1
|
Attarian S, Beloribi-Djefaflia S, Bernard R, Nguyen K, Cances C, Gavazza C, Echaniz-Laguna A, Espil C, Evangelista T, Feasson L, Audic F, Zagorda B, Milhe De Bovis V, Stojkovic T, Sole G, Salort-Campana E, Sacconi S. French National Protocol for diagnosis and care of facioscapulohumeral muscular dystrophy (FSHD). J Neurol 2024; 271:5778-5803. [PMID: 38955828 DOI: 10.1007/s00415-024-12538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common genetically inherited myopathies in adults. It is characterized by incomplete penetrance and variable expressivity. Typically, FSHD patients display asymmetric weakness of facial, scapular, and humeral muscles that may progress to other muscle groups, particularly the abdominal and lower limb muscles. Early-onset patients display more severe muscle weakness and atrophy, resulting in a higher frequency of associated skeletal abnormalities. In these patients, multisystem involvement, including respiratory, ocular, and auditory, is more frequent and severe and may include the central nervous system. Adult-onset FSHD patients may also display some degree of multisystem involvement which mainly remains subclinical. In 95% of cases, FSHD patients carry a pathogenic contraction of the D4Z4 repeat units (RUs) in the subtelomeric region of chromosome 4 (4q35), which leads to the expression of DUX4 retrogene, toxic for muscles (FSHD1). Five percent of patients display the same clinical phenotype in association with a mutation in the SMCHD1 gene located in chromosome 18, inducing epigenetic modifications of the 4q D4Z4 repeated region and expression of DUX4 retrogene. This review highlights the complexities and challenges of diagnosing and managing FSHD, underscoring the importance of standardized approaches for optimal patient outcomes. It emphasizes the critical role of multidisciplinary care in addressing the diverse manifestations of FSHD across different age groups, from skeletal abnormalities in early-onset cases to the often-subclinical multisystem involvement in adults. With no current cure, the focus on alleviating symptoms and slowing disease progression through coordinated care is paramount.
Collapse
Affiliation(s)
- Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France.
- FILNEMUS, European Reference Network for Rare Diseases (ERN-NMD), Marseille, France.
- Marseille Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005, Marseille, France.
| | - Sadia Beloribi-Djefaflia
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Rafaelle Bernard
- Marseille Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005, Marseille, France
| | - Karine Nguyen
- Marseille Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005, Marseille, France
| | - Claude Cances
- Reference Center for Neuromuscular Disorders, Toulouse Children's Hospital, Toulouse, France
- Pediatric Neurology Department, Toulouse Children's Hospital, Toulouse, France
| | - Carole Gavazza
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin Bicêtre, France
- French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin Bicêtre, France
- Inserm U1195, University Paris Saclay, Le Kremlin Bicêtre, France
| | - Caroline Espil
- Reference Center for Neuromuscular Disorders AOC, Children's Hospital, CHU Bordeaux, Bordeaux, France
| | - Teresinha Evangelista
- Institute of Myology, Nord/Est/Ile-de-France Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Léonard Feasson
- Department of Clinical and Exercise Physiology, University Hospital Center of Saint-Etienne, 42000, Saint-Etienne, France
- Inter-University Laboratory of Human Movement Biology, EA 7424, Jean Monnet University, 42000, Saint-Etienne, France
| | - Frédérique Audic
- Reference Center for Neuromuscular Diseases in Children PACARARE, Neuropediatrics Department, Timone University Children's Hospital, Marseille, France
| | - Berenice Zagorda
- Department of Clinical and Exercise Physiology, University Hospital Center of Saint-Etienne, 42000, Saint-Etienne, France
| | - Virginie Milhe De Bovis
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Tanya Stojkovic
- Institute of Myology, Nord/Est/Ile-de-France Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Guilhem Sole
- Centre de Référence des Maladies Neuromusculaires AOC, FILNEMUS, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Emmanuelle Salort-Campana
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Sabrina Sacconi
- Peripheral Nervous System and Muscle Department, Université Côte d'Azur, CHU Nice, Pasteur 2, Nice Hospital, France.
| |
Collapse
|
2
|
Yi X, Zhou G, Fu Y, Wu J, Chen C, Zai H, He Q, Pang P, Zhou H, Gong G, Lei T, Tan F, Liu H, Li B, Chen BT. CT-based assessment of sarcopenia for differentiating wild-type from mutant-type gastrointestinal stromal tumor. Sci Rep 2023; 13:3216. [PMID: 36828845 PMCID: PMC9958176 DOI: 10.1038/s41598-022-27213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/28/2022] [Indexed: 02/26/2023] Open
Abstract
Non-invasive prediction for KIT/PDGFRA status in GIST is a challenging problem. This study aims to evaluate whether CT based sarcopenia could differentiate KIT/PDGFRA wild-type gastrointestinal stromal tumor (wt-GIST) from the mutant-type GIST (mu-GIST), and to evaluate genetic features of GIST. A total of 174 patients with GIST (wt-GIST = 52) were retrospectively identified between January 2011 to October 2019. A sarcopenia nomogram was constructed by multivariate logistic regression. The performance of the nomogram was evaluated by discrimination, calibration curve, and decision curve. Genomic data was obtained from our own specimens and also from the open databases cBioPortal. Data was analyzed by R version 3.6.1 and clusterProfiler ( http://cbioportal.org/msk-impact ). There were significantly higher incidence (75.0% vs. 48.4%) and more severe sarcopenia in patients with wt-GIST than in patients with mu-GIST. Multivariate logistic regression analysis showed that sarcopenia score (fitted based on age, gender and skeletal muscle index), and muscle fat index were independent predictors for higher risk of wt-GIST (P < 0.05 for both the training and validation cohorts). Our sarcopenia nomogram achieved a promising efficiency with an AUC of 0.879 for the training cohort, and 0.9099 for the validation cohort with a satisfying consistency in the calibration curve. Favorable clinical usefulness was observed using decision curve analysis. The additional gene sequencing analysis based on both our data and the external data demonstrated aberrant signal pathways being closely associated with sarcopenia in the wt-GIST. Our study supported the use of CT-based assessment of sarcopenia in differentiating the wt-GIST from the mu-GIST preoperatively.
Collapse
Affiliation(s)
- Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People's Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Gaofeng Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jinchun Wu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Changyong Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hongyan Zai
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Qiongzhi He
- Geneplus-Beijing Institute, Beijing, People's Republic of China
| | - Peipei Pang
- GE Healthcare, Hangzhou, 310000, People's Republic of China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Tianxiang Lei
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Heli Liu
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| |
Collapse
|
3
|
Helmbacher F. Astrocyte-intrinsic and -extrinsic Fat1 activities regulate astrocyte development and angiogenesis in the retina. Development 2022; 149:274046. [PMID: 35050341 DOI: 10.1242/dev.192047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/13/2021] [Indexed: 01/25/2023]
Abstract
Angiogenesis is a stepwise process leading to blood vessel formation. In the vertebrate retina, endothelial cells are guided by astrocytes migrating along the inner surface, and the two processes are coupled by a tightly regulated cross-talks between the two cell types. Here, I have investigated how the FAT1 cadherin, a regulator of tissue morphogenesis that governs tissue cross-talk, influences retinal vascular development. Late-onset Fat1 inactivation in the neural lineage in mice, by interfering with astrocyte progenitor migration polarity and maturation, delayed postnatal retinal angiogenesis, leading to persistent vascular abnormalities in adult retinas. Impaired astrocyte migration and polarity were not associated with alterations of retinal ganglion cell axonal trajectories or of the inner limiting membrane. In contrast, inducible Fat1 ablation in postnatal astrocytes was sufficient to alter their migration polarity and proliferation. Altogether, this study uncovers astrocyte-intrinsic and -extrinsic Fat1 activities that influence astrocyte migration polarity, proliferation and maturation, disruption of which impacts retinal vascular development and maintenance.
Collapse
Affiliation(s)
- Françoise Helmbacher
- Aix Marseille Univ, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, 13288 Marseille, France
| |
Collapse
|
4
|
Distrofia muscolare facio-scapolo-omerale. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Jia FF, Drew AP, Nicholson GA, Corbett A, Kumar KR. Facioscapulohumeral muscular dystrophy type 2: an update on the clinical, genetic, and molecular findings. Neuromuscul Disord 2021; 31:1101-1112. [PMID: 34711481 DOI: 10.1016/j.nmd.2021.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common genetic disease of the skeletal muscle with a characteristic pattern of weakness. Facioscapulohumeral muscular dystrophy type 2 (FSHD2) accounts for approximately 5% of all cases of FSHD and describes patients without a D4Z4 repeat contraction on chromosome 4. Phenotypically FSHD2 shows virtually no difference from FSHD1 and both forms of FSHD arise via a common downstream mechanism of epigenetic derepression of the transcription factor DUX4 in skeletal muscle cells. This results in expression of DUX4 and target genes leading to skeletal muscle toxicity. Over the past decade, major progress has been made in our understanding of the genetic and epigenetic architecture that underlies FSHD2 pathogenesis, as well as the clinical manifestations and disease progression. These include the finding that FSHD2 is a digenic disease and that mutations in the genes SMCHD1, DNMT3B, and more recently LRIF1, can cause FSHD2. FSHD2 is complex and it is important that clinicians keep abreast of recent developments; this review aims to serve as an update of the clinical, genetic, and molecular research into this condition.
Collapse
Affiliation(s)
- Fangzhi Frank Jia
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia.
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | - Garth Alexander Nicholson
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Alastair Corbett
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Kishore Raj Kumar
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| |
Collapse
|
6
|
Peluso F, Caraffi SG, Zuntini R, Trimarchi G, Ivanovski I, Valeri L, Barbieri V, Marinelli M, Pancaldi A, Melli N, Cesario C, Agolini E, Cellini E, Radio FC, Crisafi A, Napoli M, Guerrini R, Tartaglia M, Novelli A, Gargano G, Zuffardi O, Garavelli L. Whole Exome Sequencing Is the Minimal Technological Approach in Probands Born to Consanguineous Couples. Genes (Basel) 2021; 12:genes12070962. [PMID: 34202629 PMCID: PMC8303193 DOI: 10.3390/genes12070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
We report on two siblings suffering from different pathogenic conditions, born to consanguineous parents. A multigene panel for brain malformations and microcephaly identified the homozygous splicing variant NM_005886.3:c.1416+1del in the KATNB1 gene in the older sister. On the other hand, exome sequencing revealed the homozygous frameshift variant NM_005245.4:c.9729del in the FAT1 gene in the younger sister, who had a more complex phenotype: in addition to bilateral anophthalmia and heart defects, she showed a right split foot with 4 toes, 5 metacarpals, second toe duplication and preaxial polydactyly on the right hand. These features have been never reported before in patients with pathogenic FAT1 variants and support the role of this gene in the development of limb buds. Notably, each parent was heterozygous for both of these variants, which were ultra-rare and rare, respectively. This study raises awareness about the value of using whole exome/genome sequencing rather than targeted gene panels when testing affected offspring born to consanguineous couples. In this way, exomic data from the parents are also made available for carrier screening, to identify heterozygous pathogenetic and likely pathogenetic variants in genes responsible for other recessive conditions, which may pose a risk for subsequent pregnancies.
Collapse
Affiliation(s)
- Francesca Peluso
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Gabriele Trimarchi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Ivan Ivanovski
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
- Institut für Medizinische Genetik, Universität Zürich, 8952 Zürich, Switzerland
| | - Lara Valeri
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
- Post Graduate School of Paediatrics, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Veronica Barbieri
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Maria Marinelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Alessia Pancaldi
- Post Graduate School of Paediatrics, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (N.M.); (G.G.)
| | - Nives Melli
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (N.M.); (G.G.)
| | - Claudia Cesario
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.C.); (E.A.); (A.N.)
| | - Emanuele Agolini
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.C.); (E.A.); (A.N.)
| | - Elena Cellini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy; (E.C.); (R.G.)
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (F.C.R.); (M.T.)
| | - Antonella Crisafi
- Pediatric Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy; (E.C.); (R.G.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (F.C.R.); (M.T.)
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.C.); (E.A.); (A.N.)
| | - Giancarlo Gargano
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (N.M.); (G.G.)
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
- Correspondence:
| |
Collapse
|
7
|
Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2021; 121:99-113. [PMID: 34059418 DOI: 10.1016/j.semcdb.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.
Collapse
|
8
|
Peng Z, Gong Y, Liang X. Role of FAT1 in health and disease. Oncol Lett 2021; 21:398. [PMID: 33777221 PMCID: PMC7988705 DOI: 10.3892/ol.2021.12659] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1), which encodes a protocadherin, is one of the most frequently mutated genes in human cancer. Over the past 20 years, the role of FAT1 in tissue growth and in the development of diseases has been extensively studied. There is definitive evidence that FAT1 serves a substantial role in the maintenance of organs and development, and its expression appears to be tissue-specific. FAT1 activates a variety of signaling pathways through protein-protein interactions, including the Wnt/β-catenin, Hippo and MAPK/ERK signaling pathways, which affect cell proliferation, migration and invasion. Abnormal FAT1 expression may lead to the development of tumors and may affect prognosis. Therefore, FAT1 may have potential in tumor therapy. The structural and functional changes mediated by FAT1, its tissue distribution and changes in FAT1 expression in human diseases are described in the present review, which provides further insight for understanding the role of FAT1 in development and disease.
Collapse
Affiliation(s)
- Zizhen Peng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanyu Gong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
9
|
Haug P, Koller S, Maggi J, Lang E, Feil S, Wlodarczyk A, Bähr L, Steindl K, Rohrbach M, Gerth-Kahlert C, Berger W. Whole Exome Sequencing in Coloboma/Microphthalmia: Identification of Novel and Recurrent Variants in Seven Genes. Genes (Basel) 2021; 12:65. [PMID: 33418956 PMCID: PMC7825129 DOI: 10.3390/genes12010065] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Coloboma and microphthalmia (C/M) are related congenital eye malformations, which can cause significant visual impairment. Molecular diagnosis is challenging as the genes associated to date with C/M account for only a small percentage of cases. Overall, the genetic cause remains unknown in up to 80% of patients. High throughput DNA sequencing technologies, including whole-exome sequencing (WES), are therefore a useful and efficient tool for genetic screening and identification of new mutations and novel genes in C/M. In this study, we analyzed the DNA of 19 patients with C/M from 15 unrelated families using singleton WES and data analysis for 307 genes of interest. We identified seven novel and one recurrent potentially disease-causing variants in CRIM1, CHD7, FAT1, PTCH1, PUF60, BRPF1, and TGFB2 in 47% of our families, three of which occurred de novo. The detection rate in patients with ocular and extraocular manifestations (67%) was higher than in patients with an isolated ocular phenotype (46%). Our study highlights the significant genetic heterogeneity in C/M cohorts and emphasizes the diagnostic power of WES for the screening of patients and families with C/M.
Collapse
Affiliation(s)
- Patricia Haug
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (P.H.); (S.K.); (J.M.); (E.L.); (S.F.); (A.W.); (L.B.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (P.H.); (S.K.); (J.M.); (E.L.); (S.F.); (A.W.); (L.B.)
| | - Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (P.H.); (S.K.); (J.M.); (E.L.); (S.F.); (A.W.); (L.B.)
| | - Elena Lang
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (P.H.); (S.K.); (J.M.); (E.L.); (S.F.); (A.W.); (L.B.)
- Department of Ophthalmology, University Hospital and University of Zurich, 8091 Zurich, Switzerland;
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (P.H.); (S.K.); (J.M.); (E.L.); (S.F.); (A.W.); (L.B.)
| | - Agnès Wlodarczyk
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (P.H.); (S.K.); (J.M.); (E.L.); (S.F.); (A.W.); (L.B.)
| | - Luzy Bähr
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (P.H.); (S.K.); (J.M.); (E.L.); (S.F.); (A.W.); (L.B.)
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland;
| | - Marianne Rohrbach
- Division of Metabolism and Children’s Research Centre, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital and University of Zurich, 8091 Zurich, Switzerland;
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (P.H.); (S.K.); (J.M.); (E.L.); (S.F.); (A.W.); (L.B.)
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8006 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
10
|
DeSimone AM, Cohen J, Lek M, Lek A. Cellular and animal models for facioscapulohumeral muscular dystrophy. Dis Model Mech 2020; 13:dmm046904. [PMID: 33174531 PMCID: PMC7648604 DOI: 10.1242/dmm.046904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common forms of muscular dystrophy and presents with weakness of the facial, scapular and humeral muscles, which frequently progresses to the lower limbs and truncal areas, causing profound disability. Myopathy results from epigenetic de-repression of the D4Z4 microsatellite repeat array on chromosome 4, which allows misexpression of the developmentally regulated DUX4 gene. DUX4 is toxic when misexpressed in skeletal muscle and disrupts several cellular pathways, including myogenic differentiation and fusion, which likely underpins pathology. DUX4 and the D4Z4 array are strongly conserved only in primates, making FSHD modeling in non-primate animals difficult. Additionally, its cytotoxicity and unusual mosaic expression pattern further complicate the generation of in vitro and in vivo models of FSHD. However, the pressing need to develop systems to test therapeutic approaches has led to the creation of multiple engineered FSHD models. Owing to the complex genetic, epigenetic and molecular factors underlying FSHD, it is difficult to engineer a system that accurately recapitulates every aspect of the human disease. Nevertheless, the past several years have seen the development of many new disease models, each with their own associated strengths that emphasize different aspects of the disease. Here, we review the wide range of FSHD models, including several in vitro cellular models, and an array of transgenic and xenograft in vivo models, with particular attention to newly developed systems and how they are being used to deepen our understanding of FSHD pathology and to test the efficacy of drug candidates.
Collapse
Affiliation(s)
- Alec M DeSimone
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Justin Cohen
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Monkol Lek
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Angela Lek
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| |
Collapse
|
11
|
Dionnet E, Defour A, Da Silva N, Salvi A, Lévy N, Krahn M, Bartoli M, Puppo F, Gorokhova S. Splicing impact of deep exonic missense variants in CAPN3 explored systematically by minigene functional assay. Hum Mutat 2020; 41:1797-1810. [PMID: 32668095 DOI: 10.1002/humu.24083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023]
Abstract
Improving the accuracy of variant interpretation during diagnostic sequencing is a major goal for genomic medicine. To explore an often-overlooked splicing effect of missense variants, we developed the functional assay ("minigene") for the majority of exons of CAPN3, the gene responsible for limb girdle muscular dystrophy. By systematically screening 21 missense variants distributed along the gene, we found that eight clinically relevant missense variants located at a certain distance from the exon-intron borders (deep exonic missense variants) disrupted normal splicing of CAPN3 exons. Several recent machine learning-based computational tools failed to predict splicing impact for the majority of these deep exonic missense variants, highlighting the importance of including variants of this type in the training sets during the future algorithm development. Overall, 24 variants in CAPN3 gene were explored, leading to the change in the American College of Medical Genetics and Genomics classification of seven of them when results of the "minigene" functional assay were considered. Our findings reveal previously unknown splicing impact of several clinically important variants in CAPN3 and draw attention to the existence of deep exonic variants with a disruptive effect on gene splicing that could be overlooked by the current approaches in clinical genetics.
Collapse
Affiliation(s)
- Eugénie Dionnet
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Aurélia Defour
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Nathalie Da Silva
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Alexandra Salvi
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Nicolas Lévy
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France
| | - Martin Krahn
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| | - Marc Bartoli
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Francesca Puppo
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Svetlana Gorokhova
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| |
Collapse
|
12
|
Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020; 104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
For decades, limb development has been a paradigm of three-dimensional patterning. Moreover, as the limb muscles and the other tissues of the limb's musculoskeletal system arise from distinct developmental sources, it has been a prime example of integrative morphogenesis and cross-tissue communication. As the limbs grow, all components of the musculoskeletal system (muscles, tendons, connective tissue, nerves) coordinate their growth and differentiation, ultimately giving rise to a functional unit capable of executing elaborate movement. While the molecular mechanisms governing global three-dimensional patterning and formation of the skeletal structures of the limbs has been a matter of intense research, patterning of the soft tissues is less understood. Here, we review the development of limb muscles with an emphasis on their interaction with other tissue types and the instructive roles these tissues play. Furthermore, we discuss the role of adult correlates of these embryonic accessory tissues in muscle regeneration.
Collapse
Affiliation(s)
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
13
|
Kim A, Savary C, Dubourg C, Carré W, Mouden C, Hamdi-Rozé H, Guyodo H, Douce JL, Pasquier L, Flori E, Gonzales M, Bénéteau C, Boute O, Attié-Bitach T, Roume J, Goujon L, Akloul L, Odent S, Watrin E, Dupé V, de Tayrac M, David V. Integrated clinical and omics approach to rare diseases: novel genes and oligogenic inheritance in holoprosencephaly. Brain 2019; 142:35-49. [PMID: 30508070 DOI: 10.1093/brain/awy290] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022] Open
Abstract
Holoprosencephaly is a pathology of forebrain development characterized by high phenotypic heterogeneity. The disease presents with various clinical manifestations at the cerebral or facial levels. Several genes have been implicated in holoprosencephaly but its genetic basis remains unclear: different transmission patterns have been described including autosomal dominant, recessive and digenic inheritance. Conventional molecular testing approaches result in a very low diagnostic yield and most cases remain unsolved. In our study, we address the possibility that genetically unsolved cases of holoprosencephaly present an oligogenic origin and result from combined inherited mutations in several genes. Twenty-six unrelated families, for whom no genetic cause of holoprosencephaly could be identified in clinical settings [whole exome sequencing and comparative genomic hybridization (CGH)-array analyses], were reanalysed under the hypothesis of oligogenic inheritance. Standard variant analysis was improved with a gene prioritization strategy based on clinical ontologies and gene co-expression networks. Clinical phenotyping and exploration of cross-species similarities were further performed on a family-by-family basis. Statistical validation was performed on 248 ancestrally similar control trios provided by the Genome of the Netherlands project and on 574 ancestrally matched controls provided by the French Exome Project. Variants of clinical interest were identified in 180 genes significantly associated with key pathways of forebrain development including sonic hedgehog (SHH) and primary cilia. Oligogenic events were observed in 10 families and involved both known and novel holoprosencephaly genes including recurrently mutated FAT1, NDST1, COL2A1 and SCUBE2. The incidence of oligogenic combinations was significantly higher in holoprosencephaly patients compared to two control populations (P < 10-9). We also show that depending on the affected genes, patients present with particular clinical features. This study reports novel disease genes and supports oligogenicity as clinically relevant model in holoprosencephaly. It also highlights key roles of SHH signalling and primary cilia in forebrain development. We hypothesize that distinction between different clinical manifestations of holoprosencephaly lies in the degree of overall functional impact on SHH signalling. Finally, we underline that integrating clinical phenotyping in genetic studies is a powerful tool to specify the clinical relevance of certain mutations.
Collapse
Affiliation(s)
- Artem Kim
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Clara Savary
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Christèle Dubourg
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Wilfrid Carré
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Charlotte Mouden
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Houda Hamdi-Rozé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Hélène Guyodo
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jerome Le Douce
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | | | | | | | - Elisabeth Flori
- Laboratoire de Cytogénétique, Cytologie et Histologie Quantitative, Hôpital de Hautepierre, HUS, Strasbourg, France
| | - Marie Gonzales
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Paris, France
| | | | | | - Tania Attié-Bitach
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants-Malades, Université Paris Descartes, 149, rue de Sèvres, Paris, France
| | - Joelle Roume
- Department of Clinical Genetics, Centre de Référence “AnDDI Rares”, Poissy Hospital GHU PIFO, Poissy, France
| | | | - Linda Akloul
- Service de Génétique Clinique, CHU, Rennes, France
| | - Sylvie Odent
- Service de Génétique Clinique, CHU, Rennes, France
| | - Erwan Watrin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Véronique David
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| |
Collapse
|
14
|
Gaillard MC, Broucqsault N, Morere J, Laberthonnière C, Dion C, Badja C, Roche S, Nguyen K, Magdinier F, Robin JD. Analysis of the 4q35 chromatin organization reveals distinct long-range interactions in patients affected with Facio-Scapulo-Humeral Dystrophy. Sci Rep 2019; 9:10327. [PMID: 31316120 PMCID: PMC6637155 DOI: 10.1038/s41598-019-46861-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Facio-Scapulo Humeral dystrophy (FSHD) is the third most common myopathy, affecting 1 amongst 10,000 individuals (FSHD1, OMIM #158900). This autosomal dominant pathology is associated in 95% of cases with genetic and epigenetic alterations in the subtelomeric region at the extremity of the long arm of chromosome 4 (q arm). A large proportion of the remaining 5% of cases carry a mutation in the SMCHD1 gene (FSHD2, OMIM #158901). Here, we explored the 3D organization of the 4q35 locus by three-dimensions DNA in situ fluorescent hybridization (3D-FISH) in primary fibroblasts isolated from patients and healthy donors. We found that D4Z4 contractions and/or SMCHD1 mutations impact the spatial organization of the 4q35 region and trigger changes in the expression of different genes. Changes in gene expression were corroborated in muscle biopsies suggesting that the modified chromatin landscape impelled a modulation in the level of expression of a number of genes across the 4q35 locus in FSHD. Using induced pluripotent stem cells (hIPSC), we further examined whether chromatin organization is inherited after reprogramming or acquired during differentiation and showed that folding of the 4q35 region is modified upon differentiation. These results together with previous findings highlight the role of the D4Z4 macrosatellite repeat in the topological organization of chromatin and further indicate that the D4Z4-dependent 3D structure induces transcriptional changes of 4q35 genes expression.
Collapse
Affiliation(s)
| | | | - Julia Morere
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | | | - Camille Dion
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Cherif Badja
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Stéphane Roche
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Karine Nguyen
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, France
| | | | - Jérôme D Robin
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France.
| |
Collapse
|
15
|
Pehlivan D, Bayram Y, Gunes N, Coban Akdemir Z, Shukla A, Bierhals T, Tabakci B, Sahin Y, Gezdirici A, Fatih JM, Gulec EY, Yesil G, Punetha J, Ocak Z, Grochowski CM, Karaca E, Albayrak HM, Radhakrishnan P, Erdem HB, Sahin I, Yildirim T, Bayhan IA, Bursali A, Elmas M, Yuksel Z, Ozdemir O, Silan F, Yildiz O, Yesilbas O, Isikay S, Balta B, Gu S, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Boerwinkle E, Gibbs RA, Tsiakas K, Hempel M, Girisha KM, Gul D, Posey JE, Elcioglu NH, Tuysuz B, Lupski JR. The Genomics of Arthrogryposis, a Complex Trait: Candidate Genes and Further Evidence for Oligogenic Inheritance. Am J Hum Genet 2019; 105:132-150. [PMID: 31230720 PMCID: PMC6612529 DOI: 10.1016/j.ajhg.2019.05.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 01/29/2023] Open
Abstract
Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.
Collapse
Affiliation(s)
- Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nilay Gunes
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa Medical Faculty, Istanbul 34096, Turkey
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Burcu Tabakci
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul 34854, Turkey
| | - Yavuz Sahin
- Department of Medical Genetics, Necip Fazıl City Hospital, Kahramanmaras 46050, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Gozde Yesil
- Department of Medical Genetics, Bezmi Alem Vakif University Faculty of Medicine, Istanbul 34093, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Ocak
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | | | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hatice Mutlu Albayrak
- Department of Pediatrics, Division of Pediatric Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55270, Turkey
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Ibrahim Sahin
- Department of Medical Genetics, University of Erzurum, School of Medicine, Erzurum 25240, Turkey
| | - Timur Yildirim
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Ilhan A Bayhan
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Aysegul Bursali
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Zafer Yuksel
- Medical Genetics Clinic, Mersin Women and Children Hospital, Mersin 33330, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Onur Yildiz
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, University of Health Sciences, Van Training and Research Hospital, Van 65130, Turkey
| | - Sedat Isikay
- Department of Physiotherapy and Rehabilitation, Hasan Kalyoncu University, School of Health Sciences, Gaziantep 27000, Turkey
| | - Burhan Balta
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri 38080, Turkey
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul 34854, Turkey; Eastern Mediterranean University School of Medicine, Cyprus, Mersin 10, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa Medical Faculty, Istanbul 34096, Turkey
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Helmbacher F. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis. PLoS Biol 2018; 16:e2004734. [PMID: 29768404 PMCID: PMC5973635 DOI: 10.1371/journal.pbio.2004734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/29/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non-cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types.
Collapse
|
17
|
Park HJ, Lee W, Kim SH, Lee JH, Shin HY, Kim SM, Park KD, Lee JH, Choi YC. FAT1 Gene Alteration in Facioscapulohumeral Muscular Dystrophy Type 1. Yonsei Med J 2018; 59:337-340. [PMID: 29436205 PMCID: PMC5823839 DOI: 10.3349/ymj.2018.59.2.337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 11/27/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array. Recent studies revealed that the FAT1 expression is associated with disease activity of FSHD, and the FAT1 alterations result in myopathy with a FSHD-like phenotype. We describe a 59-year-old woman with both contracted D4Z4 repeat units and a FAT1 mutation. Shoulder girdle muscle weakness developed at the age of 56 years, and was followed by proximal leg weakness. When we examined her at 59 years of age, she displayed asymmetric and predominant weakness of facial and proximal muscles. Muscle biopsy showed increased variation in fiber size and multifocal degenerating fibers with lymphocytic infiltration. Southern blot analysis revealed 8 D4Z4 repeat units, and targeted sequencing of modifier genes demonstrated the c.10331 A>G variant in the FAT1 gene. This FAT1 variant has previously been reported as pathogenic variant in a patient with FSHD-like phenotype. Our study is the first report of a FAT1 mutation in a FSHD1 patient, and suggests that FAT1 alterations might work as a genetic modifier.
Collapse
Affiliation(s)
- Hyung Jun Park
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Wookjae Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Min Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Kee Duk Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Young Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 2017; 140:2860-2878. [PMID: 29053796 DOI: 10.1093/brain/awx251] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/05/2017] [Indexed: 12/17/2022] Open
Abstract
The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons. We validated almost all genes genetically, assessed damaging effects of the gene variants in cell models and further consolidated a role for several of these genes in the aetiology of spinocerebellar ataxia through network analysis. Our work links spinocerebellar ataxia to alterations in synaptic transmission and transcription regulation, and identifies these as the main shared mechanisms underlying the genetically diverse spinocerebellar ataxia types.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anna Duarri
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Michiel R Fokkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Juha M Karjalainen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo J L M Smeets
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jelkje J de Boer-Bergsma
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerben van der Vries
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Giovana B Bampi
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ewout Brunt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly Ippel
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Berry Kremer
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monique Vlak
- Department of Neurology, Medical Center Haaglanden and Bronovo-Nebo, Den Hague, The Netherlands
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Israel
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Richard J Sinke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
DeSimone AM, Pakula A, Lek A, Emerson CP. Facioscapulohumeral Muscular Dystrophy. Compr Physiol 2017; 7:1229-1279. [PMID: 28915324 DOI: 10.1002/cphy.c160039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017.
Collapse
Affiliation(s)
- Alec M DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
20
|
Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature 2016; 539:575-578. [PMID: 27828948 DOI: 10.1038/nature20170] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial products such as ATP, reactive oxygen species, and aspartate are key regulators of cellular metabolism and growth. Abnormal mitochondrial function compromises integrated growth-related processes such as development and tissue repair, as well as homeostatic mechanisms that counteract ageing and neurodegeneration, cardiovascular disease, and cancer. Physiologic mechanisms that control mitochondrial activity in such settings remain incompletely understood. Here we show that the atypical Fat1 cadherin acts as a molecular 'brake' on mitochondrial respiration that regulates vascular smooth muscle cell (SMC) proliferation after arterial injury. Fragments of Fat1 accumulate in SMC mitochondria, and the Fat1 intracellular domain interacts with multiple mitochondrial proteins, including critical factors associated with the inner mitochondrial membrane. SMCs lacking Fat1 (Fat1KO) grow faster, consume more oxygen for ATP production, and contain more aspartate. Notably, expression in Fat1KO cells of a modified Fat1 intracellular domain that localizes exclusively to mitochondria largely normalizes oxygen consumption, and the growth advantage of these cells can be suppressed by inhibition of mitochondrial respiration, which suggest that a Fat1-mediated growth control mechanism is intrinsic to mitochondria. Consistent with this idea, Fat1 species associate with multiple respiratory complexes, and Fat1 deletion both increases the activity of complexes I and II and promotes the formation of complex-I-containing supercomplexes. In vivo, Fat1 is expressed in injured human and mouse arteries, and inactivation of SMC Fat1 in mice potentiates the response to vascular damage, with markedly increased medial hyperplasia and neointimal growth, and evidence of higher SMC mitochondrial respiration. These studies suggest that Fat1 controls mitochondrial activity to restrain cell growth during the reparative, proliferative state induced by vascular injury. Given recent reports linking Fat1 to cancer, abnormal kidney and muscle development, and neuropsychiatric disease, this Fat1 function may have importance in other settings of altered cell growth and metabolism.
Collapse
|
21
|
Gatica LV, Rosa AL. A complex interplay of genetic and epigenetic events leads to abnormal expression of the DUX4 gene in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2016; 26:844-852. [PMID: 27816329 DOI: 10.1016/j.nmd.2016.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a prevalent inherited human myopathy, develops following a complex interplay of genetic and epigenetic events. FSHD1, the more frequent genetic form, is associated with: (1) deletion of an integral number of 3.3 Kb (D4Z4) repeated elements at the chromosomal region 4q35, (2) a specific 4q35 subtelomeric haplotype denominated 4qA, and (3) decreased methylation of cytosines at the 4q35-linked D4Z4 units. FSHD2 is most often caused by mutations at the SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain 1) gene, on chromosome 18p11.32. FSHD2 individuals also carry the 4qA haplotype and decreased methylation of D4Z4 cytosines. Each D4Z4 unit contains a copy of the retrotransposed gene DUX4 (double homeobox containing protein 4). DUX4 gene functionality was questioned in the past because of its pseudogene-like structure, its location on repetitive telomeric DNA sequences (i.e. junk DNA), and the elusive nature of both the DUX4 transcript and the encoded protein, DUX4. It is now known that DUX4 is a nuclear-located transcription factor, which is normally expressed in germinal tissues. Aberrant DUX4 expression triggers a deregulation cascade inhibiting muscle differentiation, sensitizing cells to oxidative stress, and inducing muscle atrophy. A unifying pathogenic model for FSHD emerged with the recognition that the FSHD-permissive 4qA haplotype corresponds to a polyadenylation signal that stabilizes the DUX4 mRNA, allowing the toxic protein DUX4 to be expressed. This working hypothesis for FSHD pathogenesis highlights the intrinsic epigenetic nature of the molecular mechanism underlying FSHD as well as the pathogenic pathway connecting FSHD1 and FSHD2. Pharmacological control of either DUX4 gene expression or the activity of the DUX4 protein constitutes current potential rational therapeutic approaches to treat FSHD.
Collapse
Affiliation(s)
| | - Alberto Luis Rosa
- Laboratorio de Biología Celular y Molecular, Fundación Allende, Argentina; Servicio de Genética Médica y Laboratorio Diagnóstico Biología Molecular, Sanatorio Allende, Córdoba, Argentina; Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina.
| |
Collapse
|
22
|
Gaillard MC, Puppo F, Roche S, Dion C, Campana ES, Mariot V, Chaix C, Vovan C, Mazaleyrat K, Tasmadjian A, Bernard R, Dumonceaux J, Attarian S, Lévy N, Nguyen K, Magdinier F, Bartoli M. Segregation between SMCHD1 mutation, D4Z4 hypomethylation and Facio-Scapulo-Humeral Dystrophy: a case report. BMC MEDICAL GENETICS 2016; 17:66. [PMID: 27634379 PMCID: PMC5025538 DOI: 10.1186/s12881-016-0328-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
Background The main form of Facio-Scapulo-Humeral muscular Dystrophy is linked to copy number reduction of the 4q D4Z4 macrosatellite (FSHD1). In 5 % of cases, FSHD phenotype appears in the absence of D4Z4 reduction (FSHD2). In 70-80 % of these patients, variants of the SMCHD1 gene segregate with 4qA haplotypes and D4Z4 hypomethylation. Case presentation We report a family presenting with neuromuscular symptoms reminiscent of FSHD but without D4Z4 copy reduction. We characterized the 4q35 region using molecular combing, searched for mutation in the SMCHD1 gene and determined D4Z4 methylation level by sodium bisulfite sequencing. We further investigated the impact of the SMCHD1 mutation at the protein level and on the NMD-dependent degradation of transcript. In muscle, we observe moderate but significant reduction in D4Z4 methylation, not correlated with DUX4-fl expression. Exome sequencing revealed a heterozygous insertion of 7 bp in exon 37 of the SMCHD1 gene producing a loss of frame with premature stop codon 4 amino acids after the insertion (c.4614-4615insTATAATA). Both wild-type and mutated transcripts are detected. Conclusion The truncated protein is absent and the full-length protein level is similar in patients and controls indicating that in this family, FSHD is not associated with SMCHD1 haploinsufficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0328-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Camille Dion
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Emmanuelle Salort Campana
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Centre de Référence des Maladies Neuromusculaires et de la SLA, Hôpital de la Timone, Marseille, 13385, France
| | - Virginie Mariot
- Center of Research in Myology/ Institut de Myologie UMR974 - UPMC Université Paris 6/ Inserm /FRE3617- CNRS, Groupement Hospitalier de la Pitié Salpétrière, Paris, Cedex 13, France
| | - Charlene Chaix
- APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | - Catherine Vovan
- APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | | | | | - Rafaelle Bernard
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | - Julie Dumonceaux
- Center of Research in Myology/ Institut de Myologie UMR974 - UPMC Université Paris 6/ Inserm /FRE3617- CNRS, Groupement Hospitalier de la Pitié Salpétrière, Paris, Cedex 13, France
| | - Shahram Attarian
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Centre de Référence des Maladies Neuromusculaires et de la SLA, Hôpital de la Timone, Marseille, 13385, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | - Karine Nguyen
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | | | - Marc Bartoli
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| |
Collapse
|
23
|
Braun GS, Kuszka A, Dau C, Kriz W, Moeller MJ. Interaction of atypical cadherin Fat1 with SoHo adaptor proteins CAP/ponsin and ArgBP2. Biochem Biophys Res Commun 2016; 472:88-94. [PMID: 26903299 DOI: 10.1016/j.bbrc.2016.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Mammalian Fat1 is a giant atypical cadherin/tumor suppressor involved in the regulation of cellular orientation, migration, and growth. Fat1 is implicated in the development of the brain, eye, and kidney. Altered expression or mutations of FAT1 are also associated with cancer and facioscapulohumeral muscular dystrophy (FSHD). Yet, the mechanistic functions of this pathway remain incompletely understood. Here, we report the identification of Sorbin-homology (SoHo) proteins as novel interaction partners of Fat1 by virtue of a yeast-two-hybrid screen. SoHo proteins play diverse roles as adaptor proteins in cell signaling, cell adhesion and sarcomere architecture, including altered expression in cancer and FSHD. Specifically, we found SoHo proteins CAP/ponsin-1 and -2 (Sorbs1) and ArgBP2 (Sorbs2) to interact with the cytoplasmic domain of Fat1. We mapped the interaction to a prolin-rich classic type II PXXP motif within Fat1 and to the three Src-homology (SH3) domains within SoHo proteins using mutant expression in yeast, pulldown assays, and cell culture. Functionally, endogenous ponsin-2 expression of NRK-52E cells at cellular leading edges was lost upon knockdown of Fat1. In summary, our data point to an interaction of Fat1 with SoHo proteins that is able to recruit SoHo proteins to sites of Fat1 expression.
Collapse
Affiliation(s)
- Gerald S Braun
- Division of Nephrology and Immunology, RWTH Aachen University, Germany.
| | | | - Cécile Dau
- Kaiser-Franz-Josef-Spital mit Gottfried von Preyer'schem Kinderspital, Vienna, Austria
| | - Wilhelm Kriz
- Institute for Neuroanatomy, Medical Faculty Mannheim of the University of Heidelberg, Germany
| | - Marcus J Moeller
- Division of Nephrology and Immunology, RWTH Aachen University, Germany
| |
Collapse
|
24
|
Robin JD, Ludlow AT, Batten K, Gaillard MC, Stadler G, Magdinier F, Wright WE, Shay JW. SORBS2 transcription is activated by telomere position effect-over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy. Genome Res 2015; 25:1781-90. [PMID: 26359233 PMCID: PMC4665000 DOI: 10.1101/gr.190660.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023]
Abstract
DNA is organized into complex three-dimensional chromatin structures, but how this spatial organization regulates gene expression remains a central question. These DNA/chromatin looping structures can range in size from 10-20 kb (enhancers/repressors) to many megabases during intra- and inter-chromosomal interactions. Recently, the influence of telomere length on chromatin organization prior to senescence has revealed the existence of long-distance chromatin loops that dictate the expression of genes located up to 10 Mb from the telomeres (Telomere Position Effect-Over Long Distances [TPE-OLD]). Here, we demonstrate the existence of a telomere loop at the 4q35 locus involving the sorbin and SH3 domain-containing protein 2 gene, SORBS2, a skeletal muscle protein using a modification of the chromosome conformation capture method. The loop reveals a cis-acting mechanism modifying SORBS2 transcription. The expression of this gene is altered by TPE-OLD in myoblasts from patients affected with the age-associated genetic disease, facioscapulohumeral muscular dystrophy (FSHD1A, MIM 158900). SORBS2 is expressed in FSHD myoblasts with short telomeres, while not detectable in FSHD myoblasts with long telomeres or in healthy myoblasts regardless of telomere length. This indicates that TPE-OLD may modify the regulation of the 4q35 locus in a pathogenic context. Upon differentiation, both FSHD and healthy myotubes express SORBS2, suggesting that SORBS2 is normally up-regulated by maturation/differentiation of skeletal muscle and is misregulated by TPE-OLD-dependent variegation in FSHD myoblasts. These findings provide additional insights for the complexity and age-related symptoms of FSHD.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Biopsy
- Chromosome Deletion
- Chromosomes, Human, Pair 4
- DNA Methylation
- Epistasis, Genetic
- Gene Expression Regulation
- Genetic Loci
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Muscle Cells/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Myoblasts
- RNA-Binding Proteins
- Telomere/genetics
- Telomere Shortening
- Transcriptional Activation
Collapse
Affiliation(s)
- Jérôme D Robin
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew T Ludlow
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kimberly Batten
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Guido Stadler
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA; Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Molecular combing compared to Southern blot for measuring D4Z4 contractions in FSHD. Neuromuscul Disord 2015; 25:945-51. [PMID: 26420234 DOI: 10.1016/j.nmd.2015.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 11/21/2022]
Abstract
We compare molecular combing to Southern blot in the analysis of the facioscapulohumeral muscular dystrophy type 1 locus (FSHD1) on chromosome 4q35-qter (chr 4q) in genomic DNA specimens sent to a clinical laboratory for FSHD testing. A de-identified set of 87 genomic DNA specimens determined by Southern blot as normal (n = 71), abnormal with D4Z4 macrosatellite repeat array contractions (n = 7), indeterminate (n = 6), borderline (n = 2), or mosaic (n = 1) was independently re-analyzed by molecular combing in a blinded fashion. The molecular combing results were identical to the Southern blot results in 75 (86%) of cases. All contractions (n = 7) and mosaics (n = 1) detected by Southern blot were confirmed by molecular combing. Of the 71 samples with normal Southern blot results, 67 (94%) had concordant molecular combing results. The four discrepancies were either mosaic (n = 2), rearranged (n = 1), or borderline by molecular combing (n = 1). All indeterminate Southern blot results (n = 6) were resolved by molecular combing as either normal (n = 4), borderline (n = 1), or rearranged (n = 1). The two borderline Southern blot results showed a D4Z4 contraction on the chr 4qA allele and a normal result by molecular combing. Molecular combing overcomes a number of technical limitations of Southern blot by providing direct visualization of D4Z4 macrosatellite repeat arrays on specific chr 4q and chr 10q alleles and more precise D4Z4 repeat sizing. This study suggests that molecular combing has superior analytical validity compared to Southern blot for determining D4Z4 contraction size, detecting mosaicism, and resolving borderline and indeterminate Southern blot results. Further studies are needed to establish the clinical validity and diagnostic accuracy of these findings in FSHD.
Collapse
|
26
|
Rickard AM, Petek LM, Miller DG. Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways. Hum Mol Genet 2015; 24:5901-14. [PMID: 26246499 DOI: 10.1093/hmg/ddv315] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/29/2015] [Indexed: 01/08/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by chromatin relaxation that results in aberrant expression of the transcription factor Double Homeobox 4 (DUX4). DUX4 protein is present in a small subset of FSHD muscle cells, making its detection and analysis of its effects historically difficult. Using a DUX4-activated reporter, we demonstrate the burst expression pattern of endogenous DUX4, its method of signal amplification in the unique shared cytoplasm of the myotube, and FSHD cell death that depends on its activation. Transcriptome analysis of DUX4-expressing cells revealed that DUX4 activation disrupts RNA metabolism including RNA splicing, surveillance and transport pathways. Cell signaling, polarity and migration pathways were also disrupted. Thus, DUX4 expression is sufficient for myocyte death, and these findings suggest mechanistic links between DUX4 expression and cell migration, supporting recent descriptions of phenotypic similarities between FSHD and an FSHD-like condition caused by FAT1 mutations.
Collapse
Affiliation(s)
- Amanda M Rickard
- Department of Pediatrics, Institute for Stem Cell and Regenerative Medicine and
| | - Lisa M Petek
- Department of Pediatrics, Institute for Stem Cell and Regenerative Medicine and
| | - Daniel G Miller
- Department of Pediatrics, Institute for Stem Cell and Regenerative Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
27
|
Kim E, Rich J, Karoutas A, Tarlykov P, Cochet E, Malysheva D, Mamchaoui K, Ogryzko V, Pirozhkova I. ZNF555 protein binds to transcriptional activator site of 4qA allele and ANT1: potential implication in Facioscapulohumeral dystrophy. Nucleic Acids Res 2015; 43:8227-42. [PMID: 26184877 PMCID: PMC4787827 DOI: 10.1093/nar/gkv721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 06/27/2015] [Indexed: 01/18/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is an epi/genetic satellite disease associated with at least two satellite sequences in 4q35: (i) D4Z4 macrosatellite and (ii) β-satellite repeats (BSR), a prevalent part of the 4qA allele. Most of the recent FSHD studies have been focused on a DUX4 transcript inside D4Z4 and its tandem contraction in FSHD patients. However, the D4Z4-contraction alone is not pathological, which would also require the 4qA allele. Since little is known about BSR, we investigated the 4qA BSR functional role in the transcriptional control of the FSHD region 4q35. We have shown that an individual BSR possesses enhancer activity leading to activation of the Adenine Nucleotide Translocator 1 gene (ANT1), a major FSHD candidate gene. We have identified ZNF555, a previously uncharacterized protein, as a putative transcriptional factor highly expressed in human primary myoblasts that interacts with the BSR enhancer site and impacts the ANT1 promoter activity in FSHD myoblasts. The discovery of the functional role of the 4qA allele and ZNF555 in the transcriptional control of ANT1 advances our understanding of FSHD pathogenesis and provides potential therapeutic targets.
Collapse
Affiliation(s)
- Elena Kim
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Jeremy Rich
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Adam Karoutas
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Pavel Tarlykov
- National Center for Biotechnology, Astana 010000, Kazakhstan
| | - Emilie Cochet
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France Proteomic Platform, IRCIV Gustave Roussy, Villejuif 94408, France
| | - Daria Malysheva
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Kamel Mamchaoui
- Thérapie des maladies du muscle strié, Institut de Myologie, UM76-Pierre et Marie CURIE University/U974-INSERM/UMR7215-CNRS, Paris 75013, France
| | - Vasily Ogryzko
- Proteomic Platform, IRCIV Gustave Roussy, Villejuif 94408, France INSERM, CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| | - Iryna Pirozhkova
- CNRS, University Paris-Sud, UMR-8126, Gustave Roussy, Villejuif 94408, France
| |
Collapse
|
28
|
Bello SM, Smith CL, Eppig JT. Allele, phenotype and disease data at Mouse Genome Informatics: improving access and analysis. Mamm Genome 2015; 26:285-94. [PMID: 26162703 PMCID: PMC4534497 DOI: 10.1007/s00335-015-9582-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/23/2015] [Indexed: 11/16/2022]
Abstract
A core part of the Mouse Genome Informatics (MGI) resource is the collection of mouse mutations and the annotation phenotypes and diseases displayed by mice carrying these mutations. These data are integrated with the rest of data in MGI and exported to numerous other resources. The use of mouse phenotype data to drive translational research into human disease has expanded rapidly with the improvements in sequencing technology. MGI has implemented many improvements in allele and phenotype data annotation, search, and display to facilitate access to these data through multiple avenues. For example, the description of alleles has been modified to include more detailed categories of allele attributes. This allows improved discrimination between mutation types. Further, connections have been created between mutations involving multiple genes and each of the genes overlapping the mutation. This allows users to readily find all mutations affecting a gene and see all genes affected by a mutation. In a similar manner, the genes expressed by transgenic or knock-in alleles are now connected to these alleles. The advanced search forms and public reports have been updated to take advantage of these improvements. These search forms and reports are used by an expanding number of researchers to identify novel human disease genes and mouse models of human disease.
Collapse
Affiliation(s)
- Susan M Bello
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, 04609, USA,
| | | | | |
Collapse
|
29
|
Mariot V, Roche S, Hourdé C, Portilho D, Sacconi S, Puppo F, Duguez S, Rameau P, Caruso N, Delezoide AL, Desnuelle C, Bessières B, Collardeau S, Feasson L, Maisonobe T, Magdinier F, Helmbacher F, Butler-Browne G, Mouly V, Dumonceaux J. Correlation between low FAT1 expression and early affected muscle in facioscapulohumeral muscular dystrophy. Ann Neurol 2015; 78:387-400. [DOI: 10.1002/ana.24446] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Virginie Mariot
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Stephane Roche
- Timone Faculty of Medicine, Aix-Marseille University, Mixed health research unit 910, National Institute of Health and Medical Research; Marseille
| | - Christophe Hourdé
- Physiology and Exercise Laboratory, EA4338, Technolac Scientific Campus, University of Savoie Mont Blanc; Le Bourget-du-Lac
| | - Debora Portilho
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Sabrina Sacconi
- Mixed Unit of Research 7277, National Center for Scientific Research, Nice University Hospital; Nice
- Neuromuscular Disease Reference Center, Nice University Hospital; Nice
| | - Francesca Puppo
- Timone Faculty of Medicine, Aix-Marseille University, Mixed health research unit 910, National Institute of Health and Medical Research; Marseille
| | - Stephanie Duguez
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Philippe Rameau
- Imaging and Cytometry Platform, Gustave Roussy Institute; Villejuif
| | - Nathalie Caruso
- Aix-Marseille University, Developmental Biology Institute of Marseille, National Center for Scientific Research Mixed Unit of Research 7288; Luminy Scientific Park Marseille
| | - Anne-Lise Delezoide
- Department of Developmental Biology; Robert Debré Hospital, U696, National Institute of Health and Medical Research; Paris
| | - Claude Desnuelle
- Mixed Unit of Research 7277, National Center for Scientific Research, Nice University Hospital; Nice
- Neuromuscular Disease Reference Center, Nice University Hospital; Nice
| | - Bettina Bessières
- U781, National Institute of Health and Medical Research and IMAGINE Foundation, Department of Genetics, Necker Hospital for Sick Children, Public Hospital Network of Paris and Paris Descartes University; Paris
| | | | - Leonard Feasson
- Physiology and Exercise Laboratory EA4338, Rare Neuromuscular Diseases Referent Center, Rhône-Alpes Bellevue Hospital, University Hospital Center of Saint-Étienne; Saint-Étienne
| | - Thierry Maisonobe
- Department of Clinical Neurophysiology; Pitié-Salpêtrière Hospital Group; Paris France
| | - Frederique Magdinier
- Timone Faculty of Medicine, Aix-Marseille University, Mixed health research unit 910, National Institute of Health and Medical Research; Marseille
| | - Françoise Helmbacher
- Aix-Marseille University, Developmental Biology Institute of Marseille, National Center for Scientific Research Mixed Unit of Research 7288; Luminy Scientific Park Marseille
| | - Gillian Butler-Browne
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Vincent Mouly
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| | - Julie Dumonceaux
- Center of Research in Myology, Pierre and Marie Curie University, Sorbonne Universities; Paris
- Mixed health research unit 974, National Institute of Health and Medical Research; Paris
- Unit undergoing review 3617, National Center for Scientific Research; Paris
- Institute of Myology; Paris
| |
Collapse
|
30
|
Lek A, Rahimov F, Jones PL, Kunkel LM. Emerging preclinical animal models for FSHD. Trends Mol Med 2015; 21:295-306. [PMID: 25801126 DOI: 10.1016/j.molmed.2015.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/18/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is a unique and complex genetic disease that is not entirely solved. Recent advances in the field have led to a consensus genetic premise for the disorder, enabling researchers to now pursue the design of preclinical models. In this review we explore all available FSHD models (DUX4-dependent and -independent) for their utility in therapeutic discovery and potential to yield novel disease insights. Owing to the complex nature of FSHD, there is currently no single model that accurately recapitulates the genetic and pathophysiological spectrum of the disorder. Existing models emphasize only specific aspects of the disease, highlighting the need for more collaborative research and novel paradigms to advance the translational research space of FSHD.
Collapse
Affiliation(s)
- Angela Lek
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; The Wellstone Program, Departments of Neurology and Cell and Developmental Biology, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA.
| | - Fedik Rahimov
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; The Wellstone Program, Departments of Neurology and Cell and Developmental Biology, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA
| | - Peter L Jones
- The Wellstone Program, Departments of Neurology and Cell and Developmental Biology, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA; The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NIHCD) Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; The Wellstone Program, Departments of Neurology and Cell and Developmental Biology, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA
| |
Collapse
|