1
|
Vázquez-Domínguez I, Öktem M, Winkelaar FA, Nguyen TH, Hoogendoorn AD, Roschi E, Astuti GD, Timmermans R, Suárez-Herrera N, Bruno I, Ruiz-Llombart A, Brealey J, de Jong OG, Collin RW, Mastrobattista E, Garanto A. Lipopeptide-mediated Cas9 RNP delivery: A promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102345. [PMID: 39494150 PMCID: PMC11531624 DOI: 10.1016/j.omtn.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
Deep-intronic (DI) variants represent approximately 10%-12% of disease-causing genetic defects in ABCA4-associated Stargardt disease (STGD1). Although many of these DI variants are amenable to antisense oligonucleotide-based splicing-modulation therapy, no treatment is currently available. These molecules are mostly variant specific, limiting their applicability to a broader patient population. In this study, we investigated the therapeutic potential of the CRISPR-Cas9 system combined with the amphipathic lipopeptide C18:1-LAH5 for intracellular delivery to correct splicing defects caused by different DI variants within the same intron. The combination of these components facilitated efficient editing of two target introns (introns 30 and 36) of ABCA4 in which several recurrent DI variants are found. The partial removal of these introns did not affect ABCA4 splicing or its expression levels when assessed in two different human cellular models: fibroblasts and induced pluripotent stem cell-derived photoreceptor precursor cells (PPCs). Furthermore, the DNA editing in STGD1 patient-derived PPCs led to a ∼50% reduction of the pseudoexon-containing transcripts resulting from the c.4539+2001G>A variant in intron 30. Overall, we provide proof-of-concept evidence of the use of C18:1-LAH5 as a delivery system for therapeutic genome editing for ABCA4-associated DI variants, offering new opportunities for clinical translation.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Mert Öktem
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Florian A. Winkelaar
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Thai Hoang Nguyen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Anita D.M. Hoogendoorn
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| | - Eleonora Roschi
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Galuh D.N. Astuti
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Raoul Timmermans
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Nuria Suárez-Herrera
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Ilaria Bruno
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Albert Ruiz-Llombart
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Joseph Brealey
- NanoFCM Co Ltd. MediCity, D6 Thane Road, Nottingham NG90 6BH, UK
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Rob W.J. Collin
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Alejandro Garanto
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
2
|
Maggi J, Feil S, Gloggnitzer J, Maggi K, Bachmann-Gagescu R, Gerth-Kahlert C, Koller S, Berger W. Nanopore Deep Sequencing as a Tool to Characterize and Quantify Aberrant Splicing Caused by Variants in Inherited Retinal Dystrophy Genes. Int J Mol Sci 2024; 25:9569. [PMID: 39273516 PMCID: PMC11395040 DOI: 10.3390/ijms25179569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The contribution of splicing variants to molecular diagnostics of inherited diseases is reported to be less than 10%. This figure is likely an underestimation due to several factors including difficulty in predicting the effect of such variants, the need for functional assays, and the inability to detect them (depending on their locations and the sequencing technology used). The aim of this study was to assess the utility of Nanopore sequencing in characterizing and quantifying aberrant splicing events. For this purpose, we selected 19 candidate splicing variants that were identified in patients affected by inherited retinal dystrophies. Several in silico tools were deployed to predict the nature and estimate the magnitude of variant-induced aberrant splicing events. Minigene assay or whole blood-derived cDNA was used to functionally characterize the variants. PCR amplification of minigene-specific cDNA or the target gene in blood cDNA, combined with Nanopore sequencing, was used to identify the resulting transcripts. Thirteen out of nineteen variants caused aberrant splicing events, including cryptic splice site activation, exon skipping, pseudoexon inclusion, or a combination of these. Nanopore sequencing allowed for the identification of full-length transcripts and their precise quantification, which were often in accord with in silico predictions. The method detected reliably low-abundant transcripts, which would not be detected by conventional strategies, such as RT-PCR followed by Sanger sequencing.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Jiradet Gloggnitzer
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Kevin Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Georgiou M, Robson AG, Fujinami K, de Guimarães TAC, Fujinami-Yokokawa Y, Daich Varela M, Pontikos N, Kalitzeos A, Mahroo OA, Webster AR, Michaelides M. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes. Prog Retin Eye Res 2024; 100:101244. [PMID: 38278208 DOI: 10.1016/j.preteyeres.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.
Collapse
Affiliation(s)
- Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Thales A C de Guimarães
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Nikolas Pontikos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Angelos Kalitzeos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Section of Ophthalmology, King s College London, St Thomas Hospital Campus, London, United Kingdom; Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Translational Ophthalmology, Wills Eye Hospital, Philadelphia, PA, USA.
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
4
|
De Angeli P, Flores-Tufiño A, Stingl K, Kühlewein L, Roschi E, Wissinger B, Kohl S. Splicing defects and CRISPR-Cas9 correction in isogenic homozygous photoreceptor precursors harboring clustered deep-intronic ABCA4 variants. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102113. [PMID: 38274366 PMCID: PMC10809099 DOI: 10.1016/j.omtn.2023.102113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Splicing defects from deep-intronic variants significantly contribute to the mutational spectrum in ABCA4-associated inherited retinal diseases, necessitating functional validation for their pathological classification. Typically, minigene assays in HEK293(T) can qualitatively assess splicing defects, yet they often fail to quantitatively reproduce the resulting mis-splicing patterns, leaving uncertainty on severity and pathogenicity. As a potential cellular model derived from patient cells, photoreceptor precursor cells (PPCs) play a pivotal role in assessing the severity of specific splicing mutations. Nevertheless, the accessibility of biosamples is commonly constrained, and their establishment is costly and laborious. In this study, we combined and investigated the use of a minigene assay and isogenic PPCs, as superior qualitative and more accessible cellular models for the assessment of splicing defects. Specifically, we focused on the clustered c.5196+1013A>G, c.5196+1056A>G, and c.5196+1216C>A deep-intronic variants in intron 36 of ABCA4, comparing their resulting (mis)splicing patterns in minigene-transfected cells and isogenic CRISPR-Cas9-knocked-in PPCs harboring these pathogenic variants in homozygous state. Moreover, we demonstrate the successful correction of these three splicing defects in homozygous mutant PPCs using a single pair of guide RNAs to target Cas9 cleavage, thereby identifying an efficient gene editing strategy for therapeutic applications.
Collapse
Affiliation(s)
- Pietro De Angeli
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinics Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Arturo Flores-Tufiño
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinics Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University Clinics Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Laura Kühlewein
- University Eye Hospital, Centre for Ophthalmology, University Clinics Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Eleonora Roschi
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinics Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
- Wellcome Sanger Institute, Hinxton CB10 1RQ, Saffron Walden, UK
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinics Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinics Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Corradi Z, Khan M, Hitti-Malin R, Mishra K, Whelan L, Cornelis SS, Hoyng CB, Kämpjärvi K, Klaver CCW, Liskova P, Stöhr H, Weber BHF, Banfi S, Farrar GJ, Sharon D, Zernant J, Allikmets R, Dhaenens CM, Cremers FPM. Targeted sequencing and in vitro splice assays shed light on ABCA4-associated retinopathies missing heritability. HGG ADVANCES 2023; 4:100237. [PMID: 37705246 PMCID: PMC10534262 DOI: 10.1016/j.xhgg.2023.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
The ABCA4 gene is the most frequently mutated Mendelian retinopathy-associated gene. Biallelic variants lead to a variety of phenotypes, however, for thousands of cases the underlying variants remain unknown. Here, we aim to shed further light on the missing heritability of ABCA4-associated retinopathy by analyzing a large cohort of macular dystrophy probands. A total of 858 probands were collected from 26 centers, of whom 722 carried no or one pathogenic ABCA4 variant, while 136 cases carried two ABCA4 alleles, one of which was a frequent mild variant, suggesting that deep-intronic variants (DIVs) or other cis-modifiers might have been missed. After single molecule molecular inversion probes (smMIPs)-based sequencing of the complete 128-kb ABCA4 locus, the effect of putative splice variants was assessed in vitro by midigene splice assays in HEK293T cells. The breakpoints of copy number variants (CNVs) were determined by junction PCR and Sanger sequencing. ABCA4 sequence analysis solved 207 of 520 (39.8%) naive or unsolved cases and 70 of 202 (34.7%) monoallelic cases, while additional causal variants were identified in 54 of 136 (39.7%) probands carrying two variants. Seven novel DIVs and six novel non-canonical splice site variants were detected in a total of 35 alleles and characterized, including the c.6283-321C>G variant leading to a complex splicing defect. Additionally, four novel CNVs were identified and characterized in five alleles. These results confirm that smMIPs-based sequencing of the complete ABCA4 gene provides a cost-effective method to genetically solve retinopathy cases and that several rare structural and splice altering defects remain undiscovered in Stargardt disease cases.
Collapse
Affiliation(s)
- Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Rebekkah Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ketan Mishra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laura Whelan
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Stéphanie S Cornelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Institute of Molecular & Clinical Ophthalmology, Basel, Switzerland
| | - Petra Liskova
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Sandro Banfi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples and Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - G Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Claire-Marie Dhaenens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Whelan L, Dockery A, Stephenson KAJ, Zhu J, Kopčić E, Post IJM, Khan M, Corradi Z, Wynne N, O' Byrne JJ, Duignan E, Silvestri G, Roosing S, Cremers FPM, Keegan DJ, Kenna PF, Farrar GJ. Detailed analysis of an enriched deep intronic ABCA4 variant in Irish Stargardt disease patients. Sci Rep 2023; 13:9380. [PMID: 37296172 PMCID: PMC10256698 DOI: 10.1038/s41598-023-35889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Over 15% of probands in a large cohort of more than 1500 inherited retinal degeneration patients present with a clinical diagnosis of Stargardt disease (STGD1), a recessive form of macular dystrophy caused by biallelic variants in the ABCA4 gene. Participants were clinically examined and underwent either target capture sequencing of the exons and some pathogenic intronic regions of ABCA4, sequencing of the entire ABCA4 gene or whole genome sequencing. ABCA4 c.4539 + 2028C > T, p.[= ,Arg1514Leufs*36] is a pathogenic deep intronic variant that results in a retina-specific 345-nucleotide pseudoexon inclusion. Through analysis of the Irish STGD1 cohort, 25 individuals across 18 pedigrees harbour ABCA4 c.4539 + 2028C > T and another pathogenic variant. This includes, to the best of our knowledge, the only two homozygous patients identified to date. This provides important evidence of variant pathogenicity for this deep intronic variant, highlighting the value of homozygotes for variant interpretation. 15 other heterozygous incidents of this variant in patients have been reported globally, indicating significant enrichment in the Irish population. We provide detailed genetic and clinical characterization of these patients, illustrating that ABCA4 c.4539 + 2028C > T is a variant of mild to intermediate severity. These results have important implications for unresolved STGD1 patients globally with approximately 10% of the population in some western countries claiming Irish heritage. This study exemplifies that detection and characterization of founder variants is a diagnostic imperative.
Collapse
Affiliation(s)
- Laura Whelan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Adrian Dockery
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Kirk A J Stephenson
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Ella Kopčić
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Iris J M Post
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Niamh Wynne
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - James J O' Byrne
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Emma Duignan
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Giuliana Silvestri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Ophthalmology, The Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David J Keegan
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - G Jane Farrar
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
8
|
Amato A, Arrigo A, Aragona E, Manitto MP, Saladino A, Bandello F, Battaglia Parodi M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front Med (Lausanne) 2021; 8:750586. [PMID: 34722588 PMCID: PMC8553993 DOI: 10.3389/fmed.2021.750586] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Gene therapy cannot be yet considered a far perspective, but a tangible therapeutic option in the field of retinal diseases. Although still confined in experimental settings, the preliminary results are promising and provide an overall scenario suggesting that we are not so far from the application of gene therapy in clinical settings. The main aim of this review is to provide a complete and updated overview of the current state of the art and of the future perspectives of gene therapy applied on retinal diseases. Methods: We carefully revised the entire literature to report all the relevant findings related to the experimental procedures and the future scenarios of gene therapy applied in retinal diseases. A clinical background and a detailed description of the genetic features of each retinal disease included are also reported. Results: The current literature strongly support the hope of gene therapy options developed for retinal diseases. Although being considered in advanced stages of investigation for some retinal diseases, such as choroideremia (CHM), retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA), gene therapy is still quite far from a tangible application in clinical practice for other retinal diseases. Conclusions: Gene therapy is an extremely promising therapeutic tool for retinal diseases. The experimental data reported in this review offer a strong hope that gene therapy will be effectively available in clinical practice in the next years.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Maria Pia Manitto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
9
|
Sheremet NL, Strelnikov VV. [Clinical and genetic aspects of ABCA4-associated inherited retinal diseases]. Vestn Oftalmol 2021; 137:367-374. [PMID: 34669350 DOI: 10.17116/oftalma2021137052367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The clinical and genetic characteristics of ABCA4-associated inherited retinal diseases have been studied for more than 2 decades, since the identification of the ABCA4 protein in 1978 and the ABCA4 gene in 1997. ABCA4 mutations were initially associated with autosomal recessive Stargardt disease (STGD1). It has now been established that mutations in this gene can cause other inherited retinal diseases, such as cone-rod dystrophy and retinitis pigmentosa. In addition, the phenotypes of ABCA4-associated diseases can vary greatly from the classic presentation of Stargardt disease, from loss of central vision in adolescence to disease with early onset and rapid progression or late onset and milder course. ABCA4-associated diseases are inherited in autosomal recessive manner, i.e. the disease develops only if both alleles of the gene are damaged, one inherited from the father and the other inherited from the mother. As with many other recessive hereditary diseases, which are characterized by a variety of clinical manifestations, the diversity of the phenotypes of ABCA4-associated retinal diseases is explained by combinations of sequence variants in the ABCA4 gene inherited by patients from their parents. Despite the fact that in this respect inherited retinal diseases associated with mutations in the ABCA4 gene do not fundamentally differ from other autosomal recessive traits, due to the structure of the gene and the protein encoded by it, there are a number of features thatshould be taken into account when performing molecular diagnostics, predicting the possibility of manifestation and the course of the disease, and planning the approaches to treatment.
Collapse
Affiliation(s)
- N L Sheremet
- Research Institute of Eye Diseases, Moscow, Russia
| | - V V Strelnikov
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
10
|
Al-Khuzaei S, Broadgate S, Foster CR, Shah M, Yu J, Downes SM, Halford S. An Overview of the Genetics of ABCA4 Retinopathies, an Evolving Story. Genes (Basel) 2021; 12:1241. [PMID: 34440414 PMCID: PMC8392661 DOI: 10.3390/genes12081241] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Stargardt disease (STGD1) and ABCA4 retinopathies (ABCA4R) are caused by pathogenic variants in the ABCA4 gene inherited in an autosomal recessive manner. The gene encodes an importer flippase protein that prevents the build-up of vitamin A derivatives that are toxic to the RPE. Diagnosing ABCA4R is complex due to its phenotypic variability and the presence of other inherited retinal dystrophy phenocopies. ABCA4 is a large gene, comprising 50 exons; to date > 2000 variants have been described. These include missense, nonsense, splicing, structural, and deep intronic variants. Missense variants account for the majority of variants in ABCA4. However, in a significant proportion of patients with an ABCA4R phenotype, a second variant in ABCA4 is not identified. This could be due to the presence of yet unknown variants, or hypomorphic alleles being incorrectly classified as benign, or the possibility that the disease is caused by a variant in another gene. This underlines the importance of accurate genetic testing. The pathogenicity of novel variants can be predicted using in silico programs, but these rely on databases that are not ethnically diverse, thus highlighting the need for studies in differing populations. Functional studies in vitro are useful towards assessing protein function but do not directly measure the flippase activity. Obtaining an accurate molecular diagnosis is becoming increasingly more important as targeted therapeutic options become available; these include pharmacological, gene-based, and cell replacement-based therapies. The aim of this review is to provide an update on the current status of genotyping in ABCA4 and the status of the therapeutic approaches being investigated.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | | | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| |
Collapse
|
11
|
García Bohórquez B, Aller E, Rodríguez Muñoz A, Jaijo T, García García G, Millán JM. Updating the Genetic Landscape of Inherited Retinal Dystrophies. Front Cell Dev Biol 2021; 9:645600. [PMID: 34327195 PMCID: PMC8315279 DOI: 10.3389/fcell.2021.645600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Inherited retinal dystrophies (IRD) are a group of diseases characterized by the loss or dysfunction of photoreceptors and a high genetic and clinical heterogeneity. Currently, over 270 genes have been associated with IRD which makes genetic diagnosis very difficult. The recent advent of next generation sequencing has greatly facilitated the diagnostic process, enabling to provide the patients with accurate genetic counseling in some cases. We studied 92 patients who were clinically diagnosed with IRD with two different custom panels. In total, we resolved 53 patients (57.6%); in 12 patients (13%), we found only one mutation in a gene with a known autosomal recessive pattern of inheritance; and 27 patients (29.3%) remained unsolved. We identified 120 pathogenic or likely pathogenic variants; 30 of them were novel. Among the cone-rod dystrophy patients, ABCA4 was the most common mutated gene, meanwhile, USH2A was the most prevalent among the retinitis pigmentosa patients. Interestingly, 10 families carried pathogenic variants in more than one IRD gene, and we identified two deep-intronic variants previously described as pathogenic in ABCA4 and CEP290. In conclusion, the IRD study through custom panel sequencing demonstrates its efficacy for genetic diagnosis, as well as the importance of including deep-intronic regions in their design. This genetic diagnosis will allow patients to make accurate reproductive decisions, enroll in gene-based clinical trials, and benefit from future gene-based treatments.
Collapse
Affiliation(s)
- Belén García Bohórquez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
- Unit of Genetics, University Hospital La Fe, Valencia, Spain
| | - Ana Rodríguez Muñoz
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
- Unit of Genetics, University Hospital La Fe, Valencia, Spain
| | - Gema García García
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| |
Collapse
|
12
|
Camp DA, Gemayel MC, Ciulla TA. Understanding the genetic pathology of Stargardt disease: a review of current findings and challenges. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1898373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Camp
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael C. Gemayel
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A. Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
13
|
Khan M, Arno G, Fakin A, Parfitt DA, Dhooge PPA, Albert S, Bax NM, Duijkers L, Niblock M, Hau KL, Bloch E, Schiff ER, Piccolo D, Hogden MC, Hoyng CB, Webster AR, Cremers FPM, Cheetham ME, Garanto A, Collin RWJ. Detailed Phenotyping and Therapeutic Strategies for Intronic ABCA4 Variants in Stargardt Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:412-427. [PMID: 32653833 PMCID: PMC7352060 DOI: 10.1016/j.omtn.2020.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 01/17/2023]
Abstract
Stargardt disease is a progressive retinal disorder caused by bi-allelic mutations in the ABCA4 gene that encodes the ATP-binding cassette, subfamily A, member 4 transporter protein. Over the past few years, we and others have identified several pathogenic variants that reside within the introns of ABCA4, including a recurrent variant in intron 36 (c.5196+1137G>A) of which the pathogenicity so far remained controversial. Detailed clinical characterization of this variant confirmed its pathogenic nature, and classified it as an allele of intermediate severity. Moreover, we discovered several additional ABCA4 variants clustering in intron 36. Several of these variants resulted in aberrant splicing of ABCA4, i.e., the inclusion of pseudoexons, while the splicing defects caused by the recurrent c.5196+1137G>A variant strongly increased upon differentiation of patient-derived induced pluripotent stem cells into retina-like cells. Finally, all splicing defects could be rescued by the administration of antisense oligonucleotides that were designed to specifically block the pseudoexon insertion, including rescue in 3D retinal organoids harboring the c.5196+1137G>A variant. Our data illustrate the importance of intronic variants in ABCA4 and expand the therapeutic possibilities for overcoming splicing defects in Stargardt disease.
Collapse
Affiliation(s)
- Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gavin Arno
- UCL Institute for Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK; Great Ormond Street Hospital for Children, London, UK
| | - Ana Fakin
- UCL Institute for Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK; Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Patty P A Dhooge
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Silvia Albert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nathalie M Bax
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Kwan L Hau
- UCL Institute for Ophthalmology, London, UK
| | - Edward Bloch
- UCL Institute for Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK
| | | | | | | | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew R Webster
- UCL Institute for Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Xue K, MacLaren RE. Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases. Expert Opin Investig Drugs 2020; 29:1163-1170. [PMID: 32741234 DOI: 10.1080/13543784.2020.1804853] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Antisense oligonucleotides (ASOs) represent a class of drugs which can be rationally designed to complement the coding or non-coding regions of target RNA transcripts. They could modulate pre-messenger RNA splicing, induce mRNA knockdown, or block translation of disease-causing genes, thereby slowing disease progression. The pharmacokinetics of intravitreal delivery may enable ASOs to be effective in the treatment of inherited retinal diseases. AREAS COVERED We review the current status of clinical trials of ASO therapies for inherited retinal diseases, which have demonstrated safety, viable durability, and early efficacy. Future applications are discussed in the context of alternative genetic approaches, including gene augmentation and gene editing. EXPERT OPINION Early efficacy data suggest that the splicing-modulating ASO, sepofarsen, is a promising treatment for Leber congenital amaurosis associated with the common c.2991+1655A>G mutation in CEP290. However, potential variability in clinical response to ASO-mediated correction of splicing defect on one allele in patients who are compound heterozygotes needs to be assessed. ASOs hold great therapeutic potential for numerous other inherited retinal diseases with common deep-intronic and dominant gain-of-function mutations. These would complement viral vector-mediated gene augmentation which is generally limited by the size of the transgene and to the treatment of recessive diseases.
Collapse
Affiliation(s)
- Kanmin Xue
- Wellcome Trust Clinical Research Career Development Fellow, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & Honorary Consultant Vitreoretinal Surgeon, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| | - Robert E MacLaren
- Professor of Ophthalmology, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & Honorary Consultant Vitreoretinal Surgeon, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| |
Collapse
|
15
|
Di Scipio M, Tavares E, Deshmukh S, Audo I, Green-Sanderson K, Zubak Y, Zine-Eddine F, Pearson A, Vig A, Tang CY, Mollica A, Karas J, Tumber A, Yu CW, Billingsley G, Wilson MD, Zeitz C, Héon E, Vincent A. Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 32881472 PMCID: PMC7443117 DOI: 10.1167/iovs.61.10.36] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. Methods Affected members from three pedigrees with classical enhanced S-cone syndrome (ESCS; Pedigree 1), congenital stationary night blindness (CSNB; Pedigree 2), and achromatopsia (ACHM; Pedigree 3), respectively, underwent detailed ophthalmologic evaluation, optical coherence tomography, and electroretinography. The probands underwent panel-based genetic testing followed by GS analysis. Minigene constructs (NR2E3, GPR179 and CNGB3) and patient-derived cDNA experiments (NR2E3 and GPR179) were performed to assess the functional effect of the deep intronic variants. Results The electrophysiological findings confirmed the clinical diagnosis of ESCS, CSNB, and ACHM in the respective pedigrees. Panel-based testing revealed heterozygous pathogenic variants in NR2E3 (NM_014249.3; c.119-2A>C; Pedigree 1) and CNGB3 (NM_019098.4; c.1148delC/p.Thr383Ilefs*13; Pedigree 3). The GS revealed heterozygous deep intronic variants in Pedigrees 1 (NR2E3; c.1100+1124G>A) and 3 (CNGB3; c.852+4751A>T), and a homozygous GPR179 variant in Pedigree 2 (NM_001004334.3; c.903+343G>A). The identified variants segregated with the phenotype in all pedigrees. All deep intronic variants were predicted to generate a splice acceptor gain causing aberrant exonization in NR2E3 [89 base pairs (bp)], GPR179 (197 bp), and CNGB3 (73 bp); splicing defects were validated through patient-derived cDNA experiments and/or minigene constructs and rescued by antisense oligonucleotide treatment. Conclusions Deep intronic mutations contribute to missing heritability in retinal dystrophies. Combining results from phenotype-directed gene panel testing, GS, and in silico splice prediction tools can help identify these difficult-to-detect pathogenic deep intronic variants.
Collapse
Affiliation(s)
- Matteo Di Scipio
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Erika Tavares
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Shriya Deshmukh
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, Paris, France
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Kit Green-Sanderson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yuliya Zubak
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Fayçal Zine-Eddine
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Alexander Pearson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anjali Vig
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Chen Yu Tang
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Antonio Mollica
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jonathan Karas
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Caberry W. Yu
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Gail Billingsley
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Michael D. Wilson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elise Héon
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
17
|
Bax NM, Valkenburg D, Lambertus S, Klevering BJ, Boon CJF, Holz FG, Cremers FPM, Fleckenstein M, Hoyng CB, Lindner M. Foveal Sparing in Central Retinal Dystrophies. Invest Ophthalmol Vis Sci 2019; 60:3456-3467. [PMID: 31398255 DOI: 10.1167/iovs.18-26533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe foveal sparing (FS) in central retinal dystrophies (RD). Methods Participants for this retrospective study were identified from the retinal dystrophy database of the Department of Ophthalmology at Radboud University Medical Center. FS was defined as an intact foveal structure surrounded by at least 180° of chorioretinal atrophy, and a best-corrected visual acuity (BCVA) of <1.0 logMAR (>20/200 Snellen). Eligible eyes were identified using fundus autofluorescence (FAF) images, and FS was confirmed using near-infrared reflectance (NIR) imaging and spectral-domain optical coherence tomography when available. Clinical and demographic data were extracted from medical records. We performed quantification of FS and chorioretinal atrophic areas using semiautomated software on fundus autofluorescence and NIR images. We calculated the chronologic change using eye-wise linear regression. Results We identified 36 patients (56 eyes) with FS. RDs included: Stargardt disease (STGD1;20 patients), central areolar choroidal dystrophy (CACD; 7 patients), mitochondrial retinal dystrophy (MRD; 6 patients), pseudo-Stargardt pattern dystrophy (PSPD; 3 patients). Median age at first presentation was 60 (interquartile range [IQR] 54-63) years. Median BCVA at first presentation ranged from 20/25 Snellen in STGD1, to 20/38 Snellen in MRD. Progression of the chorioretinal atrophic area ranged from 0.26 (0.25-0.28) mm/year in PSPD, to 0.14 (0.11-0.22) in CACD. Change in FS area over time was similar between the different dystrophies. Conclusions The presence of FS in different RDs suggests a disease-independent mechanism that prolongs the survival of the fovea. The associated preservation of BCVA is important for the individual prognosis and has implications for the design of therapeutic trials for RDs.
Collapse
Affiliation(s)
- Nathalie M Bax
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dyon Valkenburg
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stanley Lambertus
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Frans P M Cremers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Moritz Lindner
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | |
Collapse
|
18
|
Patsali P, Mussolino C, Ladas P, Floga A, Kolnagou A, Christou S, Sitarou M, Antoniou MN, Cathomen T, Lederer CW, Kleanthous M. The Scope for Thalassemia Gene Therapy by Disruption of Aberrant Regulatory Elements. J Clin Med 2019; 8:jcm8111959. [PMID: 31766235 PMCID: PMC6912506 DOI: 10.3390/jcm8111959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
The common IVSI-110 (G>A) β-thalassemia mutation is a paradigm for intronic disease-causing mutations and their functional repair by non-homologous end joining-mediated disruption. Such mutation-specific repair by disruption of aberrant regulatory elements (DARE) is highly efficient, but to date, no systematic analysis has been performed to evaluate disease-causing mutations as therapeutic targets. Here, DARE was performed in highly characterized erythroid IVSI-110(G>A) transgenic cells and the disruption events were compared with published observations in primary CD34+ cells. DARE achieved the functional correction of β-globin expression equally through the removal of causative mutations and through the removal of context sequences, with disruption events and the restriction of indel events close to the cut site closely resembling those seen in primary cells. Correlation of DNA-, RNA-, and protein-level findings then allowed the extrapolation of findings to other mutations by in silico analyses for potential repair based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9, Cas12a, and transcription activator-like effector nuclease (TALEN) platforms. The high efficiency of DARE and unexpected freedom of target design render the approach potentially suitable for 14 known thalassemia mutations besides IVSI-110(G>A) and put it forward for several prominent mutations causing other inherited diseases. The application of DARE, therefore, has a wide scope for sustainable personalized advanced therapy medicinal product development for thalassemia and beyond.
Collapse
Affiliation(s)
- Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, 79106 Freiburg, Germany; (C.M.); (T.C.)
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Petros Ladas
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Argyro Floga
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Annita Kolnagou
- Thalassemia Clinic Paphos, Paphos General Hospital, 8100 Paphos, Cyprus;
| | - Soteroula Christou
- Thalassemia Clinic Nicosia, Archbishop Makarios III Hospital, 1474 Nicosia, Cyprus;
| | - Maria Sitarou
- Thalassemia Clinic Larnaca, Larnaca General Hospital, 6301 Larnaca, Cyprus;
| | - Michael N. Antoniou
- Department of Medical and Molecular Genetics, King’s College London, London SE1 9RT, UK;
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, 79106 Freiburg, Germany; (C.M.); (T.C.)
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Carsten Werner Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-392-764
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| |
Collapse
|
19
|
Dan H, Huang X, Xing Y, Shen Y. Application of targeted exome and whole-exome sequencing for Chinese families with Stargardt disease. Ann Hum Genet 2019; 84:177-184. [PMID: 31674661 DOI: 10.1111/ahg.12361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate pathogenic variants and molecular etiologies of Stargardt disease (STGD) in a cohort of Chinese families. MATERIALS AND METHODS A cohort of 12 unrelated STGD families diagnosed on the basis of clinical manifestations underwent analysis by targeted exome or whole-exome sequencing. Bioinformatics analysis, Sanger sequencing, and cosegregation analysis of available family members were used to validate sequencing data and confirm the presence of disease-causing genes. RESULTS Using targeted exome and whole-exome sequencing, we found that eight families had disease-causing variants in the ABCA4 gene, one family had only one heterozygous variant in the ABCA4 gene, and the remaining three families have not been identified with any disease-causing variants for STGD. We identified 15 variants in the ABCA4 gene; of these, five variants have not been previously described for STGD. CONCLUSION The findings in this study expand the data regarding the frequency and spectrum of variants in the ABCA4 gene, thus potentially enriching our understanding of the molecular basis of STGD. Moreover, they constitute clues for future STGD diagnosis and therapy.
Collapse
Affiliation(s)
- Handong Dan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Prevalence of ABCA4 Deep-Intronic Variants and Related Phenotype in An Unsolved "One-Hit" Cohort with Stargardt Disease. Int J Mol Sci 2019; 20:ijms20205053. [PMID: 31614660 PMCID: PMC6829239 DOI: 10.3390/ijms20205053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/24/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
We investigated the prevalence of reported deep-intronic variants in a French cohort of 70 patients with Stargardt disease harboring a monoallelic pathogenic variant on the exonic regions of ABCA4. Direct Sanger sequencing of selected intronic regions of ABCA4 was conducted. Complete phenotypic analysis and correlation with the genotype was performed in case a known intronic pathogenic variant was identified. All other variants found on the analyzed sequences were queried for minor allele frequency and possible pathogenicity by in silico predictions. The second mutated allele was found in 14 (20%) subjects. The three known deep-intronic variants found were c.5196+1137G>A in intron 36 (6 subjects), c.4539+2064C>T in intron 30 (4 subjects) and c.4253+43G>A in intron 28 (4 subjects). Even though the phenotype depends on the compound effect of the biallelic variants, a genotype-phenotype correlation suggests that the c.5196+1137G>A was mostly associated with a mild phenotype and the c.4539+2064C>T with a more severe one. A variable effect was instead associated with the variant c.4253+43G>A. In addition, two novel variants, c.768+508A>G and c.859-245_859-243delinsTGA never associated with Stargardt disease before, were identified and a possible splice defect was predicted in silico. Our study calls for a larger cohort analysis including targeted locus sequencing and 3D protein modeling to better understand phenotype-genotype correlations associated with deep-intronic changes and patients’ selection for clinical trials.
Collapse
|
21
|
Khan M, Cornelis SS, Khan MI, Elmelik D, Manders E, Bakker S, Derks R, Neveling K, van de Vorst M, Gilissen C, Meunier I, Defoort S, Puech B, Devos A, Schulz HL, Stöhr H, Grassmann F, Weber BHF, Dhaenens CM, Cremers FPM. Cost-effective molecular inversion probe-based ABCA4 sequencing reveals deep-intronic variants in Stargardt disease. Hum Mutat 2019; 40:1749-1759. [PMID: 31212395 DOI: 10.1002/humu.23787] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Stargardt disease (STGD1) is caused by biallelic mutations in ABCA4, but many patients are genetically unsolved due to insensitive mutation-scanning methods. We aimed to develop a cost-effective sequencing method for ABCA4 exons and regions carrying known causal deep-intronic variants. METHODS Fifty exons and 12 regions containing 14 deep-intronic variants of ABCA4 were sequenced using double-tiled single molecule Molecular Inversion Probe (smMIP)-based next-generation sequencing. DNAs of 16 STGD1 cases carrying 29 ABCA4 alleles and of four healthy persons were sequenced using 483 smMIPs. Thereafter, DNAs of 411 STGD1 cases with one or no ABCA4 variant were sequenced. The effect of novel noncoding variants on splicing was analyzed using in vitro splice assays. RESULTS Thirty-four ABCA4 variants previously identified in 16 STGD1 cases were reliably identified. In 155/411 probands (38%), two causal variants were identified. We identified 11 deep-intronic variants present in 62 alleles. Two known and two new noncanonical splice site variants showed splice defects, and one novel deep-intronic variant (c.4539+2065C>G) resulted in a 170-nt mRNA pseudoexon insertion (p.[Arg1514Lysfs*35,=]). CONCLUSIONS smMIPs-based sequence analysis of coding and selected noncoding regions of ABCA4 enabled cost-effective mutation detection in STGD1 cases in previously unsolved cases.
Collapse
Affiliation(s)
- Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stéphanie S Cornelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Duaa Elmelik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eline Manders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sem Bakker
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Isabelle Meunier
- Institut des Neurosciences de Montpellier, INSERM, Université de Montpellier, Montpellier, France
| | - Sabine Defoort
- Service d'exploration de la vision et neuro-ophtalmologie, CHRU de Lille, Lille, France
| | - Bernard Puech
- Service d'exploration de la vision et neuro-ophtalmologie, CHRU de Lille, Lille, France
| | - Aurore Devos
- University of Lille, INSERM UMR-S1172, CHU Lille, Biochemistry and Molecular Biology Department, UF Genopathies, Lille, France
| | - Heidi L Schulz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Claire-Marie Dhaenens
- University of Lille, INSERM UMR-S1172, CHU Lille, Biochemistry and Molecular Biology Department, UF Genopathies, Lille, France
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Garanto A, Duijkers L, Tomkiewicz TZ, Collin RWJ. Antisense Oligonucleotide Screening to Optimize the Rescue of the Splicing Defect Caused by the Recurrent Deep-Intronic ABCA4 Variant c.4539+2001G>A in Stargardt Disease. Genes (Basel) 2019; 10:genes10060452. [PMID: 31197102 PMCID: PMC6628380 DOI: 10.3390/genes10060452] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Deep-sequencing of the ABCA4 locus has revealed that ~10% of autosomal recessive Stargardt disease (STGD1) cases are caused by deep-intronic mutations. One of the most recurrent deep-intronic variants in the Belgian and Dutch STGD1 population is the c.4539+2001G>A mutation. This variant introduces a 345-nt pseudoexon to the ABCA4 mRNA transcript in a retina-specific manner. Antisense oligonucleotides (AONs) are short sequences of RNA that can modulate splicing. In this work, we designed 26 different AONs to perform a thorough screening to identify the most effective AONs to correct splicing defects associated with c.4539+2001G>A. All AONs were tested in patient-derived induced pluripotent stem cells (iPSCs) that were differentiated to photoreceptor precursor cells (PPCs). AON efficacy was assessed through RNA analysis and was based on correction efficacy, and AONs were grouped and their properties assessed. We (a) identified nine AONs with significant correction efficacies (>50%), (b) confirmed that a single nucleotide mismatch was sufficient to significantly decrease AON efficacy, and (c) found potential correlations between efficacy and some of the parameters analyzed. Overall, our results show that AON-based splicing modulation holds great potential for treating Stargardt disease caused by splicing defects in ABCA4.
Collapse
Affiliation(s)
- Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| | - Tomasz Z Tomkiewicz
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Runhart EH, Sangermano R, Cornelis SS, Verheij JBGM, Plomp AS, Boon CJF, Lugtenberg D, Roosing S, Bax NM, Blokland EAW, Jacobs-Camps MHM, van der Velde-Visser SD, Pott JWR, Rohrschneider K, Thiadens AAHJ, Klaver CCW, van den Born LI, Hoyng CB, Cremers FPM. The Common ABCA4 Variant p.Asn1868Ile Shows Nonpenetrance and Variable Expression of Stargardt Disease When Present in trans With Severe Variants. Invest Ophthalmol Vis Sci 2019; 59:3220-3231. [PMID: 29971439 DOI: 10.1167/iovs.18-23881] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the occurrence and the disease expression of the common p.Asn1868Ile variant in patients with Stargardt disease (STGD1) harboring known, monoallelic causal ABCA4 variants. Methods The coding and noncoding regions of ABCA4 were sequenced in 67 and 63 STGD1 probands respectively, harboring monoallelic ABCA4 variants. In case p.Asn1868Ile was detected, segregation analysis was performed whenever possible. Probands and affected siblings harboring p.Asn1868Ile without additional variants in cis were clinically evaluated retrospectively. Two asymptomatic siblings carrying the same ABCA4 variants as their probands were clinically examined. The penetrance of p.Asn1868Ile was calculated using allele frequency data of ABCA4 variants in non-Finnish European individuals. Results The p.Asn1868Ile variant was found in cis with known variants in 14/67 probands. In 27/67 probands, we identified p.Asn1868Ile without additional variants in cis, in combination with known, mainly severe ABCA4 variants. In 23/27 probands, the trans configuration was established. Among 27 probands and 6/7 STGD1 siblings carrying p.Asn1868Ile, 42% manifested late-onset disease (>44 years). We additionally identified four asymptomatic relatives carrying a combination of a severe variant and p.Asn1868Ile; ophthalmologic examination in two persons did not reveal STGD1. Based on ABCA4 allele frequency data, we conservatively estimated the penetrance of p.Asn1868Ile, when present in trans with a severe variant, to be below 5%. Conclusions A significant fraction of genetically unexplained STGD1 cases carries p.Asn1868Ile as a second variant. Our findings suggest exceptional differences in disease expression or even nonpenetrance of this ABCA4 variant, pointing toward an important role for genetic or environmental modifiers in STGD1.
Collapse
Affiliation(s)
- Esmee H Runhart
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Riccardo Sangermano
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stéphanie S Cornelis
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joke B G M Verheij
- Department of Medical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nathalie M Bax
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ellen A W Blokland
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Jan-Willem R Pott
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaus Rohrschneider
- Universitätsaugenklinik, Ruprecht-Karls-Universität, Heidelberg, Heidelberg, Germany
| | - Alberta A H J Thiadens
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Molecular genetic analysis using targeted NGS analysis of 677 individuals with retinal dystrophy. Sci Rep 2019; 9:1219. [PMID: 30718709 PMCID: PMC6362094 DOI: 10.1038/s41598-018-38007-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/19/2018] [Indexed: 01/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a common cause of visual impairment. IRD covers a set of genetically highly heterogeneous disorders with more than 150 genes associated with one or more clinical forms of IRD. Molecular genetic diagnosis has become increasingly important especially due to expanding number of gene therapy strategies under development. Next generation sequencing (NGS) of gene panels has proven a valuable diagnostic tool in IRD. We present the molecular findings of 677 individuals, residing in Denmark, with IRD and report 806 variants of which 187 are novel. We found that deletions and duplications spanning one or more exons can explain 3% of the cases, and thus copy number variation (CNV) analysis is important in molecular genetic diagnostics of IRD. Seven percent of the individuals have variants classified as pathogenic or likely-pathogenic in more than one gene. Possible Danish founder variants in EYS and RP1 are reported. A significant number of variants were classified as variants with unknown significance; reporting of these will hopefully contribute to the elucidation of the actual clinical consequence making the classification less troublesome in the future. In conclusion, this study underlines the relevance of performing targeted sequencing of IRD including CNV analysis as well as the importance of interaction with clinical diagnoses.
Collapse
|
25
|
Bauwens M, Garanto A, Sangermano R, Naessens S, Weisschuh N, De Zaeytijd J, Khan M, Sadler F, Balikova I, Van Cauwenbergh C, Rosseel T, Bauwens J, De Leeneer K, De Jaegere S, Van Laethem T, De Vries M, Carss K, Arno G, Fakin A, Webster AR, de Ravel de l'Argentière TJL, Sznajer Y, Vuylsteke M, Kohl S, Wissinger B, Cherry T, Collin RWJ, Cremers FPM, Leroy BP, De Baere E. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genet Med 2019; 21:1761-1771. [PMID: 30670881 PMCID: PMC6752479 DOI: 10.1038/s41436-018-0420-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022] Open
Abstract
Purpose ABCA4-associated disease, a recessive retinal dystrophy, is hallmarked by a large proportion of patients with only one pathogenic ABCA4 variant, suggestive for missing heritability. Methods By locus-specific analysis of ABCA4, combined with extensive functional studies, we aimed to unravel the missing alleles in a cohort of 67 patients (p), with one (p = 64) or no (p = 3) identified coding pathogenic variants of ABCA4. Results We identified eight pathogenic (deep-)intronic ABCA4 splice variants, of which five are novel and six structural variants, four of which are novel, including two duplications. Together, these variants account for the missing alleles in 40.3% of patients. Furthermore, two novel variants with a putative cis-regulatory effect were identified. The common hypomorphic variant c.5603A>T p.(Asn1868Ile) was found as a candidate second allele in 43.3% of patients. Overall, we have elucidated the missing heritability in 83.6% of our cohort. In addition, we successfully rescued three deep-intronic variants using antisense oligonucleotide (AON)-mediated treatment in HEK 293-T cells and in patient-derived fibroblast cells. Conclusion Noncoding pathogenic variants, novel structural variants, and a common hypomorphic allele of the ABCA4 gene explain the majority of unsolved cases with ABCA4-associated disease, rendering this retinopathy a model for missing heritability in autosomal recessive disorders.
Collapse
Affiliation(s)
- Miriam Bauwens
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Riccardo Sangermano
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarah Naessens
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Françoise Sadler
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Irina Balikova
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Caroline Van Cauwenbergh
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Toon Rosseel
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Jim Bauwens
- Department of Computer Science, Free University of Brussels, Brussels, Belgium
| | - Kim De Leeneer
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sarah De Jaegere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Thalia Van Laethem
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Meindert De Vries
- Department of Ophthalmology, Hôpital des Enfants Reine Fabiola, Brussels, Belgium
| | - Keren Carss
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,UK NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK
| | - Ana Fakin
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Yves Sznajer
- Centre de Génétique Humaine, Cliniques Universitaires St. Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Timothy Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart P Leroy
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
26
|
Understanding human DNA variants affecting pre-mRNA splicing in the NGS era. ADVANCES IN GENETICS 2019; 103:39-90. [PMID: 30904096 DOI: 10.1016/bs.adgen.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pre-mRNA splicing, an essential step in eukaryotic gene expression, relies on recognition of short sequences on the primary transcript intron ends and takes place along transcription by RNA polymerase II. Exonic and intronic auxiliary elements may modify the strength of exon definition and intron recognition. Splicing DNA variants (SV) have been associated with human genetic diseases at canonical intron sites, as well as exonic substitutions putatively classified as nonsense, missense or synonymous variants. Their effects on mRNA may be modulated by cryptic splice sites associated to the SV allele, comprehending exon skipping or shortening, and partial or complete intron retention. As splicing mRNA outputs result from combinatorial effects of both intrinsic and extrinsic factors, in vitro functional assays supported by computational analyses are recommended to assist SV pathogenicity assessment for human Mendelian inheritance diseases. The increasing use of next-generating sequencing (NGS) targeting full genomic gene sequence has raised awareness of the relevance of deep intronic SV in genetic diseases and inclusion of pseudo-exons into mRNA. Finally, we take advantage of recent advances in sequencing and computational technologies to analyze alternative splicing in cancer. We explore the Catalog of Somatic Mutations in Cancer (COSMIC) to describe the proportion of splice-site mutations in cis and trans regulatory elements. Genomic data from large cohorts of different cancer types are increasingly available, in addition to repositories of normal and somatic genetic variations. These are likely to bring new insights to understanding the genetic control of alternative splicing by mapping splicing quantitative trait loci in tumors.
Collapse
|
27
|
Stephenson K, Dockery A, Wynne N, Carrigan M, Kenna P, Jane Farrar G, Keegan D. Multimodal imaging in a pedigree of X-linked Retinoschisis with a novel RS1 variant. BMC MEDICAL GENETICS 2018; 19:195. [PMID: 30419843 PMCID: PMC6233547 DOI: 10.1186/s12881-018-0712-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/29/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND To describe the clinical phenotype and genetic cause underlying the disease pathology in a pedigree (affected n = 9) with X-linked retinoschisis (XLRS1) due to a novel RS1 mutation and to assess suitability for novel therapies using multimodal imaging. METHODS The Irish National Registry for Inherited Retinal Degenerations (Target 5000) is a program including clinical history and examination with multimodal retinal imaging, electrophysiology, visual field testing and genetic analysis. Nine affected patients were identified across 3 generations of an XLRS1 pedigree. DNA sequencing was performed for each patient, one carrier female and one unaffected relative. Pedigree mapping revealed a further 4 affected males. RESULTS All affected patients had a history of reduced visual acuity and dyschromatopsia; however, the severity of phenotype varied widely between the nine affected subjects. The stage of disease was classified as previously described. Phenotypic severity was not linearly correlated with age. A novel RS1 (Xp22.2) mutation was detected (NM_000330: c.413C > A) resulting in a p.Thr138Asn substitution. Protein modelling demonstrated a change in higher order protein folding that is likely pathogenic. CONCLUSIONS This family has a novel gene mutation in RS1 with clinical evidence of XLRS1. A proportion of the older generation has developed end-stage macular atrophy; however, the severity is variable. Confirmation of genotype in the affected grandsons of this pedigree in principle may enable them to avail of upcoming gene therapies, provided there is anatomical evidence (from multimodal imaging) of potentially reversible early stage disease.
Collapse
Affiliation(s)
- Kirk Stephenson
- The Catherine McAuley Centre, Mater Private Hospital, Nelson Street, Dublin 7, Ireland.
| | - Adrian Dockery
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Niamh Wynne
- The Research Foundation, The Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | | | - Paul Kenna
- The Research Foundation, The Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - G Jane Farrar
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David Keegan
- The Catherine McAuley Centre, Mater Private Hospital, Nelson Street, Dublin 7, Ireland
| |
Collapse
|
28
|
Jonsson F, Westin IM, Österman L, Sandgren O, Burstedt M, Holmberg M, Golovleva I. ATP-binding cassette subfamily A, member 4 intronic variants c.4773+3A>G and c.5461-10T>C cause Stargardt disease due to defective splicing. Acta Ophthalmol 2018; 96:737-743. [PMID: 29461686 DOI: 10.1111/aos.13676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Inherited retinal dystrophies (IRDs) represent a group of progressive conditions affecting the retina. There is a great genetic heterogeneity causing IRDs, and to date, more than 260 genes are associated with IRDs. Stargardt disease, type 1 (STGD1) or macular degeneration with flecks, STGD1 represents a disease with early onset, central visual impairment, frequent appearance of yellowish flecks and mutations in the ATP-binding cassette subfamily A, member 4 (ABCA4) gene. A large number of intronic sequence variants in ABCA4 have been considered pathogenic although their functional effect was seldom demonstrated. In this study, we aimed to reveal how intronic variants present in patients with Stargardt from the same Swedish family affect splicing. METHODS The splicing of the ABCA4 gene was studied in human embryonic kidney cells, HEK293T, and in human retinal pigment epithelium cells, ARPE-19, using a minigene system containing variants c.4773+3A>G and c.5461-10T>C. RESULTS We showed that both ABCA4 variants, c.4773+3A>G and c.5461-10T>C, cause aberrant splicing of the ABCA4 minigene resulting in exon skipping. We also demonstrated that splicing of ABCA4 has different outcomes depending on transfected cell type. CONCLUSION Two intronic variants c.4773+3A>G and c.5461-10T>C, both predicted to affect splicing, are indeed disease-causing mutations due to skipping of exons 33, 34, 39 and 40 of ABCA4 gene. The experimental proof that ABCA4 mutations in STGD patients affect protein function is crucial for their inclusion to future clinical trials; therefore, functional testing of all ABCA4 intronic variants associated with Stargardt disease by minigene technology is desirable.
Collapse
Affiliation(s)
- Frida Jonsson
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Ida Maria Westin
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Lennart Österman
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Ola Sandgren
- Clinical Sciences/Ophthalmology; University of Umeå; Umeå Sweden
| | - Marie Burstedt
- Clinical Sciences/Ophthalmology; University of Umeå; Umeå Sweden
| | - Monica Holmberg
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Irina Golovleva
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| |
Collapse
|
29
|
Sheremet NL, Grushke IG, Zhorzholadze NV, Tanas AS, Strelnikov VV. [Inherited retinal diseases in patients with ABCA4 gene mutations]. Vestn Oftalmol 2018; 134:68-73. [PMID: 30166513 DOI: 10.17116/oftalma201813404168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ABCA4 is one of the main genes which mutations are associated with various inherited retinal diseases (IRD) such as Stargardt disease, cone dystrophy, cone-rod dystrophy, and retinitis pigmentosa. Wide prevalence of IRD, high heterogeneity of ABCA4 gene mutations that lead to impaired function of the protein with varying expressiveness make studying of the clinical and genetic characteristics of retinal diseases relevant for further investigations into pathogenesis, prognosis and outcome of the disease. This article reviews the literature on incidence of IRD caused by mutations in the ABCA4 gene and characteristics of the clinical progression of retinal diseases associated with various types of mutations, and presents analysis of clinical and genetic correlations in terms of the effect the mutation has on the structure or function of the protein.
Collapse
Affiliation(s)
- N L Sheremet
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - I G Grushke
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - N V Zhorzholadze
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - A S Tanas
- Medicogenetic Research Center, 1 Moskvorechye St., Moscow, Russian Federation, 115478
| | - V V Strelnikov
- Medicogenetic Research Center, 1 Moskvorechye St., Moscow, Russian Federation, 115478
| |
Collapse
|
30
|
Zernant J, Lee W, Nagasaki T, Collison FT, Fishman GA, Bertelsen M, Rosenberg T, Gouras P, Tsang SH, Allikmets R. Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a002733. [PMID: 29848554 PMCID: PMC6071568 DOI: 10.1101/mcs.a002733] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of the ABCA4 locus in STGD1 patients identifies two expected disease-causing alleles in ∼75% of patients and only one mutation in ∼15% of patients. Recently, many possibly pathogenic variants in deep intronic sequences of ABCA4 have been identified in the latter group. We extended our analyses of deep intronic ABCA4 variants and determined that one of these, c.4253+43G>A (rs61754045), is present in 29/1155 (2.6%) of STGD1 patients. The variant is found at statistically significantly higher frequency in patients with only one pathogenic ABCA4 allele, 23/160 (14.38%), MAF = 0.072, compared to MAF = 0.013 in all STGD1 cases and MAF = 0.006 in the matching general population (P < 1 × 10−7). The variant, which is not predicted to have any effect on splicing, is the first reported intronic “extremely hypomorphic allele” in the ABCA4 locus; that is, it is pathogenic only when in trans with a loss-of-function ABCA4 allele. It results in a distinct clinical phenotype characterized by late onset of symptoms and foveal sparing. In ∼70% of cases the variant was allelic with the c.6006-609T>A (rs575968112) variant, which was deemed nonpathogenic. Another rare deep intronic variant, c.5196+1056A>G (rs886044749), found in 5/834 (0.6%) of STGD1 cases is, conversely, a severe allele. This study determines pathogenicity for three noncoding variants in STGD1 patients of European descent accounting for ∼3% of the disease. Defining disease-associated alleles in the noncoding sequences of the ABCA4 locus can be accomplished by integrated clinical and genetic analyses.
Collapse
Affiliation(s)
- Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA
| | - Frederick T Collison
- The Pangere Center for Hereditary Retinal Diseases, The Chicago Lighthouse for People Who are Blind or Visually Impaired, Chicago 60608, Illinois, USA
| | - Gerald A Fishman
- The Pangere Center for Hereditary Retinal Diseases, The Chicago Lighthouse for People Who are Blind or Visually Impaired, Chicago 60608, Illinois, USA
| | - Mette Bertelsen
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, Glostrup 2600, Denmark
| | - Thomas Rosenberg
- Department of Ophthalmology, Rigshospitalet, Glostrup 2600, Denmark
| | - Peter Gouras
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
31
|
Nassisi M, Mohand-Saïd S, Dhaenens CM, Boyard F, Démontant V, Andrieu C, Antonio A, Condroyer C, Foussard M, Méjécase C, Eandi CM, Sahel JA, Zeitz C, Audo I. Expanding the Mutation Spectrum in ABCA4: Sixty Novel Disease Causing Variants and Their Associated Phenotype in a Large French Stargardt Cohort. Int J Mol Sci 2018; 19:E2196. [PMID: 30060493 PMCID: PMC6121640 DOI: 10.3390/ijms19082196] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/18/2018] [Accepted: 07/22/2018] [Indexed: 12/18/2022] Open
Abstract
Here we report novel mutations in ABCA4 with the underlying phenotype in a large French cohort with autosomal recessive Stargardt disease. The DNA samples of 397 index subjects were analyzed in exons and flanking intronic regions of ABCA4 (NM_000350.2) by microarray analysis and direct Sanger sequencing. At the end of the screening, at least two likely pathogenic mutations were found in 302 patients (76.1%) while 95 remained unsolved: 40 (10.1%) with no variants identified, 52 (13.1%) with one heterozygous mutation, and 3 (0.7%) with at least one variant of uncertain significance (VUS). Sixty-three novel variants were identified in the cohort. Three of them were variants of uncertain significance. The other 60 mutations were classified as likely pathogenic or pathogenic, and were identified in 61 patients (15.4%). The majority of those were missense (55%) followed by frameshift and nonsense (30%), intronic (11.7%) variants, and in-frame deletions (3.3%). Only patients with variants never reported in literature were further analyzed herein. Recruited subjects underwent complete ophthalmic examination including best corrected visual acuity, kinetic and static perimetry, color vision test, full-field and multifocal electroretinography, color fundus photography, short-wavelength and near-infrared fundus autofluorescence imaging, and spectral domain optical coherence tomography. Clinical evaluation of each subject confirms the tendency that truncating mutations lead to a more severe phenotype with electroretinogram (ERG) impairment (p = 0.002) and an earlier age of onset (p = 0.037). Our study further expands the mutation spectrum in the exonic and flanking regions of ABCA4 underlying Stargardt disease.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
- Department of Surgical Sciences, Eye Clinic, University of Turin, 10126 Turin, Italy.
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, F-75012 Paris, France.
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm UMR-S 1172, CHU Lille, Biochemistry and Molecular Biology Department-UF Génopathies, F-59000 Lille, France.
| | - Fiona Boyard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Vanessa Démontant
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Camille Andrieu
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, F-75012 Paris, France.
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Christel Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Marine Foussard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Cécile Méjécase
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Chiara Maria Eandi
- Department of Surgical Sciences, Eye Clinic, University of Turin, 10126 Turin, Italy.
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, F-75012 Paris, France.
- Fondation Ophtalmologique Adolphe de Rothschild, F-75019 Paris, France.
- Académie des Sciences-Institut de France, F-75006 Paris, France.
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, PA 15213, USA.
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, F-75012 Paris, France.
- Institute of Ophthalmology, University College of London, London EC1V 9EL, UK.
| |
Collapse
|
32
|
Fujinami K, Strauss RW, Chiang JPW, Audo IS, Bernstein PS, Birch DG, Bomotti SM, Cideciyan AV, Ervin AM, Marino MJ, Sahel JA, Mohand-Said S, Sunness JS, Traboulsi EI, West S, Wojciechowski R, Zrenner E, Michaelides M, Scholl HPN. Detailed genetic characteristics of an international large cohort of patients with Stargardt disease: ProgStar study report 8. Br J Ophthalmol 2018; 103:390-397. [PMID: 29925512 PMCID: PMC6579578 DOI: 10.1136/bjophthalmol-2018-312064] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/12/2018] [Indexed: 12/03/2022]
Abstract
Background/aims To describe the genetic characteristics of the cohort enrolled in the international multicentre progression of Stargardt disease 1 (STGD1) studies (ProgStar) and to determine geographic differences based on the allele frequency. Methods 345 participants with a clinical diagnosis of STGD1 and harbouring at least one disease-causing ABCA4 variant were enrolled from 9 centres in the USA and Europe. All variants were reviewed and in silico analysis was performed including allele frequency in public databases and pathogenicity predictions. Participants with multiple likely pathogenic variants were classified into four national subgroups (USA, UK, France, Germany), with subsequent comparison analysis of the allele frequency for each prevalent allele. Results 211 likely pathogenic variants were identified in the total cohort, including missense (63%), splice site alteration (18%), stop (9%) and others. 50 variants were novel. Exclusively missense variants were detected in 139 (50%) of 279 patients with multiple pathogenic variants. The three most prevalent variants of these patients with multiple pathogenic variants were p.G1961E (15%), p.G863A (7%) and c.5461-10 T>C (5%). Subgroup analysis revealed a statistically significant difference between the four recruiting nations in the allele frequency of nine variants. Conclusions There is a large spectrum of ABCA4 sequence variants, including 50 novel variants, in a well-characterised cohort thereby further adding to the unique allelic heterogeneity in STGD1. Approximately half of the cohort harbours missense variants only, indicating a relatively mild phenotype of the ProgStar cohort. There are significant differences in allele frequencies between nations, although the three most prevalent variants are shared as frequent variants.
Collapse
Affiliation(s)
- Kaoru Fujinami
- Laboratory of Visual Physiology, Division for Vision Research, National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Rupert W Strauss
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.,Department of Ophthalmology, Johannes Kepler University Linz, Linz, Austria.,Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | | | - Isabelle S Audo
- Institute de la Vision, Sorbonne Université, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, Charenton, France
| | | | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | | | - Artur V Cideciyan
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - José-Alain Sahel
- CHNO des Quinze-Vingts, DHU Sight Restore, Charenton, France.,Department of Ophthalmology, Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Saddek Mohand-Said
- Institute de la Vision, Sorbonne Université, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, Charenton, France
| | - Janet S Sunness
- Richard E Hoover Low Vision Rehabilitation Services, Greater Baltimore Medical Center, Baltimore, Maryland, USA
| | | | - Sheila West
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Eberhart Zrenner
- Center for Ophthalmology, Eberhard-Karls University Hospital, Tuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Michel Michaelides
- UCL Institute of Ophthalmology, London, UK .,Moorfields Eye Hospital, London, UK
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Basel, Switzerland .,Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | | | | |
Collapse
|
33
|
Hanany M, Allon G, Kimchi A, Blumenfeld A, Newman H, Pras E, Wormser O, S Birk O, Gradstein L, Banin E, Ben-Yosef T, Sharon D. Carrier frequency analysis of mutations causing autosomal-recessive-inherited retinal diseases in the Israeli population. Eur J Hum Genet 2018; 26:1159-1166. [PMID: 29706639 DOI: 10.1038/s41431-018-0152-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023] Open
Abstract
Inherited retinal diseases (IRDs) are heterogeneous phenotypes caused by variants in a large number of genes. Disease prevalence and the frequency of carriers in the general population have been estimated in only a few studies, but are largely unknown. To this end, we developed two parallel methods to calculate carrier frequency for mutations causing autosomal-recessive (AR) IRDs in the Israeli population. We created an SQL database containing information on 178 genes from gnomAD (including genotyping of 5706 Ashkenazi Jewish (AJ) individuals) and our cohort of >2000 families with IRDs. Carrier frequency for IRD variants and genes was calculated based on allele frequency values and the Hardy-Weinberg (HW) equation. We identified 399 IRD-causing variants in 111 genes in Israeli patients and AJ controls. For the AJ subpopulation, gnomAD and HW-based regression analysis showed high correlation, therefore allowing one to use HW-based data as a reliable estimate of carrier frequency. Overall, carrier frequency per subpopulation ranges from 1/2.2 to 1/9.6 individuals, with the highest value obtained for the Arab-Muslim subpopulation in Jerusalem reaching an extremely high carrier rate of 44.7%. Carrier frequency per gene ranges from 1/31 to 1/11994 individuals. We estimate the total carrier frequency for AR-IRD mutations in the Israeli population as over 30%, a relatively high carrier frequency with marked variability among subpopulations. Therefore, these data are highly important for more reliable genetic counseling and genetic screening. Our method can be adapted to study other populations, either based on allele frequency data or cohort of patients.
Collapse
Affiliation(s)
- Mor Hanany
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Gilad Allon
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3525433, Haifa, Israel.,Department of Ophthalmology, Rambam Health Care Campus, 3525408, Haifa, Israel
| | - Adva Kimchi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel.,Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Anat Blumenfeld
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Hadas Newman
- Department of Ophthalmology, Tel-Aviv Medical Center, 64239, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 6997801, Tel-Aviv, Israel
| | - Eran Pras
- Department of Ophthalmology, Assaf Harofeh Medical Center, 70300, Zerifin, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, Genetics Institute and Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Faculty of Health Sciences, Ben Gurion University, 84101, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, Genetics Institute and Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Faculty of Health Sciences, Ben Gurion University, 84101, Beer Sheva, Israel
| | - Libe Gradstein
- The Morris Kahn Laboratory of Human Genetics, Genetics Institute and Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Faculty of Health Sciences, Ben Gurion University, 84101, Beer Sheva, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3525433, Haifa, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel.
| |
Collapse
|
34
|
Albert S, Garanto A, Sangermano R, Khan M, Bax NM, Hoyng CB, Zernant J, Lee W, Allikmets R, Collin RW, Cremers FP. Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease. Am J Hum Genet 2018. [PMID: 29526278 DOI: 10.1016/j.ajhg.2018.02.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sequence analysis of the coding regions and splice site sequences in inherited retinal diseases is not able to uncover ∼40% of the causal variants. Whole-genome sequencing can identify most of the non-coding variants, but their interpretation is still very challenging, in particular when the relevant gene is expressed in a tissue-specific manner. Deep-intronic variants in ABCA4 have been associated with autosomal-recessive Stargardt disease (STGD1), but the exact pathogenic mechanism is unknown. By generating photoreceptor precursor cells (PPCs) from fibroblasts obtained from individuals with STGD1, we demonstrated that two neighboring deep-intronic ABCA4 variants (c.4539+2001G>A and c.4539+2028C>T) result in a retina-specific 345-nt pseudoexon insertion (predicted protein change: p.Arg1514Leufs∗36), likely due to the creation of exonic enhancers. Administration of antisense oligonucleotides (AONs) targeting the 345-nt pseudoexon can significantly rescue the splicing defect observed in PPCs of two individuals with these mutations. Intriguingly, an AON that is complementary to c.4539+2001G>A rescued the splicing defect only in PPCs derived from an individual with STGD1 with this but not the other mutation, demonstrating the high specificity of AONs. In addition, a single AON molecule rescued splicing defects associated with different neighboring mutations, thereby providing new strategies for the treatment of persons with STGD1. As many genes associated with human genetic conditions are expressed in specific tissues and pre-mRNA splicing may also rely on organ-specific factors, our approach to investigate and treat splicing variants using differentiated cells derived from individuals with STGD1 can be applied to any tissue of interest.
Collapse
|
35
|
Target 5000: Target Capture Sequencing for Inherited Retinal Degenerations. Genes (Basel) 2017; 8:genes8110304. [PMID: 29099798 PMCID: PMC5704217 DOI: 10.3390/genes8110304] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 01/02/2023] Open
Abstract
There are an estimated 5000 people in Ireland who currently have an inherited retinal degeneration (IRD). It is the goal of this study, through genetic diagnosis, to better enable these 5000 individuals to obtain a clearer understanding of their condition and improved access to potentially applicable therapies. Here we show the current findings of a target capture next-generation sequencing study of over 750 patients from over 520 pedigrees currently situated in Ireland. We also demonstrate how processes can be implemented to retrospectively analyse patient datasets for the detection of structural variants in previously obtained sequencing reads. Pathogenic or likely pathogenic mutations were detected in 68% of pedigrees tested. We report nearly 30 novel mutations including three large structural variants. The population statistics related to our findings are presented by condition and credited to their respective candidate gene mutations. Rediagnosis rates of clinical phenotypes after genotyping are discussed. Possible causes of failure to detect a candidate mutation are evaluated. Future elements of this project, with a specific emphasis on structural variants and non-coding pathogenic variants, are expected to increase detection rates further and thereby produce an even more comprehensive representation of the genetic landscape of IRDs in Ireland.
Collapse
|
36
|
Schulz HL, Grassmann F, Kellner U, Spital G, Rüther K, Jägle H, Hufendiek K, Rating P, Huchzermeyer C, Baier MJ, Weber BHF, Stöhr H. Mutation Spectrum of the ABCA4 Gene in 335 Stargardt Disease Patients From a Multicenter German Cohort-Impact of Selected Deep Intronic Variants and Common SNPs. Invest Ophthalmol Vis Sci 2017; 58:394-403. [PMID: 28118664 PMCID: PMC5270621 DOI: 10.1167/iovs.16-19936] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose Stargardt disease (STGD1) is an autosomal recessive retinopathy, caused by mutations in the retina-specific ATP-binding cassette transporter (ABCA4) gene. To establish the mutational spectrum and to assess effects of selected deep intronic and common genetic variants on disease, we performed a comprehensive sequence analysis in a large cohort of German STGD1 patients. Methods DNA samples of 335 STGD1 patients were analyzed for ABCA4 mutations in its 50 coding exons and adjacent intronic sequences by resequencing array technology or next generation sequencing (NGS). Parts of intron 30 and 36 were screened by Sanger chain-terminating dideoxynucleotide sequencing. An in vitro splicing assay was used to test selected variants for their splicing behavior. By logistic regression analysis we assessed the association of common ABCA4 alleles while a multivariate logistic regression model calculated a genetic risk score (GRS). Results Our analysis identified 148 pathogenic or likely pathogenic mutations, of which 48 constitute so far unpublished ABCA4-associated disease alleles. Four rare deep intronic variants were found once in 472 alleles analyzed. In addition, we identified six risk-modulating common variants. Genetic risk score estimates suggest that defined common ABCA4 variants influence disease risk in carriers of a single pathogenic ABCA4 allele. Conclusions Our study adds to the mutational spectrum of the ABCA4 gene. Moreover, in our cohort, deep intronic variants in intron 30 and 36 likely play no or only a minor role in disease pathology. Of note, our findings demonstrate a possible modifying effect of common sequence variants on ABCA4-associated disease.
Collapse
Affiliation(s)
- Heidi L Schulz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Ulrich Kellner
- Rare Retinal Disease Center, AugenZentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany 3RetinaScience, Bonn, Germany
| | - Georg Spital
- Department of Ophthalmology, St. Franziskus-Hospital, Münster, Germany
| | | | - Herbert Jägle
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | | | - Philipp Rating
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Cord Huchzermeyer
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Maria J Baier
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
37
|
Deep intronic mutations and human disease. Hum Genet 2017; 136:1093-1111. [DOI: 10.1007/s00439-017-1809-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
|
38
|
Applications of antisense oligonucleotides for the treatment of inherited retinal diseases. Curr Opin Ophthalmol 2017; 28:260-266. [PMID: 28151748 DOI: 10.1097/icu.0000000000000363] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Over the last years, antisense oligonucleotides (AONs) have gained attention as a therapeutic tool for the treatment of ocular diseases such as cytomegalovirus retinitis, keratitis-induced corneal neovascularization, and inherited retinal diseases (IRDs). In this review, we summarize the recent key findings, and describe the challenges and opportunities that lie ahead to translate AON-based therapies to the clinic, in particular for IRDs. RECENT FINDINGS The efficacy of AONs to restore splice defects and cellular phenotypes associated with a common mutation in CEP290 was demonstrated in patient-derived optic cups and in a transgenic mouse model, respectively. In addition, allele-specific knockdown of a mutant RHO allele resulted in a delay of photoreceptor cell death and functional preservation of these cells in a transgenic rat model. SUMMARY As demonstrated by several preclinical efficacy studies, AON-based therapy is moving to the clinic for the treatment of some genetic subtypes of IRD. More insights into the delivery of these molecules, the duration of the therapeutic effect, and potential off-target effects will be essential to further shape the transition to the clinic and reveal the true potential of AON-based therapy for retinal diseases.
Collapse
|
39
|
Panel-Based Clinical Genetic Testing in 85 Children with Inherited Retinal Disease. Ophthalmology 2017; 124:985-991. [PMID: 28341476 DOI: 10.1016/j.ophtha.2017.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess the clinical usefulness of genetic testing in a pediatric population with inherited retinal disease (IRD). DESIGN Single-center retrospective case series. PARTICIPANTS Eighty-five unrelated children with a diagnosis of isolated or syndromic IRD who were referred for clinical genetic testing between January 2014 and July 2016. METHODS Participants underwent a detailed ophthalmic examination, accompanied by electrodiagnostic testing (EDT) and dysmorphologic assessment where appropriate. Ocular and extraocular features were recorded using Human Phenotype Ontology terms. Subsequently, multigene panel testing (105 or 177 IRD-associated genes) was performed in an accredited diagnostic laboratory, followed by clinical variant interpretation. MAIN OUTCOME MEASURES Diagnostic yield and clinical usefulness of genetic testing. RESULTS Overall, 78.8% of patients (n = 67) received a probable molecular diagnosis; 7.5% (n = 5) of these had autosomal dominant disease, 25.4% (n = 17) had X-linked disease, and 67.2% (n = 45) had autosomal recessive disease. In a further 5.9% of patients (n = 5), a single heterozygous ABCA4 variant was identified; all these participants had a spectrum of clinical features consistent with ABCA4 retinopathy. Most participants (84.7%; n = 72) had undergone EDT and 81.9% (n = 59) of these patients received a probable molecular diagnosis. The genes most frequently mutated in the present cohort were CACNA1F and ABCA4, accounting for 14.9% (n = 10) and 11.9% (n = 8) of diagnoses respectively. Notably, in many cases, genetic testing helped to distinguish stationary from progressive IRD subtypes and to establish a precise diagnosis in a timely fashion. CONCLUSIONS Multigene panel testing pointed to a molecular diagnosis in 84.7% of children with IRD. The diagnostic yield in the study population was significantly higher compared with that in previously reported unselected IRD cohorts. Approaches similar to the one described herein are expected to become a standard component of care in pediatric ophthalmology. We propose the introduction of genetic testing early in the diagnostic pathway in children with clinical and/or electrophysiologic findings, suggestive of IRD.
Collapse
|
40
|
Cornelis SS, Bax NM, Zernant J, Allikmets R, Fritsche LG, den Dunnen JT, Ajmal M, Hoyng CB, Cremers FPM. In Silico Functional Meta-Analysis of 5,962 ABCA4 Variants in 3,928 Retinal Dystrophy Cases. Hum Mutat 2017; 38:400-408. [PMID: 28044389 DOI: 10.1002/humu.23165] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022]
Abstract
Variants in the ABCA4 gene are associated with a spectrum of inherited retinal diseases (IRDs), most prominently with autosomal recessive (ar) Stargardt disease (STGD1) and ar cone-rod dystrophy. The clinical outcome to a large degree depends on the severity of the variants. To provide an accurate prognosis and to select patients for novel treatments, functional significance assessment of nontruncating ABCA4 variants is important. We collected all published ABCA4 variants from 3,928 retinal dystrophy cases in a Leiden Open Variation Database, and compared their frequency in 3,270 Caucasian IRD cases with 33,370 non-Finnish European control individuals. Next to the presence of 270 protein-truncating variants, 191 nontruncating variants were significantly enriched in the patient cohort. Furthermore, 30 variants were deemed benign. Assessing the homozygous occurrence of frequent variants in IRD cases based on the allele frequencies in control individuals confirmed the mild nature of the p.[Gly863Ala, Gly863del] variant and identified three additional mild variants (p.(Ala1038Val), c.5714+5G>A, and p.(Arg2030Gln)). The p.(Gly1961Glu) variant was predicted to act as a mild variant in most cases. Based on these data, in silico analyses, and American College of Medical Genetics and Genomics guidelines, we provide pathogenicity classifications on a five-tier scale from benign to pathogenic for all variants in the ABCA4-LOVD database.
Collapse
Affiliation(s)
- Stéphanie S Cornelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nathalie M Bax
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York.,Department of Pathology & Cell Biology, Columbia University, New York, New York
| | - Lars G Fritsche
- Department of Public Health, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johan T den Dunnen
- Departments of Clinical Genetics and Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Muhammad Ajmal
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Collin RWJ. Unraveling the mysteries of pre-mRNA splicing in the retina via stem cell technology. Stem Cell Investig 2016; 3:72. [PMID: 27868054 DOI: 10.21037/sci.2016.10.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Carrigan M, Duignan E, Malone CPG, Stephenson K, Saad T, McDermott C, Green A, Keegan D, Humphries P, Kenna PF, Farrar GJ. Panel-Based Population Next-Generation Sequencing for Inherited Retinal Degenerations. Sci Rep 2016; 6:33248. [PMID: 27624628 PMCID: PMC5021935 DOI: 10.1038/srep33248] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/23/2016] [Indexed: 12/15/2022] Open
Abstract
Inherited retinopathies affect approximately two and a half million people globally, yet the majority of affected patients lack clear genetic diagnoses given the diverse range of genes and mutations implicated in these conditions. We present results from a next-generation sequencing study of a large inherited retinal disease patient population, with the goal of providing clear and actionable genetic diagnoses. Targeted sequencing was performed on 539 individuals from 309 inherited retinal disease pedigrees. Causative mutations were identified in the majority (57%, 176/309) of pedigrees. We report the association of many previously unreported variants with retinal disease, as well as new disease phenotypes associated with known genes, including the first association of the SLC24A1 gene with retinitis pigmentosa. Population statistics reporting the genes most commonly implicated in retinal disease in the cohort are presented, as are some diagnostic conundrums that can arise during such studies. Inherited retinal diseases represent an exemplar group of disorders for the application of panel-based next-generation sequencing as an effective tool for detection of causative mutations.
Collapse
Affiliation(s)
- Matthew Carrigan
- School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Emma Duignan
- Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Conor P G Malone
- Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | | | - Tahira Saad
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Ciara McDermott
- School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Andrew Green
- Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - David Keegan
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter Humphries
- School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Paul F Kenna
- School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.,Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - G Jane Farrar
- School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
43
|
Sangermano R, Bax NM, Bauwens M, van den Born LI, De Baere E, Garanto A, Collin RWJ, Goercharn-Ramlal ASA, den Engelsman-van Dijk AHA, Rohrschneider K, Hoyng CB, Cremers FPM, Albert S. Photoreceptor Progenitor mRNA Analysis Reveals Exon Skipping Resulting from the ABCA4 c.5461-10T→C Mutation in Stargardt Disease. Ophthalmology 2016; 123:1375-85. [PMID: 26976702 DOI: 10.1016/j.ophtha.2016.01.053] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To elucidate the functional effect of the ABCA4 variant c.5461-10T→C, one of the most frequent variants associated with Stargardt disease (STGD1). DESIGN Case series. PARTICIPANTS Seventeen persons with STGD1 carrying ABCA4 variants and 1 control participant. METHODS Haplotype analysis of 4 homozygotes and 11 heterozygotes for c.5461-10T→C and sequence analysis of the ABCA4 gene for a homozygous proband. Fibroblasts were reprogrammed from 3 persons with STGD1 into induced pluripotent stem cells, which were differentiated into photoreceptor progenitor cells (PPCs). The effect of the c.5461-10T→C variant on RNA splicing by reverse-transcription polymerase chain reaction was analyzed using PPC mRNA. In vitro assays were performed with minigene constructs containing ABCA4 exon 39. We analyzed the natural history and ophthalmologic characteristics of 4 persons homozygous for c.5461-10T→C. MAIN OUTCOME MEASURES Haplotype and rare variant data for ABCA4, RNA splice defects, age at diagnosis, visual acuity, fundus appearance, visual field, electroretinography (ERG) results, fluorescein angiography results, and fundus autofluorescence findings. RESULTS The frequent ABCA4 variant c.5461-10T→C has a subtle effect on splicing based on prediction programs. A founder haplotype containing c.5461-10T→C was found to span approximately 96 kb of ABCA4 and did not contain other rare sequence variants. Patient-derived PPCs showed skipping of exon 39 or exons 39 and 40 in the mRNA. HEK293T cell transduction with minigenes carrying exon 39 showed that the splice defects were the result of the c.5461-10T→C variant. All 4 subjects carrying the c.5461-10T→C variant in a homozygous state showed a young age of STGD1 onset, with low visual acuity at presentation and abnormal cone ERG results. All 4 demonstrated severe cone-rod dystrophy before 20 years of age and were legally blind by 25 years of age. CONCLUSIONS The ABCA4 variant c.5461-10T→C is located on a founder haplotype lacking other disease-causing rare sequence variants. In vitro studies revealed that it leads to mRNA exon skipping and ABCA4 protein truncation. Given the severe phenotype in persons homozygous for this variant, we conclude that this variant results in the absence of ABCA4 activity.
Collapse
Affiliation(s)
- Riccardo Sangermano
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Nathalie M Bax
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miriam Bauwens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | - Klaus Rohrschneider
- Universitätsaugenklinik, Ruprecht-Karls-Universität, Heidelberg, Heidelberg, Germany
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Silvia Albert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
44
|
Autosomal recessive retinitis pigmentosa with homozygous rhodopsin mutation E150K and non-coding cis-regulatory variants in CRX-binding regions of SAMD7. Sci Rep 2016; 6:21307. [PMID: 26887858 PMCID: PMC4758057 DOI: 10.1038/srep21307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/19/2016] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to unravel the molecular pathogenesis of an unusual retinitis pigmentosa (RP) phenotype observed in a Turkish consanguineous family. Homozygosity mapping revealed two candidate genes, SAMD7 and RHO. A homozygous RHO mutation c.448G > A, p.E150K was found in two affected siblings, while no coding SAMD7 mutations were identified. Interestingly, four non-coding homozygous variants were found in two SAMD7 genomic regions relevant for binding of the retinal transcription factor CRX (CRX-bound regions, CBRs) in these affected siblings. Three variants are located in a promoter CBR termed CBR1, while the fourth is located more downstream in CBR2. Transcriptional activity of these variants was assessed by luciferase assays and electroporation of mouse retinal explants with reporter constructs of wild-type and variant SAMD7 CBRs. The combined CBR2/CBR1 variant construct showed significantly decreased SAMD7 reporter activity compared to the wild-type sequence, suggesting a cis-regulatory effect on SAMD7 expression. As Samd7 is a recently identified Crx-regulated transcriptional repressor in retina, we hypothesize that these SAMD7 variants might contribute to the retinal phenotype observed here, characterized by unusual, recognizable pigment deposits, differing from the classic spicular intraretinal pigmentation observed in other individuals homozygous for p.E150K, and typically associated with RP in general.
Collapse
|
45
|
Stepensky P, Keller B, Shamriz O, NaserEddin A, Rumman N, Weintraub M, Warnatz K, Elpeleg O, Barak Y. Deep intronic mis-splicing mutation in JAK3 gene underlies T−B+NK− severe combined immunodeficiency phenotype. Clin Immunol 2016; 163:91-5. [DOI: 10.1016/j.clim.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/02/2016] [Accepted: 01/02/2016] [Indexed: 12/22/2022]
|
46
|
Weisschuh N, Mayer AK, Strom TM, Kohl S, Glöckle N, Schubach M, Andreasson S, Bernd A, Birch DG, Hamel CP, Heckenlively JR, Jacobson SG, Kamme C, Kellner U, Kunstmann E, Maffei P, Reiff CM, Rohrschneider K, Rosenberg T, Rudolph G, Vámos R, Varsányi B, Weleber RG, Wissinger B. Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing. PLoS One 2016; 11:e0145951. [PMID: 26766544 PMCID: PMC4713063 DOI: 10.1371/journal.pone.0145951] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022] Open
Abstract
Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| | - Anja K. Mayer
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Tim M. Strom
- Institute of Human Genetics, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | | | - Max Schubach
- Institute of Medical Genetics and Human Genetics, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | | | - Antje Bernd
- University Eye Hospital, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - David G. Birch
- The Retina Foundation of the Southwest, Dallas, Texas, United States of America
| | | | - John R. Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Ulrich Kellner
- Rare Retinal Disease Center, AugenZentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany
| | - Erdmute Kunstmann
- Institute of Human Genetics, Julius-Maximilian-University, Wuerzburg, Germany
| | - Pietro Maffei
- Department of Medicine, University Hospital of Padua, Padua, Italy
| | | | | | - Thomas Rosenberg
- National Eye Clinic, Department of Ophthalmology, Glostrup Hospital, Glostrup, Denmark
| | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Rita Vámos
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Balázs Varsányi
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, University of Pécs Medical School, Pécs, Hungary
| | - Richard G. Weleber
- Casey Eye Institute, Oregon Retinal Degeneration Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW We are witnessing lightning-fast advances in the molecular diagnosis of inherited retinal dystrophies, mainly due to the widespread use of next-generation sequencing technologies. The purpose of this review is to highlight the breadth of findings from this in-depth testing approach, and to propose changes to our traditional testing and diagnostic paradigms. Lessons learned from modern molecular testing suggest that the previous concept of inherited retinal dystrophies as a group of 'single gene diseases' may require a significant update. RECENT FINDINGS All of the known retinal dystrophies genes can now be sequenced. In many cases, this nonhypothesis driven testing strategy is uncovering mutations in unsuspected genes, generating data that challenges established concepts of genetic mechanisms and provides insights regarding genes previously thought to be exclusively related to syndromic disease. Recent advances in testing have improved not only the breadth, but also the depth of genetic data. For example, deep intronic sequencing has uncovered many novel intronic mutations/variations in the ABCA4 gene. SUMMARY Currently, in approximately 50-60% of patients with nonsyndromic retinal dystrophy, the disease mechanism can be identified. The presence of pathogenic alleles in more than one gene is not uncommon. Retinal dystrophy, with relatively defined clinical presentations and a large but limited number of genes involved, is becoming a model for the next-generation study of molecular disease mechanisms.
Collapse
|
48
|
Ścieżyńska A, Oziębło D, Ambroziak AM, Korwin M, Szulborski K, Krawczyński M, Stawiński P, Szaflik J, Szaflik JP, Płoski R, Ołdak M. Next-generation sequencing of ABCA4: High frequency of complex alleles and novel mutations in patients with retinal dystrophies from Central Europe. Exp Eye Res 2015; 145:93-99. [PMID: 26593885 DOI: 10.1016/j.exer.2015.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/04/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Variation in the ABCA4 locus has emerged as the most prevalent cause of monogenic retinal diseases. The study aimed to discover causative ABCA4 mutations in a large but not previously investigated cohort with ABCA4-related diseases originating from Central Europe and to refine the genetic relevance of all identified variants based on population evidence. Comprehensive clinical studies were performed to identify patients with Stargardt disease (STGD, n = 76) and cone-rod dystrophy (CRD, n = 16). Next-generation sequencing targeting ABCA4 was applied for a widespread screening of the gene. The results were analyzed in the context of exome data from a corresponding population (n = 594) and other large genomic databases. Our data disprove the pathogenic status of p.V552I and provide more evidence against a causal role of four further ABCA4 variants as drivers of the phenotype under a recessive paradigm. The study identifies 12 novel potentially pathogenic mutations (four of them recurrent) and a novel complex allele p.[(R152*; V2050L)]. In one third (31/92) of our cohort we detected the p.[(L541P; A1038V)] complex allele, which represents an unusually high level of genetic homogeneity for ABCA4-related diseases. Causative ABCA4 mutations account for 79% of STGD and 31% of CRD cases. A combination of p.[(L541P; A1038V)] and/or a truncating ABCA4 mutation always resulted in an early disease onset. Identification of ABCA4 retinopathies provides a specific molecular diagnosis and justifies a prompt introduction of simple precautions that may slow disease progression. The comprehensive, population-specific study expands our knowledge on the genetic landscape of retinal diseases.
Collapse
Affiliation(s)
- Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - Anna M Ambroziak
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland; Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Magdalena Korwin
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Kamil Szulborski
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland; Center for Medical Genetics GENESIS, Poznan, Poland
| | - Piotr Stawiński
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
| | - Monika Ołdak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland; Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland.
| |
Collapse
|
49
|
Mayer AK, Rohrschneider K, Strom TM, Glöckle N, Kohl S, Wissinger B, Weisschuh N. Homozygosity mapping and whole-genome sequencing reveals a deep intronic PROM1 mutation causing cone-rod dystrophy by pseudoexon activation. Eur J Hum Genet 2015; 24:459-62. [PMID: 26153215 DOI: 10.1038/ejhg.2015.144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 11/09/2022] Open
Abstract
Several genes have been implicated in the autosomal recessive form of cone-rod dystrophy (CRD), but the majority of cases remain unsolved. We identified a homozygous interval comprising two known genes associated with the autosomal recessive form of CRD, namely RAB28 and PROM1, in a consanguineous family with clinical evidence of CRD. Both genes proved to be mutation negative upon sequencing of exons and canonical splice sites but whole-genome sequencing revealed a private variant located deep in intron 18 of PROM1. In silico and functional analyses of this variant using minigenes as splicing reporters revealed the integration of a pseudoexon in the mutant transcript, thereby leading to a premature termination codon and presumably resulting in a functional null allele. This is the first report of a deep intronic variant that acts as a splicing mutation in PROM1. The detection of such variants escapes the exon-focused techniques typically used in genetic analyses. Sequencing the entire genomic regions of known disease genes might identify more causal mutations in the autosomal recessive form of CRD.
Collapse
Affiliation(s)
- Anja K Mayer
- Molecular Genetics Laboratory, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | | | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | | | - Susanne Kohl
- Molecular Genetics Laboratory, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|