene (PRRT2) mutations are reported to cause common paroxysmal neurological disorders and show a remarkable pleiotropy. Benign epilepsy with centrotemporal spikes (BECTS) is considered to be the most common epilepsy syndrome in childhood. It is placed among the idiopathic localization related epilepsies. Recently, it was reported that a girl with a PRRT2 mutation c.649_650insC developed infantile focal epilepsy with bilateral spikes which resembled the rolandic spikes. Hereby we performed a comprehensive genetic mutation screening of PRRT2 gene in a cohort of 53 sporadic BECTS patients. None of the 53 sporadic BECTS patients and other 250 controls carried mutations including c.649_650insC in PRRT2. Our data indicated that the PRRT2 mutations might most likely not be associated with BECTS in Chinese mainland population.
Collapse
Affiliation(s)
- Xiang-Qian Che
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China
| | - Zhan-Fang Sun
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China
| | - Xiao Mao
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China
| | - Kun Xia
- b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China
| | - Xin-Xiang Yan
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| | - Hong Jiang
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| | - Lu Shen
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| | - Nan Li
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| | - Bei-Sha Tang
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| |
Collapse
|
36
|
Liu XR, Huang D, Wang J, Wang YF, Sun H, Tang B, Li W, Lai JX, He N, Wu M, Su T, Meng H, Shi YW, Li BM, Tang BS, Liao WP. Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene. NEUROLOGY-GENETICS 2016; 2:e66. [PMID: 27123484 PMCID: PMC4830198 DOI: 10.1212/nxg.0000000000000066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/01/2016] [Indexed: 11/26/2022]
Abstract
Objective: To explore the potential causative genes of paroxysmal hypnogenic dyskinesia (PHD), which was initially considered a subtype of paroxysmal dyskinesia and has been recently considered a form of nocturnal frontal lobe epilepsy (NFLE). Methods: Eleven patients with PHD were recruited. Mutations in proline-rich region transmembrane protein-2 (PRRT2), myofibrillogenesis regulator 1 (MR-1), solute carrier family 2, member 1 (SLC2A1), calcium-activated potassium channel alpha subunit (KCNMA1), cholinergic receptor, nicotinic, alpha 4 (CHRNA4), cholinergic receptor, nicotinic, beta 2 (CHRNB2), cholinergic receptor, nicotinic, alpha 2 (CHRNA2), and potassium channel subfamily T member 1 (KCNT1) were screened by direct sequencing. Results: Two PRRT2 mutations were identified in patients with typical PHD. A mutation of c.649dupC (p.Arg217ProfsX8) was identified in a patient with PHD and his father who was diagnosed with paroxysmal kinesigenic dyskinesia. An additional mutation of c.640G>C (p.Ala214Pro) was identified in a sporadic patient and his asymptomatic mother. No mutations were found in the other screened genes. Conclusions: The present study identified PRRT2 mutations in PHD, extending the phenotypic spectrum of PRRT2 and supporting the classification of PHD as a subtype of paroxysmal dyskinesia but not NFLE. Based on the results of this study, screening for the PRRT2 mutation is recommended in patients with PHD.
Collapse
Affiliation(s)
- Xiao-Rong Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Dan Huang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Fan Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Hui Sun
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Wen Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Xing Lai
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Na He
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Heng Meng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Wu Shi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Bing-Mei Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Olgiati S, Quadri M, Bonifati V. Genetics of movement disorders in the next-generation sequencing era. Mov Disord 2016; 31:458-70. [DOI: 10.1002/mds.26521] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Simone Olgiati
- Department of Clinical Genetics; Erasmus MC; Rotterdam The Netherlands
| | - Marialuisa Quadri
- Department of Clinical Genetics; Erasmus MC; Rotterdam The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics; Erasmus MC; Rotterdam The Netherlands
| |
Collapse
|
38
|
Gardella E, Becker F, Møller RS, Schubert J, Lemke JR, Larsen LHG, Eiberg H, Nothnagel M, Thiele H, Altmüller J, Syrbe S, Merkenschlager A, Bast T, Steinhoff B, Nürnberg P, Mang Y, Bakke Møller L, Gellert P, Heron SE, Dibbens LM, Weckhuysen S, Dahl HA, Biskup S, Tommerup N, Hjalgrim H, Lerche H, Beniczky S, Weber YG. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 2016; 79:428-36. [PMID: 26677014 DOI: 10.1002/ana.24580] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Benign familial infantile seizures (BFIS), paroxysmal kinesigenic dyskinesia (PKD), and their combination-known as infantile convulsions and paroxysmal choreoathetosis (ICCA)-are related autosomal dominant diseases. PRRT2 (proline-rich transmembrane protein 2 gene) has been identified as the major gene in all 3 conditions, found to be mutated in 80 to 90% of familial and 30 to 35% of sporadic cases. METHODS We searched for the genetic defect in PRRT2-negative, unrelated families with BFIS or ICCA using whole exome or targeted gene panel sequencing, and performed a detailed cliniconeurophysiological workup. RESULTS In 3 families with a total of 16 affected members, we identified the same, cosegregating heterozygous missense mutation (c.4447G>A; p.E1483K) in SCN8A, encoding a voltage-gated sodium channel. A founder effect was excluded by linkage analysis. All individuals except 1 had normal cognitive and motor milestones, neuroimaging, and interictal neurological status. Fifteen affected members presented with afebrile focal or generalized tonic-clonic seizures during the first to second year of life; 5 of them experienced single unprovoked seizures later on. One patient had seizures only at school age. All patients stayed otherwise seizure-free, most without medication. Interictal electroencephalogram (EEG) was normal in all cases but 2. Five of 16 patients developed additional brief paroxysmal episodes in puberty, either dystonic/dyskinetic or "shivering" attacks, triggered by stretching, motor initiation, or emotional stimuli. In 1 case, we recorded typical PKD spells by video-EEG-polygraphy, documenting a cortical involvement. INTERPRETATION Our study establishes SCN8A as a novel gene in which a recurrent mutation causes BFIS/ICCA, expanding the clinical-genetic spectrum of combined epileptic and dyskinetic syndromes.
Collapse
Affiliation(s)
- Elena Gardella
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Felicitas Becker
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rikke S Møller
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University Hospitals, University of Leipzig, Leipzig, Germany
| | | | - Hans Eiberg
- RC-LINK, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Steffen Syrbe
- Department of Woman and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Andreas Merkenschlager
- Department of Woman and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | | | | | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Yuan Mang
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Pia Gellert
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark
| | - Sarah E Heron
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Leanne M Dibbens
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Sarah Weckhuysen
- Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | - Saskia Biskup
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle Hjalgrim
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sándor Beniczky
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University, Aarhus, Denmark
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Clinical and genetic features of paroxysmal kinesigenic dyskinesia in Italian patients. Eur J Paediatr Neurol 2016; 20:152-7. [PMID: 26384010 DOI: 10.1016/j.ejpn.2015.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Paroxysmal Kinesigenic Dyskinesia (PKD, OMIM 128200) is the most common type of autosomal dominant Paroxysmal Dyskinesias characterized by attacks of dystonia and choreoathetosis triggered by sudden movements. Recently PRRT2, encoding proline-rich transmembrane protein 2, has been described as the most frequent causative gene for PKD. METHODS We studied the incidence of PRRT2 mutations in a cohort of 16 PKD patients and their relatives for a total of 39 individuals. RESULTS We identify mutations in 10/16 patients and 23 relatives. In 27/33 the mutation was the c.insC649 p.Arg217Profs*8. In 6 individuals from 3 families we found three new mutations: c.insT27 p.Ser9*, c.G967A p.Gly323Arg and c.delCA215_216 p.Thr72Argfs*62. Family history was positive in 9 patients. The mean age of onset was 10 years. Attacks lasted from a few seconds to 1 min and ranged from several per day to some per week, and were generalised in all patients. The main distinctive features of mutation-negative patients were the sporadic occurrence, the absence of association with epilepsy or EEG abnormalities and the poor response to Carbamazepine or other antiepileptic agents. CONCLUSIONS We report the first cohort of Italian patients mutated in PRRT2 and we confirm that this is the most frequent gene involved in PKD.
Collapse
|
40
|
Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum ofPRRT2-associated paroxysmal diseases. Brain 2015; 138:3476-95. [DOI: 10.1093/brain/awv317] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 02/01/2023] Open
|
41
|
Characteristics of patients with benign partial epilepsy in infancy without PRRT2 mutations. Epilepsy Res 2015; 118:10-3. [PMID: 26561923 DOI: 10.1016/j.eplepsyres.2015.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/21/2015] [Accepted: 09/17/2015] [Indexed: 12/30/2022]
Abstract
Mutations in the proline-rich transmembrane protein 2 gene (PRRT2) are known to cause clinical symptoms of paroxysmal kinesigenic dyskinesia (PKD), benign partial epilepsy in infancy (BPEI), and infantile convulsions with choreoathetosis (ICCA) syndrome; however, not all patients with BPEI have PRRT2 mutations, and the genetic backgrounds for such patients are still unknown. To characterize BPEI patients without PRRT2 mutations, we analyzed unrelated 63 patients with BPEI. Sanger sequencing identified PRRT2 mutations in 33 probands (52%). The most common insertion, c.649dup, was identified in 28 probands. Two novel truncation mutations, c.232dup and c.503_504del were identified independently. 16p11.2 microdeletion was not detected in patients without PRRT2 mutations. PRRT2 mutation detection rates were 21/31 (68%) and 12/32 (38%) in probands who were positive or negative for family history, respectively, indicating a significant difference between the two groups. In this study, 20 probands with BPEI were negative for family history of BPEI and negative for PRRT2 mutation. BPEI in these probands may be due to complex genetic predispositions. Because the possibility remains that a second gene contributes to BPEI, further studies are necessary in patients with BPEI but no PRRT2 mutation, especially in Asian people.
Collapse
|
42
|
Chentouf A, Dahdouh A, Guipponi M, Oubaiche ML, Chaouch M, Hamamy H, Antonarakis SE. Familial epilepsy in Algeria: Clinical features and inheritance profiles. Seizure 2015; 31:12-8. [PMID: 26362371 DOI: 10.1016/j.seizure.2015.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To document the clinical characteristics and inheritance pattern of epilepsy in multigeneration Algerian families. METHODS Affected members from extended families with familial epilepsy were assessed at the University Hospital of Oran in Algeria. Available medical records, neurological examination, electroencephalography and imaging data were reviewed. The epilepsy type was classified according to the criteria of the International League Against Epilepsy and modes of inheritance were deduced from pedigree analysis. RESULTS The study population included 40 probands; 23 male (57.5%) and 17 female subjects (42.5%). The mean age of seizure onset was 9.5 ± 6.1 years. According to seizure onset, 16 patients (40%) had focal seizures and 20 (50%) had generalized seizures. Seizure control was achieved for two patients (5%) for 10 years, while 28 (70%) were seizure-free for 3 months. Eleven patients (27.5%) had prior febrile seizures, 12 were diagnosed with psychiatric disorders and four families had syndromic epilepsy. The consanguinity rate among parents of affected was 50% with phenotypic concordance observed in 25 families (62.5%). Pedigree analysis suggested autosomal dominant (AD) inheritance with or without reduced penetrance in 18 families (45%), probable autosomal recessive (AR) inheritance in 14 families (35%), and an X-linked recessive inheritance in one family. CONCLUSION This study reveals large Algerian families with multigenerational inheritance of epilepsy. Molecular testing such as exome sequencing would clarify the genetic basis of epilepsy in some of our families.
Collapse
Affiliation(s)
- Amina Chentouf
- Department of Neurology, University Hospital of Oran, Algeria.
| | - Aïcha Dahdouh
- Department of Psychiatry, University Hospital of Oran, Oran, Algeria
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland; Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Malika Chaouch
- Department of Neurology, Benaknoun University Hospital, Algiers, Algeria
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland; Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
43
|
|
44
|
He ZW, Qu J, Zhang Y, Mao CX, Wang ZB, Mao XY, Deng ZY, Zhou BT, Yin JY, Long HY, Xiao B, Zhang Y, Zhou HH, Liu ZQ. PRRT2 mutations are related to febrile seizures in epileptic patients. Int J Mol Sci 2014; 15:23408-17. [PMID: 25522171 PMCID: PMC4284774 DOI: 10.3390/ijms151223408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/02/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023] Open
Abstract
Previous studies reported that the proline-rich transmembrane protein 2 (PRRT2) gene was identified to be related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with PKD, PKD with migraine and benign familial infantile epilepsy (BFIE). The present study explores whether the PRRT2 mutation is a potential cause of febrile seizures, including febrile seizures plus (FS+), generalized epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS); thus, it may provide a new drug target for personalized medicine for febrile seizure patients. We screened PRRT2 exons in a cohort of 136 epileptic patients with febrile seizures, including FS+, GEFS+ and DS. PRRT2 genetic mutations were identified in 25 out of 136 (18.4%) febrile seizures in epileptic patients. Five loss-of-function and coding missense mutations were identified: c.649delC (p.R217Efs*12), c.649_650insC (p.R217Pfs*8), c.412C>G (p.Pro138Ala), c.439G>C (p.Asp147His) and c.623C>A (p.Ser208Tyr). PRRT2 variants were probably involved in the etiology of febrile seizures in epileptic patients.
Collapse
Affiliation(s)
- Zheng-Wen He
- Department of Neurosurgery, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410014, China.
| | - Jian Qu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Ying Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Zhi-Yong Deng
- Department of Neurosurgery, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410014, China.
| | - Bo-Ting Zhou
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Hong-Yu Long
- Departments of Pharmacy and Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Bo Xiao
- Departments of Pharmacy and Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
45
|
Identification of a Premature Termination Mutation in the Proline-Rich Transmembrane Protein 2 Gene in a Chinese Family with Febrile Seizures. Mol Neurobiol 2014; 53:835-841. [DOI: 10.1007/s12035-014-9047-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
46
|
Schubert J, Siekierska A, Langlois M, May P, Huneau C, Becker F, Muhle H, Suls A, Lemke JR, de Kovel CGF, Thiele H, Konrad K, Kawalia A, Toliat MR, Sander T, Rüschendorf F, Caliebe A, Nagel I, Kohl B, Kecskés A, Jacmin M, Hardies K, Weckhuysen S, Riesch E, Dorn T, Brilstra EH, Baulac S, Møller RS, Hjalgrim H, Koeleman BPC, Jurkat-Rott K, Lehmann-Horn F, Roach JC, Glusman G, Hood L, Galas DJ, Martin B, de Witte PAM, Biskup S, De Jonghe P, Helbig I, Balling R, Nürnberg P, Crawford AD, Esguerra CV, Weber YG, Lerche H. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet 2014; 46:1327-32. [DOI: 10.1038/ng.3130] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/06/2014] [Indexed: 01/12/2023]
|
47
|
Abstract
As noted in the separate introduction to this special topic section, episodic and electrical disorders can appear quite different clinically and yet share many overlapping features, including attack precipitants, therapeutic responses, natural history, and the types of genes that cause many of the genetic forms (i.e., ion channel genes). Thus, as we mapped and attempted to clone genes causing other episodic disorders, ion channels were always outstanding candidates when they mapped to the critical region of linkage in such a family. However, some of these disorders do not result from mutations in channels. This realization has opened up large and exciting new areas for the pathogenesis of these disorders. In some cases, the mutations occur in genes of unknown function or without understanding of molecular pathogenesis. Recently, emerging insights into a fascinating group of episodic movement disorders, the paroxysmal dyskinesias, and study of the causative genes and proteins are leading to the emerging concept of episodic electric disorders resulting from synaptic dysfunction. Much work remains to be done, but the field is evolving rapidly. As it does, we have come to realize that the molecular pathogenesis of electrical and episodic disorders is more complex than a scenario in which such disorders are simply due to mutations in the primary determinants of membrane excitability (channels).
Collapse
|
48
|
Guerrero-López R, Ortega-Moreno L, Giráldez BG, Alarcón-Morcillo C, Sánchez-Martín G, Nieto-Barrera M, Gutiérrez-Delicado E, Gómez-Garre P, Martínez-Bermejo A, García-Peñas JJ, Serratosa JM. Atypical course in individuals from Spanish families with benign familial infantile seizures and mutations in the PRRT2 gene. Epilepsy Res 2014; 108:1274-8. [DOI: 10.1016/j.eplepsyres.2014.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/16/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
|
49
|
Reinthaler EM, Lal D, Lebon S, Hildebrand MS, Dahl HHM, Regan BM, Feucht M, Steinböck H, Neophytou B, Ronen GM, Roche L, Gruber-Sedlmayr U, Geldner J, Haberlandt E, Hoffmann P, Herms S, Gieger C, Waldenberger M, Franke A, Wittig M, Schoch S, Becker AJ, Hahn A, Männik K, Toliat MR, Winterer G, Lerche H, Nürnberg P, Mefford H, Scheffer IE, Berkovic SF, Beckmann JS, Sander T, Jacquemont S, Reymond A, Zimprich F, Neubauer BA. 16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy. Hum Mol Genet 2014; 23:6069-80. [PMID: 24939913 DOI: 10.1093/hmg/ddu306] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Collapse
Affiliation(s)
| | - Dennis Lal
- Cologne Center for Genomics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany, Department of Neuropediatrics, University Medical Faculty Giessen and Marburg, Giessen, Germany
| | - Sebastien Lebon
- Unit of Pediatric Neurology and Neurorehabilitation, Department of Pediatrics
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Hans-Henrik M Dahl
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Brigid M Regan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Martha Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Birgit Neophytou
- Department of Neuropediatrics, St. Anna Children's Hospital, Vienna, Austria
| | - Gabriel M Ronen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Laurian Roche
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Julia Geldner
- Department of Pediatrics, Hospital SMZ Süd Kaiser-Franz-Josef Spital, Vienna, Austria
| | - Edda Haberlandt
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany, Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany, Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Christian Gieger
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Genetic Epidemiology, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susanne Schoch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Andreas Hahn
- Department of Neuropediatrics, University Medical Faculty Giessen and Marburg, Giessen, Germany
| | - Katrin Männik
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | - Georg Winterer
- Experimental and Clinical Research Center (ECRC) Charité, University Medicine Berlin, Berlin, Germany
| | | | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heather Mefford
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia, Florey Institute and Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Jacques S Beckmann
- Service of Medical Genetics, Lausanne University Hospital, Lausanne, Switzerland, Swiss Institute of Bioinformatics, Lausanne, Switzerland and
| | | | | | | | - Sebastien Jacquemont
- Service of Medical Genetics, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Bernd A Neubauer
- Department of Neuropediatrics, University Medical Faculty Giessen and Marburg, Giessen, Germany
| |
Collapse
|
50
|
Torisu H, Watanabe K, Shimojima K, Sugawara M, Sanefuji M, Ishizaki Y, Sakai Y, Yamashita H, Yamamoto T, Hara T. Girl with a PRRT2 mutation and infantile focal epilepsy with bilateral spikes. Brain Dev 2014; 36:342-5. [PMID: 23768507 DOI: 10.1016/j.braindev.2013.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 11/16/2022]
Abstract
This paper documents the case of a female Japanese patient with infantile focal epilepsy, which was different from benign infantile seizures, and a family history of infantile convulsion and paroxysmal choreoathetosis. The patient developed partial seizures (e.g., psychomotor arrest) at age 14 months. At the time of onset, interictal electroencephalography (EEG) showed bilateral parietotemporal spikes, but the results of neurologic examination and brain magnetic resonance imaging were normal. Her seizures were well controlled with carbamazepine, and she had a normal developmental outcome. EEG abnormalities, however, persisted for more than 6 years, and the spikes moved transiently to the occipital area and began to resemble the rolandic spikes recognized in benign childhood epilepsy. Her father had paroxysmal kinesigenic dyskinesia, with an onset age of 6 years, and her youngest sister had typical benign infantile seizures. Genetic analysis demonstrated that all affected members had a heterozygous mutation of c.649_650insC in the proline-rich transmembrane protein-2 (PRRT2) gene. This case indicates that the phenotypic spectrum of infantile seizures or epilepsy with PRRT2-related pathology may be larger than previously expected, and that genetic investigation of the effect of PRRT2 mutations on idiopathic seizures or epilepsy in childhood may help elucidate the pathological backgrounds of benign childhood epilepsy.
Collapse
Affiliation(s)
- Hiroyuki Torisu
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Pediatrics, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan.
| | - Kyoko Watanabe
- Department of Pediatrics, Kokura Medical Center, Kitakyushu, Japan
| | - Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Midori Sugawara
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshito Ishizaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|