1
|
Payliss BJ, Patel A, Sheppard AC, Wyatt HDM. Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability. Front Genet 2021; 12:784167. [PMID: 34804132 PMCID: PMC8599992 DOI: 10.3389/fgene.2021.784167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
All organisms depend on the ability of cells to accurately duplicate and segregate DNA into progeny. However, DNA is frequently damaged by factors in the environment and from within cells. One of the most dangerous lesions is a DNA double-strand break. Unrepaired breaks are a major driving force for genome instability. Cells contain sophisticated DNA repair networks to counteract the harmful effects of genotoxic agents, thus safeguarding genome integrity. Homologous recombination is a high-fidelity, template-dependent DNA repair pathway essential for the accurate repair of DNA nicks, gaps and double-strand breaks. Accurate homologous recombination depends on the ability of cells to remove branched DNA structures that form during repair, which is achieved through the opposing actions of helicases and structure-selective endonucleases. This review focuses on a structure-selective endonuclease called SLX1-SLX4 and the macromolecular endonuclease complexes that assemble on the SLX4 scaffold. First, we discuss recent developments that illuminate the structure and biochemical properties of this somewhat atypical structure-selective endonuclease. We then summarize the multifaceted roles that are fulfilled by human SLX1-SLX4 and its associated endonucleases in homologous recombination and genome stability. Finally, we discuss recent work on SLX4-binding proteins that may represent integral components of these macromolecular nuclease complexes, emphasizing the structure and function of a protein called SLX4IP.
Collapse
Affiliation(s)
- Brandon J Payliss
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ayushi Patel
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anneka C Sheppard
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haley D M Wyatt
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2021; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
3
|
Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients. Cancers (Basel) 2020; 12:cancers12040829. [PMID: 32235514 PMCID: PMC7226125 DOI: 10.3390/cancers12040829] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) is caused by biallelic mutations in FA genes. Monoallelic mutations in five of these genes (BRCA1, BRCA2, PALB2, BRIP1 and RAD51C) increase the susceptibility to breast/ovarian cancer and are used in clinical diagnostics as bona-fide hereditary cancer genes. Increasing evidence suggests that monoallelic mutations in other FA genes could predispose to tumor development, especially breast cancer. The objective of this study is to assess the mutational spectrum of 14 additional FA genes (FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FANCP, FANCQ, FANCR and FANCU) in a cohort of hereditary cancer patients, to compare with local cancer-free controls as well as GnomAD. A total of 1021 hereditary cancer patients and 194 controls were analyzed using our next generation custom sequencing panel. We identified 35 pathogenic variants in eight genes. A significant association with the risk of breast cancer/breast and ovarian cancer was found for carriers of FANCA mutations (odds ratio (OR) = 3.14 95% confidence interval (CI) 1.4–6.17, p = 0.003). Two patients with early-onset cancer showed a pathogenic FA variant in addition to another germline mutation, suggesting a modifier role for FA variants. Our results encourage a comprehensive analysis of FA genes in larger studies to better assess their role in cancer risk.
Collapse
|
4
|
Taylor SJ, Arends MJ, Langdon SP. Inhibitors of the Fanconi anaemia pathway as potential antitumour agents for ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:26-52. [PMID: 36046263 PMCID: PMC9400734 DOI: 10.37349/etat.2020.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022] Open
Abstract
The Fanconi anaemia (FA) pathway is an important mechanism for cellular DNA damage repair, which functions to remove toxic DNA interstrand crosslinks. This is particularly relevant in the context of ovarian and other cancers which rely extensively on interstrand cross-link generating platinum chemotherapy as standard of care treatment. These cancers often respond well to initial treatment, but reoccur with resistant disease and upregulation of DNA damage repair pathways. The FA pathway is therefore of great interest as a target for therapies that aim to improve the efficacy of platinum chemotherapies, and reverse tumour resistance to these. In this review, we discuss recent advances in understanding the mechanism of interstrand cross-link repair by the FA pathway, and the potential of the component parts as targets for therapeutic agents. We then focus on the current state of play of inhibitor development, covering both the characterisation of broad spectrum inhibitors and high throughput screening approaches to identify novel small molecule inhibitors. We also consider synthetic lethality between the FA pathway and other DNA damage repair pathways as a therapeutic approach.
Collapse
Affiliation(s)
- Sarah J Taylor
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|
5
|
Fang CB, Wu HT, Zhang ML, Liu J, Zhang GJ. Fanconi Anemia Pathway: Mechanisms of Breast Cancer Predisposition Development and Potential Therapeutic Targets. Front Cell Dev Biol 2020; 8:160. [PMID: 32300589 PMCID: PMC7142266 DOI: 10.3389/fcell.2020.00160] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
The maintenance of genomic stability is crucial for species survival, and its failure is closely associated with tumorigenesis. The Fanconi anemia (FA) pathway, involving 22 identified genes, plays a central role in repairing DNA interstrand cross-links. Importantly, a germline defect in any of these genes can cause Fanconi's anemia, a heterogeneous genetic disorder, characterized by congenital growth abnormalities, bone marrow failure, and predisposition to cancer. On the other hand, the breast cancer susceptibility genes, BRCA1 and BRCA2, also known as FANCS and FANCD1, respectively, are involved in the FA pathway; hence, researchers have studied the association between the FA pathway and cancer predisposition. Here, we mainly focused on and systematically reviewed the clinical and mechanistic implications of the predisposition of individuals with abnormalities in the FA pathway to cancer, especially breast cancer.
Collapse
Affiliation(s)
- Can-Bin Fang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Man-Li Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- Department of Physiology, Shantou University Medical College, Shantou, China
- *Correspondence: Jing Liu,
| | - Guo-Jun Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- The Cancer Center and the Department of Breast-Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiang’an, China
- Guo-Jun Zhang, ;
| |
Collapse
|
6
|
Dörk T, Peterlongo P, Mannermaa A, Bolla MK, Wang Q, Dennis J, Ahearn T, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Augustinsson A, Freeman LEB, Beckmann MW, Beeghly-Fadiel A, Behrens S, Bermisheva M, Blomqvist C, Bogdanova NV, Bojesen SE, Brauch H, Brenner H, Burwinkel B, Canzian F, Chan TL, Chang-Claude J, Chanock SJ, Choi JY, Christiansen H, Clarke CL, Couch FJ, Czene K, Daly MB, Dos-Santos-Silva I, Dwek M, Eccles DM, Ekici AB, Eriksson M, Evans DG, Fasching PA, Figueroa J, Flyger H, Fritschi L, Gabrielson M, Gago-Dominguez M, Gao C, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Goldberg MS, Goldgar DE, Guénel P, Haeberle L, Haiman CA, Håkansson N, Hall P, Hamann U, Hartman M, Hauke J, Hein A, Hillemanns P, Hogervorst FBL, Hooning MJ, Hopper JL, Howell T, Huo D, Ito H, Iwasaki M, Jakubowska A, Janni W, John EM, Jung A, Kaaks R, Kang D, Kapoor PM, Khusnutdinova E, Kim SW, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kwong A, Lambrechts D, Marchand LL, Li J, Lindström S, Linet M, Lo WY, Long J, Lophatananon A, Lubiński J, Manoochehri M, Manoukian S, Margolin S, Martinez E, Matsuo K, Mavroudis D, Meindl A, Menon U, Milne RL, Mohd Taib NA, Muir K, Mulligan AM, Neuhausen SL, Nevanlinna H, Neven P, Newman WG, Offit K, Olopade OI, Olshan AF, Olson JE, Olsson H, Park SK, Park-Simon TW, Peto J, Plaseska-Karanfilska D, Pohl-Rescigno E, Presneau N, Rack B, Radice P, Rashid MU, Rennert G, Rennert HS, Romero A, Ruebner M, Saloustros E, Schmidt MK, Schmutzler RK, Schneider MO, Schoemaker MJ, Scott C, Shen CY, Shu XO, Simard J, Slager S, Smichkoska S, Southey MC, Spinelli JJ, Stone J, Surowy H, Swerdlow AJ, Tamimi RM, Tapper WJ, Teo SH, Terry MB, Toland AE, Tollenaar RAEM, Torres D, Torres-Mejía G, Troester MA, Truong T, Tsugane S, Untch M, Vachon CM, Ouweland AMWVD, Veen EMV, Vijai J, Wendt C, Wolk A, Yu JC, Zheng W, Ziogas A, Ziv E, Dunning AM, Pharoah PDP, Schindler D, Devilee P, Easton DF. Two truncating variants in FANCC and breast cancer risk. Sci Rep 2019; 9:12524. [PMID: 31467304 PMCID: PMC6715680 DOI: 10.1038/s41598-019-48804-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
Collapse
Affiliation(s)
- Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, C070, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oncology, Örebro University Hospital, Örebro, Sweden
| | - Natalia V Bogdanova
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, C070, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Centre, Happy Valley, Hong Kong
- Department of Pathology, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hans Christiansen
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Miriam Dwek
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Diana M Eccles
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lin Fritschi
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Chi Gao
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC, Canada
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, National University Health System, Singapore, Singapore
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Dezheng Huo
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA
| | - Hidemi Ito
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Esther M John
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, Korea
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Centre, Happy Valley, Hong Kong
- Department of Surgery, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Surgery, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - Sara Lindström
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Elena Martinez
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dimitris Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Patrick Neven
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Sue K Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | - Esther Pohl-Rescigno
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nadege Presneau
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Hedy S Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Matthias Ruebner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael O Schneider
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Public Health, China Medical University, Taichung, Taiwan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Susan Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Snezhana Smichkoska
- Ss. Cyril and Methodius University in Skopje, Medical Faculty, University Clinic of Radiotherapy and Oncology, Skopje, Republic of Macedonia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - John J Spinelli
- Population Oncology, BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Curtin University and University of Western Australia, Perth, Western Australia, Australia
| | - Harald Surowy
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Soo H Teo
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Gabriela Torres-Mejía
- Center for Population Health Research, National Institute of Public Health, Mexico, Mexico
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Michael Untch
- Department of Gynecology and Obstetrics, Helios Clinics Berlin-Buch, Berlin, Germany
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | | | - Elke M van Veen
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Joseph Vijai
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Detlev Schindler
- Institute of Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Brandão RD, Mensaert K, López‐Perolio I, Tserpelis D, Xenakis M, Lattimore V, Walker LC, Kvist A, Vega A, Gutiérrez‐Enríquez S, Díez O, de la Hoya M, Spurdle AB, De Meyer T, Blok MJ. Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes. Int J Cancer 2019; 145:401-414. [PMID: 30623411 PMCID: PMC6635756 DOI: 10.1002/ijc.32114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/27/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.
Collapse
Affiliation(s)
- Rita D. Brandão
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Klaas Mensaert
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
| | - Irene López‐Perolio
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Demis Tserpelis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Markos Xenakis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa Lattimore
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical SciencesLund UniversityLundSweden
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica‐Servicio Galgo de SaúdeGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | | | - Orland Díez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Area of Clinical and Molecular GeneticsUniversity Hospital of Vall d'HebronBarcelonaSpain
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
- CRIG (Cancer Research Institute Ghent)Ghent UniversityGhentBelgium
| | - Marinus J. Blok
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| |
Collapse
|
8
|
Torrezan GT, de Almeida FGDSR, Figueiredo MCP, Barros BDDF, de Paula CAA, Valieris R, de Souza JES, Ramalho RF, da Silva FCC, Ferreira EN, de Nóbrega AF, Felicio PS, Achatz MI, de Souza SJ, Palmero EI, Carraro DM. Complex Landscape of Germline Variants in Brazilian Patients With Hereditary and Early Onset Breast Cancer. Front Genet 2018; 9:161. [PMID: 29868112 PMCID: PMC5949367 DOI: 10.3389/fgene.2018.00161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Pathogenic variants in known breast cancer (BC) predisposing genes explain only about 30% of Hereditary Breast Cancer (HBC) cases, whereas the underlying genetic factors for most families remain unknown. Here, we used whole-exome sequencing (WES) to identify genetic variants associated to HBC in 17 patients of Brazil with familial BC and negative for causal variants in major BC risk genes (BRCA1/2, TP53, and CHEK2 c.1100delC). First, we searched for rare variants in 27 known HBC genes and identified two patients harboring truncating pathogenic variants in ATM and BARD1. For the remaining 15 negative patients, we found a substantial vast number of rare genetic variants. Thus, for selecting the most promising variants we used functional-based variant prioritization, followed by NGS validation, analysis in a control group, cosegregation analysis in one family and comparison with previous WES studies, shrinking our list to 23 novel BC candidate genes, which were evaluated in an independent cohort of 42 high-risk BC patients. Rare and possibly damaging variants were identified in 12 candidate genes in this cohort, including variants in DNA repair genes (ERCC1 and SXL4) and other cancer-related genes (NOTCH2, ERBB2, MST1R, and RAF1). Overall, this is the first WES study applied for identifying novel genes associated to HBC in Brazilian patients, in which we provide a set of putative BC predisposing genes. We also underpin the value of using WES for assessing the complex landscape of HBC susceptibility, especially in less characterized populations.
Collapse
Affiliation(s)
- Giovana T Torrezan
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| | | | - Márcia C P Figueiredo
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Bruna D de Figueiredo Barros
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Cláudia A A de Paula
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Renan Valieris
- Laboratory of Bioinformatics and Computational Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Jorge E S de Souza
- Instituto de Bioinformática e Biotecnologia-2bio, Natal, Brazil.,Instituto Metrópole Digital, Federal University of Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rodrigo F Ramalho
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Felipe C C da Silva
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Elisa N Ferreira
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.,Research and Development, Fleury Group, São Paulo, Brazil
| | | | - Paula S Felicio
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Maria I Achatz
- Oncogenetics Department, A.C. Camargo Cancer Center, São Paulo, Brazil.,Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Sandro J de Souza
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil.,Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil.,Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Dirce M Carraro
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
9
|
Surowy H, Varga D, Burwinkel B, Marmé F, Sohn C, Luedeke M, Rinckleb A, Maier C, Deissler H, Volcic M, Wiesmüller L, Hasenburg A, Klar M, Hoegel J, Vogel W. A low-frequency haplotype spanning SLX4/FANCP constitutes a new risk locus for early-onset breast cancer (<60 years) and is associated with reduced DNA repair capacity. Int J Cancer 2017; 142:757-768. [PMID: 29044504 DOI: 10.1002/ijc.31105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023]
Abstract
Only a fraction of breast cancer (BC) cases can be yet explained by mutations in genes or genomic variants discovered in linkage, genome-wide association and sequencing studies. The known genes entailing medium or high risk for BC are strongly enriched for a function in DNA double strand repair. Thus, aiming at identifying low frequency variants conferring an intermediate risk, we here investigated 17 variants (MAF: 0.01-0.1) in 10 candidate genes involved in DNA repair or cell cycle control. In an exploration cohort of 437 cases and 1189 controls, we show the variant rs3810813 in the SLX4/FANCP gene to be significantly associated with both BC (≤60 years; OR = 2.6(1.6-3.9), p = 1.6E-05) and decreased DNA repair capacity (≤60 years; beta = 37.8(17.9-57.8), p = 5.3E-4). BC association was confirmed in a verification cohort (N = 2441). Both associations were absent from cases diagnosed >60 years and stronger the earlier the diagnosis. By imputation we show that rs3810813 tags a haplotype with 5 additional variants with the same allele frequency (R2 > 0.9), and a pattern of association very similar for both phenotypes (cases <60 years, p < 0.001, the Bonferroni threshold derived from unlinked variants in the region). In young cases (≤60 years) carrying the risk haplotype, micronucleus test results are predictive for BC (AUC > 0.9). Our findings propose a risk variant with high penetrance on the haplotype spanning SLX4/FANCP to be functionally associated to BC predisposition via decreased repair capacity and suggest this variant is carried by a fraction of these haplotypes that is enriched in early onset BC cases.
Collapse
Affiliation(s)
- Harald Surowy
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, Ulm, D-89081, Germany.,Division of Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, Heidelberg, D-69120, Germany.,Molecular Epidemiology, C080, German Cancer Research Center, Im Neuenheimer Feld 581, Heidelberg, D-69120, Germany.,Harald Surowy's current address is: Institute of Human Genetics, University of Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| | - Dominic Varga
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstr. 43, Ulm, D-89075, Germany.,Dominic Varga's current address is: Department of Gynecology, Donauklinik, Krankenhausstr 11, Neu-Ulm, 89231, Germany
| | - Barbara Burwinkel
- Division of Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, Heidelberg, D-69120, Germany.,Molecular Epidemiology, C080, German Cancer Research Center, Im Neuenheimer Feld 581, Heidelberg, D-69120, Germany
| | - Frederik Marmé
- Division of Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, Heidelberg, D-69120, Germany.,National Centre for Tumor Diseases, Heidelberg, D-69120, Germany
| | - Christof Sohn
- Division of Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, Heidelberg, D-69120, Germany
| | - Manuel Luedeke
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Antje Rinckleb
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Christiane Maier
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Helmut Deissler
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstr. 43, Ulm, D-89075, Germany.,Helmut Deissler's current address is: HD/U Biomedical Services, Im Wiblinger Hart 62, Ulm, 89079, Germany
| | - Meta Volcic
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstr. 43, Ulm, D-89075, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstr. 43, Ulm, D-89075, Germany
| | - Annette Hasenburg
- Department of Obstetrics and Gynecology, University of Freiburg, Hugstetter Straße 55, Freiburg, D-79106, Germany.,Annete Hasenburg's current address is: Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, University of Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Maximilian Klar
- Department of Obstetrics and Gynecology, University of Freiburg, Hugstetter Straße 55, Freiburg, D-79106, Germany
| | - Josef Hoegel
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Walther Vogel
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
10
|
Samadder P, Aithal R, Belan O, Krejci L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther 2016; 161:111-131. [PMID: 26899499 DOI: 10.1016/j.pharmthera.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.
Collapse
Affiliation(s)
- Pounami Samadder
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| | - Rakesh Aithal
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Belan
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
11
|
Bogliolo M, Surrallés J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev 2015; 33:32-40. [PMID: 26254775 DOI: 10.1016/j.gde.2015.07.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is characterized by bone marrow failure, malformations, and chromosome fragility. We review the recent discovery of FA genes and efforts to develop genetic therapies for FA in the last five years. Because current data exclude FANCM as an FA gene, 15 genes remain bona fide FA genes and three (FANCO, FANCR and FANCS) cause an FA like syndrome. Monoallelic mutations in 6 FA associated genes (FANCD1, FANCJ, FANCM, FANCN, FANCO and FANCS) predispose to breast and ovarian cancer. The products of all these genes are involved in the repair of stalled DNA replication forks by unhooking DNA interstrand cross-links and promoting homologous recombination. The genetic characterization of patients with FA is essential for developing therapies, including hematopoietic stem cell transplantation from a savior sibling donor after embryo selection, gene therapy, or genome editing using genetic recombination or engineered nucleases. Newly acquired knowledge about FA promises to provide therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Massimo Bogliolo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.
| |
Collapse
|
12
|
Peterlongo P, Catucci I, Colombo M, Caleca L, Mucaki E, Bogliolo M, Marin M, Damiola F, Bernard L, Pensotti V, Volorio S, Dall'Olio V, Meindl A, Bartram C, Sutter C, Surowy H, Sornin V, Dondon MG, Eon-Marchais S, Stoppa-Lyonnet D, Andrieu N, Sinilnikova OM, Mitchell G, James PA, Thompson E, Marchetti M, Verzeroli C, Tartari C, Capone GL, Putignano AL, Genuardi M, Medici V, Marchi I, Federico M, Tognazzo S, Matricardi L, Agata S, Dolcetti R, Della Puppa L, Cini G, Gismondi V, Viassolo V, Perfumo C, Mencarelli MA, Baldassarri M, Peissel B, Roversi G, Silvestri V, Rizzolo P, Spina F, Vivanet C, Tibiletti MG, Caligo MA, Gambino G, Tommasi S, Pilato B, Tondini C, Corna C, Bonanni B, Barile M, Osorio A, Benitez J, Balestrino L, Ottini L, Manoukian S, Pierotti MA, Renieri A, Varesco L, Couch FJ, Wang X, Devilee P, Hilbers FS, van Asperen CJ, Viel A, Montagna M, Cortesi L, Diez O, Balmaña J, Hauke J, Schmutzler RK, Papi L, Pujana MA, Lázaro C, Falanga A, Offit K, Vijai J, Campbell I, Burwinkel B, Kvist A, Ehrencrona H, Mazoyer S, Pizzamiglio S, Verderio P, Surralles J, Rogan PK, Radice P. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Hum Mol Genet 2015; 24:5345-55. [PMID: 26130695 DOI: 10.1093/hmg/ddv251] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/25/2015] [Indexed: 11/15/2022] Open
Abstract
Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28-12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04-12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09-13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer.
Collapse
Affiliation(s)
- Paolo Peterlongo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine,
| | - Irene Catucci
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| | - Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| | - Eliseos Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Massimo Bogliolo
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Maria Marin
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Francesca Damiola
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Loris Bernard
- Department of Experimental Oncology and Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Valeria Pensotti
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Sara Volorio
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Valentina Dall'Olio
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Claus Bartram
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Christian Sutter
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Harald Surowy
- Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany, Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valérie Sornin
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France, Institut Curie, Paris, France, Mines ParisTech, Fontainebleau, France
| | - Séverine Eon-Marchais
- INSERM, U900, Paris, France, Institut Curie, Paris, France, Mines ParisTech, Fontainebleau, France
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Oncologique, Institut Curie, Paris, France, INSERM, U830, Paris, France, Université Paris-Descartes, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France, Institut Curie, Paris, France, Mines ParisTech, Fontainebleau, France
| | - Olga M Sinilnikova
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France, Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Centre Hospitalier Universitaire de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Gillian Mitchell
- Familial Cancer Centre, Sir Peter MacCallum Department of Oncology and
| | - Paul A James
- Familial Cancer Centre, Sir Peter MacCallum Department of Oncology and
| | - Ella Thompson
- Cancer Genetics Laboratory and Sir Peter MacCallum Department of Oncology and
| | | | | | | | - Cristina Verzeroli
- Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Carmen Tartari
- Department of Immunohematology and Transfusion Medicine and
| | - Gabriele Lorenzo Capone
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy, FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy
| | - Anna Laura Putignano
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy, FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy
| | - Maurizio Genuardi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy, FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy, Institute of Medical Genetics, 'A. Gemelli' School of Medicine, Catholic University, Rome, Italy
| | - Veronica Medici
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Isabella Marchi
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Massimo Federico
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Silvia Tognazzo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Laura Matricardi
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Simona Agata
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | | | - Lara Della Puppa
- Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Giulia Cini
- Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Viviana Gismondi
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Valeria Viassolo
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Chiara Perfumo
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Maria Antonietta Mencarelli
- Medical Genetics, University of Siena, Siena, Italy, Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy, Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine
| | - Gaia Roversi
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine
| | | | - Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Maria Adelaide Caligo
- Section of Genetic Oncology, University Hospital and University of Pisa, Pisa, Italy
| | - Gaetana Gambino
- Section of Genetic Oncology, University Hospital and University of Pisa, Pisa, Italy
| | - Stefania Tommasi
- IRCCS Istituto Tumori 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari, Italy
| | - Brunella Pilato
- IRCCS Istituto Tumori 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari, Italy
| | - Carlo Tondini
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Corna
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Ana Osorio
- Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain, Spanish Genotyping Centre (CEGEN), Madrid, Spain
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain, Spanish Genotyping Centre (CEGEN), Madrid, Spain
| | | | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy, Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Liliana Varesco
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Peter Devilee
- Department of Human Genetics, Department of Pathology and
| | | | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessandra Viel
- Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Laura Cortesi
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Orland Diez
- Oncogenetics Group, Hospital Universitari de la Vall d'Hebron, Barcelona, Spain, Vall d́Hebron Institute of Oncology (VHIO), Barcelona, Spain, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Balmaña
- Vall d́Hebron Institute of Oncology (VHIO), Barcelona, Spain, Department of Medical Oncology, Hospital Universitari de la Vall d́Hebron, Barcelona, Spain
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Laura Papi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy
| | | | - Conxi Lázaro
- Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine and
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine and Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine and Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Campbell
- Cancer Genetics Laboratory and Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany, Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences
| | - Hans Ehrencrona
- Department of Clinical Genetics, Laboratory Medicine, Office for Medical Services and Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Sylvie Mazoyer
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Sara Pizzamiglio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jordi Surralles
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paolo Radice
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| |
Collapse
|
13
|
Sousa FG, Matuo R, Tang SW, Rajapakse VN, Luna A, Sander C, Varma S, Simon PHG, Doroshow JH, Reinhold WC, Pommier Y. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity. DNA Repair (Amst) 2015; 28:107-15. [PMID: 25758781 DOI: 10.1016/j.dnarep.2015.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/26/2022]
Abstract
Loss of function of DNA repair (DNAR) genes is associated with genomic instability and cancer predisposition; it also makes cancer cells reliant on a reduced set of DNAR pathways to resist DNA-targeted therapy, which remains the core of the anticancer armamentarium. Because the landscape of DNAR defects across numerous types of cancers and its relation with drug activity have not been systematically examined, we took advantage of the unique drug and genomic databases of the US National Cancer Institute cancer cell lines (the NCI-60) to characterize 260 DNAR genes with respect to deleterious mutations and expression down-regulation; 169 genes exhibited a total of 549 function-affecting alterations, with 39 of them scoring as putative knockouts across 31 cell lines. Those mutations were compared to tumor samples from 12 studies of The Cancer Genome Atlas (TCGA) and The Cancer Cell Line Encyclopedia (CCLE). Based on this compendium of alterations, we determined which DNAR genomic alterations predicted drug response for 20,195 compounds present in the NCI-60 drug database. Among 242 DNA damaging agents, 202 showed associations with at least one DNAR genomic signature. In addition to SLFN11, the Fanconi anemia-scaffolding gene SLX4 (FANCP/BTBD12) stood out among the genes most significantly related with DNA synthesis and topoisomerase inhibitors. Depletion and complementation experiments validated the causal relationship between SLX4 defects and sensitivity to raltitrexed and cytarabine in addition to camptothecin. Therefore, we propose new rational uses for existing anticancer drugs based on a comprehensive analysis of DNAR genomic parameters.
Collapse
Affiliation(s)
- Fabricio G Sousa
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Programa de Pós-Graduação em Farmácia, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Renata Matuo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Programa de Pós-Graduação em Farmácia, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Sai-Wen Tang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Augustin Luna
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Computational Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Chris Sander
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; HiThru Analytics LLC, Laurel, MD 20707, USA
| | - Paul H G Simon
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Richardson C, Yan S, Vestal CG. Oxidative stress, bone marrow failure, and genome instability in hematopoietic stem cells. Int J Mol Sci 2015; 16:2366-85. [PMID: 25622253 PMCID: PMC4346841 DOI: 10.3390/ijms16022366] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease.
Collapse
Affiliation(s)
- Christine Richardson
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| | - Shan Yan
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| | - C Greer Vestal
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| |
Collapse
|
15
|
Kurian AW, Hare EE, Mills MA, Kingham KE, McPherson L, Whittemore AS, McGuire V, Ladabaum U, Kobayashi Y, Lincoln SE, Cargill M, Ford JM. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol 2014; 32:2001-9. [PMID: 24733792 PMCID: PMC4067941 DOI: 10.1200/jco.2013.53.6607] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Multiple-gene sequencing is entering practice, but its clinical value is unknown. We evaluated the performance of a customized germline-DNA sequencing panel for cancer-risk assessment in a representative clinical sample. METHODS Patients referred for clinical BRCA1/2 testing from 2002 to 2012 were invited to donate a research blood sample. Samples were frozen at -80° C, and DNA was extracted from them after 1 to 10 years. The entire coding region, exon-intron boundaries, and all known pathogenic variants in other regions were sequenced for 42 genes that had cancer risk associations. Potentially actionable results were disclosed to participants. RESULTS In total, 198 women participated in the study: 174 had breast cancer and 57 carried germline BRCA1/2 mutations. BRCA1/2 analysis was fully concordant with prior testing. Sixteen pathogenic variants were identified in ATM, BLM, CDH1, CDKN2A, MUTYH, MLH1, NBN, PRSS1, and SLX4 among 141 women without BRCA1/2 mutations. Fourteen participants carried 15 pathogenic variants, warranting a possible change in care; they were invited for targeted screening recommendations, enabling early detection and removal of a tubular adenoma by colonoscopy. Participants carried an average of 2.1 variants of uncertain significance among 42 genes. CONCLUSION Among women testing negative for BRCA1/2 mutations, multiple-gene sequencing identified 16 potentially pathogenic mutations in other genes (11.4%; 95% CI, 7.0% to 17.7%), of which 15 (10.6%; 95% CI, 6.5% to 16.9%) prompted consideration of a change in care, enabling early detection of a precancerous colon polyp. Additional studies are required to quantify the penetrance of identified mutations and determine clinical utility. However, these results suggest that multiple-gene sequencing may benefit appropriately selected patients.
Collapse
Affiliation(s)
- Allison W Kurian
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Emily E Hare
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Meredith A Mills
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Kerry E Kingham
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Lisa McPherson
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Alice S Whittemore
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Valerie McGuire
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Uri Ladabaum
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Yuya Kobayashi
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Stephen E Lincoln
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - Michele Cargill
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA
| | - James M Ford
- Allison W. Kurian, Meredith A. Mills, Kerry E. Kingham, Lisa McPherson, Alice S. Whittemore, Valerie McGuire, Uri Ladabaum, James M. Ford, Stanford University School of Medicine, Stanford; Emily E. Hare, Yuya Kobayashi, Stephen E. Lincoln, Michele Cargill, InVitae, San Francisco, CA.
| |
Collapse
|
16
|
Catucci I, Peterlongo P, Ciceri S, Colombo M, Pasquini G, Barile M, Bonanni B, Verderio P, Pizzamiglio S, Foglia C, Falanga A, Marchetti M, Galastri L, Bianchi T, Corna C, Ravagnani F, Bernard L, Fortuzzi S, Sardella D, Scuvera G, Peissel B, Manoukian S, Tondini C, Radice P. PALB2 sequencing in Italian familial breast cancer cases reveals a high-risk mutation recurrent in the province of Bergamo. Genet Med 2014; 16:688-94. [PMID: 24556926 DOI: 10.1038/gim.2014.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Monoallelic germ-line deleterious mutations of PALB2 (partner and localizer of BRCA2) are associated with breast cancer risk and have been found in several populations, with carrier frequencies of ~1-2%. Initially, these mutations were considered to have moderate penetrance, but accumulating evidence now indicates that they are associated with much higher risk. METHODS In this study, we sequenced the PALB2 coding regions unlinked to BRCA (breast cancer) genes in 575 probands from Italian breast cancer families recruited in Milan. RESULTS We found 12 carriers (2.1%) of deleterious mutations, and none of the mutations was found in 784 controls collected in Milan. One of these mutations, the c.1027C>T (p.Gln343X), was found to be recurrent in the province of Bergamo in northern Italy, being detected in 6/113 (5.3%) familial breast cancer cases and 2/477 (0.4%) controls recruited in this area (Fisher's exact test: P < 0.01). CONCLUSIONS Our data provide confirmatory findings that, in the Italian population also, deleterious mutations of PALB2 are relatively frequent predisposing factors for breast cancer and may be associated with high risk of the disease.
Collapse
Affiliation(s)
- Irene Catucci
- 1] IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy [2] Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Peterlongo
- 1] IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy [2] Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Ciceri
- 1] IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy [2] Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Graziella Pasquini
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Paolo Verderio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pizzamiglio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Foglia
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Department of Immunohematology and Transfusion Medicine, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Galastri
- Associazione Italiana Volontari Sangue Comunale Milano, Milan, Italy
| | - Tiziana Bianchi
- Associazione Italiana Volontari Sangue Comunale Milano, Milan, Italy
| | - Chiara Corna
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Fernando Ravagnani
- Immunohematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris Bernard
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Cogentech, Milan, Italy
| | - Stefano Fortuzzi
- IFOM Cogentech, Consortium for Genomic Technologies, Milan, Italy
| | | | - Giulietta Scuvera
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Tondini
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
17
|
Bogdanova N, Helbig S, Dörk T. Hereditary breast cancer: ever more pieces to the polygenic puzzle. Hered Cancer Clin Pract 2013; 11:12. [PMID: 24025454 PMCID: PMC3851033 DOI: 10.1186/1897-4287-11-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022] Open
Abstract
Several susceptibility genes differentially impact on the lifetime risk for breast cancer. Technological advances over the past years have enabled the detection of genetic risk factors through high-throughput screening of large breast cancer case-control series. High- to intermediate penetrance alleles have now been identified in more than 20 genes involved in DNA damage signalling and repair, and more than 70 low-penetrance loci have been discovered through recent genome-wide association studies. In addition to classical germ-line mutation and single-nucleotide polymorphism, copy number variation and somatic mosaicism have been proposed as potential predisposing mechanisms. Many of the identified loci also appear to influence breast tumour characteristics such as estrogen receptor status. In this review, we briefly summarize present knowledge about breast cancer susceptibility genes and discuss their implications for risk prediction and clinical practice.
Collapse
Affiliation(s)
- Natalia Bogdanova
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
- Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Sonja Helbig
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Abstract
Background SLX4 encodes a DNA repair protein that regulates three structure-specific endonucleases and is necessary for resistance to DNA crosslinking agents, topoisomerase I and poly (ADP-ribose) polymerase (PARP) inhibitors. Recent studies have reported mutations in SLX4 in a new subtype of Fanconi anemia (FA), FA-P. Monoallelic defects in several FA genes are known to confer susceptibility to breast and ovarian cancers. Methods and Results To determine if SLX4 is involved in breast cancer susceptibility, we sequenced the entire SLX4 coding region in 738 (270 Jewish and 468 non-Jewish) breast cancer patients with 2 or more family members affected by breast cancer and no known BRCA1 or BRCA2 mutations. We found a novel nonsense (c.2469G>A, p.W823*) mutation in one patient. In addition, we also found 51 missense variants [13 novel, 23 rare (MAF<0.1%), and 15 common (MAF>1%)], of which 22 (5 novel and 17 rare) were predicted to be damaging by Polyphen2 (score = 0.65–1). We performed functional complementation studies using p.W823* and 5 SLX4 variants (4 novel and 1 rare) cDNAs in a human SLX4-null fibroblast cell line, RA3331. While wild type SLX4 and all the other variants fully rescued the sensitivity to mitomycin C (MMC), campthothecin (CPT), and PARP inhibitor (Olaparib) the p.W823* SLX4 mutant failed to do so. Conclusion Loss-of-function mutations in SLX4 may contribute to the development of breast cancer in very rare cases.
Collapse
|