1
|
Mackay DJG, Gazdagh G, Monk D, Brioude F, Giabicani E, Krzyzewska IM, Kalish JM, Maas SM, Kagami M, Beygo J, Kahre T, Tenorio-Castano J, Ambrozaitytė L, Burnytė B, Cerrato F, Davies JH, Ferrero GB, Fjodorova O, Manero-Azua A, Pereda A, Russo S, Tannorella P, Temple KI, Õunap K, Riccio A, de Nanclares GP, Maher ER, Lapunzina P, Netchine I, Eggermann T, Bliek J, Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics 2024; 16:99. [PMID: 39090763 PMCID: PMC11295890 DOI: 10.1186/s13148-024-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.
Collapse
Affiliation(s)
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Frederic Brioude
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Eloise Giabicani
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Izabela M Krzyzewska
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jasmin Beygo
- Institut Für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Justin H Davies
- Faculty of Medicine, University of Southampton, Southampton, UK
- Regional Centre for Paediatric Endocrinology, Faculty of Medicine, Southampton Children's Hospital, University of Southampton, Southampton, UK
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Science, School of Medicine, Centre for Hemoglobinopathies, AOU San Luigi Gonzaga, University of Turin, Turin, Italy
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Africa Manero-Azua
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Silvia Russo
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Pierpaola Tannorella
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Karen I Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB),"Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Eamonn R Maher
- Aston Medical School, Aston University, Birmingham, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Irène Netchine
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine. Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jet Bliek
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Pignata L, Cecere F, Acquaviva F, D’Angelo E, Cioffi D, Pellino V, Palumbo O, Palumbo P, Carella M, Sparago A, De Brasi D, Cerrato F, Riccio A. Co-occurrence of Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type 1B: coincidence or common molecular mechanism? Front Cell Dev Biol 2023; 11:1237629. [PMID: 37635873 PMCID: PMC10448386 DOI: 10.3389/fcell.2023.1237629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Imprinting disorders are congenital diseases caused by dysregulation of genomic imprinting, affecting growth, neurocognitive development, metabolism and cancer predisposition. Overlapping clinical features are often observed among this group of diseases. In rare cases, two fully expressed imprinting disorders may coexist in the same patient. A dozen cases of this type have been reported so far. Most of them are represented by individuals affected by Beckwith-Wiedemann spectrum (BWSp) and Transient Neonatal Diabetes Mellitus (TNDM) or BWSp and Pseudo-hypoparathyroidism type 1B (PHP1B). All these patients displayed Multilocus imprinting disturbances (MLID). Here, we report the first case of co-occurrence of BWS and PHP1B in the same individual in absence of MLID. Genome-wide methylation and SNP-array analyses demonstrated loss of methylation of the KCNQ1OT1:TSS-DMR on chromosome 11p15.5 as molecular cause of BWSp, and upd(20)pat as cause of PHP1B. The absence of MLID and the heterodisomy of chromosome 20 suggests that BWSp and PHP1B arose through distinct and independent mechanism in our patient. However, we cannot exclude that the rare combination of the epigenetic defect on chromosome 11 and the UPD on chromosome 20 may originate from a common so far undetermined predisposing molecular lesion. A better comprehension of the molecular mechanisms underlying the co-occurrence of two imprinting disorders will improve genetic counselling and estimate of familial recurrence risk of these rare cases. Furthermore, our study also supports the importance of multilocus molecular testing for revealing MLID as well as complex cases of imprinting disorders.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Fabio Acquaviva
- UOSD Genetica Medica, Dipartimento di Pediatria Generale e d’Urgenza, AORN Santobono-Pausilipon, Naples, Italy
| | - Emilia D’Angelo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Daniela Cioffi
- UOSD Auxologia e Endocrinologia Pediatrica, Dipartimento di Pediatria Specialistica, AORN Santobono-Pausilipon, Naples, Italy
| | - Valeria Pellino
- UOSD Auxologia e Endocrinologia Pediatrica, Dipartimento di Pediatria Specialistica, AORN Santobono-Pausilipon, Naples, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Daniele De Brasi
- UOSD Genetica Medica, Dipartimento di Pediatria Generale e d’Urgenza, AORN Santobono-Pausilipon, Naples, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Istituto di Genetica e Biofisica “Adriano Buzzati Traverso” Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
3
|
Sapehia D, Mahajan A, Singh P, Kaur J. High dietary folate and low vitamin B12 in the parental diet disturbed the epigenetics of imprinted genes MEST and PHLDA2 in mice placenta. J Nutr Biochem 2023; 118:109354. [PMID: 37098363 DOI: 10.1016/j.jnutbio.2023.109354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
To elucidate the dietary effects of vitamin B12 and folic acid on fetal and placental epigenetics, different dietary combinations of folic acid and low vitamin B12 (four groups) were fed to the animals (C57BL/6 mice), and mating was carried out within each group in the F0 generation. After weaning for 3 weeks in the F1 generation one group of mice was continued on the same diet (sustained group) while the other was shifted to a normal diet (transient group) for 6-8 weeks (F1). Mating was carried out again within each group, and on day 20 of gestation, the maternal placenta (F1) and fetal tissues (F2) were isolated. Expression of imprinted genes and various epigenetic mechanisms, including global and gene-specific DNA methylation and post-translational histone modifications, were studied. Evaluation of mRNA levels of MEST and PHLDA2 in placental tissue revealed that their expression is maximally influenced by vitamin B12 deficiency and high folate conditions. The gene expression of MEST and PHLDA2 was found significantly decreased in the F0 generation, with the over-expression of the genes in BDFO dietary groups. These dietary combinations also resulted in DNA methylation changes in both generations, which may not play a role in gene expression regulation. However, altered histone modifications were found to be the major regulatory factor in controlling the expression of genes in the F1 generation. The imbalance of low vitamin B12 and high folate leads to increased levels of activating histone marks, contributing to increased gene expression.
Collapse
Affiliation(s)
- Divika Sapehia
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Aatish Mahajan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Parampal Singh
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Miller DE, Hanna P, Galey M, Reyes M, Linglart A, Eichler EE, Jüppner H. Targeted Long-Read Sequencing Identifies a Retrotransposon Insertion as a Cause of Altered GNAS Exon A/B Methylation in a Family With Autosomal Dominant Pseudohypoparathyroidism Type 1b (PHP1B). J Bone Miner Res 2022; 37:1711-1719. [PMID: 35811283 PMCID: PMC9474630 DOI: 10.1002/jbmr.4647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Pseudohypoparathyroidism type Ib (PHP1B) is characterized predominantly by resistance to parathyroid hormone (PTH) leading to hypocalcemia and hyperphosphatemia. These laboratory abnormalities are caused by maternal loss-of-methylation (LOM) at GNAS exon A/B, which reduces in cis expression of the stimulatory G protein α-subunit (Gsα). Paternal Gsα expression in proximal renal tubules is silenced through unknown mechanisms, hence LOM at exon A/B reduces further Gsα protein in this kidney portion, leading to PTH resistance. In a previously reported PHP1B family, affected members showed variable LOM at exon A/B, yet no genetic defect was found by whole-genome sequencing despite linkage to GNAS. Using targeted long-read sequencing (T-LRS), we discovered an approximately 2800-bp maternally inherited retrotransposon insertion nearly 1200 bp downstream of exon XL not found in public databases or in 13,675 DNA samples analyzed by short-read whole-genome sequencing. T-LRS data furthermore confirmed normal methylation at exons XL, AS, and NESP and showed that LOM comprising exon A/B is broader than previously thought. The retrotransposon most likely causes the observed epigenetic defect by impairing function of a maternally derived NESP transcript, consistent with findings in mice lacking full-length NESP mRNA and in PHP1B patients with deletion of exon NESP and adjacent intronic sequences. In addition to demonstrating that T-LRS is an effective strategy for identifying a small disease-causing variant that abolishes or severely reduces exon A/B methylation, our data demonstrate that this sequencing technology has major advantages for simultaneously identifying structural defects and altered methylation. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danny E. Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Patrick Hanna
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miranda Galey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Agnès Linglart
- Université Paris-Saclay, Inserm, Physiologie et physiopathologie endocrinienne; AP-HP, Department of molecular genetics, Bicêtre Paris-Saclay hospital, Le Kremlin Bicêtre, France
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Kottler ML. Pseudo-hypoparathyroïdie et ses variants. Med Sci (Paris) 2022; 38:655-662. [DOI: 10.1051/medsci/2022103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Les pseudohypoparathyroïdies (PHP) sont des maladies rares, caractérisées par une résistance à l’action rénale de la parathormone. Le défaut génétique est localisé au locus GNAS, qui code la sous-unité alpha stimulatrice des protéines G (Gαs). Ce locus est le siège de régulations complexes, épissage alternatif et empreinte parentale éteigant de façon tissu-spécifique l’expression de l’allèle paternel. Des mutations hétérozygotes perte de fonction, des épimutations responsables d’une perte d’expression sont associées à un large spectre pathologique : PHP1A, PHP1B, ossification hétérotopique, ostéodystophie, obésité, retard de croissance in utero, etc., dont les mécanismes restent encore incomplètement connus.
Collapse
|
6
|
Pignata L, Cecere F, Verma A, Hay Mele B, Monticelli M, Acurzio B, Giaccari C, Sparago A, Hernandez Mora JR, Monteagudo-Sánchez A, Esteller M, Pereda A, Tenorio-Castano J, Palumbo O, Carella M, Prontera P, Piscopo C, Accadia M, Lapunzina P, Cubellis MV, de Nanclares GP, Monk D, Riccio A, Cerrato F. Novel genetic variants of KHDC3L and other members of the subcortical maternal complex associated with Beckwith-Wiedemann syndrome or Pseudohypoparathyroidism 1B and multi-locus imprinting disturbances. Clin Epigenetics 2022; 14:71. [PMID: 35643636 PMCID: PMC9148495 DOI: 10.1186/s13148-022-01292-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Ankit Verma
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Bruno Hay Mele
- Department of Biology, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Maria Monticelli
- Department of Biology, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Carlo Giaccari
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jose Ramon Hernandez Mora
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Monteagudo-Sánchez
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukeamia Research Institute, Can Ruti, Cami de les Escoles, Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, Rare Diseases Research Group, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, C/Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo Della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo Della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University and Hospital of Perugia, Perugia, Italy
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, "Antonio Cardarelli" Hospital, 80131, Naples, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", 73039, Tricase, Lecce, Italy
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | | | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Rare Diseases Research Group, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, C/Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - David Monk
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TG, UK
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy.
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy.
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
7
|
Hanna P, Francou B, Delemer B, Jüppner H, Linglart A. A Novel Familial PHP1B Variant With Incomplete Loss of Methylation at GNAS-A/B and Enhanced Methylation at GNAS-AS2. J Clin Endocrinol Metab 2021; 106:2779-2787. [PMID: 33677588 PMCID: PMC8372637 DOI: 10.1210/clinem/dgab136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Pseudohypoparathyroidism type 1B (PHP1B), also referred to as inactivating PTH/PTHrP signaling disorder (iPPSD), is characterized by proximal renal tubular resistance to parathyroid hormone (PTH) leading to hypocalcemia, hyperphosphatemia, and elevated PTH values. Autosomal dominant PHP1B (AD-PHP1B) with loss of methylation at the maternal GNAS A/B:TSS-DMR (transcription start site-differentially methylated region) alone can be caused by maternal deletions involving STX16. OBJECTIVE Characterize a previously not reported AD-PHP1B family with loss of methylation at GNAS A/B:TSS-DMR, but without evidence for a STX16 deletion on the maternal allele and assess GNAS-AS2:TSS-DMR methylation. METHODS DNA from 24 patients and 10 controls were investigated. AD-PHP1B patients without STX16 deletion from a single family (n = 5), AD-PHP1B patients with STX16 deletion (n = 9), sporPHP1B (n = 10), unaffected controls (n = 10), patUPD20 (n = 1), and matUPD20 (n = 1). Methylation and copy number analyses were performed by pyrosequencing, methylation-sensitive multiplex ligation-dependent probe amplification, and multiplex ligation-dependent probe amplification. RESULTS Molecular cloning of polymerase chain reaction-amplified, bisulfite-treated genomic DNA from healthy controls revealed evidence for 2 distinct GNAS-AS2:TSS-DMR subdomains, named AS2-1 and AS2-2, which showed 16.0 ± 2.3% and 31.0 ± 2.2% methylation, respectively. DNA from affected members of a previously not reported AD-PHP1B family without the known genetic defects revealed incomplete loss of methylation at GNAS A/B:TSS-DMR, normal methylation at the 3 well-established maternal and paternal DMRs, and, surprisingly, increased methylation at AS2-1 (32.9 ± 3.5%), but not at AS2-2 (30.5 ± 2.9%). CONCLUSION The distinct methylation changes at the novel GNAS-AS2:TSS-DMR will help characterize further different PHP1B/iPPSD3 variants and will guide the search for underlying genetic defects, which may provide novel insights into the mechanisms underlying GNAS methylation.
Collapse
Affiliation(s)
- Patrick Hanna
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocrinienne, Le Kremlin-Bicêtre, France
| | - Bruno Francou
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocrinienne, Le Kremlin-Bicêtre, France
- AP-HP, Department of Molecular Genetics, Bicêtre Paris-Saclay Hospital, Le Kremlin Bicêtre, France
| | - Brigitte Delemer
- Endocrinology, Diabetes and Nutrition, Reims University Hospital and University of Reims Champagne Ardenne, Reims, France
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Agnès Linglart
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocrinienne, Le Kremlin-Bicêtre, France
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Saclay, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France
- AP-HP, Endocrinology and Diabetes for Children, Bicêtre Paris-Saclay Hospital, Le Kremlin Bicêtre, France
| |
Collapse
|
8
|
Reyes M, Kagami M, Kawashima S, Pallotta J, Schnabel D, Fukami M, Jüppner H. A Novel GNAS Duplication Associated With Loss-of-Methylation Restricted to Exon A/B Causes Pseudohypoparathyroidism Type Ib (PHP1B). J Bone Miner Res 2021; 36:546-552. [PMID: 33180333 PMCID: PMC8048081 DOI: 10.1002/jbmr.4209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 11/09/2022]
Abstract
Pseudohypoparathyroidism type Ib (PHP1B) is characterized by resistance to parathyroid hormone (PTH) leading to hypocalcemia and hyperphosphatemia, and in some cases resistance toward additional hormones. Patients affected by this disorder all share a loss-of-methylation (LOM) at the differentially methylated GNAS exon A/B, which reduces expression of the stimulatory G protein α-subunit (Gsα) from the maternal allele. This leads in the proximal renal tubules, where the paternal GNAS allele does not contribute much to expression of this signaling protein, to little or no Gsα expression thereby causing PTH resistance. We now describe a PHP1B patient with a de novo genomic GNAS duplication of approximately 88 kb, which is associated with LOM restricted to exon A/B alone. Multiplex ligation-dependent probe amplification (MLPA), comparative genomic hybridization (CGH), and whole-genome sequencing (WGS) established that the duplicated DNA fragment extends from GNAS exon AS1 (telomeric breakpoint) to a small region between two imperfect repeats just upstream of LOC105372695 (centromeric breakpoint). Our novel duplication is considerably shorter than previously described duplications/triplications in that portion of chromosome 20q13 and it does not affect methylation at exons AS and XL. Based on these and previous findings, it appears plausible that the identified genomic abnormality disrupts in cis the actions of a transcript that is required for establishing or maintaining exon A/B methylation. Our findings extend the molecular causes of PHP1B and provide additional insights into structural GNAS features that are required for maintaining maternal Gsα expression and for preventing PTH-resistance. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Johanna Pallotta
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Choufani S, Ko JM, Lou Y, Shuman C, Fishman L, Weksberg R. Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome. Genes (Basel) 2021; 12:genes12020172. [PMID: 33513760 PMCID: PMC7911624 DOI: 10.3390/genes12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic alterations at imprinted genes on different chromosomes have been linked to several imprinting disorders (IDs) such as Beckwith-Wiedemann syndrome (BWS) and pseudohypoparathyroidism type 1b (PHP1b). Here, we present a male patient with these two distinct IDs caused by two independent mechanisms-loss of methylation (LOM) at chromosome 11p15.5 associated with multi-locus imprinting disturbances (MLID and paternal uniparental disomy of chromosome 20 (patUPD20). A clinical diagnosis of BWS was made based on the clinical features of macrosomia, macroglossia, and umbilical hernia. The diagnosis of PHP1b was supported by the presence of reduced growth velocity and mild learning disability as well as hypocalcemia and hyperphosphatemia at 14 years of age. Molecular analyses, including genome-wide DNA methylation (Illumina 450k array), bisulfite pyrosequencing, single nucleotide polymorphism (SNP) array and microsatellite analysis, demonstrated loss of methylation (LOM) at IC2 on chromosome 11p15.5, and paternal isodisomy of the entire chromosome 20. In addition, imprinting disturbances were noted at the differentially methylated regions (DMRs) associated with DIRAS3 on chromosome 1 and PLAGL1 on chromosome 6. This is the first case report of PHP1b due to patUPD20 diagnosed in a BWS patient with LOM at IC2 demonstrating etiologic heterogeneity for multiple imprinting disorders in a single individual.
Collapse
Affiliation(s)
- Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Jung Min Ko
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youliang Lou
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Cheryl Shuman
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Leona Fishman
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence:
| |
Collapse
|
10
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
11
|
Brioude F, Toutain A, Giabicani E, Cottereau E, Cormier-Daire V, Netchine I. Overgrowth syndromes - clinical and molecular aspects and tumour risk. Nat Rev Endocrinol 2019; 15:299-311. [PMID: 30842651 DOI: 10.1038/s41574-019-0180-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Overgrowth syndromes are a heterogeneous group of rare disorders characterized by generalized or segmental excessive growth commonly associated with additional features, such as visceromegaly, macrocephaly and a large range of various symptoms. These syndromes are caused by either genetic or epigenetic anomalies affecting factors involved in cell proliferation and/or the regulation of epigenetic markers. Some of these conditions are associated with neurological anomalies, such as cognitive impairment or autism. Overgrowth syndromes are frequently associated with an increased risk of cancer (embryonic tumours during infancy or carcinomas during adulthood), but with a highly variable prevalence. Given this risk, syndrome-specific tumour screening protocols have recently been established for some of these conditions. Certain specific clinical traits make it possible to discriminate between different syndromes and orient molecular explorations to determine which molecular tests to conduct, despite the syndromes having overlapping clinical features. Recent advances in molecular techniques using next-generation sequencing approaches have increased the number of patients with an identified molecular defect (especially patients with segmental overgrowth). This Review discusses the clinical and molecular diagnosis, tumour risk and recommendations for tumour screening for the most prevalent generalized and segmental overgrowth syndromes.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France.
| | - Annick Toutain
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, INSERM UMR1253, iBrain, Université de Tours, Faculté de Médecine, Tours, France
| | - Eloise Giabicani
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| | - Edouard Cottereau
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, Tours, France
| | - Valérie Cormier-Daire
- Service de génétique clinique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Irene Netchine
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| |
Collapse
|
12
|
Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Usardi A, Ahmed SF, Bufo R, Choplin T, De Filippo G, Devernois G, Eggermann T, Elli FM, Freson K, García Ramirez A, Germain-Lee EL, Groussin L, Hamdy N, Hanna P, Hiort O, Jüppner H, Kamenický P, Knight N, Kottler ML, Le Norcy E, Lecumberri B, Levine MA, Mäkitie O, Martin R, Martos-Moreno GÁ, Minagawa M, Murray P, Pereda A, Pignolo R, Rejnmark L, Rodado R, Rothenbuhler A, Saraff V, Shoemaker AH, Shore EM, Silve C, Turan S, Woods P, Zillikens MC, Perez de Nanclares G, Linglart A. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol 2018; 14:476-500. [PMID: 29959430 PMCID: PMC6541219 DOI: 10.1038/s41574-018-0042-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This Consensus Statement covers recommendations for the diagnosis and management of patients with pseudohypoparathyroidism (PHP) and related disorders, which comprise metabolic disorders characterized by physical findings that variably include short bones, short stature, a stocky build, early-onset obesity and ectopic ossifications, as well as endocrine defects that often include resistance to parathyroid hormone (PTH) and TSH. The presentation and severity of PHP and its related disorders vary between affected individuals with considerable clinical and molecular overlap between the different types. A specific diagnosis is often delayed owing to lack of recognition of the syndrome and associated features. The participants in this Consensus Statement agreed that the diagnosis of PHP should be based on major criteria, including resistance to PTH, ectopic ossifications, brachydactyly and early-onset obesity. The clinical and laboratory diagnosis should be confirmed by a molecular genetic analysis. Patients should be screened at diagnosis and during follow-up for specific features, such as PTH resistance, TSH resistance, growth hormone deficiency, hypogonadism, skeletal deformities, oral health, weight gain, glucose intolerance or type 2 diabetes mellitus, and hypertension, as well as subcutaneous and/or deeper ectopic ossifications and neurocognitive impairment. Overall, a coordinated and multidisciplinary approach from infancy through adulthood, including a transition programme, should help us to improve the care of patients affected by these disorders.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Susanne Thiele
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Alessia Usardi
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Roberto Bufo
- IPOHA, Italian Progressive Osseous Heteroplasia Association, Cerignola, Foggia, Italy
| | - Timothée Choplin
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Gianpaolo De Filippo
- APHP, Department of medicine for adolescents, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Guillemette Devernois
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Francesca M Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Gasthuisberg, University of Leuven, Leuven, Belgium
| | - Aurora García Ramirez
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Emily L Germain-Lee
- Albright Center & Center for Rare Bone Disorders, Division of Pediatric Endocrinology & Diabetes, Connecticut Children's Medical Center, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lionel Groussin
- APHP, Department of Endocrinology, Cochin Hospital (HUPC), Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Neveen Hamdy
- Department of Medicine, Division of Endocrinology and Centre for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick Hanna
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Kamenický
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- INSERM U1185, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Nina Knight
- UK acrodysostosis patients' group, London, UK
| | - Marie-Laure Kottler
- Department of Genetics, Reference Centre for Rare Disorders of Calcium and Phosphate Metabolism, Caen University Hospital, Caen, France
- BIOTARGEN, UNICAEN, Normandie University, Caen, France
| | - Elvire Le Norcy
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
- APHP, Department of Odontology, Bretonneau Hospital (PNVS), Paris, France
| | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain
- Department of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Michael A Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Regina Martin
- Osteometabolic Disorders Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Hospital das Clínicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, CIBERobn, ISCIII, Madrid, Spain
- Department of Pediatrics, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Princesa Institute for Health Research (IIS La Princesa), Madrid, Spain
| | | | - Philip Murray
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | | | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rebecca Rodado
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham, UK
| | - Ashley H Shoemaker
- Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eileen M Shore
- Departments of Orthopaedic Surgery and Genetics, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Silve
- APHP, Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of Pediatrics, Division of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | | | - M Carola Zillikens
- Department of Internal Medicine, Bone Center Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain.
| | - Agnès Linglart
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France.
| |
Collapse
|
13
|
Turan S. Current Nomenclature of Pseudohypoparathyroidism: Inactivating Parathyroid Hormone/Parathyroid Hormone-Related Protein Signaling Disorder. J Clin Res Pediatr Endocrinol 2017; 9:58-68. [PMID: 29280743 PMCID: PMC5790322 DOI: 10.4274/jcrpe.2017.s006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Disorders related to parathyroid hormone (PTH) resistance and PTH signaling pathway impairment are historically classified under the term of pseudohypoparathyroidism (PHP). The disease was first described and named by Fuller Albright and colleagues in 1942. Albright hereditary osteodystrophy (AHO) is described as an associated clinical entity with PHP, characterized by brachydactyly, subcutaneous ossifications, round face, short stature and a stocky build. The classification of PHP is further divided into PHP-Ia, pseudo-PHP (pPHP), PHP-Ib, PHP-Ic and PHP-II according to the presence or absence of AHO, together with an in vivo response to exogenous PTH and the measurement of Gsα protein activity in peripheral erythrocyte membranes in vitro. However, PHP classification fails to differentiate all patients with different clinical and molecular findings for PHP subtypes and classification become more complicated with more recent molecular characterization and new forms having been identified. So far, new classifications have been established by the EuroPHP network to cover all disorders of the PTH receptor and its signaling pathway. Inactivating PTH/PTH-related protein signaling disorder (iPPSD) is the new name proposed for a group of these disorders and which can be further divided into subtypes - iPPSD1 to iPPSD6. These are termed, starting from PTH receptor inactivation mutation (Eiken and Blomstrand dysplasia) as iPPSD1, inactivating Gsα mutations (PHP-Ia, PHP-Ic and pPHP) as iPPSD2, loss of methylation of GNAS DMRs (PHP-Ib) as iPPSD3, PRKAR1A mutations (acrodysostosis type 1) as iPPSD4, PDE4D mutations (acrodysostosis type 2) as iPPSD5 and PDE3A mutations (autosomal dominant hypertension with brachydactyly) as iPPSD6. iPPSDx is reserved for unknown molecular defects and iPPSDn+1 for new molecular defects which are yet to be described. With these new classifications, the aim is to clarify the borders of each different subtype of disease and make the classification according to molecular pathology. The iPPSD group is designed to be expandable and new classifications will readily fit into it as necessary.
Collapse
Affiliation(s)
- Serap Turan
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
,* Address for Correspondence: Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey Phone: +90 216 625 45 45 E-mail:
| |
Collapse
|
14
|
Grüters-Kieslich A, Reyes M, Sharma A, Demirci C, DeClue TJ, Lankes E, Tiosano D, Schnabel D, Jüppner H. Early-Onset Obesity: Unrecognized First Evidence for GNAS Mutations and Methylation Changes. J Clin Endocrinol Metab 2017; 102:2670-2677. [PMID: 28453643 PMCID: PMC5546863 DOI: 10.1210/jc.2017-00395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022]
Abstract
Context Early-onset obesity, characteristic for disorders affecting the leptin-melanocortin pathway, is also observed in pseudohypoparathyroidism type 1A (PHP1A), a disorder caused by maternal GNAS mutations that disrupt expression or function of the stimulatory G protein α-subunit (Gsα). Mutations and/or epigenetic abnormalities at the same genetic locus are also the cause of pseudohypoparathyroidism type 1B (PHP1B). However, although equivalent biochemical and radiographic findings can be encountered in these related disorders caused by GNAS abnormalities, they are considered distinct clinical entities. Objectives To further emphasize the overlapping features between both disorders, we report the cases of several children, initially brought to medical attention because of unexplained early-onset obesity, in whom PHP1B or PHP1A was eventually diagnosed. Patients and Methods Search for GNAS methylation changes or mutations in cohorts of patients with early-onset obesity. Results Severe obesity had been noted in five infants, with a later diagnosis of PHP1B due to STX16 deletions and/or abnormal GNAS methylation. These findings prompted analysis of 24 unselected obese patients, leading to the discovery of inherited STX16 deletions in 2 individuals. Similarly, impressive early weight gains were noted in five patients, who initially lacked additional Albright hereditary osteodystrophy features but in whom PHP1A due to GNAS mutations involving exons encoding Gsα was diagnosed. Conclusions Obesity during the first year of life can be the first clinical evidence for PHP1B, expanding the spectrum of phenotypic overlap between PHP1A and PHP1B. Importantly, GNAS methylation abnormalities escape detection by targeted or genome-wide sequencing strategies, raising the question of whether epigenetic GNAS analyses should be considered for unexplained obesity.
Collapse
Affiliation(s)
- Annette Grüters-Kieslich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Amita Sharma
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Cem Demirci
- Pediatric Endocrinology, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030
| | | | - Erwin Lankes
- Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Dov Tiosano
- Division of Pediatric Endocrinology, Meyer Children's Hospital, Rambam Health Care Campus, Haifa 31096, Israel
| | - Dirk Schnabel
- Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
15
|
Grigelioniene G, Nevalainen PI, Reyes M, Thiele S, Tafaj O, Molinaro A, Takatani R, Ala-Houhala M, Nilsson D, Eisfeldt J, Lindstrand A, Kottler ML, Mäkitie O, Jüppner H. A Large Inversion Involving GNAS Exon A/B and All Exons Encoding Gsα Is Associated With Autosomal Dominant Pseudohypoparathyroidism Type Ib (PHP1B). J Bone Miner Res 2017; 32:776-783. [PMID: 28084650 PMCID: PMC5395346 DOI: 10.1002/jbmr.3083] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/31/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023]
Abstract
Pseudohypoparathyroidism type Ib (PHP1B) is characterized primarily by resistance to parathyroid hormone (PTH) and thus hypocalcemia and hyperphosphatemia, in most cases without evidence for Albright hereditary osteodystrophy (AHO). PHP1B is associated with epigenetic changes at one or several differentially-methylated regions (DMRs) within GNAS, which encodes the α-subunit of the stimulatory G protein (Gsα) and splice variants thereof. Heterozygous, maternally inherited STX16 or GNAS deletions leading to isolated loss-of-methylation (LOM) at exon A/B alone or at all maternal DMRs are the cause of autosomal dominant PHP1B (AD-PHP1B). In this study, we analyzed three affected individuals, the female proband and her two sons. All three revealed isolated LOM at GNAS exon A/B, whereas the proband's healthy maternal grandmother and uncle showed normal methylation at this locus. Haplotype analysis was consistent with linkage to the STX16/GNAS region, yet no deletion could be identified. Whole-genome sequencing of one of the patients revealed a large heterozygous inversion (1,882,433 bp). The centromeric breakpoint of the inversion is located 7,225 bp downstream of GNAS exon XL, but its DMR showed no methylation abnormality, raising the possibility that the inversion disrupts a regulatory element required only for establishing or maintaining exon A/B methylation. Because our three patients presented phenotypes consistent with PHP1B, and not with PHP1A, the Gsα promoter is probably unaffected by the inversion. Our findings expand the spectrum of genetic mutations that lead to LOM at exon A/B alone and thus biallelic expression of the transcript derived from this alternative first GNAS exon. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Giedre Grigelioniene
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Pasi I Nevalainen
- Endocrine Unit, Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susanne Thiele
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Olta Tafaj
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Angelo Molinaro
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rieko Takatani
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marja Ala-Houhala
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Marie-Laure Kottler
- Centre Hospitalier Universitaire de Caen, Department of Genetics, Reference Centre for Rare Disorders of Calcium and Phosphorus Metabolism, Caen, France
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Thiele S, Mantovani G, Barlier A, Boldrin V, Bordogna P, De Sanctis L, Elli FM, Freson K, Garin I, Grybek V, Hanna P, Izzi B, Hiort O, Lecumberri B, Pereda A, Saraff V, Silve C, Turan S, Usardi A, Werner R, de Nanclares GP, Linglart A. From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. Eur J Endocrinol 2016; 175:P1-P17. [PMID: 27401862 DOI: 10.1530/eje-16-0107] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Disorders caused by impairments in the parathyroid hormone (PTH) signalling pathway are historically classified under the term pseudohypoparathyroidism (PHP), which encompasses rare, related and highly heterogeneous diseases with demonstrated (epi)genetic causes. The actual classification is based on the presence or absence of specific clinical and biochemical signs together with an in vivo response to exogenous PTH and the results of an in vitro assay to measure Gsa protein activity. However, this classification disregards other related diseases such as acrodysostosis (ACRDYS) or progressive osseous heteroplasia (POH), as well as recent findings of clinical and genetic/epigenetic background of the different subtypes. Therefore, the EuroPHP network decided to develop a new classification that encompasses all disorders with impairments in PTH and/or PTHrP cAMP-mediated pathway. DESIGN AND METHODS Extensive review of the literature was performed. Several meetings were organised to discuss about a new, more effective and accurate way to describe disorders caused by abnormalities of the PTH/PTHrP signalling pathway. RESULTS AND CONCLUSIONS After determining the major and minor criteria to be considered for the diagnosis of these disorders, we proposed to group them under the term 'inactivating PTH/PTHrP signalling disorder' (iPPSD). This terminology: (i) defines the common mechanism responsible for all diseases; (ii) does not require a confirmed genetic defect; (iii) avoids ambiguous terms like 'pseudo' and (iv) eliminates the clinical or molecular overlap between diseases. We believe that the use of this nomenclature and classification will facilitate the development of rationale and comprehensive international guidelines for the diagnosis and treatment of iPPSDs.
Collapse
Affiliation(s)
- Susanne Thiele
- Division of Experimental Pediatric Endocrinology and DiabetesDepartment of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anne Barlier
- APHMHôpital la Conception, Laboratory of Molecular Biology, Marseille, France
| | - Valentina Boldrin
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Bordogna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luisa De Sanctis
- Department of Public Health and Pediatric SciencesUniversity of Torino, Torino, Italy
| | - Francesca M Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Intza Garin
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Virginie Grybek
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Patrick Hanna
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Benedetta Izzi
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Olaf Hiort
- Division of Experimental Pediatric Endocrinology and DiabetesDepartment of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Beatriz Lecumberri
- Department of Endocrinology and NutritionLa Paz University Hospital, Madrid, Spain
| | - Arrate Pereda
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
- Department of Biochemistry and Molecular BiologyUniversity of Basque Country, Leioa, Spain
| | - Vrinda Saraff
- Department of Endocrinology and DiabetesBirmingham Children's Hospital, Birmingham, UK
| | - Caroline Silve
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
- APHPService de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of PediatricsDivision of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Alessia Usardi
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- APHPDepartment of Paediatric Endocrinology and Diabetology, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Ralf Werner
- Division of Experimental Pediatric Endocrinology and DiabetesDepartment of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Agnès Linglart
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
- APHPDepartment of Paediatric Endocrinology and Diabetology, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| |
Collapse
|
17
|
Grafodatskaya D, Choufani S, Basran R, Weksberg R. An Update on Molecular Diagnostic Testing of Human Imprinting Disorders. J Pediatr Genet 2016; 6:3-17. [PMID: 28180023 DOI: 10.1055/s-0036-1593840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
Imprinted genes are expressed in a parent of origin manner. Dysregulation of imprinted genes expression causes various disorders associated with abnormalities of growth, neurodevelopment, and metabolism. Molecular mechanisms leading to imprinting disorders and strategies for their diagnosis are discussed in this review article.
Collapse
Affiliation(s)
- Daria Grafodatskaya
- Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raveen Basran
- Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Elli FM, Linglart A, Garin I, de Sanctis L, Bordogna P, Grybek V, Pereda A, Giachero F, Verrua E, Hanna P, Mantovani G, Perez de Nanclares G. The Prevalence of GNAS Deficiency-Related Diseases in a Large Cohort of Patients Characterized by the EuroPHP Network. J Clin Endocrinol Metab 2016; 101:3657-3668. [PMID: 27428667 DOI: 10.1210/jc.2015-4310] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONTEXT The term pseudohypoparathyroidism (PHP) was coined to describe the clinical condition resulting from end-organ resistance to parathormone (rPTH), caused by genetic and/or epigenetic alterations within or upstream of GNAS. Although knowledge about PHP is growing, there are few data on the prevalence of underlying molecular defects. OBJECTIVE The purpose of our study was to ascertain the relative prevalence of PHP-associated molecular defects. DESIGN With a specially designed questionnaire, we collected data from all patients (n = 407) clinically and molecularly characterized to date by expert referral centers in France, Italy, and Spain. RESULTS Isolated rPTH (126/407, 31%) was caused only by epigenetic defects, 70% of patients showing loss of imprinting affecting all four GNAS differentially methylated regions and 30% loss of methylation restricted to the GNAS A/B:TSS-DMR. Multihormone resistance with no Albright's hereditary osteodystrophy (AHO) signs (61/407, 15%) was essentially due to epigenetic defects, although 10% of patients had point mutations. In patients with rPTH and AHO (40/407, 10%), the rate of point mutations was higher (28%) and methylation defects lower (about 70%). In patients with multihormone resistance and AHO (155/407, 38%), all types of molecular defects appeared with different frequencies. Finally, isolated AHO (18/407, 4%) and progressive osseous heteroplasia (7/407, 2%) were exclusively caused by point mutations. CONCLUSION With European data, we have established the prevalence of various genetic and epigenetic lesions in PHP-affected patients. Using these findings, we will develop objective criteria to guide cost-effective strategies for genetic testing and explore the implications for management and prognosis.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Agnès Linglart
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Intza Garin
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Luisa de Sanctis
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Paolo Bordogna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Virginie Grybek
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Arrate Pereda
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Federica Giachero
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Elisa Verrua
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Patrick Hanna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| | - Guiomar Perez de Nanclares
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.E., E.V., P.B., G.M.), Department of Clinical Sciences and Community Health, University of Milan, Endocrinology and Diabetology Unit, Milan, Italy; APHP (A.L., V.G., P.H.), Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France; INSERM U1169 (A.L., V.G., P.H.), Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, France; Molecular (Epi)Genetics Laboratory (I.G., A.P., G.P.d.N.), BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain; Department of Public Health and Pediatrics (L.d.S., F.G.), University of Turin, Regina Margherita Children's Hospital, Health and Science City, Turin, Italy; Department of Biochemistry and Molecular Biology (A.P.), University of Basque Country, Leioa, Spain
| |
Collapse
|
19
|
Kagami M, Matsubara K, Nakabayashi K, Nakamura A, Sano S, Okamura K, Hata K, Fukami M, Ogata T. Genome-wide multilocus imprinting disturbance analysis in Temple syndrome and Kagami-Ogata syndrome. Genet Med 2016; 19:476-482. [PMID: 27632690 PMCID: PMC5392596 DOI: 10.1038/gim.2016.123] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Recent studies have identified multilocus imprinting disturbances (MLIDs) in a subset of patients with imprinting diseases (IDs) caused by epimutations. We examined MLIDs in patients with Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). METHODS We studied four TS14 patients (patients 1-4) and five KOS14 patients (patients 5-9) with epimutations. We performed HumanMethylation450 BeadChip (HM450k) analysis for 43 differentially methylated regions (DMRs) (753 CpG sites) and pyrosequencing for 12 DMRs (62 CpG sites) using leukocyte genomic DNA (Leu-gDNA) of patients 1-9, and performed HM450k analysis for 43 DMRs (a slightly different set of 753 CpG sites) using buccal cell gDNA (Buc-gDNA) of patients 1, 3, and 4. We also performed mutation analysis for six causative and candidate genes for MLIDs and quantitative expression analysis using immortalized lymphocytes in MLID-positive patients. RESULTS Methylation analysis showed hypermethylated ZDBF2-DMR and ZNF597/NAA60-DMR, hypomethylated ZNF597-DMR in both Leu-gDNA and Buc-gDNA, and hypomethylated PPIEL-DMR in Buc-gDNA of patient 1, and hypermethylated GNAS-A/B-DMR in Leu-gDNA of patient 3. No mutations were detected in the six genes for MLIDs. Expression patterns of ZDBF2, ZNF597, and GNAS-A/B were consistent with the identified MLIDs. CONCLUSION This study indicates the presence of MLIDs in TS14 patients but not in KOS14 patients.Genet Med 19 4, 476-482.
Collapse
Affiliation(s)
- Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
20
|
Sano S, Matsubara K, Nagasaki K, Kikuchi T, Nakabayashi K, Hata K, Fukami M, Kagami M, Ogata T. Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type Ib in a patient with multilocus imprinting disturbance: a female-dominant phenomenon? J Hum Genet 2016; 61:765-9. [PMID: 27121328 DOI: 10.1038/jhg.2016.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Although recent studies have often revealed the presence of multilocus imprinting disturbance (MLID) at differentially methylated regions (DMRs) in patients with imprinting disorders (IDs), most patients exhibit clinical features of the original ID only. Here we report a Japanese female patient with Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type Ib. Molecular studies revealed marked methylation defects (MDs) at the Kv-DMR and the GNAS-DMRs and variable MDs at four additional DMRs, in the absence of a mutation in ZFP57, NLRP2, NLRP7, KHDC3L and NLRP5. It is likely that the MDs at the Kv-DMR and the GNAS-DMRs were sufficient to cause clinically recognizable IDs, whereas the remaining MDs were insufficient to result in clinical consequences or took place at DMRs with no disease-causing imprinted gene(s). The development of MLID and the two IDs of this patient may be due to a mutation in a hitherto unknown gene for MLID, or to a reduced amount of DNA methyltransferase-1 (DNMT1) available for the methylation maintenance of DMRs because of the consumption of DNMT1 by the maintenance of X-inactivation. In support of the latter possibility, such co-existence of two IDs has primarily been identified in female patients, and MLID has predominantly been identified as loss of methylations.
Collapse
Affiliation(s)
- Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toru Kikuchi
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
21
|
Bens S, Kolarova J, Beygo J, Buiting K, Caliebe A, Eggermann T, Gillessen-Kaesbach G, Prawitt D, Thiele-Schmitz S, Begemann M, Enklaar T, Gutwein J, Haake A, Paul U, Richter J, Soellner L, Vater I, Monk D, Horsthemke B, Ammerpohl O, Siebert R. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics 2016; 8:801-16. [PMID: 27323310 DOI: 10.2217/epi-2016-0007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To characterize the genotypic and phenotypic extent of multilocus imprinting disturbances (MLID). MATERIALS & METHODS We analyzed 37 patients with imprinting disorders (explorative cohort) for DNA methylation changes using the Infinium HumanMethylation450 BeadChip. For validation, three independent cohorts with imprinting disorders or cardinal features thereof were analyzed (84 patients with imprinting disorders, 52 with growth disorder, 81 with developmental delay). RESULTS In the explorative cohort 21 individuals showed array-based MLID with each one displaying an Angelman or Temple syndrome phenotype, respectively. Epimutations in ZDBF2 and FAM50B were associated with severe MLID regarding number of affected regions. By targeted analysis we identified methylation changes of ZDBF2 and FAM50B also in the three validation cohorts. CONCLUSION We corroborate epimutations in ZDBF2 and FAM50B as frequent changes in MLID whereas these rarely occur in other patients with cardinal features of imprinting disorders. Moreover, we show cell lineage specific differences in the genomic extent of FAM50B epimutation.
Collapse
Affiliation(s)
- Susanne Bens
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | | | - Dirk Prawitt
- Section of Molecular Pediatrics University Medical Centre of the Johannes Gutenberg-University Mainz, D 55131 Mainz, Germany
| | - Susanne Thiele-Schmitz
- Division of Experimental Paediatric Endocrinology & Diabetes, Department of Paediatrics, University of Lübeck, D 23562 Lübeck, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | - Thorsten Enklaar
- Section of Molecular Pediatrics University Medical Centre of the Johannes Gutenberg-University Mainz, D 55131 Mainz, Germany
| | - Jana Gutwein
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Andrea Haake
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Ulrike Paul
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Lukas Soellner
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | - Inga Vater
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - David Monk
- Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Cancer Epigenetic & Biology Program (PEBC), Catalan Institute of Oncology, Hospital Duran i Reynals Barcelona, Barcelona, ES 08907, Spain
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| |
Collapse
|
22
|
Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D, Monk D. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. Trends Genet 2016; 32:444-455. [PMID: 27235113 DOI: 10.1016/j.tig.2016.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).
Collapse
Affiliation(s)
- Marta Sanchez-Delgado
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain
| | - Andrea Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta; Institute of Genetics and Biophysics - ABT, CNR, Napoli, Italy
| | - Thomas Eggermann
- Institute of Human Genetics University Hospital Aachen, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; CIBERER, Centro deInvestigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK
| | - David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain.
| |
Collapse
|
23
|
Rochtus A, Martin-Trujillo A, Izzi B, Elli F, Garin I, Linglart A, Mantovani G, Perez de Nanclares G, Thiele S, Decallonne B, Van Geet C, Monk D, Freson K. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects. Clin Epigenetics 2016; 8:10. [PMID: 26819647 PMCID: PMC4728790 DOI: 10.1186/s13148-016-0175-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. METHODS The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). RESULTS The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. CONCLUSIONS This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.
Collapse
Affiliation(s)
- Anne Rochtus
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 911, 3000 Leuven, Belgium ; Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | | | - Benedetta Izzi
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 911, 3000 Leuven, Belgium
| | - Francesca Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Intza Garin
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, 01009 Vitoria-Gasteiz, Spain
| | - Agnes Linglart
- Department of Pediatric Endocrinology and Diabetology for Children, APHP, Bicêtre Paris Sud, 94275 Le Kremlin Bicêtre, France ; Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'Expertise Paris Sud, APHP, 94275 Le Kremlin Bicêtre, France
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, 01009 Vitoria-Gasteiz, Spain
| | - Suzanne Thiele
- Division of Experimental Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Luebeck, 23560 Luebeck, Germany
| | - Brigitte Decallonne
- Department of Clinical and Experimental Endocrinology, University of Leuven, 3000 Leuven, Belgium
| | - Chris Van Geet
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - David Monk
- Laboratory of Genomic Imprinting and Cancer, IDIBELL, 08908 Barcelona, Spain
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 911, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Eggermann T, Perez de Nanclares G, Maher ER, Temple IK, Tümer Z, Monk D, Mackay DJG, Grønskov K, Riccio A, Linglart A, Netchine I. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin Epigenetics 2015; 7:123. [PMID: 26583054 PMCID: PMC4650860 DOI: 10.1186/s13148-015-0143-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022] Open
Abstract
Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families.
Collapse
Affiliation(s)
- Thomas Eggermann
- Department of Human Genetics, RWTH Aachen, Pauwelsstr. 30, Aachen, Germany ; Sorbonne Universites, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France ; 3APHP, Pediatric Endocrinology, Armand Trousseau Hospital, Paris, France
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - I Karen Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK ; Wessex Clinical Genetics Service, Princess Anne Hospital, Coxford Road, Southampton, UK
| | - Zeynep Tümer
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain
| | - Deborah J G Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK ; Wessex Clinical Genetics Service, Princess Anne Hospital, Coxford Road, Southampton, UK
| | - Karen Grønskov
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Andrea Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Agnès Linglart
- Institute of Genetics and Biophysics-ABT, CNR, Napoli, Italy
| | - Irène Netchine
- Endocrinology and diabetology for children and reference center for rare disorders of calcium and phosphorus metabolism, Bicêtre Paris Sud, APHP, Le Kremlin-Bicêtre, France ; INSERM U986, INSERM, Le Kremlin-Bicêtre, France ; INSERM, UMR_S 938, CDR Saint-Antoine, Paris, F-75012 France
| |
Collapse
|
25
|
Azzi S, Salem J, Thibaud N, Chantot-Bastaraud S, Lieber E, Netchine I, Harbison MD. A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. J Med Genet 2015; 52:446-53. [PMID: 25951829 PMCID: PMC4501172 DOI: 10.1136/jmedgenet-2014-102979] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/10/2015] [Indexed: 12/28/2022]
Abstract
Background Multiple clinical scoring systems have been proposed for Silver-Russell syndrome (SRS). Here we aimed to test a clinical scoring system for SRS and to analyse the correlation between (epi)genotype and phenotype. Subjects and methods Sixty-nine patients were examined by two physicians. Clinical scores were generated for all patients, with a new, six-item scoring system: (1) small for gestational age, birth length and/or weight ≤−2SDS, (2) postnatal growth retardation (height ≤−2SDS), (3) relative macrocephaly at birth, (4) body asymmetry, (5) feeding difficulties and/or body mass index (BMI) ≤−2SDS in toddlers; (6) protruding forehead at the age of 1–3 years. Subjects were considered to have likely SRS if they met at least four of these six criteria. Molecular investigations were performed blind to the clinical data. Results The 69 patients were classified into two groups (Likely-SRS (n=60), Unlikely-SRS (n=9)). Forty-six Likely-SRS patients (76.7%) displayed either 11p15 ICR1 hypomethylation (n=35; 58.3%) or maternal UPD of chromosome 7 (mUPD7) (n=11; 18.3%). Eight Unlikely-SRS patients had neither ICR1 hypomethylation nor mUPD7, whereas one patient had mUPD7. The clinical score and molecular results yielded four groups that differed significantly overall and for individual scoring system factors. Further molecular screening led identifying chromosomal abnormalities in Likely-SRS-double-negative and Unlikely-SRS groups. Four Likely-SRS-double negative patients carried a DLK1/GTL2 IG-DMR hypomethylation, a mUPD16; a mUPD20 and a de novo 1q21 microdeletion. Conclusions This new scoring system is very sensitive (98%) for the detection of patients with SRS with demonstrated molecular abnormalities. Given its clinical and molecular heterogeneity, SRS could be considered as a spectrum.
Collapse
Affiliation(s)
- Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Jennifer Salem
- MAGIC Foundation, RSS/SGA Research & Education Fund, Oak Park, Illinois, USA
| | - Nathalie Thibaud
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | | | - Eli Lieber
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California, USA
| | - Irène Netchine
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Madeleine D Harbison
- Department of Pediatrics, Ichan School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
26
|
Romanet P, Osei L, Netchine I, Pertuit M, Enjalbert A, Reynaud R, Barlier A. Case report of GNAS epigenetic defect revealed by a congenital hypothyroidism. Pediatrics 2015; 135:e1079-83. [PMID: 25802348 DOI: 10.1542/peds.2014-2806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pseudohypoparathyroidism (PHP) is a group of disorders characterized by end-organ resistance to the parathyroid hormone (PTH). PHP type 1A includes multihormone resistance syndrome, Albright's hereditary osteodystrophy, and obesity and is caused by mutations in GNAS exon 1 through 13. PHP type 1B (PHP1B), caused by epigenetic changes in the GNAS locus, was initially described as an isolated resistance to PTH. Epigenetic changes in GNAS have also been reported in patients who display mild Albright's hereditary osteodystrophy or mild thyroid-stimulating hormone (TSH) resistance without mutation of GNAS. Here we report a case of PHP caused by epigenetic changes in GNAS in a patient with congenital hypothyroidism. The patient was referred for a positive newborn screening for hypothyroidism (TSH 50 mIU/L). She exhibited severe clinical features of congenital hypothyroidism. The thyroid was in place, and etiologic explorations were negative. TSH was normalized under L-thyroxin, and the symptoms disappeared, except for a macroglossia. In childhood, PHP was suspected in addition to elevated PTH, obesity, brachydactyly, and a rounded face. Sequencing, methylation analysis, and large deletion research were performed in GNAS. No genetic mutations were found. Methylation analysis revealed a broad epigenetic defect without deletion in GNAS consistent with sporadic PHP1B. The multilocus methylation analysis were negative. This finding expands the known onsets of PHP1B and emphasizes the need for a new PHP classification system. This case report has important consequences for the etiologic diagnosis of congenital hypothyroidism because it adds a new cause of the disease.
Collapse
Affiliation(s)
- Pauline Romanet
- Assistance Publique Hôpitaux de Marseille, Hôpital la Conception, Laboratory of Molecular Biology, Marseille, France; Aix Marseille Université, CNRS, CRN2M-UMR 7286, Marseille, France
| | - Lindsay Osei
- Assistance Publique Hôpitaux de Marseille, Hôpital La Timone Enfant, Departments of Pediatrics, Marseille, France
| | - Irène Netchine
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, UMR_S 938, Paris, France; and Sorbonne Universités, Paris, France
| | - Morgane Pertuit
- Assistance Publique Hôpitaux de Marseille, Hôpital la Conception, Laboratory of Molecular Biology, Marseille, France
| | - Alain Enjalbert
- Assistance Publique Hôpitaux de Marseille, Hôpital la Conception, Laboratory of Molecular Biology, Marseille, France; Aix Marseille Université, CNRS, CRN2M-UMR 7286, Marseille, France
| | - Rachel Reynaud
- Aix Marseille Université, CNRS, CRN2M-UMR 7286, Marseille, France; Assistance Publique Hôpitaux de Marseille, Hôpital La Timone Enfant, Departments of Pediatrics, Marseille, France
| | - Anne Barlier
- Assistance Publique Hôpitaux de Marseille, Hôpital la Conception, Laboratory of Molecular Biology, Marseille, France; Aix Marseille Université, CNRS, CRN2M-UMR 7286, Marseille, France;
| |
Collapse
|
27
|
Eggermann T, Heilsberg AK, Bens S, Siebert R, Beygo J, Buiting K, Begemann M, Soellner L. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. J Mol Med (Berl) 2015; 92:769-77. [PMID: 24658748 DOI: 10.1007/s00109-014-1141-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/23/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID loci because of the following: (a) Multi-locus tests increase the detection rates as they cover numerous loci. (b) Patients with unexpected molecular alterations are detected. (c) The testing of rare imprinting disorders becomes more efficient and quality of molecular diagnosis increases. (d) The tests identify MLMDs. In the future, the detailed characterization of clinical and molecular findings in ID patients will help us to decipher the complex regulation of imprinting and thereby providing the basis for more directed genetic counseling and therapeutic managements in IDs. KEY MESSAGE Molecular disturbances in patients with imprinting disorders are often not restricted to the disease-specific locus but also affect other chromosomal regions. These additional disturbances include methylation defects, uniparental disomies as well as chromosomal imbalances. The identification of these additional alterations is mandatory for a well-directed genetic counseling. Furthermore, these findings help to decipher the complex regulation of imprinting.
Collapse
|
28
|
Azzi S, Steunou V, Tost J, Rossignol S, Thibaud N, Das Neves C, Le Jule M, Habib WA, Blaise A, Koudou Y, Busato F, Le Bouc Y, Netchine I. Exhaustive methylation analysis revealed uneven profiles of methylation at IGF2/ICR1/H19 11p15 loci in Russell Silver syndrome. J Med Genet 2014; 52:53-60. [PMID: 25395389 DOI: 10.1136/jmedgenet-2014-102732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The structural organisation of the human IGF2/ICR1/H19 11p15 domain is very complex, and the mechanisms underlying its regulation are poorly understood. The Imprinted Center Region 1 (ICR1) contains seven binding sites for the zinc-finger protein CTCF (CBS: CTCF Binding Sites); three additional differentially methylated regions (DMR) are located at the H19 promoter (H19DMR) and two in the IGF2 gene (DMR0 and DMR2), respectively. Loss of imprinting at the IGF2/ICR1/H19 domain results in two growth disorders with opposite phenotypes: Beckwith-Wiedemann syndrome and Russell Silver syndrome (RSS). Despite the IGF2/ICR1/H19 locus being widely studied, the extent of hypomethylation across the domain remains not yet addressed in patients with RSS. METHODS We assessed a detailed investigation of the methylation status of the 11p15 ICR1 CBS1-7, IGF2DMR0 and H19DMR (H19 promoter) in a population of controls (n=50) and RSS carrying (n=104) or not (n=65) carrying a hypomethylation at the 11p15 ICR1 region. RESULTS The methylation indexes (MI) were balanced at all regions in the control population and patients with RSS without any as yet identified molecular anomaly. Interestingly, patients with RSS with ICR1 hypomethylation showed uneven profiles of methylation among the CBSs and DMRs. Furthermore, normal MIs at CBS1 and CBS7 were identified in 9% of patients. CONCLUSIONS The hypomethylation does not spread equally throughout the IGF2/ICR1/H19 locus, and some loci could have normal MI, which may lead to underdiagnosis of patients with RSS with ICR1 hypomethylation. The uneven pattern of methylation suggests that some CBSs may play different roles in the tridimensional chromosomal looping regulation of this locus.
Collapse
Affiliation(s)
- Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | | | - Jörg Tost
- Laboratory for Epigenetics and Environment (LEE), National Genotyping Center, CEA-Institute of Genomics, Evry, France
| | - Sylvie Rossignol
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Nathalie Thibaud
- Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Cristina Das Neves
- Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Marilyne Le Jule
- Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Walid Abi Habib
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Annick Blaise
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Yves Koudou
- INSERM, Centre for research in Epidemiology and Population Health (CESP), U1018, Lifelong epidemiology of obesity, diabetes and renal disease team, Villejuif, France Paris-Sud University, UMRS 1018, Villejuif, France
| | - Florence Busato
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Yves Le Bouc
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Irène Netchine
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| |
Collapse
|
29
|
Mackay D, Bens S, Perez de Nanclares G, Siebert R, Temple IK. Clinical utility gene card for: Transient Neonatal Diabetes Mellitus, 6q24-related. Eur J Hum Genet 2014; 22:ejhg201427. [PMID: 24569603 PMCID: PMC4135418 DOI: 10.1038/ejhg.2014.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Deborah Mackay
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury Health Care Trust, Salisbury, UK
| | - Susanne Bens
- Institute of Human Genetics, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 24, Kiel, Germany
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Research Unit, Hospital Universitario Araba, Vitoria-Gasteiz, Alava, Spain
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 24, Kiel, Germany
| | - I Karen Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Coxford Road, Southampton, UK
| |
Collapse
|
30
|
Azzi S, Blaise A, Steunou V, Harbison MD, Salem J, Brioude F, Rossignol S, Habib WA, Thibaud N, Neves CD, Jule ML, Brachet C, Heinrichs C, Bouc YL, Netchine I. Complex tissue-specific epigenotypes in Russell-Silver Syndrome associated with 11p15 ICR1 hypomethylation. Hum Mutat 2014; 35:1211-20. [PMID: 25044976 DOI: 10.1002/humu.22623] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/02/2014] [Indexed: 01/13/2023]
Abstract
Russell-Silver Syndrome (RSS) is a prenatal and postnatal growth retardation syndrome caused mainly by 11p15 ICR1 hypomethylation. Clinical presentation is heterogeneous in RSS patients with 11p15 ICR1 hypomethylation. We previously identified a subset of RSS patients with 11p15 ICR1 and multilocus hypomethylation. Here, we examine the relationships between IGF2 expression, 11p15 ICR1 methylation, and multilocus imprinting defects in various cell types from 39 RSS patients with 11p15 ICR1 hypomethylation in leukocyte DNA. 11p15 ICR1 hypomethylation was more pronounced in leukocytes than in buccal mucosa cells. Skin fibroblast IGF2 expression was correlated with the degree of ICR1 hypomethylation. Different tissue-specific multilocus methylation defects coexisted in 38% of cases, with some loci hypomethylated and others hypermethylated within the same cell type in some cases. Our new results suggest that tissue-specific epigenotypes may lead to clinical heterogeneity in RSS.
Collapse
Affiliation(s)
- Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, F-75012, France; APHP, Armand Trousseau Hospital, Pediatric Endocrinology, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Grybek V, Aubry L, Maupetit-Méhouas S, Le Stunff C, Denis C, Girard M, Linglart A, Silve C. Methylation and transcripts expression at the imprinted GNAS locus in human embryonic and induced pluripotent stem cells and their derivatives. Stem Cell Reports 2014; 3:432-43. [PMID: 25241742 PMCID: PMC4266011 DOI: 10.1016/j.stemcr.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs). GNAS is an imprinted locus that produces one biallelic (Gsα) and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B) transcripts due to differential methylation of their promoters (DMR). To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B) expression in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) derived from two human fibroblasts and their progenies. Results showed that (1) methylation at the GNAS locus DMRs is DMR and cell line specific, (2) changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3) interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B. GNAS locus methylation is DMR and cell line specific in human pluripotent stem cells Allelic transcript expression can be independent of allele-specific DNA methylation A/B transcript expression, a key for PHP1B, is correlated with A/B DMR methylation
Collapse
Affiliation(s)
- Virginie Grybek
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France
| | - Laetitia Aubry
- UEVE UMR 861, I-Stem, AFM, Evry 91030, France; INSERM UMR 861, I-Stem, AFM, Evry 91030, France
| | | | | | - Cécile Denis
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry 91030, France
| | - Mathilde Girard
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry 91030, France
| | - Agnès Linglart
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Service d'Endocrinologie Pédiatrique, Hôpital Bicêtre-AP-HP, Le Kremlin Bicêtre 94276, France; Centre de Référence des Maladies Rares du Métabolisme Phospho-Calcique Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France
| | - Caroline Silve
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Centre de Référence des Maladies Rares du Métabolisme Phospho-Calcique Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Laboratoire de Biochimie Hormonale et Génétique, Hôpital Bichat Claude Bernard-AP-HP, Paris 75018, France.
| |
Collapse
|
32
|
Brix B, Werner R, Staedt P, Struve D, Hiort O, Thiele S. Different pattern of epigenetic changes of the GNAS gene locus in patients with pseudohypoparathyroidism type Ic confirm the heterogeneity of underlying pathomechanisms in this subgroup of pseudohypoparathyroidism and the demand for a new classification of GNAS-related disorders. J Clin Endocrinol Metab 2014; 99:E1564-70. [PMID: 24878042 DOI: 10.1210/jc.2013-4477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CONTEXT Disorders characterized by PTH resistance are grouped within the term pseudohypoparathyroidism type I (PHPI). Most subtypes of this disease are caused by genetic or epigenetic changes of the GNAS locus leading to deficiency of the α-subunit of stimulatory G proteins (Gsα). Because the in vitro measured Gsα protein activity is normal in pseudohypoparathyroidism Ic (PHPIc), it had previously been postulated that this subtype is caused by impairment of distinct components of the G protein-signaling pathway. However, recently, pathogenic GNAS mutations in a subset of PHPIc patients were found. OBJECTIVE To clarify the underlying pathogenic mechanism of GNAS exon 1-13 mutation-negative PHPIc cases by investigating the differentially methylated regions of GNAS for epigenetic abnormalities. PATIENTS AND METHODS The methylation pattern of GNAS exons A/B, AS, XL, and NESP from blood-derived leukocytes of 26 PHPIc patients was assessed by pyrosequencing of bisulfite-converted DNA. RESULTS Six patients presented with three different patterns of epigenetic changes. One patient had an exclusive loss of methylation of exon A/B associated with a STX16 deletion; four patients had an additional loss of methylation in XL and AS and a gain of methylation in NESP; and one patient presented with partial GNAS methylation changes concerning all differentially methylated regions. CONCLUSIONS Our results confirm that PHPIc is a heterogeneous entity caused in part by impaired Gsα function, not only due to mutations, but also due to abnormal imprinting of GNAS. However, in the majority of cases of PHPIc, the underlying etiopathogenesis remains elusive.
Collapse
Affiliation(s)
- Bettina Brix
- Division of Experimental Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
33
|
European guidance for the molecular diagnosis of pseudohypoparathyroidism not caused by point genetic variants at GNAS: an EQA study. Eur J Hum Genet 2014; 23:438-44. [PMID: 25005735 DOI: 10.1038/ejhg.2014.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022] Open
Abstract
Pseudohypoparathyroidism is a rare endocrine disorder that can be caused by genetic (mainly maternally inherited inactivating point mutations, although intragenic and gross deletions have rarely been reported) or epigenetic alterations at GNAS locus. Clinical and molecular characterization of this disease is not that easy because of phenotypic, biochemical and molecular overlapping features between both subtypes of the disease. The European Consortium for the study of PHP (EuroPHP) designed the present work with the intention of generating the standards of diagnostic clinical molecular (epi)genetic testing in PHP patients. With this aim, DNA samples of eight independent PHP patients carrying GNAS genetic and/or epigenetic defects (three patients with GNAS deletions, two with 20q uniparental disomy and three with a methylation defect of unknown origin) without GNAS point mutations were anonymized and sent to the five participant laboratories for their routine genetic analysis (methylation-specific (MS)-MLPA, pyrosequencing and EpiTYPER) and interpretations. All laboratories were able to detect methylation defects and, after the data analysis, the Consortium compared the results to define technical advantages and disadvantages of different techniques. To conclude, we propose as first-level investigation in PHP patients copy number and methylation analysis by MS-MLPA. Then, in patients with partial methylation defect, the result should be confirmed by single CpG bisulphite-based methods (ie pyrosequencing), whereas in case of a complete methylation defect without detectable deletion, microsatellites or SNP genotyping should be performed to exclude uniparental disomy 20.
Collapse
|
34
|
Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes 2014; 21:30-8. [PMID: 24322424 DOI: 10.1097/med.0000000000000037] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The imprinted human 11p15.5 region encompasses two imprinted domains important for the control of fetal growth: the H19/IGF2 domain in the telomeric region and the KCNQ1OT1/CDKN1C domain in the centromeric region. These two domains are differentially methylated and each is regulated by its own imprinting control region (ICR): ICR1 in the telomeric region and ICR2 in the centromeric region. Aberrant methylation of the 11p15.5 imprinted region, through genetic or epigenetic mechanisms, leads to two clinical syndromes, with opposite growth phenotypes: Russell-Silver Syndrome (RSS; with severe fetal and postnatal growth retardation) and Beckwith-Wiedemann Syndrome (BWS; an overgrowth syndrome). RECENT FINDINGS In this review, we discuss the recently identified molecular abnormalities at 11p15.5 involved in RSS and BWS, which have led to the identification of cis-acting elements and trans-acting regulatory factors involved in the regulation of imprinting in this region. We also discuss the multilocus imprinting disorders identified in various human syndromes, their clinical outcomes and their impact on commonly identified metabolism disorders. SUMMARY These new findings and progress in this field will have direct consequence for diagnostic and predictive tools, risk assessment and genetic counseling for these syndromes.
Collapse
Affiliation(s)
- Salah Azzi
- aAP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes bUPMC Paris 6, UMR_S938, Centre de Recherche de Saint-Antoine cINSERM, UMR_S938, Centre de Recherche de Saint-Antoine, Paris, France
| | | | | |
Collapse
|
35
|
Influencing the Social Group. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:107-34. [DOI: 10.1016/b978-0-12-800222-3.00006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Azzi S, Sas TCJ, Koudou Y, Le Bouc Y, Souberbielle JC, Dargent-Molina P, Netchine I, Charles MA. Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 2013; 9:338-45. [PMID: 24316753 DOI: 10.4161/epi.27387] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ZAC1 gene, mapped to the 6q24 region, is part of a network of co-regulated imprinted genes involved in the control of embryonic growth. Loss of methylation at the ZAC1 differentially methylated region (DMR) is associated with transient neonatal diabetes mellitus, a developmental disorder involving growth retardation and diabetes in the first weeks of post-natal life. We assessed whether the degree of methylation of the ZAC1 DMR in leukocytes DNA extracted from cord blood is associated with fetal, birth and post-natal anthropometric measures or with C-peptide concentrations in cord serum. We also searched for an influence of dietary intake and maternal parameters on ZAC1 DMR methylation. We found positive correlations between the ZAC1 DMR methylation index (MI) and estimated fetal weight (EFW) at 32 weeks of gestation, weight at birth and weight at one year of age (respectively, r = 0.15, 0.09, 0.14; P values = 0.01, 0.15, 0.03). However, there were no significant correlations between the ZAC1 DMR MI and cord blood C-peptide levels. Maternal intakes of alcohol and of vitamins B2 were positively correlated with ZAC1 DMR methylation (respectively, r = 0.2 and 0.14; P = 0.004 and 0.04). The influence of ZAC1 seems to start in the second half of pregnancy and continue at least until the first year of life. The maternal environment also appears to contribute to the regulation of DNA methylation.
Collapse
Affiliation(s)
- Salah Azzi
- APHP Armand Trousseau Hospital; Endocrine Laboratory of Functional Explorations; INSERM UMR-S938; Team Yves Le Bouc; UPMC; Paris, France
| | - Theo C J Sas
- APHP Armand Trousseau Hospital; Endocrine Laboratory of Functional Explorations; INSERM UMR-S938; Team Yves Le Bouc; UPMC; Paris, France; Albert Schweitzer Hospital; Department of Pediatrics; Dordrecht, the Netherlands
| | - Yves Koudou
- INSERM; Centre for Research in Epidemiology and Population Health (CESP); Lifelong epidemiology of obesity, diabetes and renal disease team; Villejuif, France; Paris-Sud University; UMRS 1018; Villejuif, France
| | - Yves Le Bouc
- APHP Armand Trousseau Hospital; Endocrine Laboratory of Functional Explorations; INSERM UMR-S938; Team Yves Le Bouc; UPMC; Paris, France
| | | | - Patricia Dargent-Molina
- INSERM; Centre for Research in Epidemiology and Population Health (CESP); Lifelong epidemiology of obesity, diabetes and renal disease team; Villejuif, France; Paris-Sud University; UMRS 1018; Villejuif, France
| | - Irène Netchine
- APHP Armand Trousseau Hospital; Endocrine Laboratory of Functional Explorations; INSERM UMR-S938; Team Yves Le Bouc; UPMC; Paris, France
| | - Marie-Aline Charles
- INSERM; Centre for Research in Epidemiology and Population Health (CESP); Lifelong epidemiology of obesity, diabetes and renal disease team; Villejuif, France; Paris-Sud University; UMRS 1018; Villejuif, France
| |
Collapse
|
37
|
Girardot M, Feil R, Llères D. Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 2013; 5:715-28. [DOI: 10.2217/epi.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian genes controlled by genomic imprinting play important roles in development and diverse postnatal processes. A growing number of congenital disorders have been linked to genomic imprinting. Each of these is caused by perturbed gene expression at one principal imprinted domain. Some imprinting disorders, including the Prader–Willi and Angelman syndromes, are caused almost exclusively by genetic mutations. In several others, including the Beckwith–Wiedemann and Silver–Russell growth syndromes, and transient neonatal diabetes mellitus, imprinted expression is perturbed mostly by epigenetic alterations at ‘imprinting control regions’ and at other specific regulatory sequences. In a minority of these patients, DNA methylation is altered at multiple imprinted loci, suggesting that common trans-acting factors are affected. Here, we review the epimutations involved in congenital imprinting disorders and the associated clinical features. Trans-acting factors known to be causally involved are discussed and other trans-acting factors that are potentially implicated are also presented.
Collapse
Affiliation(s)
- Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
| | - David Llères
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| |
Collapse
|