1
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
2
|
Chelban V, Houlden H. White matter disorders with cerebral calcification in adulthood. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:111-131. [PMID: 39322374 DOI: 10.1016/b978-0-323-99209-1.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This chapter provides a comprehensive overview of adult-onset leukoencephalopathies with cerebral calcification (CC), emphasizing the importance of age at presentation, systemic clinical features, and neuroimaging patterns for accurate diagnosis. CC is a multifaceted phenomenon associated with various neurologic, developmental, metabolic, and genetic conditions, as well as normal aging. Here, we explore the distinction between primary familial brain calcification (PFBC) and secondary forms, including metabolic and mitochondrial causes. We discuss genetic causes, e.g., SLC20A2, XPR1, PDGFB, PDGFRB, MYORG, NAA60 and JAM2, in the context of autosomal dominant and recessive PFBC and other inherited conditions. The chapter delineates the diagnostic approach involving family history, clinical assessments, and detailed investigations of calcium-phosphate metabolism. Neuroimaging modalities, including computed tomography and magnetic resonance imaging, are crucial for assessing calcification patterns and localizations. Genetic testing, especially next-generation sequencing, plays a pivotal role in providing a final molecular diagnosis. The management of patients with CC encompasses symptomatic treatment and cause-specific approaches, requiring a multidisciplinary care approach. In conclusion, this chapter highlights the complexity of leukoencephalopathies with CC, emphasizing the need for integrated and evolving management to optimize patient care.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
3
|
Monfrini E, Arienti F, Rinchetti P, Lotti F, Riboldi GM. Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24108995. [PMID: 37240341 DOI: 10.3390/ijms24108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Many conditions can present with accumulation of calcium in the brain and manifest with a variety of neurological symptoms. Brain calcifications can be primary (idiopathic or genetic) or secondary to various pathological conditions (e.g., calcium-phosphate metabolism derangement, autoimmune disorders and infections, among others). A set of causative genes associated with primary familial brain calcification (PFBC) has now been identified, and include genes such as SLC20A2, PDGFB, PDGFRB, XPR1, MYORG, and JAM2. However, many more genes are known to be linked with complex syndromes characterized by brain calcifications and additional neurologic and systemic manifestations. Of note, many of these genes encode for proteins involved in cerebrovascular and blood-brain barrier functions, which both represent key anatomical structures related to these pathological phenomena. As a growing number of genes associated with brain calcifications is identified, pathways involved in these conditions are beginning to be understood. Our comprehensive review of the genetic, molecular, and clinical aspects of brain calcifications offers a framework for clinicians and researchers in the field.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Federica Arienti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Paola Rinchetti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Francesco Lotti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY 10017, USA
| |
Collapse
|
4
|
Nouri K, Pietrancosta N, Le Corre L, Dansette PM, Mansuy D, Boucher JL. Human Orphan Cytochrome P450 2U1 Catalyzes the ω-Hydroxylation of Leukotriene B 4. Int J Mol Sci 2022; 23:ijms232314615. [PMID: 36498943 PMCID: PMC9739833 DOI: 10.3390/ijms232314615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cytochrome P450 2U1 (CYP2U1) identified from the human genome remains poorly known since few data are presently available on its physiological function(s) and substrate(s) specificity. CYP2U1 mutations are associated with complicated forms of hereditary spastic paraplegia, alterations of mitochondrial architecture and bioenergetics. In order to better know the biological roles of CYP2U1, we used a bioinformatics approach. The analysis of the data invited us to focus on leukotriene B4 (LTB4), an important inflammatory mediator. Here, we show that CYP2U1 efficiently catalyzes the hydroxylation of LTB4 predominantly on its ω-position. We also report docking experiments of LTB4 in a 3D model of truncated CYP2U1 that are in agreement with this hydroxylation regioselectivity. The involvement of CYP2U1 in the metabolism of LTB4 could have strong physiological consequences in cerebral pathologies including ischemic stroke because CYP2U1 is predominantly expressed in the brain.
Collapse
Affiliation(s)
- Khawla Nouri
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Nicolas Pietrancosta
- Laboratoire Neuroscience Paris Seine, CNRS UMR 8246/INSERM UMCR 18, Laboratoire des Biomolécules, CNRS UMR7203, Faculté des Sciences, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Laurent Le Corre
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Patrick M. Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
- Correspondence:
| |
Collapse
|
5
|
CYP35 family in Caenorhabditis elegans biological processes: fatty acid synthesis, xenobiotic metabolism, and stress responses. Arch Toxicol 2022; 96:3163-3174. [PMID: 36175686 DOI: 10.1007/s00204-022-03382-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023]
Abstract
With more than 80 cytochrome P450 (CYP) encoding genes found in the nematode Caenorhabditis elegans (C. elegans), the cyp35 genes are one of the important genes involved in many biological processes such as fatty acid synthesis and storage, xenobiotic stress response, dauer and eggshell formation, and xenobiotic metabolism. The C. elegans CYP35 subfamily consisted of A, B, C, and D, which have the closest homolog to human CYP2 family. C. elegans homologs could answer part of the hunt for human disease genes. This review aims to provide an overview of CYP35 in C. elegans and their human homologs, to explore the roles of CYP35 in various C. elegans biological processes, and how the genes of cyp35 upregulation or downregulation are influenced by biological processes, upon exposure to xenobiotics or changes in diet and environment. The C. elegans CYP35 gene expression could be upregulated by heavy metals, pesticides, anti-parasitic and anti-chemotherapeutic agents, polycyclic aromatic hydrocarbons (PAHs), nanoparticles, drugs, and organic chemical compounds. Among the cyp35 genes, cyp-35A2 is involved in most of the C. elegans biological processes regulation. Further venture of cyp35 genes, the closest homolog of CYP2 which is the largest family of human CYPs, may have the power to locate cyps gene targets, discovery of novel therapeutic strategies, and possibly a successful medical regime to combat obesity, cancers, and cyps gene-related diseases.
Collapse
|
6
|
Generation of iPSC lines from hereditary spastic paraplegia 56 (SPG56) patients and family members carrying CYP2U1 mutations. Stem Cell Res 2022; 64:102917. [PMID: 36166872 DOI: 10.1016/j.scr.2022.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022] Open
Abstract
Hereditary spastic paraplegia 56 (SPG56) is an extremely rare autosomal recessive disorder caused by mutations in the CYP2U1 gene, involved in fatty acid metabolism. SPG56 causes progressive spasticity in upper and lower limbs, though due to the rarity of this subtype of spastic paraplegia, the molecular causes remain unclear and no treatment or cure exists. Here we describe the generation and validation of induced pluripotent stem cell (iPSC) lines from two unrelated patients with SPG56 and two heterozygous family members. These lines can be used to investigate the mechanisms driving progressive spasticity and evaluate the potential for gene replacement therapies.
Collapse
|
7
|
Hereditary spastic paraplegia type 56: what a mouse can tell – a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Molina-Ortiz D, Torres-Zárate C, Santes-Palacios R. Human Orphan Cytochromes P450: An Update. Curr Drug Metab 2022; 23:942-963. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| |
Collapse
|
9
|
Pujol C, Legrand A, Parodi L, Thomas P, Mochel F, Saracino D, Coarelli G, Croon M, Popovic M, Valet M, Villain N, Elshafie S, Issa M, Zuily S, Renaud M, Marelli-Tosi C, Legendre M, Trimouille A, Kemlin I, Mathieu S, Gleeson JG, Lamari F, Galatolo D, Alkouri R, Tse C, Rodriguez D, Ewenczyk C, Fellmann F, Kuntzer T, Blond E, El Hachimi KH, Darios F, Seyer A, Gazi AD, Giavalisco P, Perin S, Boucher JL, Le Corre L, Santorelli FM, Goizet C, Zaki MS, Picaud S, Mourier A, Steculorum SM, Mignot C, Durr A, Trifunovic A, Stevanin G. Implication of folate deficiency in CYP2U1 loss of function. J Exp Med 2021; 218:212651. [PMID: 34546337 PMCID: PMC8480666 DOI: 10.1084/jem.20210846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders. Understanding of their pathogenic mechanisms remains sparse, and therapeutic options are lacking. We characterized a mouse model lacking the Cyp2u1 gene, loss of which is known to be involved in a complex form of these diseases in humans. We showed that this model partially recapitulated the clinical and biochemical phenotypes of patients. Using electron microscopy, lipidomic, and proteomic studies, we identified vitamin B2 as a substrate of the CYP2U1 enzyme, as well as coenzyme Q, neopterin, and IFN-α levels as putative biomarkers in mice and fluids obtained from the largest series of CYP2U1-mutated patients reported so far. We also confirmed brain calcifications as a potential biomarker in patients. Our results suggest that CYP2U1 deficiency disrupts mitochondrial function and impacts proper neurodevelopment, which could be prevented by folate supplementation in our mouse model, followed by a neurodegenerative process altering multiple neuronal and extraneuronal tissues.
Collapse
Affiliation(s)
- Claire Pujol
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France.,Pasteur Institute, Centre national de la recherche scientifique UMR 3691, Paris, France
| | - Anne Legrand
- Paris University, Paris Cardiovascular Research Centre, Assistance Publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre de Référence des Maladies Vasculaires Rares - Institut national de la santé et de la recherche médicale U97, Paris, France
| | - Livia Parodi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Priscilla Thomas
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France.,Pasteur Institute, Centre national de la recherche scientifique UMR 3691, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Dario Saracino
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Marijana Croon
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Milica Popovic
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Manon Valet
- Sorbonne University, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Nicolas Villain
- Sorbonne University, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Department of Neurology, Paris, France
| | - Shahira Elshafie
- Department of Clinical Pathology, Fayoum University, Fayoum, Egypt
| | - Mahmoud Issa
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Stephane Zuily
- University of Lorraine, Institut national de la santé et de la recherche médicale U 1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Mathilde Renaud
- University of Lorraine, Institut national de la santé et de la recherche médicale U 1256, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Cécilia Marelli-Tosi
- Mécanismes Moléculaires dans les Démences Neurodégénératives, University of Montpellier, École pratique des hautes études, Institut national de la santé et de la recherche médicale, Montpellier, France; Expert Center for Neurogenetic Diseases, Centre Hospitalier Universitaire, Montpellier, France
| | - Marine Legendre
- Genetics Department, Centre Hospitalier Universitaire de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Aurélien Trimouille
- Genetics Department, Centre Hospitalier Universitaire de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Isabelle Kemlin
- Pediatric Neurology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Groupe Hôpitaux Universitaires Est Parisien, Paris, France
| | - Sophie Mathieu
- Pediatric Neurology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Groupe Hôpitaux Universitaires Est Parisien, Paris, France
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Foudil Lamari
- Metabolic Biochemistry Department, Pitié-Salpêtrière hospital, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Paris, France
| | - Daniele Galatolo
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Rana Alkouri
- Metabolic Biochemistry Department, Pitié-Salpêtrière hospital, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Paris, France
| | - Chantal Tse
- Metabolic Biochemistry Department, Pitié-Salpêtrière hospital, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Paris, France
| | - Diana Rodriguez
- Pediatric Neurology Department, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Groupe Hôpitaux Universitaires Est Parisien, Paris, France
| | - Claire Ewenczyk
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Florence Fellmann
- University of Lausanne, Service de Génétique médicale, Lausanne, Switzerland
| | - Thierry Kuntzer
- University of Lausanne, Nerve-Muscle Unit, Department of Clinical Neurosciences, Lausanne, Switzerland
| | - Emilie Blond
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Pierre Bénite, France
| | - Khalid H El Hachimi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France.,Paris Sciences et Lettres Research University, École pratique des hautes études, Neurogenetics Unit, Paris, France
| | - Frédéric Darios
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | | | - Anastasia D Gazi
- Pasteur Institute, Centre national de la recherche scientifique UMR 3691, Paris, France
| | | | - Silvina Perin
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jean-Luc Boucher
- Paris Descartes University, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Centre national de la recherche scientifique UMR 8601, Paris, France
| | - Laurent Le Corre
- Paris Descartes University, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Centre national de la recherche scientifique UMR 8601, Paris, France
| | - Filippo M Santorelli
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Cyril Goizet
- Genetics Department, Centre Hospitalier Universitaire de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Serge Picaud
- Sorbonne University, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Arnaud Mourier
- Bordeaux University, Centre national de la recherche scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Sophie Marie Steculorum
- Group Neurocircuit and Function, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Cyril Mignot
- Genetics and Cytogenetics Department, Centre de Référence Déficiences Intellectuelles de Causes Rares, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute ICM, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Départements Médico-Universitaires Neuroscience 6, Paris, France.,Paris Sciences et Lettres Research University, École pratique des hautes études, Neurogenetics Unit, Paris, France
| |
Collapse
|
10
|
Sharawat IK, Panda PK, Dawman L. Spastic Paraplegia-56 due to a Novel CYP2U1 Truncating Mutation in an Indian Boy: A New Report and Literature Review. J Pediatr Neurosci 2021; 16:71-74. [PMID: 34316314 PMCID: PMC8276956 DOI: 10.4103/jpn.jpn_86_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022] Open
Abstract
Spastic paraplegia-56 is a rare autosomal recessive disorder, caused by homozygous or compound heterozygous mutations in the CYP2U1 gene, located on chromosome 4. Till date, only 28 patients with this disorder have been reported in the literature. We report a new case of CYP2U1-related spastic paraplegia-56. We also reviewed previously published patients with this condition from various databases. Next-generation sequencing in the index child detected a novel homozygous two base pair deletion in exon 2 of the CYP2U1 gene that results in a frameshift and premature truncation of the protein 19 amino-acid downstream to codon 361. Together with the presented case, 29 were available for analysis. The mean age at the diagnosis was 17.84 ± 6.86 years. Intellectual disability/cognitive dysfunction and delayed walking or gait disturbance were the most common presenting features. Around half of the patients had neuroregression in between 1 and 2 years. It is clinically imperative to suspect this disease in children with early-onset spastic paraparesis, especially in cases accompanied by baseline development delay or cognitive impairment and consanguinity.
Collapse
Affiliation(s)
- Indar K Sharawat
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Prateek Kumar Panda
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Lesa Dawman
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
11
|
Machalz D, Pach S, Bermudez M, Bureik M, Wolber G. Structural insights into understudied human cytochrome P450 enzymes. Drug Discov Today 2021; 26:2456-2464. [PMID: 34161845 DOI: 10.1016/j.drudis.2021.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
Human cytochrome P450 (CYP) enzymes are widely known for their pivotal role in the metabolism of drugs and other xenobiotics as well as of endogenous chemicals. In addition, CYPs are involved in numerous pathophysiological pathways and, hence, are therapeutically relevant. Remarkably, a portion of promising CYP targets is still understudied and, as a consequence, untargeted, despite their huge therapeutic potential. An increasing number of X-ray and cryo-electron microscopy (EM) structures for CYPs have recently provided new insights into the structural basis of CYP function and potential ligand binding. This structural knowledge of CYP functionality is essential for both understanding metabolism and exploiting understudied CYPs as drug targets. In this review, we summarize and highlight structural knowledge about this enzyme class, with a focus on understudied CYPs and resulting opportunities for structure-based drug design. Teaser: This review summarizes recent structural insights into understudied cytochrome P450 enzymes. We highlight the impact of molecular modeling for mechanistically explaining pathophysiological effects establishing understudied CYPs as promising drug targets.
Collapse
Affiliation(s)
- David Machalz
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Szymon Pach
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marcel Bermudez
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, China.
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
12
|
Legrand A, Pujol C, Durand CM, Mesnil A, Rubera I, Duranton C, Zuily S, Sousa AB, Renaud M, Boucher JL, Pietrancosta N, Adham S, Orssaud C, Marelli C, Casali C, Ziccardi L, Villain N, Ewenczyk C, Durr A, Mignot C, Stevanin G, Billon C, Hureaux M, Jeunemaitre X, Goizet C, Albuisson J. Pseudoxanthoma elasticum overlaps hereditary spastic paraplegia type 56. J Intern Med 2021; 289:709-725. [PMID: 33107650 DOI: 10.1111/joim.13193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/29/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE Pseudoxanthoma elasticum (PXE) is a recessive disorder involving skin, eyes and arteries, mainly caused by ABCC6 pathogenic variants. However, almost one fifth of patients remain genetically unsolved despite extensive genetic screening of ABCC6, as illustrated in a large French PXE series of 220 cases. We searched for new PXE gene(s) to solve the ABCC6-negative patients. METHODS First, family-based exome sequencing was performed, in one ABCC6-negative PXE patient with additional neurological features, and her relatives. CYP2U1, involved in hereditary spastic paraplegia type 56 (SPG56), was selected based on this complex phenotype, and the presence of two candidate variants. Second, CYP2U1 sequencing was performed in a retrospective series of 46 additional ABCC6-negative PXE probands. Third, six additional SPG56 patients were evaluated for PXE skin and eye phenotype. Additionally, plasma pyrophosphate dosage and functional analyses were performed in some of these patients. RESULTS 6.4% of ABCC6-negative PXE patients (n = 3) harboured biallelic pathogenic variants in CYP2U1. PXE skin lesions with histological confirmation, eye lesions including maculopathy or angioid streaks, and various neurological symptoms were present. CYP2U1 missense variants were confirmed to impair protein function. Plasma pyrophosphate levels were normal. Two SPG56 patients (33%) presented some phenotypic overlap with PXE. CONCLUSION CYP2U1 pathogenic variants are found in unsolved PXE patients with neurological findings, including spastic paraplegia, expanding the SPG56 phenotype and highlighting its overlap with PXE. The pathophysiology of ABCC6 and CYP2U1 should be explored to explain their respective role and potential interaction in ectopic mineralization.
Collapse
Affiliation(s)
- A Legrand
- From the, Université de Paris, PARCC, INSERM, Paris, France.,Centre de Référence des Maladies Vasculaires Rares, AP-HP, Hôpital européen Georges Pompidou, Paris, France
| | - C Pujol
- Sorbonne Université; Inserm, U1127; CNRS, UMR 7225; Institut du Cerveau, Paris, France
| | - C M Durand
- Inserm, U1211, Laboratoire Maladies Rares: Génétique et Métabolisme, Univ. Bordeaux; Centre de Référence Neurogénétique, Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - A Mesnil
- Département de Génétique AP-HP, Hôpital européen Georges Pompidou, Paris, France
| | - I Rubera
- Université Côte d'Azur, CNRS-UMR 7370, Laboratoire de Physiomédecine Moléculaire, LabEx ICST, Nice, France
| | - C Duranton
- Université Côte d'Azur, CNRS-UMR 7370, Laboratoire de Physiomédecine Moléculaire, LabEx ICST, Nice, France
| | - S Zuily
- Université de Lorraine, Inserm UMR_S 1116; CHRU de Nancy, Service de Médecine vasculaire, Centre de Compétences Régional des Maladies Vasculaires Rares, Nancy, France
| | - A B Sousa
- Medical Genetics, Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - M Renaud
- CHRU de Nancy, Service de Neurologie, Nancy, France
| | - J L Boucher
- UMR 8601 CNRS, Université de Paris, Paris, France
| | | | - S Adham
- Centre de Référence des Maladies Vasculaires Rares, AP-HP, Hôpital européen Georges Pompidou, Paris, France.,Université de Paris, Paris, France
| | - C Orssaud
- Unité fonctionnelle d'ophtalmologie, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - C Marelli
- Inserm U1198 MMDN; Gui de Chauliac University Hospital, Department of Neurology, Expert Centre for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, Montpellier, France
| | - C Casali
- Department of SBMC, Sapienza University Rome, Rome, Italy
| | - L Ziccardi
- IRCCS- Fondazione Bietti, Neurophysiology of Vision and Neuroophthalmology Unit, Rome, Italy
| | - N Villain
- Sorbonne Université; Inserm, U1127; CNRS, UMR 7225; Institut du Cerveau; Sorbonne Université, GRC n° 21, Alzheimer Precision Medicine; AP-HP, Hôpital de la Pitié-Salpêtrière; Département de Neurologie, Institut de la Mémoire et de la maladie d'Alzheimer, Paris, France
| | - C Ewenczyk
- Sorbonne Université; Inserm, U1127; CNRS, UMR 7225; Institut du Cerveau; AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - A Durr
- Sorbonne Université; Inserm, U1127; CNRS, UMR 7225; Institut du Cerveau; AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - C Mignot
- Sorbonne Université; Inserm, U1127; CNRS, UMR 7225; Institut du Cerveau; AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique; Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - G Stevanin
- Sorbonne Université; Inserm, U1127; CNRS, UMR 7225; Institut du Cerveau; PSL research University, Ecole Pratique des Hautes Etudes, Neurogenetics team, Paris, France
| | - C Billon
- From the, Université de Paris, PARCC, INSERM, Paris, France.,Centre de Référence des Maladies Vasculaires Rares, AP-HP, Hôpital européen Georges Pompidou, Paris, France
| | - M Hureaux
- From the, Université de Paris, PARCC, INSERM, Paris, France.,Département de Génétique AP-HP, Hôpital européen Georges Pompidou, Paris, France
| | - X Jeunemaitre
- From the, Université de Paris, PARCC, INSERM, Paris, France.,Centre de Référence des Maladies Vasculaires Rares, AP-HP, Hôpital européen Georges Pompidou, Paris, France
| | - C Goizet
- Inserm, U1211, Laboratoire Maladies Rares: Génétique et Métabolisme, Univ. Bordeaux; Centre de Référence Neurogénétique, Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - J Albuisson
- From the, Université de Paris, PARCC, INSERM, Paris, France.,Centre de Référence des Maladies Vasculaires Rares, AP-HP, Hôpital européen Georges Pompidou, Paris, France.,Département de Biologie et Pathologie des Tumeurs, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
13
|
Dosi C, Pasquariello R, Ticci C, Astrea G, Trovato R, Rubegni A, Tessa A, Cioni G, Santorelli FM, Battini R. Neuroimaging patterns in paediatric onset hereditary spastic paraplegias. J Neurol Sci 2021; 425:117441. [PMID: 33866115 DOI: 10.1016/j.jns.2021.117441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs with a notable phenotypic variation and an autosomal recessive (AR), autosomal dominant (AD), and X-linked inheritance pattern. The recent clinical use of next generation sequencing methods has facilitated the diagnostic approach to HSPs, but the diagnosis remains quite challenging considering its wide clinical and genetic heterogeneity. In this scenario, magnetic resonance imaging (MRI) emerges as a valuable tool in helping to exclude mimicking disorders and to guide genetic testing. The aim of this study is to investigate the presence of possible patterns of morphostructural MRI findings that may provide relevant clues for a specific genetic HSP subtype. In our cohort, for example, white matter abnormalities were the most common finding followed by the thinning of the corpus callosum, which, interestingly, presented different thinning characteristics depending on the HSP subtype.
Collapse
Affiliation(s)
- Claudia Dosi
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | | | - Chiara Ticci
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Guja Astrea
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Rosanna Trovato
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Anna Rubegni
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | | | - Giovanni Cioni
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy
| | | | - Roberta Battini
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy.
| |
Collapse
|
14
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
15
|
De Beukelaer N, Bar-On L, Hanssen B, Peeters N, Prinsen S, Ortibus E, Desloovere K, Van Campenhout A. Muscle Characteristics in Pediatric Hereditary Spastic Paraplegia vs. Bilateral Spastic Cerebral Palsy: An Exploratory Study. Front Neurol 2021; 12:635032. [PMID: 33716937 PMCID: PMC7952873 DOI: 10.3389/fneur.2021.635032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 01/14/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a neurological, genetic disorder that predominantly presents with lower limb spasticity and muscle weakness. Pediatric pure HSP types with infancy or childhood symptom onset resemble in clinical presentation to children with bilateral spastic cerebral palsy (SCP). Hence, treatment approaches in these patient groups are analogous. Altered muscle characteristics, including reduced medial gastrocnemius (MG) muscle growth and hyperreflexia have been quantified in children with SCP, using 3D-freehand ultrasound (3DfUS) and instrumented assessments of hyperreflexia, respectively. However, these muscle data have not yet been studied in children with HSP. Therefore, we aimed to explore these MG muscle characteristics in HSP and to test the hypothesis that these data differ from those of children with SCP and typically developing (TD) children. A total of 41 children were retrospectively enrolled including (1) nine children with HSP (ages of 9–17 years with gross motor function levels I and II), (2) 17 age-and severity-matched SCP children, and (3) 15 age-matched typically developing children (TD). Clinically, children with HSP showed significantly increased presence and severity of ankle clonus compared with SCP (p = 0.009). Compared with TD, both HSP and SCP had significantly smaller MG muscle volume normalized to body mass (p ≤ 0.001). Hyperreflexia did not significantly differ between the HSP and SCP group. In addition to the observed pathological muscle activity for both the low-velocity and the change in high-velocity and low-velocity stretches in the two groups, children with HSP tended to present higher muscle activity in response to increased stretch velocity compared with those with SCP. This exploratory study is the first to reveal MG muscle volume deficits in children with HSP. Moreover, high-velocity-dependent hyperreflexia and ankle clonus is observed in children with HSP. Instrumented impairment assessments suggested similar altered MG muscle characteristics in pure HSP type with pediatric onset compared to bilateral SCP. This finding needs to be confirmed in larger sample sizes. Hence, the study results might indicate analogous treatment approaches in these two patient groups.
Collapse
Affiliation(s)
- Nathalie De Beukelaer
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Britta Hanssen
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Nicky Peeters
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Sandra Prinsen
- Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Els Ortibus
- KU Leuven Department of Development and Regeneration, Leuven, Belgium
| | - Kaat Desloovere
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium.,KU Leuven Department of Development and Regeneration, Leuven, Belgium
| |
Collapse
|
16
|
|
17
|
Rickman OJ, Baple EL, Crosby AH. Lipid metabolic pathways converge in motor neuron degenerative diseases. Brain 2020; 143:1073-1087. [PMID: 31848577 PMCID: PMC7174042 DOI: 10.1093/brain/awz382] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) encompass an extensive and heterogeneous group of upper and/or lower motor neuron degenerative disorders, in which the particular clinical outcomes stem from the specific neuronal component involved in each condition. While mutations in a large number of molecules associated with lipid metabolism are known to be implicated in MNDs, there remains a lack of clarity regarding the key functional pathways involved, and their inter-relationships. This review highlights evidence that defines defects within two specific lipid (cholesterol/oxysterol and phosphatidylethanolamine) biosynthetic cascades as being centrally involved in MND, particularly hereditary spastic paraplegia. We also identify how other MND-associated molecules may impact these cascades, in particular through impaired organellar interfacing, to propose ‘subcellular lipidome imbalance’ as a likely common pathomolecular theme in MND. Further exploration of this mechanism has the potential to identify new therapeutic targets and management strategies for modulation of disease progression in hereditary spastic paraplegias and other MNDs.
Collapse
Affiliation(s)
- Olivia J Rickman
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma L Baple
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
18
|
Zulfiqar S, Tariq M, Ali Z, Fatima A, Klar J, Abdullah U, Ali A, Ramzan S, He S, Zhang J, Khan A, Shah S, Khan S, Makhdoom EH, Schuster J, Dahl N, Baig SM. Whole exome sequencing identifies novel variant underlying hereditary spastic paraplegia in consanguineous Pakistani families. J Clin Neurosci 2019; 67:19-23. [DOI: 10.1016/j.jocn.2019.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/20/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
|
19
|
Elsayed LEO, Eltazi IZM, Ahmed AEM, Stevanin G. Hereditary spastic paraplegias: time for an objective case definition and a new nosology for neurogenetic disorders to facilitate biomarker/therapeutic studies. Expert Rev Neurother 2019; 19:409-415. [PMID: 31037979 DOI: 10.1080/14737175.2019.1608824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are heterogeneous neurodegenerative disorders characterized by progressive lower limb weakness and spasticity as core symptoms of the degeneration of the corticospinal motor neurons. Even after exclusion of infectious and toxic mimickers of these disorders, the definitive diagnosis remains tricky, mainly in sporadic forms, as there is significant overlap with other disorders. Since their first description, various attempts failed to reach an appropriate classification. This was due to the constant expansion of the clinical spectrum of these diseases and the discovery of new genes, a significant number of them was involved in overlapping diseases. Areas covered: In this perspective review, an extensive literature study was conducted on the historical progress of HSP research. We also revised the previous and the current classifications of HSP and the closely related neurogenetic disorders and analyzed the areas of overlap. Expert opinion: There is undeniable need for objective case definition and reclassification of all neurogenetic disorders including HSPs, a prerequisite to improve patient follow-up, biomarker identification and develop therapeutics. The challenge is to understand why mutations can give rise to multiple phenotypic presentations along this spectrum of diseases in which the corticospinal tract is affected.
Collapse
Affiliation(s)
| | - Isra Z M Eltazi
- a Faculty of Medicine , University of Khartoum , Khartoum , Sudan
| | - Ammar E M Ahmed
- a Faculty of Medicine , University of Khartoum , Khartoum , Sudan
| | - Giovanni Stevanin
- b Basic to Translational Neurogenetics team , Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Université UMR_S1127 , Paris , France.,c Neurogenetics team , Ecole Pratique des Hautes Etudes, EPHE, PSL Research University , Paris , France
| |
Collapse
|