1
|
Katsonis P, Lichtarge O. Meta-EA: a gene-specific combination of available computational tools for predicting missense variant effects. Nat Commun 2025; 16:159. [PMID: 39746940 PMCID: PMC11696468 DOI: 10.1038/s41467-024-55066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Computational methods for estimating missense variant impact suffer from inconsistent performance across genes, which poses a major challenge for their reliable use in clinical practice. While ensemble scores leverage multiple prediction methods to enhance consistency, the overrepresentation of certain genes in the training data can bias their outcomes. To address this critical limitation, we propose a gene-specific ensemble framework trained on reference computational annotations rather than on clinical or experimental data. Accordingly, we generate Meta-EA ensemble scores that achieve comparable performance to the top individual predicting method for each gene set. Incorporating the effects of splicing and the allele frequency of human polymorphisms further enhances the performance of Meta-EA, achieving an area under the receiver operating characteristic curve of 0.97 for both gene-balanced and imbalanced clinical assessments. In conclusion, this work leverages the wealth of existing variant impact prediction approaches to generate improved estimations for clinical interpretation.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Biswas K, Mitrophanov AY, Sahu S, Sullivan T, Southon E, Nousome D, Reid S, Narula S, Smolen J, Sengupta T, Riedel-Topper M, Kapoor M, Babbar A, Stauffer S, Cleveland L, Tandon M, Malys T, Sharan SK. Sequencing-based functional assays for classification of BRCA2 variants in mouse ESCs. CELL REPORTS METHODS 2023; 3:100628. [PMID: 37922907 PMCID: PMC10694496 DOI: 10.1016/j.crmeth.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Sequencing of genes, such as BRCA1 and BRCA2, is recommended for individuals with a personal or family history of early onset and/or bilateral breast and/or ovarian cancer or a history of male breast cancer. Such sequencing efforts have resulted in the identification of more than 17,000 BRCA2 variants. The functional significance of most variants remains unknown; consequently, they are called variants of uncertain clinical significance (VUSs). We have previously developed mouse embryonic stem cell (mESC)-based assays for functional classification of BRCA2 variants. We now developed a next-generation sequencing (NGS)-based approach for functional evaluation of BRCA2 variants using pools of mESCs expressing 10-25 BRCA2 variants from a given exon. We use this approach for functional evaluation of 223 variants listed in ClinVar. Our functional classification of BRCA2 variants is concordant with the classification reported in ClinVar or those reported by other orthogonal assays.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Alexander Y Mitrophanov
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Leidos Biomed Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Darryl Nousome
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sakshi Narula
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julia Smolen
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Trisha Sengupta
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Maximilian Riedel-Topper
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Medha Kapoor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Anav Babbar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Mayank Tandon
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tyler Malys
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
3
|
Kurosawa R, Iida K, Ajiro M, Awaya T, Yamada M, Kosaki K, Hagiwara M. PDIVAS: Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing. BMC Genomics 2023; 24:601. [PMID: 37817060 PMCID: PMC10563346 DOI: 10.1186/s12864-023-09645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Deep-intronic variants that alter RNA splicing were ineffectively evaluated in the search for the cause of genetic diseases. Determination of such pathogenic variants from a vast number of deep-intronic variants (approximately 1,500,000 variants per individual) represents a technical challenge to researchers. Thus, we developed a Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing (PDIVAS) to easily detect pathogenic deep-intronic variants. RESULTS PDIVAS was trained on an ensemble machine-learning algorithm to classify pathogenic and benign variants in a curated dataset. The dataset consists of manually curated pathogenic splice-altering variants (SAVs) and commonly observed benign variants within deep introns. Splicing features and a splicing constraint metric were used to maximize the predictive sensitivity and specificity, respectively. PDIVAS showed an average precision of 0.92 and a maximum MCC of 0.88 in classifying these variants, which were the best of the previous predictors. When PDIVAS was applied to genome sequencing analysis on a threshold with 95% sensitivity for reported pathogenic SAVs, an average of 27 pathogenic candidates were extracted per individual. Furthermore, the causative variants in simulated patient genomes were more efficiently prioritized than the previous predictors. CONCLUSION Incorporating PDIVAS into variant interpretation pipelines will enable efficient detection of disease-causing deep-intronic SAVs and contribute to improving the diagnostic yield. PDIVAS is publicly available at https://github.com/shiro-kur/PDIVAS .
Collapse
Affiliation(s)
- Ryo Kurosawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Kei Iida
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida- Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiko Ajiro
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104- 0045, Japan
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Laboratory of Tumor Microenvironment and Immunity, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Functional Analyses of Rare Germline Missense BRCA1 Variants Located within and outside Protein Domains with Known Functions. Genes (Basel) 2023; 14:genes14020262. [PMID: 36833189 PMCID: PMC9957003 DOI: 10.3390/genes14020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The BRCA1 protein is implicated in numerous important cellular processes to prevent genomic instability and tumorigenesis, and pathogenic germline variants predispose carriers to hereditary breast and ovarian cancer (HBOC). Most functional studies of missense variants in BRCA1 focus on variants located within the Really Interesting New Gene (RING), coiled-coil and BRCA1 C-terminal (BRCT) domains, and several missense variants in these regions have been shown to be pathogenic. However, the majority of these studies focus on domain specific assays, and have been performed using isolated protein domains and not the full-length BRCA1 protein. Furthermore, it has been suggested that BRCA1 missense variants located outside domains with known function are of no functional importance, and could be classified as (likely) benign. However, very little is known about the role of the regions outside the well-established domains of BRCA1, and only a few functional studies of missense variants located within these regions have been published. In this study, we have, therefore, functionally evaluated the effect of 14 rare BRCA1 missense variants considered to be of uncertain clinical significance, of which 13 are located outside the well-established domains and one within the RING domain. In order to investigate the hypothesis stating that most BRCA1 variants located outside the known protein domains are benign and of no functional importance, multiple protein assays including protein expression and stability, subcellular localisation and protein interactions have been performed, utilising the full-length protein to better mimic the native state of the protein. Two variants located outside the known domains (p.Met297Val and p.Asp1152Asn) and one variant within the RING domain (p.Leu52Phe) were found to make the BRCA1 protein more prone to proteasome-mediated degradation. In addition, two variants (p.Leu1439Phe and p.Gly890Arg) also located outside known domains were found to have reduced protein stability compared to the wild type protein. These findings indicate that variants located outside the RING, BRCT and coiled-coiled domains could also affect the BRCA1 protein function. For the nine remaining variants, no significant effects on BRCA1 protein functions were observed. Based on this, a reclassification of seven variants from VUS to likely benign could be suggested.
Collapse
|
5
|
Clark KA, Paquette A, Tao K, Bell R, Boyle JL, Rosenthal J, Snow AK, Stark AW, Thompson BA, Unger J, Gertz J, Varley KE, Boucher KM, Goldgar DE, Foulkes WD, Thomas A, Tavtigian SV. Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions. Am J Hum Genet 2022; 109:1153-1174. [PMID: 35659930 PMCID: PMC9247830 DOI: 10.1016/j.ajhg.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
BRCA1 is a high-risk susceptibility gene for breast and ovarian cancer. Pathogenic protein-truncating variants are scattered across the open reading frame, but all known missense substitutions that are pathogenic because of missense dysfunction are located in either the amino-terminal RING domain or the carboxy-terminal BRCT domain. Heterodimerization of the BRCA1 and BARD1 RING domains is a molecularly defined obligate activity. Hence, we tested every BRCA1 RING domain missense substitution that can be created by a single nucleotide change for heterodimerization with BARD1 in a mammalian two-hybrid assay. Downstream of the laboratory assay, we addressed three additional challenges: assay calibration, validation thereof, and integration of the calibrated results with other available data, such as computational evidence and patient/population observational data to achieve clinically applicable classification. Overall, we found that 15%-20% of BRCA1 RING domain missense substitutions are pathogenic. Using a Bayesian point system for data integration and variant classification, we achieved clinical classification of 89% of observed missense substitutions. Moreover, among missense substitutions not present in the human observational data used here, we find an additional 45 with concordant computational and functional assay evidence in favor of pathogenicity plus 223 with concordant evidence in favor of benignity; these are particularly likely to be classified as likely pathogenic and likely benign, respectively, once human observational data become available.
Collapse
Affiliation(s)
- Kathleen A Clark
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew Paquette
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kayoko Tao
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Russell Bell
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Julie L Boyle
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Judith Rosenthal
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Angela K Snow
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Alex W Stark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bryony A Thompson
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua Unger
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Katherine E Varley
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kenneth M Boucher
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - David E Goldgar
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - William D Foulkes
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Research Institute McGill University Health Center, Montreal, QC H3T 1E2, Canada; Departments of Medicine, Human Genetics, and Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Alun Thomas
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Sean V Tavtigian
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Li H, Engel C, de la Hoya M, Peterlongo P, Yannoukakos D, Livraghi L, Radice P, Thomassen M, Hansen TVO, Gerdes AM, Nielsen HR, Caputo SM, Zambelli A, Borg A, Solano A, Thomas A, Parsons MT, Antoniou AC, Leslie G, Yang X, Chenevix-Trench G, Caldes T, Kwong A, Pedersen IS, Lautrup CK, John EM, Terry MB, Hopper JL, Southey MC, Andrulis IL, Tischkowitz M, Janavicius R, Boonen SE, Kroeldrup L, Varesco L, Hamann U, Vega A, Palmero EI, Garber J, Montagna M, Van Asperen CJ, Foretova L, Greene MH, Selkirk T, Moller P, Toland AE, Domchek SM, James PA, Thorne H, Eccles DM, Nielsen SM, Manoukian S, Pasini B, Caligo MA, Lazaro C, Kirk J, Wappenschmidt B, Spurdle AB, Couch FJ, Schmutzler R, Goldgar DE. Risks of breast and ovarian cancer for women harboring pathogenic missense variants in BRCA1 and BRCA2 compared with those harboring protein truncating variants. Genet Med 2022; 24:119-129. [PMID: 34906479 PMCID: PMC10170303 DOI: 10.1016/j.gim.2021.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Germline genetic testing for BRCA1 and BRCA2 variants has been a part of clinical practice for >2 decades. However, no studies have compared the cancer risks associated with missense pathogenic variants (PVs) with those associated with protein truncating (PTC) variants. METHODS We collected 582 informative pedigrees segregating 1 of 28 missense PVs in BRCA1 and 153 pedigrees segregating 1 of 12 missense PVs in BRCA2. We analyzed 324 pedigrees with PTC variants in BRCA1 and 214 pedigrees with PTC variants in BRCA2. Cancer risks were estimated using modified segregation analysis. RESULTS Estimated breast cancer risks were markedly lower for women aged >50 years carrying BRCA1 missense PVs than for the women carrying BRCA1 PTC variants (hazard ratio [HR] = 3.9 [2.4-6.2] for PVs vs 12.8 [5.7-28.7] for PTC variants; P = .01), particularly for missense PVs in the BRCA1 C-terminal domain (HR = 2.8 [1.4-5.6]; P = .005). In case of BRCA2, for women aged >50 years, the HR was 3.9 (2.0-7.2) for those heterozygous for missense PVs compared with 7.0 (3.3-14.7) for those harboring PTC variants. BRCA1 p.[Cys64Arg] and BRCA2 p.[Trp2626Cys] were associated with particularly low risks of breast cancer compared with other PVs. CONCLUSION These results have important implications for the counseling of at-risk women who harbor missense PVs in the BRCA1/2 genes.
Collapse
Affiliation(s)
- Hongyan Li
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, National Centre for Scientific Research "Demokritos", INRASTES Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, Athens, Greece
| | - Luca Livraghi
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy; University of Siena, Siena, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henriette R Nielsen
- Department of Clinical Genetics Sygehus Lillebaelt, Vejle Hospital, Vejle, Denmark
| | - Sandrine M Caputo
- Service de Génétique, Institut Curie, Paris, France; Paris Sciences and Lettres Research University, Paris, France
| | - Alberto Zambelli
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy
| | - Ake Borg
- Divisions of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Angela Solano
- INBIOMED, Faculty of Medicine, University of Buenos Aires, CONICET and Genotyping Laboratory, Department of Clinical Chemistry, CEMIC, Buenos Aires, Argentina
| | - Abigail Thomas
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Trinidad Caldes
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Ava Kwong
- Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong; Department of Surgery, LKS Faculty of Medicine,University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Inge Søkilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Charlotte K Lautrup
- Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Esther M John
- Department of Epidemiology & Population Health and Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Ramunas Janavicius
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Susanne E Boonen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lone Kroeldrup
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Liliana Varesco
- Unit of Hereditary Cancer, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Vega
- Fundación Pública galega Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil; National Cancer Institute, Rio de Janeiro, Brazil
| | - Judy Garber
- Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, IOV - Istituto Oncologico Veneto - IRCCS, Padova, Italy
| | - Christi J Van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tina Selkirk
- NorthShore University HealthSystem, University of Chicago, Evanston, IL
| | - Pal Moller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Hereditary Tumors, HELIOS-Klinikum Wuppertal, University of Witten-Herdecke, Wuppertal, Germany
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, Penn Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Heather Thorne
- The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sarah M Nielsen
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Barbara Pasini
- Medical Genetics Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Maria A Caligo
- SOD Genetica Molecolare, University Hospital, Pisa, Italy
| | - Conxi Lazaro
- ONCOBELL-IDIBELL-IDIBGI-IGTP, CIBERONC, Hereditary Cancer Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Judy Kirk
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney Medical School, University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rita Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - David E Goldgar
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT.
| |
Collapse
|
7
|
Caputo SM, Golmard L, Léone M, Damiola F, Guillaud-Bataille M, Revillion F, Rouleau E, Derive N, Buisson A, Basset N, Schwartz M, Vilquin P, Garrec C, Privat M, Gay-Bellile M, Abadie C, Abidallah K, Airaud F, Allary AS, Barouk-Simonet E, Belotti M, Benigni C, Benusiglio PR, Berthemin C, Berthet P, Bertrand O, Bézieau S, Bidart M, Bignon YJ, Birot AM, Blanluet M, Bloucard A, Bombled J, Bonadona V, Bonnet F, Bonnet-Dupeyron MN, Boulaire M, Boulouard F, Bouras A, Bourdon V, Brahimi A, Brayotel F, Bressac de Paillerets B, Bronnec N, Bubien V, Buecher B, Cabaret O, Carriere J, Chiesa J, Chieze-Valéro S, Cohen C, Cohen-Haguenauer O, Colas C, Collonge-Rame MA, Conoy AL, Coulet F, Coupier I, Crivelli L, Cusin V, De Pauw A, Dehainault C, Delhomelle H, Delnatte C, Demontety S, Denizeau P, Devulder P, Dreyfus H, d’Enghein CD, Dupré A, Durlach A, Dussart S, Fajac A, Fekairi S, Fert-Ferrer S, Fiévet A, Fouillet R, Mouret-Fourme E, Gauthier-Villars M, Gesta P, Giraud S, Gladieff L, Goldbarg V, Goussot V, Guibert V, Guillerm E, Guy C, Hardouin A, Heude C, Houdayer C, Ingster O, Jacquot-Sawka C, Jones N, Krieger S, Lacoste S, Lallaoui H, Larbre H, Laugé A, Le Guyadec G, Le Mentec M, Lecerf C, Le Gall J, Legendre B, Legrand C, Legros A, Lejeune S, Lidereau R, Lignon N, Limacher JM, Doriane Livon, Lizard S, Longy M, Lortholary A, Macquere P, Mailliez A, Malsa S, Margot H, Mari V, Maugard C, Meira C, Menjard J, Molière D, Moncoutier V, Moretta-Serra J, Muller E, Nevière Z, Nguyen Minh Tuan TV, Noguchi T, Noguès C, Oca F, Popovici C, Prieur F, Raad S, Rey JM, Ricou A, Salle L, Saule C, Sevenet N, Simaga F, Sobol H, Suybeng V, Tennevet I, Tenreiro H, Tinat J, Toulas C, Turbiez I, Uhrhammer N, Vande Perre P, Vaur D, Venat L, Viellard N, Villy MC, Warcoin M, Yvard A, Zattara H, Caron O, Lasset C, Remenieras A, Boutry-Kryza N, Castéra L, Stoppa-Lyonnet D. Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach. Am J Hum Genet 2021; 108:1907-1923. [PMID: 34597585 DOI: 10.1016/j.ajhg.2021.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Up to 80% of BRCA1 and BRCA2 genetic variants remain of uncertain clinical significance (VUSs). Only variants classified as pathogenic or likely pathogenic can guide breast and ovarian cancer prevention measures and treatment by PARP inhibitors. We report the first results of the ongoing French national COVAR (cosegregation variant) study, the aim of which is to classify BRCA1/2 VUSs. The classification method was a multifactorial model combining different associations between VUSs and cancer, including cosegregation data. At this time, among the 653 variants selected, 101 (15%) distinct variants shared by 1,624 families were classified as pathogenic/likely pathogenic or benign/likely benign by the COVAR study. Sixty-six of the 101 (65%) variants classified by COVAR would have remained VUSs without cosegregation data. Of note, among the 34 variants classified as pathogenic by COVAR, 16 remained VUSs or likely pathogenic when following the ACMG/AMP variant classification guidelines. Although the initiation and organization of cosegregation analyses require a considerable effort, the growing number of available genetic tests results in an increasing number of families sharing a particular variant, and thereby increases the power of such analyses. Here we demonstrate that variant cosegregation analyses are a powerful tool for the classification of variants in the BRCA1/2 breast-ovarian cancer predisposition genes.
Collapse
|
8
|
Caputo SM, Telly D, Briaux A, Sesen J, Ceppi M, Bonnet F, Bourdon V, Coulet F, Castera L, Delnatte C, Hardouin A, Mazoyer S, Schultz I, Sevenet N, Uhrhammer N, Bonnet C, Tilkin-Mariamé AF, Houdayer C, Moncoutier V, Andrieu C, Bièche I, Stern MH, Stoppa-Lyonnet D, Lidereau R, Toulas C, Rouleau E. 5' Region Large Genomic Rearrangements in the BRCA1 Gene in French Families: Identification of a Tandem Triplication and Nine Distinct Deletions with Five Recurrent Breakpoints. Cancers (Basel) 2021; 13:cancers13133171. [PMID: 34202044 PMCID: PMC8268747 DOI: 10.3390/cancers13133171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Large genomic rearrangements in BRCA1 consisting of deletions/duplications of one or several exons are complex events, often occurring in the 5′ region. We characterized 10 events in 20 families: one large triplication classified as benign and nine large deletions classified as pathogenic. The breakpoint localization will certainly help to further understand the chromatin structure in regions sensitive to rearrangement. Abstract Background: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5′ region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. Results: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. Conclusions: Taken together, our results firmly establish that the BRCA1 5′ region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.
Collapse
Affiliation(s)
- Sandrine M. Caputo
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Dominique Telly
- Laboratoire d’Oncogénétique, Institut Claudius Regaud, IUCT-O, F-31059 Toulouse, France;
| | - Adrien Briaux
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Julie Sesen
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Maurizio Ceppi
- Roche Innovation Center Basel (RICB), Roche Pharma Research and Early Development, CH-4052 Basel, Switzerland;
| | - Françoise Bonnet
- Laboratoire de Génétique Constitutionnelle et INSERM U916 VINCO, Institut Bergonié, CEDEX, F-33076 Bordeaux, France; (F.B.); (N.S.)
| | - Violaine Bourdon
- Laboratoire d’Oncogénétique Moléculaire, Département de Biologie du Cancer, Institut Paoli-Calmettes, F-13273 Marseille, France;
| | - Florence Coulet
- Department of Genetics, Pitié-Salpêtriere Hospital, Assistance Publique-Hopitaux de Paris, Sorbonne University, F-75013 Paris, France;
| | - Laurent Castera
- Laboratoire de Biologie et de Génétique du Cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, F-14076 Caen, France; (L.C.); (A.H.)
| | - Capucine Delnatte
- Service de Génétique Médicale, Unité de Génétique Moléculaire, CHU Nantes, F-44093 Nantes, France;
| | - Agnès Hardouin
- Laboratoire de Biologie et de Génétique du Cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, F-14076 Caen, France; (L.C.); (A.H.)
| | - Sylvie Mazoyer
- Centre de Recherche en Neurosciences de Lyon, INSERM, U1028, CNRS, UMR5292, Université de Lyon, F-69008 Lyon, France;
| | - Inès Schultz
- Centre Paul Strauss, Laboratoire de Biologie Tumorale—Oncogénétique, F-67000 Strasbourg, France;
| | - Nicolas Sevenet
- Laboratoire de Génétique Constitutionnelle et INSERM U916 VINCO, Institut Bergonié, CEDEX, F-33076 Bordeaux, France; (F.B.); (N.S.)
| | - Nancy Uhrhammer
- Biologie Clinique et Oncologique, Biologie Moléculaire—Centre Jean Perrin, F-63000 Clermont-Ferrand, France;
| | - Céline Bonnet
- Institut de Cancérologie, 6 Avenue de Bourgogne, F-54519 Vandœuvre-lès-Nancy, France;
| | - Anne-Françoise Tilkin-Mariamé
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, F-31000 Toulouse, France;
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, F-76183 Rouen, France;
- Normandy Centre for Genomic and 41 Personalized Medicine, Department of Genetics, University Hospital, F-76183 Rouen, France
| | - Virginie Moncoutier
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Catherine Andrieu
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | | | - Ivan Bièche
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Faculty of Pharmaceutical and Biological Sciences, University of Paris, F-75006 Paris, France
| | - Marc-Henri Stern
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), PSL Research University, F-75005 Paris, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), PSL Research University, F-75005 Paris, France
- Faculty of Medicine, University of Paris, F-75005 Paris, France
| | - Rosette Lidereau
- Department of Genetics, Institut Curie, F-75248 Paris, France; (S.M.C.); (A.B.); (V.M.); (C.A.); (I.B.); (M.-H.S.); (D.S.-L.); (R.L.)
- Institut Curie, PSL Research University, F-75005 Paris, France
| | - Christine Toulas
- Laboratoire d’Oncogénétique, Institut Claudius Regaud, IUCT-O, F-31059 Toulouse, France;
- Correspondence: (C.T.); (E.R.)
| | - Etienne Rouleau
- Department of Biology, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (C.T.); (E.R.)
| |
Collapse
|
9
|
A Population-Based Analysis of BRCA1/ 2 Genes and Associated Breast and Ovarian Cancer Risk in Korean Patients: A Multicenter Cohort Study. Cancers (Basel) 2021; 13:cancers13092192. [PMID: 34063308 PMCID: PMC8125125 DOI: 10.3390/cancers13092192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Although it has been suggested that cancer risk and genetic variation vary by population, there is still a lack of research on non-European populations. In this study, we applied Korean patients as a model to find out the way to conduct BRCA1/2-related clinical studies in non-European populations who do not have as much clinical data as Europeans. The BRCA1/2 variants were classified following the 2015 ACMG standards/guidelines and using a multifactorial probability-based approach. To estimate the additional sample numbers needed to resolve BRCA1/2 unclassified status, we applied a simulation analysis considering population-specific clinical characteristics. In addition, we estimated the risks of breast or ovarian cancer for BRCA1/2 carriers by mutation regions. Data from this study reveal that BRCA1/2 variants in the non-European population are highly specific; therefore, population-specific study is essential for clinical application of treatment or prevention for breast or ovarian cancer. Abstract In this study, we performed a comprehensive analysis of BRCA1/2 variants and associated cancer risk in Korean patients considering two aspects: variants of uncertain significance (VUS) and pathogenic or likely pathogenic variants (PLPVs) in BRCA1 and BRCA2. This study included 5433 Korean participants who were tested for BRCA1/2 genes. The BRCA1/2 variants were classified following the standards/guidelines for interpretation of genetic variants and using a multifactorial probability-based approach. In Korea, 15.8% of participants had BRCA1 or BRCA2 PLPVs. To estimate the additional sample numbers needed to resolve unclassified status, we applied a simulation analysis. The simulation study for VUS showed that the smaller the number of samples, the more the posterior probability was affected by the prior probability; in addition, more samples for BRCA2 VUS than those of BRCA1 VUS were required to resolve the unclassified status, and the presence of clinical information associated with their VUS was an important factor. The cumulative lifetime breast cancer risk was 59.1% (95% CI: 44.1–73.6%) for BRCA1 and 58.3% (95% CI: 43.2–73.0%) for BRCA2 carriers. The cumulative lifetime ovarian cancer risk was estimated to be 36.9% (95% CI: 23.4–53.9%) for BRCA1 and 14.9% (95% CI: 7.4–28.5%) for BRCA2 carriers.
Collapse
|
10
|
Sullivan T, Thirthagiri E, Chong CE, Stauffer S, Reid S, Southon E, Hassan T, Ravichandran A, Wijaya E, Lim J, Taib NAM, Fadzli F, Yip CH, Hartman M, Li J, van Dam RM, North SL, Das R, Easton DF, Biswas K, Teo SH, Sharan SK. Epidemiological and ES cell-based functional evaluation of BRCA2 variants identified in families with breast cancer. Hum Mutat 2021; 42:200-212. [PMID: 33314489 PMCID: PMC7919386 DOI: 10.1002/humu.24154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/29/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
The discovery of high-risk breast cancer susceptibility genes, such as Breast cancer associated gene 1 (BRCA1) and Breast cancer associated gene 2 (BRCA2) has led to accurate identification of individuals for risk management and targeted therapy. The rapid decline in sequencing costs has tremendously increased the number of individuals who are undergoing genetic testing world-wide. However, given the significant differences in population-specific variants, interpreting the results of these tests can be challenging especially for novel genetic variants in understudied populations. Here we report the characterization of novel variants in the Malaysian and Singaporean population that consist of different ethnic groups (Malays, Chinese, Indian, and other indigenous groups). We have evaluated the functional significance of 14 BRCA2 variants of uncertain clinical significance by using multiple in silico prediction tools and examined their frequency in a cohort of 7840 breast cancer cases and 7928 healthy controls. In addition, we have used a mouse embryonic stem cell (mESC)-based functional assay to assess the impact of these variants on BRCA2 function. We found these variants to be functionally indistinguishable from wild-type BRCA2. These variants could fully rescue the lethality of Brca2-null mESCs and exhibited no sensitivity to six different DNA damaging agents including a poly ADP ribose polymerase inhibitor. Our findings strongly suggest that all 14 evaluated variants are functionally neutral. Our findings should be valuable in risk assessment of individuals carrying these variants.
Collapse
Affiliation(s)
- Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eswary Thirthagiri
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.,Servier, Kuala Lumpur, Malaysia.,Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Chan-Eng Chong
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tiara Hassan
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Aravind Ravichandran
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India.,SASTRA University, Thirumalaisamudram, Thanjavur, Tamil Nadu, India
| | | | - Joanna Lim
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Farhana Fadzli
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | | | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Jingmei Li
- Genome Institute of Singapore, Human Genetics, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Susan L North
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia.,Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | | |
Collapse
|
11
|
Biswas K, Lipton GB, Stauffer S, Sullivan T, Cleveland L, Southon E, Reid S, Magidson V, Iversen ES, Sharan SK. A computational model for classification of BRCA2 variants using mouse embryonic stem cell-based functional assays. NPJ Genom Med 2020; 5:52. [PMID: 33293522 PMCID: PMC7722754 DOI: 10.1038/s41525-020-00158-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Sequencing-based genetic tests to identify individuals at increased risk of hereditary breast and ovarian cancers have resulted in the identification of more than 40,000 sequence variants of BRCA1 and BRCA2. A majority of these variants are considered to be variants of uncertain significance (VUS) because their impact on disease risk remains unknown, largely due to lack of sufficient familial linkage and epidemiological data. Several assays have been developed to examine the effect of VUS on protein function, which can be used to assess their impact on cancer susceptibility. In this study, we report the functional characterization of 88 BRCA2 variants, including several previously uncharacterized variants, using a well-established mouse embryonic stem cell (mESC)-based assay. We have examined their ability to rescue the lethality of Brca2 null mESC as well as sensitivity to six DNA damaging agents including ionizing radiation and a PARP inhibitor. We have also examined the impact of BRCA2 variants on splicing. In addition, we have developed a computational model to determine the probability of impact on function of the variants that can be used for risk assessment. In contrast to the previous VarCall models that are based on a single functional assay, we have developed a new platform to analyze the data from multiple functional assays separately and in combination. We have validated our VarCall models using 12 known pathogenic and 10 neutral variants and demonstrated their usefulness in determining the pathogenicity of BRCA2 variants that are listed as VUS or as variants with conflicting functional interpretation.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Gary B Lipton
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA.
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
12
|
Agata S, Tognazzo S, Alducci E, Matricardi L, Moserle L, Barana D, Montagna M. Segregation analysis of the BRCA2 c.9227G>T variant in multiple families suggests a pathogenic role in breast and ovarian cancer predisposition. Sci Rep 2020; 10:13987. [PMID: 32814805 PMCID: PMC7438490 DOI: 10.1038/s41598-020-70729-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
Classification of variants in the BRCA1 and BRCA2 genes has a major impact on the clinical management of subjects at high risk for breast and ovarian cancer. The identification of a pathogenic variant allows for early detection/prevention strategies in healthy carriers as well as targeted treatments in patients affected by BRCA-associated tumors. The BRCA2 c.9227G>T p.(Gly3076Val) variant recurs in families from Northeast Italy and is rarely reported in international databases. This variant substitutes the evolutionary invariant glycine 3076 with a valine in the DNA binding domain of the BRCA2 protein, thus suggesting a high probability of pathogenicity. We analysed clinical and genealogic data of carriers from 15 breast/ovarian cancer families in whom no other pathogenic variants were detected. The variant was shown to co-segregate with breast and ovarian cancer in the most informative families. Combined segregation data led to a likelihood ratio of 81,527:1 of pathogenicity vs. neutrality. We conclude that c.9227G>T is a BRCA2 pathogenic variant that recurs in Northeast Italy. It can now be safely used for the predictive testing of healthy family members to guide preventive surgery and/or early tumor detection strategies, as well as for PARP inhibitors treatments in patients with BRCA2-associated tumors.
Collapse
Affiliation(s)
- Simona Agata
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Silvia Tognazzo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elisa Alducci
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Laura Matricardi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Lidia Moserle
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Daniela Barana
- Oncology Unit, Local Health and Social Care Unit ULSS8 Berica, Montecchio Maggiore, Italy
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
13
|
Canson D, Glubb D, Spurdle AB. Variant effect on splicing regulatory elements, branchpoint usage, and pseudoexonization: Strategies to enhance bioinformatic prediction using hereditary cancer genes as exemplars. Hum Mutat 2020; 41:1705-1721. [PMID: 32623769 DOI: 10.1002/humu.24074] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
It is possible to estimate the prior probability of pathogenicity for germline disease gene variants based on bioinformatic prediction of variant effect/s. However, routinely used approaches have likely led to the underestimation and underreporting of variants located outside donor and acceptor splice site motifs that affect messenger RNA (mRNA) processing. This review presents information about hereditary cancer gene germline variants, outside native splice sites, with experimentally validated splicing effects. We list 95 exonic variants that impact splicing regulatory elements (SREs) in BRCA1, BRCA2, MLH1, MSH2, MSH6, and PMS2. We utilized a pre-existing large-scale BRCA1 functional data set to map functional SREs, and assess the relative performance of different tools to predict effects of 283 variants on such elements. We also describe rare examples of intronic variants that impact branchpoint (BP) sites and create pseudoexons. We discuss the challenges in predicting variant effect on BP site usage and pseudoexonization, and suggest strategies to improve the bioinformatic prioritization of such variants for experimental validation. Importantly, our review and analysis highlights the value of considering impact of variants outside donor and acceptor motifs on mRNA splicing and disease causation.
Collapse
Affiliation(s)
- Daffodil Canson
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Dylan Glubb
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Bouwman P, van der Heijden I, van der Gulden H, de Bruijn R, Braspenning ME, Moghadasi S, Wessels LFA, Vreeswijk MPG, Jonkers J. Functional Categorization of BRCA1 Variants of Uncertain Clinical Significance in Homologous Recombination Repair Complementation Assays. Clin Cancer Res 2020; 26:4559-4568. [PMID: 32546644 DOI: 10.1158/1078-0432.ccr-20-0255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Because BRCA1 is a high-risk breast/ovarian cancer susceptibility gene, BRCA1 sequence variants of uncertain clinical significance (VUS) complicate genetic counseling. As most VUS are rare, reliable classification based on clinical and genetic data is often impossible. However, all pathogenic BRCA1 variants analyzed result in defective homologous recombination DNA repair (HRR). Thus, BRCA1 VUS may be categorized based on their functional impact on this pathway. EXPERIMENTAL DESIGN Two hundred thirty-eight BRCA1 VUS-comprising most BRCA1 VUS known in the Netherlands and Belgium-were tested for their ability to complement Brca1-deficient mouse embryonic stem cells in HRR, using cisplatin and olaparib sensitivity assays and a direct repeat GFP (DR-GFP) HRR assay. Assays were validated using 25 known benign and 25 known pathogenic BRCA1 variants. For assessment of pathogenicity by a multifactorial likelihood analysis method, we collected clinical and genetic data for functionally deleterious VUS and VUS occurring in three or more families. RESULTS All three assays showed 100% sensitivity and specificity (95% confidence interval, 83%-100%). Out of 238 VUS, 45 showed functional defects, 26 of which were deleterious in all three assays. For 13 of these 26 variants, we could calculate the probability of pathogenicity using clinical and genetic data, resulting in the identification of 7 (likely) pathogenic variants. CONCLUSIONS We have functionally categorized 238 BRCA1 VUS using three different HRR-related assays. Classification based on clinical and genetic data alone for a subset of these variants confirmed the high sensitivity and specificity of our functional assays.
Collapse
Affiliation(s)
- Peter Bouwman
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Ingrid van der Heijden
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hanneke van der Gulden
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute and Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Merel E Braspenning
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Setareh Moghadasi
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute and Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos Jonkers
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Shamsani J, Kazakoff SH, Armean IM, McLaren W, Parsons MT, Thompson BA, O'Mara TA, Hunt SE, Waddell N, Spurdle AB. A plugin for the Ensembl Variant Effect Predictor that uses MaxEntScan to predict variant spliceogenicity. Bioinformatics 2020; 35:2315-2317. [PMID: 30475984 PMCID: PMC6596880 DOI: 10.1093/bioinformatics/bty960] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 02/02/2023] Open
Abstract
Summary Assessing the pathogenicity of genetic variants can be a complex and challenging task. Spliceogenic variants, which alter mRNA splicing, may yield mature transcripts that encode non-functional protein products, an important predictor of Mendelian disease risk. However, most variant annotation tools do not adequately assess spliceogenicity outside the native splice site and thus the disease-causing potential of variants in other intronic and exonic regions is often overlooked. Here, we present a plugin for the Ensembl Variant Effect Predictor that packages MaxEntScan and extends its functionality to provide splice site predictions using a maximum entropy model. The plugin incorporates a sliding window algorithm to predict splice site loss or gain for any variant that overlaps a transcript feature. We also demonstrate the utility of the plugin by comparing our predictions to two mRNA splicing datasets containing several cancer-susceptibility genes. Availability and implementation Source code is freely available under the Apache License, Version 2.0: https://github.com/Ensembl/VEP_plugins. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jannah Shamsani
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane QLD, Australia
| | - Stephen H Kazakoff
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane QLD, Australia
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Will McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane QLD, Australia
| | - Bryony A Thompson
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne VIC, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane QLD, Australia
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nicola Waddell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane QLD, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane QLD, Australia
| |
Collapse
|
16
|
Santana dos Santos E, Lallemand F, Petitalot A, Caputo SM, Rouleau E. HRness in Breast and Ovarian Cancers. Int J Mol Sci 2020; 21:E3850. [PMID: 32481735 PMCID: PMC7312125 DOI: 10.3390/ijms21113850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian and breast cancers are currently defined by the main pathways involved in the tumorigenesis. The majority are carcinomas, originating from epithelial cells that are in constant division and subjected to cyclical variations of the estrogen stimulus during the female hormonal cycle, therefore being vulnerable to DNA damage. A portion of breast and ovarian carcinomas arises in the context of DNA repair defects, in which genetic instability is the backdrop for cancer initiation and progression. For these tumors, DNA repair deficiency is now increasingly recognized as a target for therapeutics. In hereditary breast/ovarian cancers (HBOC), tumors with BRCA1/2 mutations present an impairment of DNA repair by homologous recombination (HR). For many years, BRCA1/2 mutations were only screened on germline DNA, but now they are also searched at the tumor level to personalize treatment. The reason of the inactivation of this pathway remains uncertain for most cases, even in the presence of a HR-deficient signature. Evidence indicates that identifying the mechanism of HR inactivation should improve both genetic counseling and therapeutic response, since they can be useful as new biomarkers of response.
Collapse
Affiliation(s)
- Elizabeth Santana dos Santos
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94800 Villejuif, France;
- Department of Clinical Oncology, A.C. Camargo Cancer Center, São Paulo 01509-010, Brazil
| | - François Lallemand
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Sandrine M. Caputo
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94800 Villejuif, France;
| |
Collapse
|
17
|
Palacios J, de la Hoya M, Bellosillo B, de Juan I, Matías-Guiu X, Lázaro C, Palanca S, Osorio A, Rojo F, Rosa-Rosa JM, Cigudosa JC. Mutational Screening of BRCA1/2 Genes as a Predictive Factor for Therapeutic Response in Epithelial Ovarian Cancer: A Consensus Guide from the Spanish Society of Pathology (SEAP-IAP) and the Spanish Society of Human Genetics (AEGH). Virchows Arch 2020; 476:195-207. [PMID: 31797087 PMCID: PMC7028830 DOI: 10.1007/s00428-019-02709-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Germline/somatic BRCA-mutated ovarian carcinomas (OC) are associated to have better response with platinum-based chemotherapy and long-term prognosis than non-BRCA-associated OCs. In addition, these mutations are predictive factors to response to Poly(ADP-ribose) polymerase (PARP) inhibitors. Different positioning papers have addressed the clinical recommendations for BRCA testing in OC. This consensus guide represents a collection of technical recommendations to address the detection of BRCA1/2 mutations in the molecular diagnostic testing strategy for OC. Under the coordination of Spanish Society of Pathology (SEAP-IAP) and the Spanish Society of Human Genetics (AEGH), these recommendations have been developed by pathologists and geneticists taking into account previously published recommendations and their experience in the molecular characterization of these genes. Since the implementation of BRCA testing as a predictive factor can initiate the workflow by testing germline mutations in the blood or by testing both germline and somatic mutations in tumor tissue, distinctive features of both strategies are discussed. Additionally, the recommendations included in this paper provide some references, quality parameters, and genomic tools aimed to standardize and facilitate the clinical genomic diagnosis of OC.
Collapse
Affiliation(s)
- J Palacios
- Servicio de Anatomía Patológica, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034, Madrid, Spain.
- Universidad de Alcalá, 28801, Alcalá de Henares, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - M de la Hoya
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - B Bellosillo
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Laboratorio de Diagnóstico Molecular, Servicio de Patología, Hospital del Mar, 08003, Barcelona, Spain
| | - I de Juan
- Unidad de Biología Molecular, Servicio de Análisis Clínicos, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - X Matías-Guiu
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, 08908, L'Hospitalet, Spain
| | - C Lázaro
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Unidad de Diagnóstico Molecular, Institut Català d'Oncologia, (ICO-IDIBELL-ONCOBELL), 08908, L'Hospitalet, Spain
| | - S Palanca
- Unidad de Biología Molecular, Servicio de Análisis Clínicos, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - A Osorio
- Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), 28029, Madrid, Spain
- CIBER-ER, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - F Rojo
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departamento de Patología, Fundación Jímenez-Díaz, 28040, Madrid, Spain
| | - J M Rosa-Rosa
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034, Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - J C Cigudosa
- NIMGenetics, Parque Científico de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
18
|
Impact of proactive high-throughput functional assay data on BRCA1 variant interpretation in 3684 patients with breast or ovarian cancer. J Hum Genet 2020; 65:209-220. [PMID: 31907386 DOI: 10.1038/s10038-019-0713-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022]
Abstract
The clinical utility of BRCA1/2 genotyping was recently extended from the selection of subjects at high risk for hereditary breast and ovary cancer to the identification of candidates for poly (ADP-ribose) polymerase (PARP) inhibitor treatment. This underscores the importance of accurate interpretation of BRCA1/2 genetic variants and of reducing the number of variants of uncertain significance (VUSs). Two recent studies by Findlay et al. and Starita et al. introduced high-throughput functional assays, and proactively analyzed variants in specific regions regardless of whether they had been previously observed. We retrospectively reviewed all BRCA1 and BRCA2 germline genetic test reports from patients with breast or ovarian cancer examined at Asan Medical Center (Seoul, Korea) between September 2011 and December 2018. Variants were assigned pathogenic or benign strong evidence codes according to the functional classification and were reclassified according to the ACMG/AMP 2015 guidelines. Among 3684 patients with available BRCA1 and BRCA2 germline genetic test reports, 429 unique variants (181 from BRCA1) were identified. Of 34 BRCA1 variants intersecting with the data reported by Findlay et al., three missense single-nucleotide variants from four patients (0.11%, 4/3684) were reclassified from VUSs to likely pathogenic variants. Four variants scored as functional were reclassified into benign or likely benign variants. Three variants that overlapped with the data reported by Starita et al. could not be reclassified. In conclusion, proactive high-throughput functional study data are useful for the reclassification of clinically observed VUSs. Integrating additional evidence, including functional assay results, may help reduce the number of VUSs.
Collapse
|
19
|
Li H, LaDuca H, Pesaran T, Chao EC, Dolinsky JS, Parsons M, Spurdle AB, Polley EC, Shimelis H, Hart SN, Hu C, Couch FJ, Goldgar DE. Classification of variants of uncertain significance in BRCA1 and BRCA2 using personal and family history of cancer from individuals in a large hereditary cancer multigene panel testing cohort. Genet Med 2019; 22:701-708. [PMID: 31853058 PMCID: PMC7118020 DOI: 10.1038/s41436-019-0729-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose Genetic testing of individuals often results in identification of genomic variants of unknown significance (VUS). Multiple lines of evidence are used to help determine the clinical significance of these variants. Methods We analyzed ~138,000 individuals tested by multigene panel testing (MGPT). We used logistic regression to predict carrier status based on personal and family history of cancer. This was applied to 4644 tested individuals carrying 2383 BRCA1/2 variants to calculate likelihood ratios informing pathogenicity for each. Heterogeneity tests were performed for specific classes of variants defined by in silico predictions. Results Twenty-two variants labeled as VUS had odds of >10:1 in favor of pathogenicity. The heterogeneity analysis found that among variants in functional domains that were predicted to be benign by in silico tools, a significantly higher proportion of variants were estimated to be pathogenic than previously indicated; that missense variants outside of functional domains should be considered benign; and that variants predicted to create de novo donor sites were also largely benign. Conclusion The evidence presented here supports the use of personal and family history from MGPT in the classification of VUS and will be integrated into ongoing efforts to provide large-scale multifactorial classification.
Collapse
Affiliation(s)
- Hongyan Li
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Holly LaDuca
- Ambry Genetics Laboratories, Aliso Viejo, CA, USA
| | - Tina Pesaran
- Ambry Genetics Laboratories, Aliso Viejo, CA, USA
| | - Elizabeth C Chao
- Ambry Genetics Laboratories, Aliso Viejo, CA, USA.,Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | | | - Michael Parsons
- Molecular Cancer Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Amanda B Spurdle
- Molecular Cancer Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Eric C Polley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Hermela Shimelis
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Steven N Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David E Goldgar
- Huntsman Cancer Institute, Salt Lake City, UT, USA. .,Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Characterization of splice-altering mutations in inherited predisposition to cancer. Proc Natl Acad Sci U S A 2019; 116:26798-26807. [PMID: 31843900 DOI: 10.1073/pnas.1915608116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations responsible for inherited disease may act by disrupting normal transcriptional splicing. Such mutations can be difficult to detect, and their effects difficult to characterize, because many lie deep within exons or introns where they may alter splice enhancers or silencers or introduce new splice acceptors or donors. Multiple mutation-specific and genome-wide approaches have been developed to evaluate these classes of mutations. We introduce a complementary experimental approach, cBROCA, which yields qualitative and quantitative assessments of the effects of genomic mutations on transcriptional splicing of tumor suppressor genes. cBROCA analysis is undertaken by deriving complementary DNA (cDNA) from puromycin-treated patient lymphoblasts, hybridizing the cDNA to the BROCA panel of tumor suppressor genes, and then multiplex sequencing to very high coverage. At each splice junction suggested by split sequencing reads, read depths of test and control samples are compared. Significant Z scores indicate altered transcripts, over and above naturally occurring minor transcripts, and comparisons of read depths indicate relative abundances of mutant and normal transcripts. BROCA analysis of genomic DNA suggested 120 rare mutations from 150 families with cancers of the breast, ovary, uterus, or colon, in >600 informative genotyped relatives. cBROCA analysis of their transcripts revealed a wide variety of consequences of abnormal splicing in tumor suppressor genes, including whole or partial exon skipping, exonification of intronic sequence, loss or gain of exonic and intronic splicing enhancers and silencers, complete intron retention, hypomorphic alleles, and combinations of these alterations. Combined with pedigree analysis, cBROCA sequencing contributes to understanding the clinical consequences of rare inherited mutations.
Collapse
|
21
|
Parsons MT, Tudini E, Li H, Hahnen E, Wappenschmidt B, Feliubadaló L, Aalfs CM, Agata S, Aittomäki K, Alducci E, Alonso‐Cerezo MC, Arnold N, Auber B, Austin R, Azzollini J, Balmaña J, Barbieri E, Bartram CR, Blanco A, Blümcke B, Bonache S, Bonanni B, Borg Å, Bortesi B, Brunet J, Bruzzone C, Bucksch K, Cagnoli G, Caldés T, Caliebe A, Caligo MA, Calvello M, Capone GL, Caputo SM, Carnevali I, Carrasco E, Caux‐Moncoutier V, Cavalli P, Cini G, Clarke EM, Concolino P, Cops EJ, Cortesi L, Couch FJ, Darder E, de la Hoya M, Dean M, Debatin I, Del Valle J, Delnatte C, Derive N, Diez O, Ditsch N, Domchek SM, Dutrannoy V, Eccles DM, Ehrencrona H, Enders U, Evans DG, Farra C, Faust U, Felbor U, Feroce I, Fine M, Foulkes WD, Galvao HC, Gambino G, Gehrig A, Gensini F, Gerdes A, Germani A, Giesecke J, Gismondi V, Gómez C, Gómez Garcia EB, González S, Grau E, Grill S, Gross E, Guerrieri‐Gonzaga A, Guillaud‐Bataille M, Gutiérrez‐Enríquez S, Haaf T, Hackmann K, Hansen TV, Harris M, Hauke J, Heinrich T, Hellebrand H, Herold KN, Honisch E, Horvath J, Houdayer C, Hübbel V, Iglesias S, Izquierdo A, James PA, Janssen LA, Jeschke U, Kaulfuß S, Keupp K, Kiechle M, Kölbl A, Krieger S, Kruse TA, Kvist A, Lalloo F, Larsen M, Lattimore VL, Lautrup C, Ledig S, Leinert E, Lewis AL, Lim J, Loeffler M, López‐Fernández A, Lucci‐Cordisco E, Maass N, Manoukian S, Marabelli M, Matricardi L, Meindl A, Michelli RD, Moghadasi S, Moles‐Fernández A, Montagna M, Montalban G, Monteiro AN, Montes E, Mori L, Moserle L, Müller CR, Mundhenke C, Naldi N, Nathanson KL, Navarro M, Nevanlinna H, Nichols CB, Niederacher D, Nielsen HR, Ong K, Pachter N, Palmero EI, Papi L, Pedersen IS, Peissel B, Perez‐Segura P, Pfeifer K, Pineda M, Pohl‐Rescigno E, Poplawski NK, Porfirio B, Quante AS, Ramser J, Reis RM, Revillion F, Rhiem K, Riboli B, Ritter J, Rivera D, Rofes P, Rump A, Salinas M, Sánchez de Abajo AM, Schmidt G, Schoenwiese U, Seggewiß J, Solanes A, Steinemann D, Stiller M, Stoppa‐Lyonnet D, Sullivan KJ, Susman R, Sutter C, Tavtigian SV, Teo SH, Teulé A, Thomassen M, Tibiletti MG, Tischkowitz M, Tognazzo S, Toland AE, Tornero E, Törngren T, Torres‐Esquius S, Toss A, Trainer AH, Tucker KM, van Asperen CJ, van Mackelenbergh MT, Varesco L, Vargas‐Parra G, Varon R, Vega A, Velasco Á, Vesper A, Viel A, Vreeswijk MPG, Wagner SA, Waha A, Walker LC, Walters RJ, Wang‐Gohrke S, Weber BHF, Weichert W, Wieland K, Wiesmüller L, Witzel I, Wöckel A, Woodward ER, Zachariae S, Zampiga V, Zeder‐Göß C, Investigators KC, Lázaro C, De Nicolo A, Radice P, Engel C, Schmutzler RK, Goldgar DE, Spurdle AB. Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification. Hum Mutat 2019; 40:1557-1578. [PMID: 31131967 PMCID: PMC6772163 DOI: 10.1002/humu.23818] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022]
Abstract
The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.
Collapse
Affiliation(s)
- Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Hongyan Li
- Cancer Control and Population Science, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Lidia Feliubadaló
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Cora M. Aalfs
- Department of Clinical GeneticsAmsterdam UMCAmsterdamThe Netherlands
| | - Simona Agata
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Elisa Alducci
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | | | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
- Institute of Clinical Molecular Biology, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | - Bernd Auber
- Institute of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Rachel Austin
- Genetic Health QueenslandRoyal Brisbane and Women's HospitalBrisbaneAustralia
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Judith Balmaña
- High Risk and Cancer Prevention GroupVall d'Hebron Institute of OncologyBarcelonaSpain
- Department of Medical OncologyUniversity Hospital of Vall d'HebronBarcelonaSpain
| | - Elena Barbieri
- Department of Oncology and HaematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Claus R. Bartram
- Institute of Human GeneticsUniversity Hospital HeidelbergHeidelbergGermany
| | - Ana Blanco
- Fundación Pública galega Medicina Xenómica‐SERGASGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | - Britta Blümcke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Sandra Bonache
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEOEuropean Institute of Oncology IRCCSMilanItaly
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences LundLund UniversityLundSweden
| | | | - Joan Brunet
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Carla Bruzzone
- Unit of Hereditary CancerIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Karolin Bucksch
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Giulia Cagnoli
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Trinidad Caldés
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Almuth Caliebe
- Institute of Human Genetics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | | | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, IEOEuropean Institute of Oncology IRCCSMilanItaly
| | - Gabriele L. Capone
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics UnitUniversity of FlorenceFlorenceItaly
| | - Sandrine M. Caputo
- Service de GénétiqueInstitut CurieParisFrance
- Paris Sciences Lettres Research UniversityParisFrance
| | - Ileana Carnevali
- UO Anatomia PatologicaOspedale di Circolo ASST SettelaghiVareseItaly
| | - Estela Carrasco
- High Risk and Cancer Prevention GroupVall d'Hebron Institute of OncologyBarcelonaSpain
| | | | | | - Giulia Cini
- Division of Functional Onco‐genomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Edward M. Clarke
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Paola Concolino
- Fondazione Policlinico Universitario A.GemelliIRCCSRomeItaly
| | - Elisa J. Cops
- Parkville Familial Cancer CentrePeter MacCallum Cancer CenterMelbourneVictoriaAustralia
| | - Laura Cortesi
- Department of Oncology and HaematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Fergus J. Couch
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Esther Darder
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Michael Dean
- Laboratory of Translational Genomics, DCEGNational Cancer InstituteGaithersburgMaryland
| | - Irmgard Debatin
- Institute of Human GeneticsUniversity Hospital UlmUlmGermany
| | - Jesús Del Valle
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | | | - Nicolas Derive
- Service de GénétiqueInstitut CurieParisFrance
- Paris Sciences Lettres Research UniversityParisFrance
| | - Orland Diez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Clinical and Molecular Genetics AreaUniversity Hospital Vall d'HebronBarcelonaSpain
| | - Nina Ditsch
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | - Susan M. Domchek
- Basser Center for BRCA, Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Véronique Dutrannoy
- Institute of Medical and Human GeneticsCharité –Universitätsmedizin BerlinBerlinGermany
| | | | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Laboratory MedicineOffice for Medical Services ‐ Region SkåneLundSweden
- Division of Clinical Genetics, Department of Laboratory MedicineLund UniversityLundSweden
| | - Ute Enders
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - D. Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
- Genomic Medicine, North West Genomics hub, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
| | - Chantal Farra
- Medical GeneticsAmerican University of Beirut Medical CenterBeirutLebanon
| | - Ulrike Faust
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Ute Felbor
- Institute of Human GeneticsUniversity Medicine GreifswaldGreifswaldGermany
| | - Irene Feroce
- Division of Cancer Prevention and Genetics, IEOEuropean Institute of Oncology IRCCSMilanItaly
| | - Miriam Fine
- Adult Genetics UnitRoyal Adelaide HospitalAdelaideAustralia
| | - William D. Foulkes
- Program in Cancer Genetics, Departments of Human Genetics and OncologyMcGill UniversityMontréalQCCanada
| | | | | | - Andrea Gehrig
- Department of Human GeneticsUniversity of WürzburgWürzburgGermany
| | - Francesca Gensini
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics UnitUniversity of FlorenceFlorenceItaly
| | - Anne‐Marie Gerdes
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Sant'Andrea University HospitalSapienza UniversityRomeItaly
| | - Jutta Giesecke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Viviana Gismondi
- Unit of Hereditary CancerIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Carolina Gómez
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Encarna B. Gómez Garcia
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Sara González
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Elia Grau
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Sabine Grill
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Eva Gross
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | | | | | | | - Thomas Haaf
- Department of Human GeneticsUniversity of WürzburgWürzburgGermany
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav CarusTU DresdenDresdenGermany
| | - Thomas V.O. Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | | | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Heide Hellebrand
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | | | - Ellen Honisch
- Department of Gynecology and Obstetrics, University Hospital DüsseldorfHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Judit Horvath
- Institute of Human GeneticsUniversity of MünsterMünsterGermany
| | - Claude Houdayer
- Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized MedicineRouen University HospitalRouenFrance
| | - Verena Hübbel
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Silvia Iglesias
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Angel Izquierdo
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Paul A. James
- Parkville Familial Cancer CentrePeter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Linda A.M. Janssen
- Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Udo Jeschke
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | - Silke Kaulfuß
- Institute of Human GeneticsUniversity Medical Center GöttingenGöttingenGermany
| | - Katharina Keupp
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Marion Kiechle
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Alexandra Kölbl
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | - Sophie Krieger
- Laboratoire de Biologie Clinique et OncologiqueCentre Francois BaclesseCaenFrance
- Genomics and Personalized Medecine in Cancer and Neurological DisordersNormandy Centre for Genomic and Personalized MedicineRouenFrance
- Normandie UniversitéUNICAENCaenFrance
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Fiona Lalloo
- Genomic Medicine, North West Genomics hub, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
| | - Mirjam Larsen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Vanessa L. Lattimore
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Charlotte Lautrup
- Department of Clinical GeneticsAalborg University HospitalAalborgDenmark
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
| | - Susanne Ledig
- Institute of Human GeneticsUniversity of MünsterMünsterGermany
| | - Elena Leinert
- Department of Gynaecology and ObstetricsUniversity Hospital UlmUlmGermany
| | | | - Joanna Lim
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Adrià López‐Fernández
- High Risk and Cancer Prevention GroupVall d'Hebron Institute of OncologyBarcelonaSpain
| | - Emanuela Lucci‐Cordisco
- UOC Genetica Medica, Fondazione Policlinico Universitario A.Gemelli IRCCS and Istituto di Medicina GenomicaUniversità Cattolica del Sacro CuoreRomeItaly
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Monica Marabelli
- Division of Cancer Prevention and Genetics, IEOEuropean Institute of Oncology IRCCSMilanItaly
| | - Laura Matricardi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | - Alfons Meindl
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | | | - Setareh Moghadasi
- Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | | | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | - Gemma Montalban
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Eva Montes
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Luigi Mori
- Department of Clinical and Experimental Science, University of Brescia c/o 2nd Internal MedicineHospital of BresciaBresciaItaly
| | - Lidia Moserle
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | | | - Christoph Mundhenke
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | - Nadia Naldi
- Division of OncologyUniversity Hospital of ParmaParmaItaly
| | - Katherine L. Nathanson
- Basser Center for BRCA, Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Matilde Navarro
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Cassandra B. Nichols
- Genetic Services of Western AustraliaKing Edward Memorial HospitalPerthAustralia
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital DüsseldorfHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | | | - Kai‐ren Ong
- West Midlands Regional Genetics ServiceBirmingham Women's Hospital Healthcare NHS TrustBirminghamUK
| | - Nicholas Pachter
- Genetic Services of Western AustraliaKing Edward Memorial HospitalPerthAustralia
- Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Edenir I. Palmero
- Molecular Oncology Research CenterBarretos Cancer HospitalSão PauloBrazil
- Barretos School of Health SciencesDr. Paulo Prata ‐ FACISBSão PauloBrazil
| | - Laura Papi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics UnitUniversity of FlorenceFlorenceItaly
| | - Inge Sokilde Pedersen
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
- Molecular DiagnosticsAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Pedro Perez‐Segura
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Katharina Pfeifer
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Marta Pineda
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Esther Pohl‐Rescigno
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Nicola K. Poplawski
- Adult Genetics UnitRoyal Adelaide HospitalAdelaideAustralia
- School of Paediatrics and Reproductive HealthUniversity of AdelaideAdelaideAustralia
| | - Berardino Porfirio
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics UnitUniversity of FlorenceFlorenceItaly
| | - Anne S. Quante
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Juliane Ramser
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Rui M. Reis
- Molecular Oncology Research CenterBarretos Cancer HospitalSão PauloBrazil
- Health Sciences SchoolUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaPortugal
| | - Françoise Revillion
- Laboratoire d'Oncogenetique Moleculaire HumaineCentre Oscar LambretLilleFrance
| | - Kerstin Rhiem
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | | | - Julia Ritter
- Institute of Medical and Human GeneticsCharité –Universitätsmedizin BerlinBerlinGermany
| | - Daniela Rivera
- Unit of Hereditary CancerIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Paula Rofes
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav CarusTU DresdenDresdenGermany
| | - Monica Salinas
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Ana María Sánchez de Abajo
- Servicio de Análisis Clínicos y Bioquímica Clínica, Complejo HospitalarioUniversitario Insular Materno‐Infantil de Gran CanariaLas Palmas de Gran CanaríaSpain
| | - Gunnar Schmidt
- Institute of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Ulrike Schoenwiese
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Jochen Seggewiß
- Institute of Human GeneticsUniversity of MünsterMünsterGermany
| | - Ares Solanes
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Doris Steinemann
- Institute of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Mathias Stiller
- Institute of Human GeneticsUniversity Hospital LeipzigLeipzigGermany
| | - Dominique Stoppa‐Lyonnet
- Service de GénétiqueInstitut CurieParisFrance
- Department of Tumour BiologyINSERM U830ParisFrance
- Université Paris DescartesParisFrance
| | - Kelly J. Sullivan
- Genetic Health Service NZ‐ Northern HubAuckland District Health BoardAucklandNew Zealand
| | - Rachel Susman
- Genetic Health QueenslandRoyal Brisbane and Women's HospitalBrisbaneAustralia
| | - Christian Sutter
- Institute of Human GeneticsUniversity Hospital HeidelbergHeidelbergGermany
| | - Sean V. Tavtigian
- Department of Oncological ServicesUniversity of Utah School of MedicineSalt Lake CityUtah
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Soo H. Teo
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
- Department of Surgery, Faculty of MedicineUniversity MalayaKuala LumpurMalaysia
| | - Alex Teulé
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | | | - Marc Tischkowitz
- Department of Medical GeneticsUniversity of CambridgeCambridgeUK
| | - Silvia Tognazzo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | - Amanda E. Toland
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhio
| | - Eva Tornero
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Therese Törngren
- Division of Oncology and Pathology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Sara Torres‐Esquius
- High Risk and Cancer Prevention GroupVall d'Hebron Institute of OncologyBarcelonaSpain
| | - Angela Toss
- Department of Oncology and HaematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Alison H. Trainer
- Parkville Familial Cancer CentrePeter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Department of medicineUniversity of MelbourneMelbourneVictoriaAustralia
| | - Katherine M. Tucker
- Prince of Wales Clinical SchoolUniversity of NSWSydneyNew South WalesAustralia
- Hereditary Cancer Clinic, Department of Medical OncologyPrince of Wales HospitalRandwickNew South WalesAustralia
| | | | - Marion T. van Mackelenbergh
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | - Liliana Varesco
- Unit of Hereditary CancerIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Gardenia Vargas‐Parra
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Raymonda Varon
- Institute of Medical and Human GeneticsCharité –Universitätsmedizin BerlinBerlinGermany
| | - Ana Vega
- Fundación Pública galega Medicina Xenómica‐SERGASGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | - Ángela Velasco
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Anne‐Sophie Vesper
- Department of Gynecology and Obstetrics, University Hospital DüsseldorfHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Alessandra Viel
- Division of Functional Onco‐genomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | | | - Sebastian A. Wagner
- Department of MedicineHematology/Oncology, Goethe‐University FrankfurtFrankfurtGermany
| | - Anke Waha
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Rhiannon J. Walters
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Shan Wang‐Gohrke
- Department of Gynaecology and ObstetricsUniversity Hospital UlmUlmGermany
| | | | - Wilko Weichert
- Institute of PathologyTechnische Universität MünchenMunichGermany
| | - Kerstin Wieland
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Lisa Wiesmüller
- Department of Gynaecology and ObstetricsUniversity Hospital UlmUlmGermany
| | - Isabell Witzel
- Department of GynecologyUniversity Medical Center HamburgHamburgGermany
| | - Achim Wöckel
- Department of Gynecology and ObstetricsUniversity Hospital WürzburgWürzburgGermany
| | - Emma R. Woodward
- Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
- Genomic Medicine, North West Genomics hub, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
| | - Silke Zachariae
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Valentina Zampiga
- Biosciences LaboratoryIstituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCSMeldolaItaly
| | | | - KConFab Investigators
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
- Research DepartmentPeter MacCallum Cancer CenterMelbourneVictoriaAustralia
| | - Conxi Lázaro
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | | | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of ResearchFondazione IRCCS Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - David E. Goldgar
- Department of Dermatology, Huntsman Cancer InstituteUniversity of Utah School of MedicineSalt Lake CityUtah
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
22
|
Cline MS, Babbi G, Bonache S, Cao Y, Casadio R, de la Cruz X, Díez O, Gutiérrez-Enríquez S, Katsonis P, Lai C, Lichtarge O, Martelli PL, Mishne G, Moles-Fernández A, Montalban G, Mooney SD, O’Conner R, Ootes L, Özkan S, Padilla N, Pagel KA, Pejaver V, Radivojac P, Riera C, Savojardo C, Shen Y, Sun Y, Topper S, Parsons MT, Spurdle AB, Goldgar DE. Assessment of blind predictions of the clinical significance of BRCA1 and BRCA2 variants. Hum Mutat 2019; 40:1546-1556. [PMID: 31294896 PMCID: PMC6744348 DOI: 10.1002/humu.23861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022]
Abstract
Testing for variation in BRCA1 and BRCA2 (commonly referred to as BRCA1/2), has emerged as a standard clinical practice and is helping countless women better understand and manage their heritable risk of breast and ovarian cancer. Yet the increased rate of BRCA1/2 testing has led to an increasing number of Variants of Uncertain Significance (VUS), and the rate of VUS discovery currently outpaces the rate of clinical variant interpretation. Computational prediction is a key component of the variant interpretation pipeline. In the CAGI5 ENIGMA Challenge, six prediction teams submitted predictions on 326 newly-interpreted variants from the ENIGMA Consortium. By evaluating these predictions against the new interpretations, we have gained a number of insights on the state of the art of variant prediction and specific steps to further advance this state of the art.
Collapse
Affiliation(s)
| | - Giulia Babbi
- Biocomputing Group, FaBiT Department, University of
Bologna, Bologna, Italy
| | - Sandra Bonache
- Oncogenetics Group, Vall d’Hebron Institute of
Oncology (VHIO), Barcelona, Spain
| | - Yue Cao
- Texas A&M University, College Station, TX, USA
| | - Rita Casadio
- Biocomputing Group, FaBiT Department, University of
Bologna, Bologna, Italy
| | - Xavier de la Cruz
- Clinical and Translational Bioinformatics Research Unit,
Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis
Avançats (ICREA), Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d’Hebron Institute of
Oncology (VHIO), Barcelona, Spain
- Clinical and Translational Bioinformatics Research Unit,
Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de
Barcelona, Barcelona, Spain
| | | | | | - Carmen Lai
- Department of Biochemistry & Molecular Biology, Baylor
College of Medicine, Houston, TX, USA
| | - Olivier Lichtarge
- Department of Medical and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
- Department of Biochemistry & Molecular Biology, Baylor
College of Medicine, Houston, TX, USA
- Department of Pharmacology, Baylor College of Medicine,
Houston, TX, USA
- Computational and Integrative Biomedical Research
Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Alejandro Moles-Fernández
- Clinical and Translational Bioinformatics Research Unit,
Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Gemma Montalban
- Clinical and Translational Bioinformatics Research Unit,
Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de
Barcelona, Barcelona, Spain
| | | | | | - Lars Ootes
- Clinical and Translational Bioinformatics Research Unit,
Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Selen Özkan
- Clinical and Translational Bioinformatics Research Unit,
Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Natalia Padilla
- Clinical and Translational Bioinformatics Research Unit,
Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de
Barcelona, Barcelona, Spain
| | | | | | - Predrag Radivojac
- Indiana University, Bloomington, IN, USA
- Northeastern University, Boston, MA, USA
| | - Casandra Riera
- Clinical and Translational Bioinformatics Research Unit,
Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de
Barcelona, Barcelona, Spain
| | | | - Yang Shen
- Texas A&M University, College Station, TX, USA
| | - Yuanfei Sun
- Texas A&M University, College Station, TX, USA
| | | | | | | | - David E. Goldgar
- Huntsman Cancer Institute, University of Utah, Salt Lake
City, UT, USA
| | | |
Collapse
|
23
|
Leman R, Gaildrat P, Le Gac G, Ka C, Fichou Y, Audrezet MP, Caux-Moncoutier V, Caputo SM, Boutry-Kryza N, Léone M, Mazoyer S, Bonnet-Dorion F, Sevenet N, Guillaud-Bataille M, Rouleau E, Bressac-de Paillerets B, Wappenschmidt B, Rossing M, Muller D, Bourdon V, Revillon F, Parsons MT, Rousselin A, Davy G, Castelain G, Castéra L, Sokolowska J, Coulet F, Delnatte C, Férec C, Spurdle AB, Martins A, Krieger S, Houdayer C. Novel diagnostic tool for prediction of variant spliceogenicity derived from a set of 395 combined in silico/in vitro studies: an international collaborative effort. Nucleic Acids Res 2019; 46:7913-7923. [PMID: 29750258 PMCID: PMC6125621 DOI: 10.1093/nar/gky372] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
Variant interpretation is the key issue in molecular diagnosis. Spliceogenic variants exemplify this issue as each nucleotide variant can be deleterious via disruption or creation of splice site consensus sequences. Consequently, reliable in silico prediction of variant spliceogenicity would be a major improvement. Thanks to an international effort, a set of 395 variants studied at the mRNA level and occurring in 5′ and 3′ consensus regions (defined as the 11 and 14 bases surrounding the exon/intron junction, respectively) was collected for 11 different genes, including BRCA1, BRCA2, CFTR and RHD, and used to train and validate a new prediction protocol named Splicing Prediction in Consensus Elements (SPiCE). SPiCE combines in silico predictions from SpliceSiteFinder-like and MaxEntScan and uses logistic regression to define optimal decision thresholds. It revealed an unprecedented sensitivity and specificity of 99.5 and 95.2%, respectively, and the impact on splicing was correctly predicted for 98.8% of variants. We therefore propose SPiCE as the new tool for predicting variant spliceogenicity. It could be easily implemented in any diagnostic laboratory as a routine decision making tool to help geneticists to face the deluge of variants in the next-generation sequencing era. SPiCE is accessible at (https://sourceforge.net/projects/spicev2-1/).
Collapse
Affiliation(s)
- Raphaël Leman
- Laboratoire de Biologie Clinique et Oncologique, Centre François Baclesse, 14000 Caen, France.,Inserm U1245 Genomics and Personalized Medecine in Cancer and Neurological Disorders, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, 76031 Rouen, France.,Normandie Univ, UNICAEN, 14000 Caen, France
| | - Pascaline Gaildrat
- Inserm U1245 Genomics and Personalized Medecine in Cancer and Neurological Disorders, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, 76031 Rouen, France
| | - Gérald Le Gac
- Inserm UMR1078, Genetics, Functional Genomics and Biotechnology, Université de Bretagne Occidentale, 29200 Brest, France
| | - Chandran Ka
- Inserm UMR1078, Genetics, Functional Genomics and Biotechnology, Université de Bretagne Occidentale, 29200 Brest, France
| | - Yann Fichou
- Inserm UMR1078, Genetics, Functional Genomics and Biotechnology, Université de Bretagne Occidentale, 29200 Brest, France
| | - Marie-Pierre Audrezet
- Inserm UMR1078, Genetics, Functional Genomics and Biotechnology, Université de Bretagne Occidentale, 29200 Brest, France
| | - Virginie Caux-Moncoutier
- Inserm U830, Institut Curie Centre de Recherches, 75005 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France.,Service de Génétique, Institut Curie, 75005 Paris, France
| | | | - Nadia Boutry-Kryza
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon, 69000 Lyon, France
| | - Mélanie Léone
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon, 69000 Lyon, France
| | - Sylvie Mazoyer
- Lyon Neuroscience Research Center-CRNL, Inserm U1028, CNRS UMR 5292, University of Lyon, 69008 Lyon, France
| | - Françoise Bonnet-Dorion
- Inserm U916, Département de Pathologie, Laboratoire de Génétique Constitutionnelle, Institut Bergonié, 33000 Bordeaux, France
| | - Nicolas Sevenet
- Inserm U916, Département de Pathologie, Laboratoire de Génétique Constitutionnelle, Institut Bergonié, 33000 Bordeaux, France
| | | | - Etienne Rouleau
- Gustave Roussy, Université Paris-Saclay, Département de Biopathologie, 94805 Villejuif, France
| | | | - Barbara Wappenschmidt
- Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, 50937 Cologne, Germany
| | - Maria Rossing
- Centre for Genomic Medicine, Rigshospitalet, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Danielle Muller
- Laboratoire d'Oncogénétique, Centre Paul Strauss, 67000 Strasbourg, France
| | - Violaine Bourdon
- Laboratoire d'Oncogénétique Moléculaire, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Françoise Revillon
- Laboratoire d'Oncogénétique Moléculaire Humaine, Centre Oscar Lambret, 59000 Lille, France
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 4006 Herston, Queensland, Australia
| | - Antoine Rousselin
- Laboratoire de Biologie Clinique et Oncologique, Centre François Baclesse, 14000 Caen, France.,Inserm U1245 Genomics and Personalized Medecine in Cancer and Neurological Disorders, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, 76031 Rouen, France
| | - Grégoire Davy
- Laboratoire de Biologie Clinique et Oncologique, Centre François Baclesse, 14000 Caen, France.,Inserm U1245 Genomics and Personalized Medecine in Cancer and Neurological Disorders, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, 76031 Rouen, France
| | - Gaia Castelain
- Inserm U1245 Genomics and Personalized Medecine in Cancer and Neurological Disorders, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, 76031 Rouen, France
| | - Laurent Castéra
- Laboratoire de Biologie Clinique et Oncologique, Centre François Baclesse, 14000 Caen, France.,Inserm U1245 Genomics and Personalized Medecine in Cancer and Neurological Disorders, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, 76031 Rouen, France
| | | | - Florence Coulet
- Service de génétique, Hôpital Pitié Salpétrière, AP-HP, 75013 Paris, France
| | - Capucine Delnatte
- Laboratoire de génétique moléculaire, CHU Nantes, 44000 Nantes, France
| | - Claude Férec
- Inserm UMR1078, Genetics, Functional Genomics and Biotechnology, Université de Bretagne Occidentale, 29200 Brest, France
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 4006 Herston, Queensland, Australia
| | - Alexandra Martins
- Inserm U1245 Genomics and Personalized Medecine in Cancer and Neurological Disorders, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, 76031 Rouen, France
| | - Sophie Krieger
- Laboratoire de Biologie Clinique et Oncologique, Centre François Baclesse, 14000 Caen, France.,Inserm U1245 Genomics and Personalized Medecine in Cancer and Neurological Disorders, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, 76031 Rouen, France.,Normandie Univ, UNICAEN, 14000 Caen, France
| | - Claude Houdayer
- Inserm U830, Institut Curie Centre de Recherches, 75005 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France.,Service de Génétique, Institut Curie, 75005 Paris, France
| |
Collapse
|
24
|
Montalban G, Bonache S, Moles-Fernández A, Gadea N, Tenés A, Torres-Esquius S, Carrasco E, Balmaña J, Diez O, Gutiérrez-Enríquez S. Incorporation of semi-quantitative analysis of splicing alterations for the clinical interpretation of variants in BRCA1 and BRCA2 genes. Hum Mutat 2019; 40:2296-2317. [PMID: 31343793 DOI: 10.1002/humu.23882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
BRCA1 and BRCA2 (BRCA1/2) genetic variants that disrupt messenger RNA splicing are commonly associated with increased risks of developing breast/ovarian cancer. The majority of splicing studies published to date rely on qualitative methodologies (i.e., Sanger sequencing), but it is necessary to incorporate semi-quantitative or quantitative approaches to accurately interpret the clinical significance of spliceogenic variants. Here, we characterize the splicing impact of 31 BRCA1/2 variants using semi-quantitative capillary electrophoresis of fluorescent amplicons (CE), Sanger sequencing and allele-specific assays. A total of 14 variants were found to disrupt splicing. Allelic-specific assays could be performed for BRCA1 c.302-1G>A and BRCA2 c.516+2T>A, c.1909+1G>A, c.8332-13T>G, c.8332-2A>G, c.8954-2A>T variants, showing a monoallelic contribution to full-length transcript expression that was concordant with semi-quantitative data. The splicing fraction of alternative and aberrant transcripts was also measured by CE, facilitating variant interpretation. Following Evidence-based Network for the Interpretation of Germline Mutant Alleles criteria, we successfully classified eight variants as pathogenic (Class 5), five variants as likely pathogenic (Class 4), and 14 variants as benign (Class 1). We also provide splicing data for four variants classified as uncertain (Class 3), which produced a "leaky" splicing effect or introduced a missense change in the protein sequence, that will require further assessment to determine their clinical significance.
Collapse
Affiliation(s)
- Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Neus Gadea
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Anna Tenés
- Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Sara Torres-Esquius
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Estela Carrasco
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Orland Diez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | | |
Collapse
|
25
|
Padilla N, Moles-Fernández A, Riera C, Montalban G, Özkan S, Ootes L, Bonache S, Díez O, Gutiérrez-Enríquez S, de la Cruz X. BRCA1- and BRCA2-specific in silico tools for variant interpretation in the CAGI 5 ENIGMA challenge. Hum Mutat 2019; 40:1593-1611. [PMID: 31112341 DOI: 10.1002/humu.23802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022]
Abstract
BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of these genes increase the risk of hereditary breast and ovarian cancers. Correct identification of these variants then becomes clinically relevant, because it may increase the survival rates of the carriers. Unfortunately, we are still unable to systematically predict the impact of BRCA1/2 variants. In this article, we present a family of in silico predictors that address this problem, using a gene-specific approach. For each protein, we have developed two tools, aimed at predicting the impact of a variant at two different levels: Functional and clinical. Testing their performance in different datasets shows that specific information compensates the small number of predictive features and the reduced training sets employed to develop our models. When applied to the variants of the BRCA1/2 (ENIGMA) challenge in the fifth Critical Assessment of Genome Interpretation (CAGI 5) we find that these methods, particularly those predicting the functional impact of variants, have a good performance, identifying the large compositional bias towards neutral variants in the CAGI sample. This performance is further improved when incorporating to our prediction protocol estimates of the impact on splicing of the target variant.
Collapse
Affiliation(s)
- Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Casandra Riera
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Selen Özkan
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lars Ootes
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | | | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
26
|
Spurdle AB, Greville-Heygate S, Antoniou AC, Brown M, Burke L, de la Hoya M, Domchek S, Dörk T, Firth HV, Monteiro AN, Mensenkamp A, Parsons MT, Radice P, Robson M, Tischkowitz M, Tudini E, Turnbull C, Vreeswijk MP, Walker LC, Tavtigian S, Eccles DM. Towards controlled terminology for reporting germline cancer susceptibility variants: an ENIGMA report. J Med Genet 2019; 56:347-357. [PMID: 30962250 DOI: 10.1136/jmedgenet-2018-105872] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
The vocabulary currently used to describe genetic variants and their consequences reflects many years of studying and discovering monogenic disease with high penetrance. With the recent rapid expansion of genetic testing brought about by wide availability of high-throughput massively parallel sequencing platforms, accurate variant interpretation has become a major issue. The vocabulary used to describe single genetic variants in silico, in vitro, in vivo and as a contributor to human disease uses terms in common, but the meaning is not necessarily shared across all these contexts. In the setting of cancer genetic tests, the added dimension of using data from genetic sequencing of tumour DNA to direct treatment is an additional source of confusion to those who are not experienced in cancer genetics. The language used to describe variants identified in cancer susceptibility genetic testing typically still reflects an outdated paradigm of Mendelian inheritance with dichotomous outcomes. Cancer is a common disease with complex genetic architecture; an improved lexicon is required to better communicate among scientists, clinicians and patients, the risks and implications of genetic variants detected. This review arises from a recognition of, and discussion about, inconsistencies in vocabulary usage by members of the ENIGMA international multidisciplinary consortium focused on variant classification in breast-ovarian cancer susceptibility genes. It sets out the vocabulary commonly used in genetic variant interpretation and reporting, and suggests a framework for a common vocabulary that may facilitate understanding and clarity in clinical reporting of germline genetic tests for cancer susceptibility.
Collapse
Affiliation(s)
- Amanda B Spurdle
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Melissa Brown
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Leslie Burke
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Miguel de la Hoya
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Susan Domchek
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Helen V Firth
- Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - Alvaro N Monteiro
- Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Arjen Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael T Parsons
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Paolo Radice
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mark Robson
- Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Marc Tischkowitz
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| | - Emma Tudini
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
- William Harvey Research Institute, Queen Mary Hospital, London, UK
| | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Sean Tavtigian
- Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
27
|
Samadder NJ, Giridhar KV, Baffy N, Riegert-Johnson D, Couch FJ. Hereditary Cancer Syndromes-A Primer on Diagnosis and Management: Part 1: Breast-Ovarian Cancer Syndromes. Mayo Clin Proc 2019; 94:1084-1098. [PMID: 31171119 DOI: 10.1016/j.mayocp.2019.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death in both men and women in the United States, with colorectal cancer and breast cancer being two of the most frequent cancer types. Hereditary causes occurring due to pathogenic sequence variants and defects in certain genes makes up roughly 5% of all colorectal cancers and breast-ovarian cancers. High-risk hereditary predisposition syndromes have been associated with a substantially increased lifetime risk for the development of colorectal cancers and breast-ovarian cancers depending on the genetic syndrome, and many people also carry an increased risk of several other cancers compared with the general population. The aim of this review was to provide comprehensive literature on the most commonly encountered hereditary predisposition syndromes, including Lynch syndrome, familial adenomatous polyposis, MUTYH-associated polyposis, hamartomatous polyposis, and breast-ovarian cancer conditions. This will be presented as a 2-part series: the first part will cover the breast-ovarian cancer syndromes, and the second will focus on the inherited colorectal cancer and polyposis conditions.
Collapse
Affiliation(s)
- N Jewel Samadder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ; Department of Clinical Genomics, Mayo Clinic, Scottsdale, AZ; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL.
| | | | - Noemi Baffy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ
| | - Douglas Riegert-Johnson
- Department of Clinical Genomics, Mayo Clinic, Scottsdale, AZ; Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL
| | - Fergus J Couch
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
28
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Caloca MJ, Gómez-Barrero S, Velasco EA. Minigene Splicing Assays Identify 12 Spliceogenic Variants of BRCA2 Exons 14 and 15. Front Genet 2019; 10:503. [PMID: 31191615 PMCID: PMC6546720 DOI: 10.3389/fgene.2019.00503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
A relevant fraction of BRCA2 variants is associated with splicing alterations and with an increased risk of hereditary breast and ovarian cancer (HBOC). In this work, we have carried out a thorough study of variants from BRCA2 exons 14 and 15 reported at mutation databases. A total of 294 variants from exons 14 and 15 and flanking intronic sequences were analyzed with the online splicing tools NNSplice and Human Splicing Finder. Fifty-three out of these 294 variants were selected as candidate splicing variants. All variants but one, were introduced into the minigene MGBR2_ex14-20 (with exons 14–20) by site-directed mutagenesis and assayed in MCF-7 cells. Twelve of the remaining 52 variants (23.1%) impaired splicing at different degrees, yielding from 5 to 100% of aberrant transcripts. Nine variants affected the natural acceptor or donor sites of both exons and three affected putative enhancers or silencers. Fluorescent capillary electrophoresis revealed at least 10 different anomalous transcripts: (E14q5), Δ (E14p10), Δ(E14p246), Δ(E14q256), Δ(E14), Δ(E15p12), Δ(E15p13), Δ(E15p83), Δ(E15) and a 942-nt fragment of unknown structure. All transcripts, except for Δ(E14q256) and Δ(E15p12), are expected to truncate the BRCA2 protein. Nine variants induced severe splicing aberrations with more than 90% of abnormal transcripts. Thus, according to the guidelines of the American College of Medical Genetics and Genomics, eight variants should be classified as pathogenic (c.7008-2A > T, c.7008-1G > A, c.7435+1G > C, c.7436-2A > T, c.7436-2A > G, c.7617+1G > A, c.7617+1G > T, and c.7617+2T > G), one as likely pathogenic (c.7008-3C > G) and three remain as variants of uncertain clinical significance or VUS (c.7177A > G, c.7447A > G and c.7501C > T). In conclusion, functional assays by minigenes constitute a valuable strategy to primarily check the splicing impact of DNA variants and their clinical interpretation. While bioinformatics predictions of splice site variants were accurate, those of enhancer or silencer variants were poor (only 3/23 spliceogenic variants) which showed weak impacts on splicing (∼5–16% of aberrant isoforms). So, the Exonic Splicing Enhancer and Silencer (ESE and ESS, respectively) prediction algorithms require further improvement.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - María José Caloca
- Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | | | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
29
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Goina E, Acedo A, Buratti E, Velasco EA. Mis-splicing in breast cancer: identification of pathogenic BRCA2 variants by systematic minigene assays. J Pathol 2019; 248:409-420. [PMID: 30883759 DOI: 10.1002/path.5268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Splicing disruption is a common mechanism of gene inactivation associated with germline variants of susceptibility genes. To study the role of BRCA2 mis-splicing in hereditary breast/ovarian cancer (HBOC), we performed a comprehensive analysis of variants from BRCA2 exons 2-9, as well as the initial characterization of the regulatory mechanisms of such exons. A pSAD-based minigene with exons 2-9 was constructed and validated in MCF-7 cells, producing the expected transcript (1016-nt/V1-BRCA2_exons_2-9-V2). DNA variants from mutational databases were analyzed by NNSplice and Human Splicing Finder softwares. To refine ESE-variant prediction, we mapped the regulatory regions through a functional strategy whereby 26 exonic microdeletions were introduced into the minigene and tested in MCF-7 cells. Thus, we identified nine spliceogenic ESE-rich intervals where ESE-variants may be located. Combining bioinformatics and microdeletion assays, 83 variants were selected and genetically engineered in the minigene. Fifty-three changes impaired splicing: 28 variants disrupted the canonical sites, four created new ones, 10 abrogated enhancers, eight created silencers and three caused a double-effect. Notably, nine spliceogenic-ESE variants were located within ESE-containing intervals. Capillary electrophoresis and sequencing revealed more than 23 aberrant transcripts, where exon skipping was the most common event. Interestingly, variant c.67G>A triggered the usage of a noncanonical GC-donor 4-nt upstream. Thirty-six variants that induced severe anomalies (>60% aberrant transcripts) were analyzed according to the ACMG guidelines. Thus, 28 variants were classified as pathogenic, five as likely pathogenic and three as variants of uncertain significance. Interestingly, 13 VUS were reclassified as pathogenic or likely pathogenic variants. In conclusion, a large fraction of BRCA2 variants (∼64%) provoked splicing anomalies lending further support to the high prevalence of this disease-mechanism. The low accuracy of ESE-prediction algorithms may be circumvented by functional ESE-mapping that represents an optimal strategy to identify spliceogenic ESE-variants. Finally, systematic functional assays by minigenes depict a valuable tool for the initial characterization of splicing anomalies and the clinical interpretation of variants. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Elisa Goina
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
30
|
Valle L, Vilar E, Tavtigian SV, Stoffel EM. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol 2019; 247:574-588. [PMID: 30584801 PMCID: PMC6747691 DOI: 10.1002/path.5229] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022]
Abstract
This article reviews genes and syndromes associated with predisposition to colorectal cancer (CRC), with an overview of gene variant classification. We include updates on the application of preventive and therapeutic measures, focusing on the use of non-steroidal anti-inflammatory drugs (NSAIDs) and immunotherapy. Germline pathogenic variants in genes conferring high or moderate risk to cancer are detected in 6-10% of all CRCs and 20% of those diagnosed before age 50. CRC syndromes can be subdivided into nonpolyposis and polyposis entities, the most common of which are Lynch syndrome and familial adenomatous polyposis, respectively. In addition to known and novel genes associated with highly penetrant CRC risk, identification of pathogenic germline variants in genes associated with moderate-penetrance cancer risk and/or hereditary cancer syndromes not traditionally linked to CRC may have an impact on genetic testing, counseling, and surveillance. The use of multigene panels in genetic testing has exposed challenges in the classification of variants of uncertain significance. We provide an overview of the main classification systems and strategies for improving these. Finally, we highlight approaches for integrating chemoprevention in the care of individuals with genetic predisposition to CRC and use of targeted agents and immunotherapy for treatment of mismatch repair-deficient and hypermutant tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Eduardo Vilar
- Departments of Clinical Cancer Prevention, GI Medical Oncology and Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sean V. Tavtigian
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Elena M. Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Brandão RD, Mensaert K, López‐Perolio I, Tserpelis D, Xenakis M, Lattimore V, Walker LC, Kvist A, Vega A, Gutiérrez‐Enríquez S, Díez O, de la Hoya M, Spurdle AB, De Meyer T, Blok MJ. Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes. Int J Cancer 2019; 145:401-414. [PMID: 30623411 PMCID: PMC6635756 DOI: 10.1002/ijc.32114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/27/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.
Collapse
Affiliation(s)
- Rita D. Brandão
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Klaas Mensaert
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
| | - Irene López‐Perolio
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Demis Tserpelis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Markos Xenakis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa Lattimore
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical SciencesLund UniversityLundSweden
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica‐Servicio Galgo de SaúdeGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | | | - Orland Díez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Area of Clinical and Molecular GeneticsUniversity Hospital of Vall d'HebronBarcelonaSpain
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
- CRIG (Cancer Research Institute Ghent)Ghent UniversityGhentBelgium
| | - Marinus J. Blok
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| |
Collapse
|
32
|
Cline MS, Liao RG, Parsons MT, Paten B, Alquaddoomi F, Antoniou A, Baxter S, Brody L, Cook-Deegan R, Coffin A, Couch FJ, Craft B, Currie R, Dlott CC, Dolman L, den Dunnen JT, Dyke SOM, Domchek SM, Easton D, Fischmann Z, Foulkes WD, Garber J, Goldgar D, Goldman MJ, Goodhand P, Harrison S, Haussler D, Kato K, Knoppers B, Markello C, Nussbaum R, Offit K, Plon SE, Rashbass J, Rehm HL, Robson M, Rubinstein WS, Stoppa-Lyonnet D, Tavtigian S, Thorogood A, Zhang C, Zimmermann M, Burn J, Chanock S, Rätsch G, Spurdle AB. BRCA Challenge: BRCA Exchange as a global resource for variants in BRCA1 and BRCA2. PLoS Genet 2018; 14:e1007752. [PMID: 30586411 PMCID: PMC6324924 DOI: 10.1371/journal.pgen.1007752] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
The BRCA Challenge is a long-term data-sharing project initiated within the Global Alliance for Genomics and Health (GA4GH) to aggregate BRCA1 and BRCA2 data to support highly collaborative research activities. Its goal is to generate an informed and current understanding of the impact of genetic variation on cancer risk across the iconic cancer predisposition genes, BRCA1 and BRCA2. Initially, reported variants in BRCA1 and BRCA2 available from public databases were integrated into a single, newly created site, www.brcaexchange.org. The purpose of the BRCA Exchange is to provide the community with a reliable and easily accessible record of variants interpreted for a high-penetrance phenotype. More than 20,000 variants have been aggregated, three times the number found in the next-largest public database at the project’s outset, of which approximately 7,250 have expert classifications. The data set is based on shared information from existing clinical databases—Breast Cancer Information Core (BIC), ClinVar, and the Leiden Open Variation Database (LOVD)—as well as population databases, all linked to a single point of access. The BRCA Challenge has brought together the existing international Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium expert panel, along with expert clinicians, diagnosticians, researchers, and database providers, all with a common goal of advancing our understanding of BRCA1 and BRCA2 variation. Ongoing work includes direct contact with national centers with access to BRCA1 and BRCA2 diagnostic data to encourage data sharing, development of methods suitable for extraction of genetic variation at the level of individual laboratory reports, and engagement with participant communities to enable a more comprehensive understanding of the clinical significance of genetic variation in BRCA1 and BRCA2. The goal of this study and paper has been to develop an international resource to generate an informed and current understanding of the impact of genetic variation on cancer risk across the cancer predisposition genes, BRCA1 and BRCA2. Reported variants in BRCA1 and BRCA2 available from public databases were integrated into a single, newly created site, www.brcaexchange.org, to provide a reliable and easily accessible record of variants interpreted for a high-penetrance phenotype.
Collapse
Affiliation(s)
- Melissa S. Cline
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Rachel G. Liao
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Michael T. Parsons
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Faisal Alquaddoomi
- Department of Computer Science, Biomedical Informatics Group Universitätsstrasse, Zürich, Switzerland
- Biomedical Informatics, University Hospital Zurich, Zurich, Switzerland
- Biocybernetics Laboratory, Computer Science Department, University of California, Los Angeles, California, United States of America
| | - Antonis Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Samantha Baxter
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Larry Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Robert Cook-Deegan
- School for the Future of Innovation in Society, and Consortium for Science, Policy & Outcomes, Arizona State University, Tempe, Arizona, United States of America
| | - Amy Coffin
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Fergus J. Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Brian Craft
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Robert Currie
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Chloe C. Dlott
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Lena Dolman
- The Global Alliance for Genomics and Health, Toronto, Ontario, Canada
| | - Johan T. den Dunnen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie O. M. Dyke
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Susan M. Domchek
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Zachary Fischmann
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - William D. Foulkes
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Judy Garber
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary J. Goldman
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Peter Goodhand
- The Global Alliance for Genomics and Health, Toronto, Ontario, Canada
| | - Steven Harrison
- Partners HealthCare Laboratory for Molecular Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Haussler
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Kazuto Kato
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Bartha Knoppers
- Centre of Genomics and Policy, Faculty of Medicine, Human Genetics, McGill University, Montreal, Québec, Canada
| | - Charles Markello
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Biomolecular Science & Engineering, University of California, Santa Cruz, California, United States of America
| | - Robert Nussbaum
- Invitae, San Francisco, California, United States of America
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Sharon E. Plon
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jem Rashbass
- National Disease Registration, National Cancer Registration and Analysis Service, Public Health England, London, United Kingdom
| | - Heidi L. Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts, United States of America
- Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Wendy S. Rubinstein
- CancerLinQ at American Society of Clinical Oncology (ASCO), Alexandria, Virginia, United States of America
| | | | - Sean Tavtigian
- Partners HealthCare Laboratory for Molecular Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Oncological Sciences, The University of Utah, Salt Lake City, Utah, United States of America
| | - Adrian Thorogood
- The Global Alliance for Genomics and Health, Toronto, Ontario, Canada
- Centre of Genomics and Policy, McGill University, Montreal, Canada
| | - Can Zhang
- Department of Computer Science, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Marc Zimmermann
- Department of Computer Science, Biomedical Informatics Group Universitätsstrasse, Zürich, Switzerland
- Biomedical Informatics, University Hospital Zurich, Zurich, Switzerland
| | | | - John Burn
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Gunnar Rätsch
- Department of Computer Science, Biomedical Informatics Group Universitätsstrasse, Zürich, Switzerland
- Biomedical Informatics, University Hospital Zurich, Zurich, Switzerland
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
- * E-mail: (GR); (ABS)
| | - Amanda B. Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
- * E-mail: (GR); (ABS)
| |
Collapse
|
33
|
Burke LJ, Sevcik J, Gambino G, Tudini E, Mucaki EJ, Shirley BC, Whiley P, Parsons MT, De Leeneer K, Gutiérrez‐Enríquez S, Santamariña M, Caputo SM, Santana dos Santos E, Soukupova J, Janatova M, Zemankova P, Lhotova K, Stolarova L, Borecka M, Moles‐Fernández A, Manoukian S, Bonanni B, Edwards SL, Blok MJ, van Overeem Hansen T, Rossing M, Diez O, Vega A, Claes KB, Goldgar DE, Rouleau E, Radice P, Peterlongo P, Rogan PK, Caligo M, Spurdle AB, Brown MA. BRCA1 and BRCA2 5' noncoding region variants identified in breast cancer patients alter promoter activity and protein binding. Hum Mutat 2018; 39:2025-2039. [PMID: 30204945 PMCID: PMC6282814 DOI: 10.1002/humu.23652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5' noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency < 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C>T and PAX5 binding to BRCA2:c.-296C>T. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC.
Collapse
Affiliation(s)
- Leslie J. Burke
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
| | - Jan Sevcik
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Gaetana Gambino
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
- Section of Molecular GeneticsDepartment of Laboratory MedicineUniversity Hospital of PisaPisaItaly
| | - Emma Tudini
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eliseos J. Mucaki
- University of Western Ontario, Department of BiochemistrySchulich School of Medicine and DentistryLondonOntarioCanada
| | | | - Phillip Whiley
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kim De Leeneer
- Center for Medical GeneticsGhent University Hospitaland Cancer Research Institute Ghent (CRIG)Ghent UniversityGhentBelgium
| | | | - Marta Santamariña
- Fundación Pública Galega de Medicina Xenómica‐SERGASGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | - Sandrine M. Caputo
- Service de GénétiqueDepartment de Biologie des TumeursInstitut CurieParisFrance
| | - Elizabeth Santana dos Santos
- Service de GénétiqueDepartment de Biologie des TumeursInstitut CurieParisFrance
- Department of oncologyCenter for Translational OncologyCancer Institute of the State of São Paulo ‐ ICESPSão PauloBrazil
- A.C.Camargo Cancer CenterSão PauloBrazil
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Klara Lhotova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Mariana Borecka
- Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | | | - Siranoush Manoukian
- Unit of Medical GeneticsDepartment of Medical Oncology and HematologyFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Bernardo Bonanni
- Division of Cancer Prevention and GeneticsIstituto Europeo di OncologiaMilanItaly
| | - ENIGMA Consortium
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
| | - Stacey L. Edwards
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Marinus J. Blok
- Department of Clinical GeneticsMaastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Maria Rossing
- Center for Genomic MedicineCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Orland Diez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Area of Clinical and Molecular GeneticsUniversity Hospital Vall d'Hebron (UHVH)BarcelonaSpain
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica‐SERGASGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | - Kathleen B.M. Claes
- Center for Medical GeneticsGhent University Hospitaland Cancer Research Institute Ghent (CRIG)Ghent UniversityGhentBelgium
| | | | | | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | | | - Peter K. Rogan
- University of Western Ontario, Department of BiochemistrySchulich School of Medicine and DentistryLondonOntarioCanada
- CytoGnomix Inc.LondonOntarioCanada
| | - Maria Caligo
- Section of Molecular GeneticsDepartment of Laboratory MedicineUniversity Hospital of PisaPisaItaly
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Melissa A. Brown
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
34
|
Moles-Fernández A, Duran-Lozano L, Montalban G, Bonache S, López-Perolio I, Menéndez M, Santamariña M, Behar R, Blanco A, Carrasco E, López-Fernández A, Stjepanovic N, Balmaña J, Capellá G, Pineda M, Vega A, Lázaro C, de la Hoya M, Diez O, Gutiérrez-Enríquez S. Computational Tools for Splicing Defect Prediction in Breast/Ovarian Cancer Genes: How Efficient Are They at Predicting RNA Alterations? Front Genet 2018; 9:366. [PMID: 30233647 PMCID: PMC6134256 DOI: 10.3389/fgene.2018.00366] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
In silico tools for splicing defect prediction have a key role to assess the impact of variants of uncertain significance. Our aim was to evaluate the performance of a set of commonly used splicing in silico tools comparing the predictions against RNA in vitro results. This was done for natural splice sites of clinically relevant genes in hereditary breast/ovarian cancer (HBOC) and Lynch syndrome. A study divided into two stages was used to evaluate SSF-like, MaxEntScan, NNSplice, HSF, SPANR, and dbscSNV tools. A discovery dataset of 99 variants with unequivocal results of RNA in vitro studies, located in the 10 exonic and 20 intronic nucleotides adjacent to exon-intron boundaries of BRCA1, BRCA2, MLH1, MSH2, MSH6, PMS2, ATM, BRIP1, CDH1, PALB2, PTEN, RAD51D, STK11, and TP53, was collected from four Spanish cancer genetic laboratories. The best stand-alone predictors or combinations were validated with a set of 346 variants in the same genes with clear splicing outcomes reported in the literature. Sensitivity, specificity, accuracy, negative predictive value (NPV) and Mathews Coefficient Correlation (MCC) scores were used to measure the performance. The discovery stage showed that HSF and SSF-like were the most accurate for variants at the donor and acceptor region, respectively. The further combination analysis revealed that HSF, HSF+SSF-like or HSF+SSF-like+MES achieved a high performance for predicting the disruption of donor sites, and SSF-like or a sequential combination of MES and SSF-like for predicting disruption of acceptor sites. The performance confirmation of these last results with the validation dataset, indicated that the highest sensitivity, accuracy, and NPV (99.44%, 99.44%, and 96.88, respectively) were attained with HSF+SSF-like or HSF+SSF-like+MES for donor sites and SSF-like (92.63%, 92.65%, and 84.44, respectively) for acceptor sites. We provide recommendations for combining algorithms to conduct in silico splicing analysis that achieved a high performance. The high NPV obtained allows to select the variants in which the study by in vitro RNA analysis is mandatory against those with a negligible probability of being spliceogenic. Our study also shows that the performance of each specific predictor varies depending on whether the natural splicing sites are donors or acceptors.
Collapse
Affiliation(s)
| | - Laura Duran-Lozano
- Oncogenetics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Irene López-Perolio
- Laboratorio de Oncología Molecular - Centro de Investigación Biomédica en Red de Cancer, Instituto de Investigación Sanitaria San Carlos, Hospital Clínico San Carlos, Madrid, Spain
| | - Mireia Menéndez
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Institut d'Investigació Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Marta Santamariña
- Grupo de Medicina Xenómica-USC, Fundación Pública Galega de Medicina Xenómica-SERGAS, CIBER de Enfermedades Raras, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Raquel Behar
- Laboratorio de Oncología Molecular - Centro de Investigación Biomédica en Red de Cancer, Instituto de Investigación Sanitaria San Carlos, Hospital Clínico San Carlos, Madrid, Spain
| | - Ana Blanco
- Grupo de Medicina Xenómica-USC, Fundación Pública Galega de Medicina Xenómica-SERGAS, CIBER de Enfermedades Raras, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Estela Carrasco
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Adrià López-Fernández
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Neda Stjepanovic
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Medical Oncology Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Medical Oncology Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Institut d'Investigació Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Institut d'Investigació Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Ana Vega
- Grupo de Medicina Xenómica-USC, Fundación Pública Galega de Medicina Xenómica-SERGAS, CIBER de Enfermedades Raras, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Institut d'Investigació Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Miguel de la Hoya
- Laboratorio de Oncología Molecular - Centro de Investigación Biomédica en Red de Cancer, Instituto de Investigación Sanitaria San Carlos, Hospital Clínico San Carlos, Madrid, Spain
| | - Orland Diez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Area of Clinical and Molecular Genetics, University Hospital Vall d'Hebron, Barcelona, Spain
| | | |
Collapse
|
35
|
Fortuno C, James PA, Young EL, Feng B, Olivier M, Pesaran T, Tavtigian SV, Spurdle AB. Improved, ACMG-compliant, in silico prediction of pathogenicity for missense substitutions encoded by TP53 variants. Hum Mutat 2018; 39:1061-1069. [PMID: 29775997 PMCID: PMC6043381 DOI: 10.1002/humu.23553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 02/02/2023]
Abstract
Clinical interpretation of germline missense variants represents a major challenge, including those in the TP53 Li-Fraumeni syndrome gene. Bioinformatic prediction is a key part of variant classification strategies. We aimed to optimize the performance of the Align-GVGD tool used for p53 missense variant prediction, and compare its performance to other bioinformatic tools (SIFT, PolyPhen-2) and ensemble methods (REVEL, BayesDel). Reference sets of assumed pathogenic and assumed benign variants were defined using functional and/or clinical data. Area under the curve and Matthews correlation coefficient (MCC) values were used as objective functions to select an optimized protein multisequence alignment with best performance for Align-GVGD. MCC comparison of tools using binary categories showed optimized Align-GVGD (C15 cut-off) combined with BayesDel (0.16 cut-off), or with REVEL (0.5 cut-off), to have the best overall performance. Further, a semi-quantitative approach using multiple tiers of bioinformatic prediction, validated using an independent set of nonfunctional and functional variants, supported use of Align-GVGD and BayesDel prediction for different strength of evidence levels in ACMG/AMP rules. We provide rationale for bioinformatic tool selection for TP53 variant classification, and have also computed relevant bioinformatic predictions for every possible p53 missense variant to facilitate their use by the scientific and medical community.
Collapse
Affiliation(s)
- Cristina Fortuno
- QIMR Berghofer Medical Research Institute, Genetics and Computational Division, 300 Herston Rd, Herston QLD 4006, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital
| | - Erin L. Young
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Bing Feng
- Department of Dermatology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | | | - Sean V. Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Amanda B. Spurdle
- QIMR Berghofer Medical Research Institute, Genetics and Computational Division, 300 Herston Rd, Herston QLD 4006, Australia
| |
Collapse
|
36
|
Shirts BH, Konnick EQ, Upham S, Walsh T, Ranola JMO, Jacobson AL, King MC, Pearlman R, Hampel H, Pritchard CC. Using Somatic Mutations from Tumors to Classify Variants in Mismatch Repair Genes. Am J Hum Genet 2018; 103:19-29. [PMID: 29887214 DOI: 10.1016/j.ajhg.2018.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 01/28/2023] Open
Abstract
Present guidelines for classification of constitutional variants do not incorporate inferences from mutations seen in tumors, even when these are associated with a specific molecular phenotype. When somatic mutations and constitutional mutations lead to the same molecular phenotype, as for the mismatch repair genes, information from somatic mutations may enable interpretation of previously unclassified variants. To test this idea, we first estimated likelihoods that somatic variants in MLH1, MSH2, MSH6, and PMS2 drive microsatellite instability and characteristic IHC staining patterns by calculating likelihoods of high versus low normalized variant read fractions of 153 mutations known to be pathogenic versus those of 760 intronic passenger mutations from 174 paired tumor-normal samples. Mutations that explained the tumor mismatch repair phenotype had likelihood ratio for high variant read fraction of 1.56 (95% CI 1.42-1.71) at sites with no loss of heterozygosity and of 26.5 (95% CI 13.2-53.0) at sites with loss of heterozygosity. Next, we applied these ratios to 165 missense, synonymous, and splice variants observed in tumors, combining in a Bayesian analysis the likelihood ratio corresponding with the adjusted variant read fraction with pretest probabilities derived from published analyses and public databases. We suggest classifications for 86 of 165 variants: 7 benign, 31 likely benign, 22 likely pathogenic, and 26 pathogenic. These results illustrate that for mismatch repair genes, characterization of tumor mutations permits tumor mutation data to inform constitutional variant classification. We suggest modifications to incorporate molecular phenotype in future variant classification guidelines.
Collapse
Affiliation(s)
- Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Eric Q Konnick
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah Upham
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tom Walsh
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Angela L Jacobson
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mary-Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rachel Pearlman
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43221, USA
| | - Heather Hampel
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43221, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
37
|
Young EL, Thompson BA, Neklason DW, Firpo MA, Werner T, Bell R, Berger J, Fraser A, Gammon A, Koptiuch C, Kohlmann WK, Neumayer L, Goldgar DE, Mulvihill SJ, Cannon-Albright LA, Tavtigian SV. Pancreatic cancer as a sentinel for hereditary cancer predisposition. BMC Cancer 2018; 18:697. [PMID: 29945567 PMCID: PMC6020441 DOI: 10.1186/s12885-018-4573-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Genes associated with hereditary breast and ovarian cancer (HBOC) and colorectal cancer (CRC) predisposition have been shown to play a role in pancreatic cancer susceptibility. Growing evidence suggests that pancreatic cancer may be useful as a sentinel cancer to identify families that could benefit from HBOC or CRC surveillance, but to date pancreatic cancer is only considered an indication for genetic testing in the context of additional family history. METHODS Preliminary data generated at the Huntsman Cancer Hospital (HCH) included variants identified on a custom 34-gene panel or 59-gene panel including both known HBOC and CRC genes for respective sets of 66 and 147 pancreatic cancer cases, unselected for family history. Given the strength of preliminary data and corresponding literature, 61 sequential pancreatic cancer cases underwent a custom 14-gene clinical panel. Sequencing data from HCH pancreatic cancer cases, pancreatic cancer cases of the Cancer Genome Atlas (TCGA), and an unselected pancreatic cancer screen from the Mayo Clinic were combined in a meta-analysis to estimate the proportion of carriers with pathogenic and high probability of pathogenic variants of uncertain significance (HiP-VUS). RESULTS Approximately 8.6% of unselected pancreatic cancer cases at the HCH carried a variant with potential HBOC or CRC screening recommendations. A meta-analysis of unselected pancreatic cancer cases revealed that approximately 11.5% carry a pathogenic variant or HiP-VUS. CONCLUSION With the inclusion of both HBOC and CRC susceptibility genes in a panel test, unselected pancreatic cancer cases act as a useful sentinel cancer to identify asymptomatic at-risk relatives who could benefit from relevant HBOC and CRC surveillance measures.
Collapse
Affiliation(s)
- Erin L. Young
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Bryony A. Thompson
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Deborah W. Neklason
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States
| | - Matthew A. Firpo
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, United States
| | - Theresa Werner
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Division of Oncology, Department of Medicine, University of Utah, Salt Lake City, United States
| | - Russell Bell
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Justin Berger
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Alison Fraser
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Amanda Gammon
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Cathryn Koptiuch
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Wendy K. Kohlmann
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Leigh Neumayer
- Department of Surgery and Arizona Cancer Center, University of Arizona, Tucson, United States
| | - David E. Goldgar
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, United States
| | - Sean J. Mulvihill
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, United States
| | - Lisa A. Cannon-Albright
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
- Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, United States
| | - Sean V. Tavtigian
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
38
|
Colombo M, Lòpez‐Perolio I, Meeks HD, Caleca L, Parsons MT, Li H, De Vecchi G, Tudini E, Foglia C, Mondini P, Manoukian S, Behar R, Garcia EBG, Meindl A, Montagna M, Niederacher D, Schmidt AY, Varesco L, Wappenschmidt B, Bolla MK, Dennis J, Michailidou K, Wang Q, Aittomäki K, Andrulis IL, Anton‐Culver H, Arndt V, Beckmann MW, Beeghly‐Fadel A, Benitez J, Boeckx B, Bogdanova NV, Bojesen SE, Bonanni B, Brauch H, Brenner H, Burwinkel B, Chang‐Claude J, Conroy DM, Couch FJ, Cox A, Cross SS, Czene K, Devilee P, Dörk T, Eriksson M, Fasching PA, Figueroa J, Fletcher O, Flyger H, Gabrielson M, García‐Closas M, Giles GG, González‐Neira A, Guénel P, Haiman CA, Hall P, Hamann U, Hartman M, Hauke J, Hollestelle A, Hopper JL, Jakubowska A, Jung A, Kosma V, Lambrechts D, Le Marchand L, Lindblom A, Lubinski J, Mannermaa A, Margolin S, Miao H, Milne RL, Neuhausen SL, Nevanlinna H, Olson JE, Peterlongo P, Peto J, Pylkäs K, Sawyer EJ, Schmidt MK, Schmutzler RK, Schneeweiss A, Schoemaker MJ, See MH, Southey MC, Swerdlow A, Teo SH, Toland AE, Tomlinson I, Truong T, van Asperen CJ, van den Ouweland AM, van der Kolk LE, Winqvist R, Yannoukakos D, Zheng W, Dunning AM, Easton DF, Henderson A, Hogervorst FB, Izatt L, Offitt K, Side LE, van Rensburg EJ, EMBRACE S, HEBON S, McGuffog L, Antoniou AC, Chenevix‐Trench G, Spurdle AB, Goldgar DE, de la Hoya M, Radice P. The BRCA2 c.68-7T > A variant is not pathogenic: A model for clinical calibration of spliceogenicity. Hum Mutat 2018; 39:729-741. [PMID: 29460995 PMCID: PMC5947288 DOI: 10.1002/humu.23411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 12/12/2022]
Abstract
Although the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T > A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 × 10-115 . There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24) nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the nonpathogenicity of the BRCA2 c.68-7T > A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants.
Collapse
Affiliation(s)
- Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Irene Lòpez‐Perolio
- Molecular Oncology Laboratory CIBERONCHospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Huong D. Meeks
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbane, QLD 4006Australia
| | - Hongyan Li
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Giovanna De Vecchi
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbane, QLD 4006Australia
| | - Claudia Foglia
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Patrizia Mondini
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Siranoush Manoukian
- Unit of Medical GeneticsDepartment of Medical Oncology and HematologyFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Raquel Behar
- Molecular Oncology Laboratory CIBERONCHospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Encarna B. Gómez Garcia
- Department of Clinical Genetics and GROWSchool for Oncology and Developmental BiologyMUMCMaastrichtThe Netherlands
| | - Alfons Meindl
- Department of Obstetrics and GynecologyUniversity HospitalLMU MunichGermany
| | - Marco Montagna
- Immunology and Molecular Oncology UnitVeneto Institute of Oncology IOV ‐ IRCCSPaduaItaly
| | - Dieter Niederacher
- Department of Gynaecology and ObstetricsUniversity Hospital DüsseldorfHeinrich‐Heine UniversityDuesseldorfGermany
| | - Ane Y. Schmidt
- Center for Genomic MedicineRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | | | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian CancerUniversity Hospital of CologneCologneGermany
- Center for Integrated Oncology (CIO)Medical FacultyUniversity Hospital of CologneCologneGermany
| | - Manjeet K. Bolla
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Joe Dennis
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- Department of Electron Microscopy/Molecular PathologyThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Qin Wang
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Kristiina Aittomäki
- Department of Clinical GeneticsHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Irene L. Andrulis
- Fred A. Litwin Center for Cancer GeneticsLunenfeld‐Tanenbaum Research Institute of Mount Sinai HospitalTorontoOntario
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
| | - Hoda Anton‐Culver
- Department of EpidemiologyUniversity of California IrvineIrvineCalifornia
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Matthias W. Beckmann
- Department of Gynaecology and ObstetricsUniversity Hospital Erlangen, Friedrich‐Alexander University Erlangen‐NurembergComprehensive Cancer Center Erlangen‐EMNErlangenGermany
| | - Alicia Beeghly‐Fadel
- Division of EpidemiologyDepartment of MedicineVanderbilt Epidemiology CenterVanderbilt‐Ingram Cancer CenterVanderbilt University School of MedicineNashvilleTennessee
| | - Javier Benitez
- Human Cancer Genetics ProgramSpanish National Cancer Research CentreMadridSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)ValenciaSpain
| | - Bram Boeckx
- VIB Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory for Translational GeneticsDepartment of Human GeneticsUniversity of LeuvenLeuvenBelgium
| | - Natalia V. Bogdanova
- Department of Radiation OncologyHannover Medical SchoolHannoverGermany
- Gynaecology Research UnitHannover Medical SchoolHannoverGermany
- N.N. Alexandrov Research Institute of Oncology and Medical RadiologyMinskBelarus
| | - Stig E. Bojesen
- Copenhagen General Population StudyHerlevand Gentofte HospitalCopenhagen University HospitalHerlevDenmark
- Department of Clinical BiochemistryHerlev and Gentofte HospitalCopenhagen University HospitalHerlevDenmark
- Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and GeneticsIstituto Europeo di OncologiaMilanItaly
| | - Hiltrud Brauch
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Barbara Burwinkel
- Department of Obstetrics and GynecologyUniversity of HeidelbergHeidelbergGermany
- Molecular Epidemiology GroupC080German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jenny Chang‐Claude
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Research Group Genetic Cancer EpidemiologyUniversity Cancer Center Hamburg (UCCH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Don M. Conroy
- Centre for Cancer Genetic EpidemiologyDepartment of OncologyUniversity of CambridgeCambridgeUK
| | - Fergus J. Couch
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterNew York
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA)Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Simon S. Cross
- Academic Unit of PathologyDepartment of NeuroscienceUniversity of SheffieldSheffieldUK
| | - Kamila Czene
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Peter Devilee
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Thilo Dörk
- Gynaecology Research UnitHannover Medical SchoolHannoverGermany
| | - Mikael Eriksson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Peter A. Fasching
- Department of Gynaecology and ObstetricsUniversity Hospital Erlangen, Friedrich‐Alexander University Erlangen‐NurembergComprehensive Cancer Center Erlangen‐EMNErlangenGermany
- David Geffen School of MedicineDepartment of Medicine Division of Hematology and OncologyUniversity of California at Los AngelesLos AngelesCalifornia
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and InformaticsThe University of Edinburgh Medical SchoolEdinburghUK
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMaryland
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Henrik Flyger
- Department of Breast SurgeryHerlev and Gentofte HospitalCopenhagen University HospitalHerlevDenmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | | | - Graham G. Giles
- Cancer Epidemiology & Intelligence DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global healthThe University of MelbourneMelbourneAustralia
| | - Anna González‐Neira
- Human Cancer Genetics ProgramSpanish National Cancer Research CentreMadridSpain
| | - Pascal Guénel
- Cancer & Environment GroupCenter for Research in Epidemiology and Population Health (CESP)INSERMUniversity Paris‐SudUniversity Paris‐SaclayVillejuifFrance
| | - Christopher A. Haiman
- Department of Preventive MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Per Hall
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Ute Hamann
- Molecular Genetics of Breast CancerDeutsches Krebsforschungszentrum (DKFZ)HeidelbergGermany
| | - Mikael Hartman
- Saw Swee Hock School of Public HealthNational University of SingaporeSingaporeSingapore
- Department of SurgeryNational University Health SystemSingaporeSingapore
| | - Jan Hauke
- Center for Hereditary Breast and Ovarian CancerUniversity Hospital of CologneCologneGermany
- Center for Integrated Oncology (CIO)Medical FacultyUniversity Hospital of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Antoinette Hollestelle
- Department of Medical OncologyFamily Cancer ClinicErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - John L. Hopper
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global healthThe University of MelbourneMelbourneAustralia
| | - Anna Jakubowska
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Audrey Jung
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Veli‐Matti Kosma
- Translational Cancer Research AreaUniversity of Eastern FinlandKuopioFinland
- Institute of Clinical MedicinePathology and Forensic MedicineUniversity of Eastern FinlandKuopioFinland
- Imaging CenterDepartment of Clinical PathologyKuopio University HospitalKuopioFinland
| | - Diether Lambrechts
- VIB Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory for Translational GeneticsDepartment of Human GeneticsUniversity of LeuvenLeuvenBelgium
| | - Loid Le Marchand
- Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHawaii
| | - Annika Lindblom
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Jan Lubinski
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Arto Mannermaa
- Translational Cancer Research AreaUniversity of Eastern FinlandKuopioFinland
- Institute of Clinical MedicinePathology and Forensic MedicineUniversity of Eastern FinlandKuopioFinland
- Imaging CenterDepartment of Clinical PathologyKuopio University HospitalKuopioFinland
| | - Sara Margolin
- Department of Clinical Science and Education SödersjukhusetKarolinska InstitutetStockholmSweden
| | - Hui Miao
- Saw Swee Hock School of Public HealthNational University of SingaporeSingaporeSingapore
| | - Roger L. Milne
- Cancer Epidemiology & Intelligence DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global healthThe University of MelbourneMelbourneAustralia
| | - Susan L. Neuhausen
- Department of Population SciencesBeckman Research Institute of City of HopeDuarteCalifornia
| | - Heli Nevanlinna
- Department of Obstetrics and GynecologyHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Janet E. Olson
- Department of Health Sciences ResearchMayo ClinicRochesterNew York
| | - Paolo Peterlongo
- IFOMThe FIRC (Italian Foundation for Cancer Research) Institute of Molecular OncologyMilanItaly
| | - Julian Peto
- Department of Non‐Communicable Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor BiologyCancer and Translational Medicine Research UnitBiocenter OuluUniversity of OuluOuluFinland
- Laboratory of Cancer Genetics and Tumor BiologyNorthern Finland Laboratory Centre OuluOuluFinland
| | | | - Marjanka K. Schmidt
- Division of Molecular PathologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Division of Psychosocial Research and EpidemiologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek hospitalAmsterdamThe Netherlands
| | - Rita K. Schmutzler
- Center for Hereditary Breast and Ovarian CancerUniversity Hospital of CologneCologneGermany
- Center for Integrated Oncology (CIO)Medical FacultyUniversity Hospital of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Andreas Schneeweiss
- Department of Obstetrics and GynecologyUniversity of HeidelbergHeidelbergGermany
- National Center for Tumor DiseasesUniversity of HeidelbergHeidelbergGermany
| | | | - Mee Hoong See
- Breast Cancer Research UnitCancer Research InstituteUniversity Malaya Medical CentreKuala LumpurMalaysia
| | | | - Anthony Swerdlow
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
- Division of Breast Cancer ResearchThe Institute of Cancer ResearchLondonUK
| | - Soo H. Teo
- Breast Cancer Research UnitCancer Research InstituteUniversity Malaya Medical CentreKuala LumpurMalaysia
- Cancer Research MalaysiaSubang JayaSelangorMalaysia
| | - Amanda E. Toland
- Department of Molecular VirologyImmunology and Medical GeneticsComprehensive Cancer CenterThe Ohio State UniversityColumbusOhio
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Thérèse Truong
- Cancer & Environment GroupCenter for Research in Epidemiology and Population Health (CESP)INSERMUniversity Paris‐SudUniversity Paris‐SaclayVillejuifFrance
| | | | | | - Lizet E. van der Kolk
- Family Cancer ClinicThe Netherlands Cancer Institute ‐ Antoni van Leeuwenhoek hospitalAmsterdamThe Netherlands
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor BiologyCancer and Translational Medicine Research UnitBiocenter OuluUniversity of OuluOuluFinland
- Laboratory of Cancer Genetics and Tumor BiologyNorthern Finland Laboratory Centre OuluOuluFinland
| | - Drakoulis Yannoukakos
- Molecular Diagnostics LaboratoryINRASTESNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Wei Zheng
- Division of EpidemiologyDepartment of MedicineVanderbilt Epidemiology CenterVanderbilt‐Ingram Cancer CenterVanderbilt University School of MedicineNashvilleTennessee
| | | | - Alison M. Dunning
- Centre for Cancer Genetic EpidemiologyDepartment of OncologyUniversity of CambridgeCambridgeUK
| | - Douglas F. Easton
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- Centre for Cancer Genetic EpidemiologyDepartment of OncologyUniversity of CambridgeCambridgeUK
| | - Alex Henderson
- Institute of Genetic MedicineCentre for LifeNewcastle Upon Tyne Hospitals NHS TrustNewcastle upon TyneUK
| | - Frans B.L. Hogervorst
- Family Cancer ClinicThe Netherlands Cancer Institute ‐ Antoni van Leeuwenhoek hospitalAmsterdamThe Netherlands
| | - Louise Izatt
- Clinical GeneticsGuy's and St. Thomas’ NHS Foundation TrustLondonUK
| | - Kenneth Offitt
- Clinical Genetics Research LaboratoryDept. of MedicineCancer Biology and GeneticsMemorial Sloan‐Kettering Cancer CenterNew YorkNew York
| | - Lucy E. Side
- Wessex Clinical Genetics ServiceMailpoint 627, Princess Anne Hospital, Coxford Road, Southampton, SO16 5YA
| | | | - Study EMBRACE
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeStrangeways Research LaboratoryWorts CausewayCambridgeUK
| | - Study HEBON
- The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON)Coordinating center: Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Lesley McGuffog
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Antonis C. Antoniou
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Georgia Chenevix‐Trench
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbane, QLD 4006Australia
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbane, QLD 4006Australia
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONCHospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| |
Collapse
|
39
|
Caputo SM, Léone M, Damiola F, Ehlen A, Carreira A, Gaidrat P, Martins A, Brandão RD, Peixoto A, Vega A, Houdayer C, Delnatte C, Bronner M, Muller D, Castera L, Guillaud-Bataille M, Søkilde I, Uhrhammer N, Demontety S, Tubeuf H, Castelain G, Jensen UB, Petitalot A, Krieger S, Lefol C, Moncoutier V, Boutry-Kryza N, Nielsen HR, Sinilnikova O, Stoppa-Lyonnet D, Spurdle AB, Teixeira MR, Coulet F, Thomassen M, Rouleau E. Full in-frame exon 3 skipping of BRCA2 confers high risk of breast and/or ovarian cancer. Oncotarget 2018; 9:17334-17348. [PMID: 29707112 PMCID: PMC5915120 DOI: 10.18632/oncotarget.24671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/24/2018] [Indexed: 12/18/2022] Open
Abstract
Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.
Collapse
Affiliation(s)
| | - Mélanie Léone
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Asa Ehlen
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Pascaline Gaidrat
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alexandra Martins
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Ana Vega
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Claude Houdayer
- Institut Curie, Service de Génétique, Paris, France.,Université Paris Descartes, Paris, France
| | | | | | - Danièle Muller
- Laboratoire d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Laurent Castera
- Laboratoire de biologie et de génétique du cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, Caen, France
| | | | - Inge Søkilde
- Section of Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Nancy Uhrhammer
- Laboratoire de Biologie Médicale, CLCC Jean Perrin, Clermont-Ferrand, France
| | | | - Hélène Tubeuf
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Gaïa Castelain
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sophie Krieger
- Laboratoire de biologie et de génétique du cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, Caen, France
| | | | | | - Nadia Boutry-Kryza
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Olga Sinilnikova
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Amanda B Spurdle
- Genetics and Comp utational Biology Division, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal.,Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Florence Coulet
- Laboratoire d'Oncogénétique et d'Angiogénétique Moléculaire, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
40
|
Baert A, Machackova E, Coene I, Cremin C, Turner K, Portigal-Todd C, Asrat MJ, Nuk J, Mindlin A, Young S, MacMillan A, Van Maerken T, Trbusek M, McKinnon W, Wood ME, Foulkes WD, Santamariña M, de la Hoya M, Foretova L, Poppe B, Vral A, Rosseel T, De Leeneer K, Vega A, Claes KBM. Thorough in silico and in vitro cDNA analysis of 21 putative BRCA1 and BRCA2 splice variants and a complex tandem duplication in BRCA2 allowing the identification of activated cryptic splice donor sites in BRCA2 exon 11. Hum Mutat 2018; 39:515-526. [PMID: 29280214 DOI: 10.1002/humu.23390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/03/2017] [Accepted: 12/17/2017] [Indexed: 12/31/2022]
Abstract
For 21 putative BRCA1 and BRCA2 splice site variants, the concordance between mRNA analysis and predictions by in silico programs was evaluated. Aberrant splicing was confirmed for 12 alterations. In silico prediction tools were helpful to determine for which variants cDNA analysis is warranted, however, predictions for variants in the Cartegni consensus region but outside the canonical sites, were less reliable. Learning algorithms like Adaboost and Random Forest outperformed the classical tools. Further validations are warranted prior to implementation of these novel tools in clinical settings. Additionally, we report here for the first time activated cryptic donor sites in the large exon 11 of BRCA2 by evaluating the effect at the cDNA level of a novel tandem duplication (5' breakpoint in intron 4; 3' breakpoint in exon 11) and of a variant disrupting the splice donor site of exon 11 (c.6841+1G > C). Additional sites were predicted, but not activated. These sites warrant further research to increase our knowledge on cis and trans acting factors involved in the conservation of correct transcription of this large exon. This may contribute to adequate design of ASOs (antisense oligonucleotides), an emerging therapy to render cancer cells sensitive to PARP inhibitor and platinum therapies.
Collapse
Affiliation(s)
- Annelot Baert
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ilse Coene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Carol Cremin
- BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | - Jennifer Nuk
- BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Sean Young
- BC Cancer Agency, Vancouver, British Columbia, Canada.,Cancer Genetics and Genomics Laboratory, Department of Pathology and Laboratory Medicine, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Andree MacMillan
- Provincial Medical Genetics Program, Eastern Health, St. John's, Newfoundland and Labrador, Canada
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Wendy McKinnon
- Familial Cancer Program, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Marie E Wood
- Familial Cancer Program, University of Vermont Medical Center, Burlington, Vermont, United States
| | - William D Foulkes
- Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Marta Santamariña
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Anne Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Toon Rosseel
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | | |
Collapse
|
41
|
Soens ZT, Branch J, Wu S, Yuan Z, Li Y, Li H, Wang K, Xu M, Rajan L, Motta FL, Simões RT, Lopez-Solache I, Ajlan R, Birch DG, Zhao P, Porto FB, Sallum J, Koenekoop RK, Sui R, Chen R. Leveraging splice-affecting variant predictors and a minigene validation system to identify Mendelian disease-causing variants among exon-captured variants of uncertain significance. Hum Mutat 2017; 38:1521-1533. [PMID: 28714225 DOI: 10.1002/humu.23294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
The genetic heterogeneity of Mendelian disorders results in a significant proportion of patients that are unable to be assigned a confident molecular diagnosis after conventional exon sequencing and variant interpretation. Here, we evaluated how many patients with an inherited retinal disease (IRD) have variants of uncertain significance (VUS) that are disrupting splicing in a known IRD gene by means other than affecting the canonical dinucleotide splice site. Three in silico splice-affecting variant predictors were leveraged to annotate and prioritize variants for splicing functional validation. An in vitro minigene system was used to assay each variant's effect on splicing. Starting with 745 IRD patients lacking a confident molecular diagnosis, we validated 23 VUS as splicing variants that likely explain disease in 26 patients. Using our results, we optimized in silico score cutoffs to guide future variant interpretation. Variants that alter base pairs other than the canonical GT-AG dinucleotide are often not considered for their potential effect on RNA splicing but in silico tools and a minigene system can be utilized for the prioritization and validation of such splice-disrupting variants. These variants can be overlooked causes of human disease but can be identified using conventional exon sequencing with proper interpretation guidelines.
Collapse
Affiliation(s)
- Zachry T Soens
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Justin Branch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhisheng Yuan
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Keqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Lavan Rajan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Fabiana L Motta
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Renata T Simões
- Department of Retina and Vitreous, Ophthalmologic Center of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte Hospital - IEP/SCBH, Belo Horizonte, Minas Gerais, Brazil
| | - Irma Lopez-Solache
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Radwan Ajlan
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, Canada
| | - David G Birch
- Retina Foundation of the Southwest and Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fernanda B Porto
- Department of Retina and Vitreous, Ophthalmologic Center of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte Hospital - IEP/SCBH, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Sallum
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.,Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
42
|
Davy G, Rousselin A, Goardon N, Castéra L, Harter V, Legros A, Muller E, Fouillet R, Brault B, Smirnova AS, Lemoine F, de la Grange P, Guillaud-Bataille M, Caux-Moncoutier V, Houdayer C, Bonnet F, Blanc-Fournier C, Gaildrat P, Frebourg T, Martins A, Vaur D, Krieger S. Detecting splicing patterns in genes involved in hereditary breast and ovarian cancer. Eur J Hum Genet 2017; 25:1147-1154. [PMID: 28905878 DOI: 10.1038/ejhg.2017.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/13/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Interpretation of variants of unknown significance (VUS) is a major challenge for laboratories performing molecular diagnosis of hereditary breast and ovarian cancer (HBOC), especially considering that many genes are now known to be involved in this syndrome. One important way these VUS can have a functional impact is through their effects on RNA splicing. Here we present a custom RNA-Seq assay plus bioinformatics and biostatistics pipeline to analyse specifically alternative and abnormal splicing junctions in 11 targeted HBOC genes. Our pipeline identified 14 new alternative splices in BRCA1 and BRCA2 in addition to detecting the majority of known alternative spliced transcripts therein. We provide here the first global splicing pattern analysis for the other nine genes, which will enable a comprehensive interpretation of splicing defects caused by VUS in HBOC. Previously known splicing alterations were consistently detected, occasionally with a more complex splicing pattern than expected. We also found that splicing in the 11 genes is similar in blood and breast tissue, supporting the utility and simplicity of blood splicing assays. Our pipeline is ready to be integrated into standard molecular diagnosis for HBOC, but it could equally be adapted for an integrative analysis of any multigene disorder.
Collapse
Affiliation(s)
- Grégoire Davy
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Antoine Rousselin
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Nicolas Goardon
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Laurent Castéra
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Valentin Harter
- Cancéropôle Nord-Ouest Data Processing Centre, CLCC François Baclesse, Caen, France
| | - Angelina Legros
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France
| | - Etienne Muller
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Robin Fouillet
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France
| | - Baptiste Brault
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Anna S Smirnova
- Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Fréderic Lemoine
- GenoSplice Technology, iPEPS-ICM, Pitié-Salpétrière Hospital, Paris, France
| | | | | | | | - Claude Houdayer
- Department of Genetics, Institut Curie, Paris, France.,Inserm U830, Paris, France.,Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Françoise Bonnet
- Laboratory of Molecular Genetics, Institut Bergonié, Bordeaux, France
| | - Cécile Blanc-Fournier
- Department of Pathology, CLCC François Baclesse, Caen, France.,Tumorothèque de Caen Basse-Normandie, Caen, France
| | - Pascaline Gaildrat
- Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Thierry Frebourg
- Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alexandra Martins
- Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Dominique Vaur
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Sophie Krieger
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France.,University of Caen Normandy, Caen, France
| |
Collapse
|
43
|
Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. PLoS Genet 2017; 13:e1006691. [PMID: 28339459 PMCID: PMC5384790 DOI: 10.1371/journal.pgen.1006691] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/07/2017] [Accepted: 03/14/2017] [Indexed: 11/30/2022] Open
Abstract
Mutation screening of the breast cancer genes BRCA1 and BRCA2 identifies a large fraction of variants of uncertain clinical significance (VUS) whose functional and clinical interpretations pose a challenge for genomic medicine. Likewise, an increasing amount of evidence indicates that genetic variants can have deleterious effects on pre-mRNA splicing. Our goal was to investigate the impact on splicing of a set of reported variants of BRCA2 exons 17 and 18 to assess their role in hereditary breast cancer and to identify critical regulatory elements that may constitute hotspots for spliceogenic variants. A splicing reporter minigene with BRCA2 exons 14 to-20 (MGBR2_ex14-20) was constructed in the pSAD vector. Fifty-two candidate variants were selected with splicing prediction programs, introduced in MGBR2_ex14-20 by site-directed mutagenesis and assayed in triplicate in MCF-7 cells. Wild type MGBR2_ex14-20 produced a stable transcript of the expected size (1,806 nucleotides) and structure (V1-[BRCA2_exons_14–20]–V2). Functional mapping by microdeletions revealed essential sequences for exon recognition on the 3’ end of exon 17 (c.7944-7973) and the 5’ end of exon 18 (c.7979-7988, c.7999-8013). Thirty out of the 52 selected variants induced anomalous splicing in minigene assays with >16 different aberrant transcripts, where exon skipping was the most common event. A wide range of splicing motifs were affected including the canonical splice sites (15 variants), novel alternative sites (3 variants), the polypyrimidine tract (3 variants) and enhancers/silencers (9 variants). According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), 20 variants could be classified as pathogenic (c.7806-2A>G, c.7806-1G>A, c.7806-1G>T, c.7806-1_7806-2dup, c.7976+1G>A, c.7977-3_7978del, c.7977-2A>T, c.7977-1G>T, c.7977-1G>C, c.8009C>A, c.8331+1G>T and c.8331+2T>C) or likely pathogenic (c.7806-9T>G, c.7976G>C, c.7976G>A, c.7977-7C>G, c.7985C>G, c.8023A>G, c.8035G>T and c.8331G>A), accounting for 30.8% of all pathogenic/likely pathogenic variants of exons 17–18 at the BRCA Share database. The remaining 8 variants (c.7975A>G, c.7977-6T>G, c.7988A>T, c.7992T>A, c.8007A>G, c.8009C>T, c.8009C>G, and c.8072C>T) induced partial splicing anomalies with important ratios of the full-length transcript (≥70%), so that they remained classified as VUS. Aberrant splicing is therefore especially prevalent in BRCA2 exons 17 and 18 due to the presence of active ESEs involved in exon recognition. Splicing functional assays with minigenes are a valuable strategy for the initial characterization of the splicing outcomes and the subsequent clinical interpretation of variants of any disease-gene, although these results should be checked, whenever possible, against patient RNA. A significant proportion of disease-causing mutations of inherited disorders impair splicing. Massive sequencing projects of genetic diseases generate thousands of sequence variations that require functional and clinical interpretations. We have shown that splicing reporter minigenes of the breast cancer genes BRCA1 and BRCA2 are useful tools to functionally test DNA variants. In this work, we have constructed a 7-exon BRCA2 minigene (exons 14 to 20) where we mapped critical splicing regulatory sequences and tested 52 selected variants of exons 17 and 18 detected in breast cancer patients. We finely located three DNA segments on both exons that presumably contain splicing enhancer sequences. We observed that a total of 30 variants of any type disrupted the splicing patterns and, given the severity of their outcomes, we classified 20 of them as pathogenic or likely pathogenic. We also showed that a wide range of splicing elements were affected including canonical and novel 5’ and 3’ splice sites, the polypyrimidine tract and enhancer and silencer sequences. We concluded that splicing aberrations are frequent in Hereditary Breast and Ovarian Cancer and that minigenes are valuable tools to functionally classify DNA variants of any human disease gene under the splicing viewpoint.
Collapse
|
44
|
Nielsen FC, van Overeem Hansen T, Sørensen CS. Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer 2016; 16:599-612. [PMID: 27515922 DOI: 10.1038/nrc.2016.72] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic abnormalities in the DNA repair genes BRCA1 and BRCA2 predispose to hereditary breast and ovarian cancer (HBOC). However, only approximately 25% of cases of HBOC can be ascribed to BRCA1 and BRCA2 mutations. Recently, exome sequencing has uncovered substantial locus heterogeneity among affected families without BRCA1 or BRCA2 mutations. The new pathogenic variants are rare, posing challenges to estimation of risk attribution through patient cohorts. In this Review article, we examine HBOC genes, focusing on their role in genome maintenance, the possibilities for functional testing of putative causal variants and the clinical application of new HBOC genes in cancer risk management and treatment decision-making.
Collapse
Affiliation(s)
- Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
45
|
Implementation of next-generation sequencing for molecular diagnosis of hereditary breast and ovarian cancer highlights its genetic heterogeneity. Breast Cancer Res Treat 2016; 159:245-56. [PMID: 27553368 DOI: 10.1007/s10549-016-3948-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 01/13/2023]
Abstract
Molecular diagnosis of hereditary breast and ovarian cancer (HBOC) by standard methodologies has been limited to the BRCA1 and BRCA2 genes. With the recent development of new sequencing methodologies, the speed and efficiency of DNA testing have dramatically improved. The aim of this work was to validate the use of next-generation sequencing (NGS) for the detection of BRCA1/BRCA2 point mutations in a diagnostic setting and to study the role of other genes associated with HBOC in Portuguese families. A cohort of 94 high-risk families was included in the study, and they were initially screened for the two common founder mutations with variant-specific methods. Fourteen index patients were shown to carry the Portuguese founder mutation BRCA2 c.156_157insAlu, and the remaining 80 were analyzed in parallel by Sanger sequencing for the BRCA1/BRCA2 genes and by NGS for a panel of 17 genes that have been described as involved in predisposition to breast and/or ovarian cancer. A total of 506 variants in the BRCA1/BRCA2 genes were detected by both methodologies, with a 100 % concordance between them. This strategy allowed the detection of a total of 39 deleterious mutations in the 94 index patients, namely 10 in BRCA1 (25.6 %), 21 in BRCA2 (53.8 %), four in PALB2 (10.3 %), two in ATM (5.1 %), one in CHEK2 (2.6 %), and one in TP53 (2.6 %), with 20.5 % of the deleterious mutations being found in genes other than BRCA1/BRCA2. These results demonstrate the efficiency of NGS for the detection of BRCA1/BRCA2 point mutations and highlight the genetic heterogeneity of HBOC.
Collapse
|