1
|
Xu T, Chen G. MPV17 Prevents Myocardial Ferroptosis and Ischemic Cardiac Injury through Maintaining SLC25A10-Mediated Mitochondrial Glutathione Import. Int J Mol Sci 2024; 25:10832. [PMID: 39409161 PMCID: PMC11476822 DOI: 10.3390/ijms251910832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Ferroptosis is a recently identified iron-dependent programmed cell death with lipid peroxide accumulation and condensation and compaction of mitochondria. A recent study indicated that ferroptosis plays a pivotal role in ischemic cardiac injury with the mechanisms remain largely unknown. This study demonstrates that when an iron overload occurs in the ischemia/reperfusion cardiac tissues, which initiates myocardial ferroptosis, the expression levels of mitochondrial inner membrane protein MPV17 are reduced. Overexpression of MPV17 delivered via adenovirus significantly reduced ferroptosis in both cardiomyocytes with high levels of iron and cardiac I/R tissues. Mitochondrial glutathione (mtGSH), crucial for reactive oxygen species scavenging and mitochondrial homeostasis maintenance, is depleted in myocardial ferroptosis caused by iron overload. This mechanistic study shows that MPV17 can increase mitochondrial glutathione levels through maintaining the protein homeostasis of SLC25A10, which is a mitochondrial inner-membrane glutathione transporter. The absence of MPV17 in iron overload resulted in the ubiquitination-dependent degradation of SLC25A10, leading to impaired mitochondrial glutathione import. Moreover, we found that MPV17 was the targeted gene of Nrf2, which plays a pivotal role in preventing lipid peroxide accumulation and ferroptosis. The decreased expression levels of Nrf2 led to the inactivation of MPV17 in iron overload-induced myocardial ferroptosis. In summary, this study demonstrates the critical role of MPV17 in protecting cardiomyocytes from ferroptosis and elucidates the Nrf2-MPV17-SLC25A10/mitochondrial glutathione signaling pathway in the regulation of myocardial ferroptosis.
Collapse
Affiliation(s)
| | - Guilan Chen
- Instrumental Analysis Center, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
2
|
Wei LY, Chen XQ, Huang L, Shan QW, Tang Q. Liver transplantation for mitochondrial DNA depletion syndrome caused by MPV17 deficiency: a case report and literature review. Front Surg 2024; 11:1348806. [PMID: 39055132 PMCID: PMC11269130 DOI: 10.3389/fsurg.2024.1348806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Objective To study the effectiveness of liver transplantation (LT) in treating mitochondrial DNA depletion syndrome (MDS) caused by the MPV17 gene variant. Case presentation A boy aged 2.8 years presented with edema of the lower limbs and abdomen, which persisted for over 10 days and was of unknown origin; this was accompanied by abnormal liver function, intractable hypoglycemia, and hyperlactatemia. During the second week of onset, he developed acute-on-chronic liver failure and was diagnosed with MDS due to homozygous variant c.293C>T in the MPV17 gene. Subsequently, he underwent LT from a cadaveric donor. At follow-up after 15 months, his liver function was found to be normal, without any symptoms. Additionally, a literature review was performed that included MDS patients with the MPV17 variant who underwent LT. The results demonstrated that the survival rates for MDS patients who underwent LT were 69.5%, 38.6%, 38.6%, and 38.6% at 1-year, 5-year, 10-year, and 20-year intervals, respectively. Sub-group analyses revealed the survival rate of MDS patients with isolated liver disease (83.33%, 5/6) was higher than that of hepatocerebral MDS patients (44.44%, 8/18). Fifteen variants were identified in the MPV17 gene, and patients with the c.293C>T (p.P98l) variant exhibited the highest survival rate. Conclusion Hepatocerebral MDS patients without neurological symptoms may benefit from LT.
Collapse
Affiliation(s)
- Liu-Yuan Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatrics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou Worker's Hospital, Liuzhou, China
| | - Xiu-Qi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qing-Wen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qing Tang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Watanabe M, Sasaki N. Mechanisms and Future Research Perspectives on Mitochondrial Diseases Associated with Isoleucyl-tRNA Synthetase Gene Mutations. Genes (Basel) 2024; 15:894. [PMID: 39062673 PMCID: PMC11276352 DOI: 10.3390/genes15070894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for the accurate translation of genetic information. IARS1 and IARS2 are isoleucyl-tRNA synthetases functioning in the cytoplasm and mitochondria, respectively, with genetic mutations in these enzymes causing diverse clinical phenotypes in specific organs and tissues. Mutations in IARS1 and IARS2 have recently been linked to mitochondrial diseases. This review aims to explore the relationship between IARS1 and IARS2 and these diseases, providing a comprehensive overview of their association with mitochondrial diseases. Mutations in IARS1 cause weak calf syndrome in cattle and mitochondrial diseases in humans, leading to growth retardation and liver dysfunction. Mutations in IARS2 are associated with Leigh syndrome, craniosynostosis and abnormal genitalia syndrome. Future research is expected to involve genetic analysis of a larger number of patients, identifying new mutations in IARS1 and IARS2, and elucidating their impact on mitochondrial function. Additionally, genetically modified mice and the corresponding phenotypic analysis will serve as powerful tools for understanding the functions of these gene products and unraveling disease mechanisms. This will likely promote the development of new therapies and preventive measures.
Collapse
Affiliation(s)
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Kitasato University, 35-1, Higashi-23, Towada 034-8628, Aomori, Japan
| |
Collapse
|
4
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
5
|
Gupte SA, Kurup M, Jangam SM, Arora P, Shah SS. Newborn Genetic Screening: Significance in Early Diagnosis of an Infant with Mitochondrial DNA Depletion Syndrome-6. J Obstet Gynaecol India 2024; 74:176-178. [PMID: 38707873 PMCID: PMC11065833 DOI: 10.1007/s13224-023-01770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/07/2023] [Indexed: 05/07/2024] Open
Affiliation(s)
- Sanjay A. Gupte
- Gupte Hospital, Postgraduate Institution and Centre of Research in Reproduction, Pune, Maharashtra India
- Greenarray Genomic Research and Solutions, a division of Accurate Diagnostics Pvt. Ltd., Kothrud, Pune, Maharashtra India
| | - Manju Kurup
- Greenarray Genomic Research and Solutions, a division of Accurate Diagnostics Pvt. Ltd., Kothrud, Pune, Maharashtra India
| | - Shweta M. Jangam
- Gupte Hospital, Postgraduate Institution and Centre of Research in Reproduction, Pune, Maharashtra India
| | - Preeti Arora
- Greenarray Genomic Research and Solutions, a division of Accurate Diagnostics Pvt. Ltd., Kothrud, Pune, Maharashtra India
| | - Sarjan S. Shah
- Greenarray Genomic Research and Solutions, a division of Accurate Diagnostics Pvt. Ltd., Kothrud, Pune, Maharashtra India
| |
Collapse
|
6
|
Gefen AM, Zaritsky JJ. Review of childhood genetic nephrolithiasis and nephrocalcinosis. Front Genet 2024; 15:1381174. [PMID: 38606357 PMCID: PMC11007102 DOI: 10.3389/fgene.2024.1381174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nephrolithiasis (NL) is a common condition worldwide. The incidence of NL and nephrocalcinosis (NC) has been increasing, along with their associated morbidity and economic burden. The etiology of NL and NC is multifactorial and includes both environmental components and genetic components, with multiple studies showing high heritability. Causative gene variants have been detected in up to 32% of children with NL and NC. Children with NL and NC are genotypically heterogenous, but often phenotypically relatively homogenous, and there are subsequently little data on the predictors of genetic childhood NL and NC. Most genetic diseases associated with NL and NC are secondary to hypercalciuria, including those secondary to hypercalcemia, renal phosphate wasting, renal magnesium wasting, distal renal tubular acidosis (RTA), proximal tubulopathies, mixed or variable tubulopathies, Bartter syndrome, hyperaldosteronism and pseudohyperaldosteronism, and hyperparathyroidism and hypoparathyroidism. The remaining minority of genetic diseases associated with NL and NC are secondary to hyperoxaluria, cystinuria, hyperuricosuria, xanthinuria, other metabolic disorders, and multifactorial etiologies. Genome-wide association studies (GWAS) in adults have identified multiple polygenic traits associated with NL and NC, often involving genes that are involved in calcium, phosphorus, magnesium, and vitamin D homeostasis. Compared to adults, there is a relative paucity of studies in children with NL and NC. This review aims to focus on the genetic component of NL and NC in children.
Collapse
Affiliation(s)
- Ashley M. Gefen
- Phoenix Children’s Hospital, Department of Pediatrics, Division of Nephrology, Phoenix, AZ, United States
| | | |
Collapse
|
7
|
Che L, Wu Y, Sheng M, Xu J, Yu W, Weng Y. Intraoperative management during liver transplantation in the child with mitochondrial depletion syndrome: A case report. Int J Surg Case Rep 2024; 116:109432. [PMID: 38432165 PMCID: PMC10944120 DOI: 10.1016/j.ijscr.2024.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Mitochondrial DNA depletion syndrome (MDS) is a kind of autosomal recessive genetic disorder associated with a reduction in mitochondrial DNA (mtDNA) copy number caused by mutations in nuclear genes during nucleotide synthesis, which affects the energy production of tissues and organs. Changes in hemodynamics during liver transplantation may lead to high energy-demanding organs and tissues being vulnerable. This report described the intraoperative management during liver transplantation in a child with MDS. Ultimately, the child was discharged smoothly without any complications. PRESENTATION OF THE CASE A five-year-old boy was diagnosed with mitochondrial depletion syndrome preoperatively and scheduled for living donor liver transplantation. The incidence of postreperfusion syndrome (PRS) could not be avoided for 30 min after opening, despite our best efforts to aggressively prevent it before opening. While ensuring hemodynamic stability, we actively prevented and adopted high-energy-demand organ protection strategies to reduce the incidence of postoperative complications. Finally, the child was discharged 28 days after the operation, and no other complications were found. DISCUSSION Liver transplantation can be performed for liver failure in this disease to improve the quality of life and prolong the life of patients. As this child has mitochondrial DNA depletion syndrome, the disruption of cellular energy generation caused by mitochondrial malfunction puts high-energy-demanding organs and tissues at risk during surgery. It motivates us to pay closer attention to the prevention and treatment of PRS in anesthetic management to minimize damage to the child's organs and tissues with high energy demands. CONCLUSIONS This report describes the intraoperative management during liver transplantation in a child with mitochondrial depletion syndrome. To increase the safety of perioperative anesthesia and reduce mortality in patients with mitochondrial disease, for such patients, maintaining an acid-base balance and a stable internal environment is essential. We should also pay attention to protecting body temperature, using vasoactive drugs beforehand to lessen the incidence of PRS, and protecting high-energy-demanding organs afterward.
Collapse
Affiliation(s)
- Lu Che
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yuli Wu
- Tianjin Medical University First Central Clinical College, Tianjin, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Jiangang Xu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China.
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China.
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
8
|
Ali A, Esmaeil A, Behbehani R. Mitochondrial Chronic Progressive External Ophthalmoplegia. Brain Sci 2024; 14:135. [PMID: 38391710 PMCID: PMC10887352 DOI: 10.3390/brainsci14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Chronic progressive external ophthalmoplegia (CPEO) is a rare disorder that can be at the forefront of several mitochondrial diseases. This review overviews mitochondrial CPEO encephalomyopathies to enhance accurate recognition and diagnosis for proper management. METHODS This study is conducted based on publications and guidelines obtained by selective review in PubMed. Randomized, double-blind, placebo-controlled trials, Cochrane reviews, and literature meta-analyses were particularly sought. DISCUSSION CPEO is a common presentation of mitochondrial encephalomyopathies, which can result from alterations in mitochondrial or nuclear DNA. Genetic sequencing is the gold standard for diagnosing mitochondrial encephalomyopathies, preceded by non-invasive tests such as fibroblast growth factor-21 and growth differentiation factor-15. More invasive options include a muscle biopsy, which can be carried out after uncertain diagnostic testing. No definitive treatment option is available for mitochondrial diseases, and management is mainly focused on lifestyle risk modification and supplementation to reduce mitochondrial load and symptomatic relief, such as ptosis repair in the case of CPEO. Nevertheless, various clinical trials and endeavors are still at large for achieving beneficial therapeutic outcomes for mitochondrial encephalomyopathies. KEY MESSAGES Understanding the varying presentations and genetic aspects of mitochondrial CPEO is crucial for accurate diagnosis and management.
Collapse
Affiliation(s)
| | | | - Raed Behbehani
- Neuro-Ophthalmology Unit, Ibn Sina Hospital, Al-Bahar Ophthalmology Center, Kuwait City 70035, Kuwait; (A.A.); (A.E.)
| |
Collapse
|
9
|
Pizzamiglio C, Hanna MG, Pitceathly RDS. Primary mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:53-76. [PMID: 39322395 DOI: 10.1016/b978-0-323-99209-1.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are a heterogeneous group of hereditary disorders characterized by an impairment of the mitochondrial respiratory chain. They are the most common group of genetic metabolic disorders, with a prevalence of 1 in 4,300 people. The presence of leukoencephalopathy is recognized as an important feature in many PMDs and can be a manifestation of mutations in both mitochondrial DNA (classic syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; myoclonic epilepsy with ragged-red fibers [RRFs]; Leigh syndrome; and Kearns-Sayre syndrome) and nuclear DNA (mutations in maintenance genes such as POLG, MPV17, and TYMP; Leigh syndrome; and mitochondrial aminoacyl-tRNA synthetase disorders). In this chapter, PMDs associated with white matter involvement are outlined, including details of clinical presentations, brain MRI features, and elements of differential diagnoses. The current approach to the diagnosis of PMDs and management strategies are also discussed. A PMD diagnosis in a subject with leukoencephalopathy should be considered in the presence of specific brain MRI features (for example, cyst-like lesions, bilateral basal ganglia lesions, and involvement of both cerebral hemispheres and cerebellum), in addition to a complex neurologic or multisystem disorder. Establishing a genetic diagnosis is crucial to ensure appropriate genetic counseling, multidisciplinary team input, and eligibility for clinical trials.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
10
|
Dong L, Shang L, Liu C, Mao C, Huang X, Chu S, Peng B, Cui L, Gao J. Genotypic and phenotypic heterogeneity among Chinese pediatric genetic white matter disorders. Ital J Pediatr 2023; 49:155. [PMID: 37981684 PMCID: PMC10658925 DOI: 10.1186/s13052-023-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/29/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The pediatric genetic white matter disorders are characterized by a broad disease spectrum. Genetic testing is valuable in the diagnosis. However, there are few studies on the clinical and genetic spectrum of Chinese pediatric genetic white matter disorders. METHODS The participants were enrolled from the cohort of Peking Union Medical College Hospital. They all received history collection, brain MRI and gene sequencing. Their neurologic complaints which were related to white matter disorders occurred before 18. Brain MRI indicated periventricular and/or deep white matter lesions, fazekas grade 2-3. RESULTS Among the 13 subjects, there were 11 males and two females. The average age of onset was 10.0 ± 5.5 years old. The potential genetic variants were found in 84.6% (11/13) subjects. The ABCD1 showed the greatest mutation frequency (30.8%, 4/13). The EIF2B3 A151fs, EIF2B4 c.885 + 2T > G, EIF2B5 R129X and MPV17 Q142X were novel pathogenic/likely pathogenic variants. 100% (4/4) ABCD1 carriers were accompanied by visual impairment, whereas 100% (3/3) EIF2B carriers developed dysuria. 100% (4/4) ABCD1 carriers exhibited diffuse white matter hyperintensities mainly in the posterior cortical regions, while the EIF2B4 and EIF2B5 carriers were accompanied by cystic degeneration. CONCLUSION There is genotypic and phenotypic heterogeneity among Chinese subjects with pediatric genetic white matter disorders. The knowledge of these clinical and genetic characteristics facilitates an accurate diagnosis of these diseases.
Collapse
Affiliation(s)
- Liling Dong
- Neurology department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng district, Beijing, 100005, China
| | - Li Shang
- Neurology department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng district, Beijing, 100005, China
| | - Caiyan Liu
- Neurology department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng district, Beijing, 100005, China
| | - Chenhui Mao
- Neurology department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng district, Beijing, 100005, China
| | - Xinying Huang
- Neurology department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng district, Beijing, 100005, China
| | - Shanshan Chu
- Neurology department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng district, Beijing, 100005, China
| | - Bin Peng
- Neurology department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng district, Beijing, 100005, China
| | - Liying Cui
- Neurology department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng district, Beijing, 100005, China
| | - Jing Gao
- Neurology department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng district, Beijing, 100005, China.
| |
Collapse
|
11
|
Samanta A, Srivastava A, Mandal K, Sarma MS, Poddar U. MPV17 mutation-related mitochondrial DNA depletion syndrome: A case series in infants. Indian J Gastroenterol 2023; 42:569-574. [PMID: 36753038 DOI: 10.1007/s12664-022-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/25/2022] [Indexed: 02/09/2023]
Abstract
MPV17 is a mitochondrial inner membrane protein, involved in transporting deoxynucleotides into the mitochondria. Pathogenic MPV17 mutations can cause mitochondrial deoxyribonucleic acid (DNA) depletion syndrome, which has a varied presentation with neurological, muscular and hepatic involvement. Presentation as liver failure is relatively uncommon. Here, we report four infants from four separate families with pathogenic, homozygous MPV17 mutations. All had predominant hepatic involvement with cholestasis, lactic acidosis and hypoketotic hypoglycemia. Three of them had presented with liver failure. Interestingly, one of them showed fluctuating liver functions, which worsened with infection and improved after aggressive treatment with antibiotics and supplements. Two of the four cases died in infancy, while the other two improved on conservative management with medium-chain triglyceride-based diet, vitamin supplements, co-enzyme Q and carnitine. The two surviving children are alive at 12 and 25 months of age with native liver with normal to mildly deranged liver function and no neurological dysfunction. Next-generation sequencing confirmed the diagnosis in all of our cases. One of the detected mutations, c.55delC (p.Gln19ArgfsTer3) is a novel pathogenic frameshift mutation, while another mutation c.388G>C (p.Ala130Pro), which was previously reported in Single Nucleotide Polymorphism Database in heterozygous form, is being predicted as likely pathogenic in our case series. We, therefore, propose mutation testing for MPV17 gene during evaluation of indeterminate infantile liver failure, especially those with hypoglycemia and raised plasma lactate.
Collapse
Affiliation(s)
- Arghya Samanta
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226 014, India
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226 014, India.
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226 014, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226 014, India
| | - Ujjal Poddar
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226 014, India
| |
Collapse
|
12
|
Abduljalil R, Ben Turkia H, Fakhroo A, Skrypnyk C. Fulminant Neonatal Liver Failure in MPV 17-Related Mitochondrial DNA Depletion Syndrome. Case Reports Hepatol 2023; 2023:4514552. [PMID: 37384111 PMCID: PMC10299873 DOI: 10.1155/2023/4514552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
Mitochondrial depletion syndromes are well established causes of liver failure in infants. Hepatocerebral variant related to MPV17 gene defect is characterized by infantile onset of progressive liver failure, developmental delay, neurological manifestations, lactic acidosis, hypoglycemia, and mtDNA depletion in liver tissue. We report a hepatocerebral variant of mitochondrial DNA depletion syndrome in a neonate who presented with septic shock picture, hypoglycemia, jaundice, hypotonia, and rotatory nystagmus. Family history was significant for consanguinity and a brother who died at the age of 4 months. Investigations showed mild liver function derangement contrasting with severe coagulopathy, hyperlactatemia, and generalized aminoaciduria. The brain MRI was normal. Next generation sequencing (NGS) panel identified a MPV17 gene missense homozygous pathogenic variant. The infant expired at the age of 2 weeks with refractory ascites. This case illustrates a challenging diagnosis causing liver failure and death in neonatal period. Genetic testing of mitochondrial DNA depletion syndromes should be a part of liver failure workup in addition to other treatable disorders presenting with encephalo-hepatopathy in infancy.
Collapse
Affiliation(s)
- Razan Abduljalil
- Department of Pediatrics, King Hamad University Hospital, Manama, Bahrain
| | - Hadhami Ben Turkia
- Department of Pediatrics, King Hamad University Hospital, Manama, Bahrain
| | - Aysha Fakhroo
- Department of Pediatrics, King Hamad University Hospital, Manama, Bahrain
| | - Cristina Skrypnyk
- Department of Molecular Medicine, Al‐Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
13
|
Mukherjee S, Das S, Bedi M, Vadupu L, Ball WB, Ghosh A. Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome. Biochim Biophys Acta Gen Subj 2023; 1867:130328. [PMID: 36791826 DOI: 10.1016/j.bbagen.2023.130328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India
| | - Shubhojit Das
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India
| | - Minakshi Bedi
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India
| | - Lavanya Vadupu
- Department of the Biological Sciences, SRM University- AP, Andhra Pradesh Pin- 522240, India
| | - Writoban Basu Ball
- Department of the Biological Sciences, SRM University- AP, Andhra Pradesh Pin- 522240, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India.
| |
Collapse
|
14
|
Huang AC, Ebel NH, Romero D, Enns GM, Esquivel CO, Bonham C. Outcomes after liver transplantation in MPV17 deficiency: A rebuttal. Pediatr Transplant 2023; 27:e14472. [PMID: 36872458 DOI: 10.1111/petr.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 03/07/2023]
Affiliation(s)
- Alice C Huang
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Noelle H Ebel
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Lucile Packard Children's Hospital Stanford and Stanford University, Palo Alto, California, USA
| | - Danielle Romero
- Department of Surgery, Division of Abdominal Transplantation at Stanford University, Palo Alto, California, USA
| | - Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Lucile Packard Children's Hospital Stanford and Stanford University, Palo Alto, California, USA
| | - Carlos O Esquivel
- Department of Surgery, Division of Abdominal Transplantation at Stanford University, Palo Alto, California, USA
| | - Clark Bonham
- Department of Surgery, Division of Abdominal Transplantation at Stanford University, Palo Alto, California, USA
| |
Collapse
|
15
|
Lagies S, Pan D, Mohl DA, Plattner DA, Gentle IE, Kammerer B. Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph. Cells 2023; 12:692. [PMID: 36899826 PMCID: PMC10000845 DOI: 10.3390/cells12050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Metabolomics has expanded from cellular to subcellular level to elucidate subcellular compartmentalization. By applying isolated mitochondria to metabolome analysis, the hallmark of mitochondrial metabolites has been unraveled, showing compartment-specific distribution and regulation of metabolites. This method was employed in this work to study a mitochondrial inner membrane protein Sym1, whose human ortholog MPV17 is related to mitochondria DNA depletion syndrome. Gas chromatography-mass spectrometry-based metabolic profiling was combined with targeted liquid chromatography-mass spectrometry analysis to cover more metabolites. Furthermore, we applied a workflow employing ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry with a powerful chemometrics platform, focusing on only significantly changed metabolites. This workflow highly reduced the complexity of acquired data without losing metabolites of interest. Consequently, forty-one novel metabolites were identified in addition to the combined method, of which two metabolites, 4-guanidinobutanal and 4-guanidinobutanoate, were identified for the first time in Saccharomyces cerevisiae. With compartment-specific metabolomics, we identified sym1Δ cells as lysine auxotroph. The highly reduced carbamoyl-aspartate and orotic acid indicate a potential role of the mitochondrial inner membrane protein Sym1 in pyrimidine metabolism.
Collapse
Affiliation(s)
- Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Daqiang Pan
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Pharmaceutical Science, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel A. Mohl
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Dietmar A. Plattner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Ian E. Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
A Drosophila model of the neurological symptoms in Mpv17-related diseases. Sci Rep 2022; 12:22632. [PMID: 36587049 PMCID: PMC9805426 DOI: 10.1038/s41598-022-27329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Mutations in the Mpv17 gene are responsible for MPV17-related hepatocerebral mitochondrial DNA depletion syndrome and Charcot-Marie-Tooth (CMT) disease. Although several models including mouse, zebrafish, and cultured human cells, have been developed, the models do not show any neurological defects, which are often observed in patients. Therefore, we knocked down CG11077 (Drosophila Mpv17; dMpv17), an ortholog of human MPV17, in the nervous system in Drosophila melanogaster and investigated the behavioral and cellular phenotypes. The resulting dMpv17 knockdown larvae showed impaired locomotor activity and learning ability consistent with mitochondrial defects suggested by the reductions in mitochondrial DNA and ATP production and the increases in the levels of lactate and reactive oxygen species. Furthermore, an abnormal morphology of the neuromuscular junction, at the presynaptic terminal, was observed in dMpv17 knockdown larvae. These results reproduce well the symptoms of human diseases and partially reproduce the phenotypes of Mpv17-deficient model organisms. Therefore, we suggest that neuron-specific dMpv17 knockdown in Drosophila is a useful model for investigation of MPV17-related hepatocerebral mitochondrial DNA depletion syndrome and CMT caused by Mpv17 dysfunction.
Collapse
|
18
|
Starosta RT, Shinawi M. Primary Mitochondrial Disorders in the Neonate. Neoreviews 2022; 23:e796-e812. [PMID: 36450643 DOI: 10.1542/neo.23-12-e796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Primary mitochondrial disorders (PMDs) are a heterogeneous group of disorders characterized by functional or structural abnormalities in the mitochondria that lead to a disturbance of cellular energy, reactive oxygen species, and free radical production, as well as impairment of other intracellular metabolic functions, causing single- or multiorgan dysfunction. PMDs are caused by pathogenic variants in nuclear and mitochondrial genes, resulting in distinct modes of inheritance. Onset of disease is variable and can occur in the neonatal period, with a high morbidity and mortality. In this article, we review the most common methods used for the diagnosis of PMDs, as well as their prenatal and neonatal presentations. We highlight the shift in the diagnostic approach for PMDs since the introduction of nontargeted molecular tests into clinical practice, which has significantly reduced the use of invasive studies. We discuss common PMDs that can present in the neonate, including general, nonsyndromic presentations as well as specific syndromic disorders. We also review current treatment advances, including the use of mitochondrial "cocktails" based on limited scientific evidence and theoretical reasoning, as well as the impending arrival of personalized mitochondrial-specific treatments.
Collapse
Affiliation(s)
| | - Marwan Shinawi
- Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
19
|
Almannai M, El-Hattab AW, Azamian MS, Ali M, Scaglia F. Mitochondrial DNA maintenance defects: potential therapeutic strategies. Mol Genet Metab 2022; 137:40-48. [PMID: 35914366 PMCID: PMC10401187 DOI: 10.1016/j.ymgme.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Mitochondrial DNA (mtDNA) replication depends on the mitochondrial import of hundreds of nuclear encoded proteins that control the mitochondrial genome maintenance and integrity. Defects in these processes result in an expanding group of disorders called mtDNA maintenance defects that are characterized by mtDNA depletion and/or multiple mtDNA deletions with variable phenotypic manifestations. As it applies for mitochondrial disorders in general, current treatment options for mtDNA maintenance defects are limited. Lately, with the development of model organisms, improved understanding of the pathophysiology of these disorders, and a better knowledge of their natural history, the number of preclinical studies and existing and planned clinical trials has been increasing. In this review, we discuss recent preclinical studies and current and future clinical trials concerning potential therapeutic options for the different mtDNA maintenance defects.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
20
|
Huang AC, Ebel NH, Romero D, Martin B, Jhun I, Brown M, Enns GM, Esquivel C, Bonham C. Outcomes after liver transplantation in MPV17 deficiency (Navajo neurohepatopathy): A single-center case series. Pediatr Transplant 2022; 26:e14274. [PMID: 35466509 DOI: 10.1111/petr.14274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND MPV17-related mitochondrial DNA maintenance defect (MPV17 deficiency) is a rare, autosomal recessive mitochondrial DNA depletion syndrome with a high mortality rate in infancy and early childhood due to progression to liver failure. Liver transplantation for children with MPV17 deficiency has been considered controversial due to uncertainty about the potential progression of extrahepatic manifestations following liver transplantation. METHODS We describe our institution's experience for two infants diagnosed with infantile MPV17 deficiency who presented in acute on chronic liver failure, but with normal development and normal neurological status who successfully underwent liver transplantation. RESULTS Both patients underwent successful liver transplantation with normal development and neurological status at 3 years and 16 months post-transplant, respectively. CONCLUSIONS In this rare disease population, we describe two infants with MPV17 deficiency who underwent liver transplantation for acute on chronic liver failure who continue to have normal development, without progression of neurological disease. MPV17 deficiency should not be considered a contraindication to liver transplantation.
Collapse
Affiliation(s)
- Alice C Huang
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Noelle H Ebel
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Lucile Packard Children's Hospital Stanford, Stanford University, Palo Alto, California, USA
| | - Danielle Romero
- Department of Pediatric Liver Transplant, Lucile Packard Children's Hospital Stanford, Stanford University, Palo Alto, California, USA
| | - Brock Martin
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Iny Jhun
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Megan Brown
- Department of Pediatric Liver Transplant, Lucile Packard Children's Hospital Stanford, Stanford University, Palo Alto, California, USA
| | - Gregory M Enns
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children's Hospital Stanford, Stanford University, Palo Alto, California, USA
| | - Carlos Esquivel
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Palo Alto, California, USA
| | - Clark Bonham
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Palo Alto, California, USA
| |
Collapse
|
21
|
Abstract
Mitochondrial hepatopathies are a subset of mitochondrial diseases defined by primary dysfunction of hepatocyte mitochondria leading to a phenotype of hepatocyte cell injury, steatosis, or liver failure. Increasingly, the diagnosis is established by new sequencing approaches that combine analysis of both nuclear DNA and mitochondrial DNA and allow for timely diagnosis in most patients. Despite advances in diagnostics, for most affected children their disorders are relentlessly progressive, and result in substantial morbidity and mortality. Treatment remains mainly supportive; however, novel therapeutics and a more definitive role for liver transplantation hold promise for affected children.
Collapse
Affiliation(s)
- Mary Ayers
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Simon P Horslen
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Anna María Gómez
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - James E Squires
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
22
|
Clinical and genetic spectrum of Mitochondrial DNA depletion syndromes: a report of 6 cases with 4 novel variants. Mitochondrion 2022; 65:139-144. [PMID: 35750291 DOI: 10.1016/j.mito.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/16/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
Abstract
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of rare autosomal recessive genetic disorders characterized by a decrease in the number of mtDNA copies inside the organ involved. There are three distinct forms of MDS including the hepatocerebral, the myopathic and the encephalomyopathic forms. The diversity in the clinical and genetic spectrum of these disorders makes the diagnosis challenging. Here, we describe the clinical phenotype and the genetic spectrum of 6 patients with MDS including 4 novel variants and compare them with previously reported cases. Subject and Methods Six patients from six unrelated families were included in this study. All the patients were subjected to a detailed history, thorough general and neurologic examination, basic laboratory investigations including lactic acid and ammonia, amino acids, acylcarnitine profiles and brain MRI. Whole-exome sequencing was performed for all of them to confirm the suspicion of mitochondrial disorder. RESULTS: In our series, four patients presented with the hepatocerebral form of MDS with the major presenting manifestation of progressive liver cell failure with severe hypotonia and global developmental delay. Four variants in the DGUOK gene and the MPV17 have been identified including 2 novel variants. One patient was identified in the myopathic form presenting with myopathy associated with two novel variants in the TK2 gene. One patient was diagnosed with encephalomyopathic form presenting with persistent lactic acidosis and global delay due to a homozygous variant in the FBXL4 gene. CONCLUSION: MDS has a wide spectrum of heterogeneous clinical presentations and about nine different genes involved. Whole exome sequencing (WES) has resulted in faster diagnosis of these challenging cases as the phenotype overlap with many other disorders. This should be considered the first-tier diagnostic test obviating the need for more invasive testing like muscle biopsies.
Collapse
|
23
|
Almannai M, Salah A, El-Hattab AW. Mitochondrial Membranes and Mitochondrial Genome: Interactions and Clinical Syndromes. MEMBRANES 2022; 12:membranes12060625. [PMID: 35736332 PMCID: PMC9229594 DOI: 10.3390/membranes12060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Mitochondria are surrounded by two membranes; the outer mitochondrial membrane and the inner mitochondrial membrane. They are unique organelles since they have their own DNA, the mitochondrial DNA (mtDNA), which is replicated continuously. Mitochondrial membranes have direct interaction with mtDNA and are therefore involved in organization of the mitochondrial genome. They also play essential roles in mitochondrial dynamics and the supply of nucleotides for mtDNA synthesis. In this review, we will discuss how the mitochondrial membranes interact with mtDNA and how this interaction is essential for mtDNA maintenance. We will review different mtDNA maintenance disorders that result from defects in this crucial interaction. Finally, we will review therapeutic approaches relevant to defects in mitochondrial membranes.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, Riyadh P.O. Box 22490, Saudi Arabia
- Correspondence:
| | - Azza Salah
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
| | - Ayman W. El-Hattab
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi P.O. Box 505193, United Arab Emirates
| |
Collapse
|
24
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
25
|
Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, Zhang Y, Zhang Y, Wang J, Xia Y, Yuan J. Mitochondrial DNA Depletion Syndrome and Its Associated Cardiac Disease. Front Cardiovasc Med 2022; 8:808115. [PMID: 35237671 PMCID: PMC8882844 DOI: 10.3389/fcvm.2021.808115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/06/2022] Open
Abstract
Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a “power plant” by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yijun Han
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yunan Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jing Wang
- Dongying Fifth People's Hospital, Dongying, China
| | - Yuqing Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yawen Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
- Yong Xia
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan
| |
Collapse
|
26
|
Uchida H, Sakamoto S, Shimizu S, Yanagi Y, Fukuda A, Horikawa R, Ito R, Matsunaga A, Murayama K, Kasahara M. Outcomes of liver transplantation for mitochondrial respiratory chain disorder in children. Pediatr Transplant 2021; 25:e14091. [PMID: 34265160 DOI: 10.1111/petr.14091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 07/08/2021] [Indexed: 01/20/2023]
Abstract
AIM Mitochondrial respiratory chain disorder (MRCD) can cause acute liver failure (ALF), which may necessitate liver transplantation (LT). However, MRCD is often difficult to diagnose before LT and the indications of LT are controversial due to the likelihood of progressive neurological disease. The present study further characterized the patient population and described the outcomes. METHODS Thirteen patients who underwent LT for MRCD from November 2005 to May 2020 were enrolled in this study. RESULTS Six of 13 MRCD patients were diagnosed with a mitochondrial inner membrane protein 17-related mitochondrial DNA depletion syndrome (MTDPS). Overall, nine survived with a median follow-up of 1.8 years (IQR, 1.3-5.1 years); four died within 2 years. In the long-term, seven survivors showed no progression of hypotonia after LT and attended a normal kindergarten or primary school. Neurological abnormalities were observed in two survivors, including vison loss related to Leber's hereditary optic neuropathy in one patient and psychomotor retardation related to Leigh syndrome in the other. Three non-survivors after LT were diagnosed with MTDPS and died of severe pulmonary hypertension, which had developed at 8, 9, and 18 months after LT (n=1 each). The remaining patient died of postoperative respiratory infection with respiratory syncytial virus. CONCLUSION The long-term results support the performance of LT in patients with MRCD, although a genetic diagnosis is preferable for determining the accurate indications for LT in these patients. Furthermore, care should be taken to avoid complications due to mitochondrial dysfunction during the long-term follow-up.
Collapse
Affiliation(s)
- Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Ito
- Department of General Pediatrics and Interdisciplinary Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
27
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
28
|
Holmgren M, Sheets L. Influence of Mpv17 on Hair-Cell Mitochondrial Homeostasis, Synapse Integrity, and Vulnerability to Damage in the Zebrafish Lateral Line. Front Cell Neurosci 2021; 15:693375. [PMID: 34413725 PMCID: PMC8369198 DOI: 10.3389/fncel.2021.693375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Noise exposure is particularly stressful to hair-cell mitochondria, which must produce enough energy to meet high metabolic demands as well as regulate local intracellular Ca2+ concentrations. Mitochondrial Inner Membrane Protein 17 (Mpv17) functions as a non-selective cation channel and plays a role in maintaining mitochondrial homeostasis. In zebrafish, hair cells in mpv17a9/a9 mutants displayed elevated levels of reactive oxygen species (ROS), elevated mitochondrial calcium, hyperpolarized transmembrane potential, and greater vulnerability to neomycin, indicating impaired mitochondrial function. Using a strong water current to overstimulate hair cells in the zebrafish lateral line, we observed mpv17a9/a9 mutant hair cells were more vulnerable to morphological disruption than wild type (WT) siblings simultaneously exposed to the same stimulus. To determine the role of mitochondrial homeostasis on hair-cell synapse integrity, we surveyed synapse number in mpv17a9/a9 mutants and WT siblings as well as the sizes of presynaptic dense bodies (ribbons) and postsynaptic densities immediately following stimulus exposure. We observed mechanically injured mpv17a9/a9 neuromasts were not more vulnerable to synapse loss; they lost a similar number of synapses per hair cell relative to WT. Additionally, we quantified the size of hair cell pre- and postsynaptic structures following stimulation and observed significantly enlarged WT postsynaptic densities, yet relatively little change in the size of mpv17a9/a9 postsynaptic densities following stimulation. These results suggest chronically impaired hair-cell mitochondrial activity influences postsynaptic size under homeostatic conditions but does not exacerbate synapse loss following mechanical injury.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
29
|
Sperl LE, Hagn F. NMR Structural and Biophysical Analysis of the Disease-Linked Inner Mitochondrial Membrane Protein MPV17. J Mol Biol 2021; 433:167098. [PMID: 34116124 DOI: 10.1016/j.jmb.2021.167098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8-12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.
Collapse
Affiliation(s)
- Laura E Sperl
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
30
|
Hong KT, Lim BC, Moon JS, Ko JS. MPV17-related Hepatocerebral Mitochondrial DNA Depletion Syndrome. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 77:248-252. [PMID: 34035203 DOI: 10.4166/kjg.2020.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/03/2022]
Abstract
Mitochondrial DNA (mtDNA) depletion syndrome comprises diseases resulting from a deficiency of proteins involved in mtDNA synthesis. MPV17 is a mitochondrial membrane protein whose mutation causes mitochondrial deoxynucleotide insufficiency. MPV17-related hepatocerebral mtDNA depletion syndrome is a rare autosomal recessive disease. This case report describes the clinical manifestations of MPV17-related hepatocerebral mtDNA depletion syndrome analyzed by performing whole-exome sequencing (WES). A 17-month-old girl presented with developmental delay, jaundice, and failure to thrive. The laboratory findings revealed cholestatic hepatitis, increased lactate-to-pyruvate ratio, and prolongation of the prothrombin time. She developed a hypoglycemic seizure. Brain magnetic resonance imaging revealed extensive demyelination of the white matter. WES detected the p.Leu151fs and p.Pro98Leu variants in MPV17. Her parents and sibling were found to be MPV17 heterozygous carriers. She was administered supportive treatment, such as replacement of fat-soluble vitamins and cornstarch to prevent further hypoglycemic events. The patient is currently being considered for liver transplantation. Overall, WES can help diagnose hepatocerebral mtDNA depletion syndrome in patients with hepatopathy, developmental delay, lactic acidosis, and hypomyelination based on brain magnetic resonance imaging.
Collapse
Affiliation(s)
- Ki Teak Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Erickson RP. Autosomal recessive diseases among the Athabaskans of the southwestern United States: anthropological, medical, and scientific aspects. J Appl Genet 2021; 62:445-453. [PMID: 33880741 PMCID: PMC8057858 DOI: 10.1007/s13353-021-00630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
The peopling of the Americas by Native Americans occurred in 4 waves of which the last was Nadene language speakers of whom Athabaskans are the largest group. As the Europeans were entering the Southwestern states of the USA, Athabaskan hunting-gathering tribes were migrating South from Canada along the Rocky Mountains and undergoing potential bottlenecks reflected in autosomal recessive diseases shared by Apaches and Navajos. About 300 years ago, the Navajo developing a sedentary culture learned from Pueblo Indians while the Apache remained hunter-gathers. Although most of the tribe was rounded up and forced to relocate to Bosque Redondo, the adult breeding population was large enough to prevent a genetic bottleneck. However, some Navajo underwent further population bottlenecks while hiding from the brutal US Army action (under Kit Carson’s guidance). This led to an increased frequency of other autosomal recessive diseases. Recent advances in population genetics, pathophysiology of the diseases, and social/ethical issues concerning their study are reviewed.
Collapse
|
32
|
Jacinto S, Guerreiro P, de Oliveira RM, Cunha-Oliveira T, Santos MJ, Grazina M, Rego AC, Outeiro TF. MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile. Front Cell Neurosci 2021; 15:641264. [PMID: 33815063 PMCID: PMC8011494 DOI: 10.3389/fncel.2021.641264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/08/2021] [Indexed: 02/03/2023] Open
Abstract
Mutations in the MPV17 gene are associated with hepatocerebral form of mitochondrial depletion syndrome. The mechanisms through which MPV17 mutations cause respiratory chain dysfunction and mtDNA depletion is still unclear. The MPV17 gene encodes an inner membrane mitochondrial protein that was recently described to function as a non-selective channel. Although its exact function is unknown, it is thought to be important in the maintenance of mitochondrial membrane potential (ΔΨm). To obtain more information about the role of MPV17 in human disease, we investigated the effect of MPV17 knockdown and of selected known MPV17 mutations associated with MPV17 disease in vitro. We used different approaches in order to evaluate the cellular consequences of MPV17 deficiency. We found that lower levels of MPV17 were associated with impaired mitochondrial respiration and with a quiescent energetic metabolic profile. All the mutations studied destabilized the protein, resulting in reduced protein levels. We also demonstrated that different mutations caused different cellular abnormalities, including increased ROS production, decreased oxygen consumption, loss of ΔΨm, and mislocalization of MPV17 protein. Our study provides novel insight into the molecular effects of MPV17 mutations and opens novel possibilities for testing therapeutic strategies for a devastating group of disorders.
Collapse
Affiliation(s)
- Sandra Jacinto
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Serviço de Neurologia Pediátrica, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central-EPE, Lisboa, Portugal
| | - Patrícia Guerreiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Switch Laboratory, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Katholiek Universiteit (KU), Leuven, Belgium
| | - Rita Machado de Oliveira
- CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | - Maria João Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Manuela Grazina
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
33
|
Akiyama N, Shimura M, Yamazaki T, Harashima H, Fushimi T, Tsuruoka T, Ebihara T, Ichimoto K, Matsunaga A, Saito-Tsuruoka M, Yatsuka Y, Kishita Y, Kohda M, Namba A, Kamei Y, Okazaki Y, Kosugi S, Ohtake A, Murayama K. Prenatal diagnosis of severe mitochondrial diseases caused by nuclear gene defects: a study in Japan. Sci Rep 2021; 11:3531. [PMID: 33574353 PMCID: PMC7878886 DOI: 10.1038/s41598-021-81015-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 12/05/2022] Open
Abstract
Prenatal diagnoses of mitochondrial diseases caused by defects in nuclear DNA (nDNA) or mitochondrial DNA have been reported in several countries except for Japan. The present study aimed to clarify the status of prenatal genetic diagnosis of mitochondrial diseases caused by nDNA defects in Japan. A comprehensive genomic analysis was performed to diagnose more than 400 patients, of which, 13 families (16 cases) had requested prenatal diagnoses. Eight cases diagnosed with wild type homozygous or heterozygous variants same as either of the heterozygous parents continued the pregnancy and delivered healthy babies. Another eight cases were diagnosed with homozygous, compound heterozygous, or hemizygous variants same as the proband. Of these, seven families chose to terminate the pregnancy, while one decided to continue the pregnancy. Neonatal- or infantile-onset mitochondrial diseases show severe phenotypes and lead to lethality. Therefore, such diseases could be candidates for prenatal diagnosis with careful genetic counseling, and prenatal testing could be a viable option for families.
Collapse
Affiliation(s)
- Nana Akiyama
- Center for Medical Genetics, Chiba Children's Hospital, Chiba, Japan.,Department of Medical Genetics/Medical Ethics, Kyoto University School of Public Health, Kyoto, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Taro Yamazaki
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hiroko Harashima
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan.,Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takuya Fushimi
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Tomoko Tsuruoka
- Department of Neonatology, Chiba Children's Hospital, Chiba, Japan
| | - Tomohiro Ebihara
- Department of Neonatology, Chiba Children's Hospital, Chiba, Japan
| | - Keiko Ichimoto
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Ayako Matsunaga
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Megumi Saito-Tsuruoka
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan.,Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Masakazu Kohda
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akira Namba
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan.,Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan.,Department of Obstetrics and Gynecology, Saitama Medical University Hospital, Saitama, Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Saitama Medical University Hospital, Saitama, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shinji Kosugi
- Department of Medical Genetics/Medical Ethics, Kyoto University School of Public Health, Kyoto, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan. .,Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan. .,Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan.
| | - Kei Murayama
- Center for Medical Genetics, Chiba Children's Hospital, Chiba, Japan. .,Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan. .,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| |
Collapse
|
34
|
Mundlamuri R, Divate P, Satishchandra P. MPV17 Gene Variant Mutation Presenting as Leucoencephalopathy with Peripheral Neuropathy. Neurol India 2021; 69:1817-1819. [DOI: 10.4103/0028-3886.333468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Redecorating the Mitochondrial Inner Membrane: A Treatment for mtDNA Disorders. Mol Ther 2020; 28:1749-1751. [PMID: 32679032 DOI: 10.1016/j.ymthe.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Zhang J, Qi J, Shi F, Pan H, Liu M, Tian R, Geng Y, Li H, Qu Y, Chen J, Seim I, Li M. Insights into the Evolution of Neoteny from the Genome of the Asian Icefish Protosalanx chinensis. iScience 2020; 23:101267. [PMID: 32593955 PMCID: PMC7327861 DOI: 10.1016/j.isci.2020.101267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/28/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Salangids, known as Asian icefishes, represent a peculiar radiation within the bony fish order Protacanthopterygii where adult fish retain larval characteristics such as transparent and miniaturized bodies and a cartilaginous endoskeleton into adulthood. Here, we report a de novo genome of Protosalanx chinensis, the most widely distributed salangid lineage. The P. chinensis genome assembly is more contiguous and complete than a previous assembly. We estimate that P. chinensis, salmons, trouts, and pikes diverged from a common ancestor 185 million years ago. A juxtaposition with other fish genomes revealed loss of the genes encoding ectodysplasin-A receptor (EDAR), SCPP1, and four Hox proteins and likely lack of canonical fibroblast growth factor 5 (FGF5) function. We also report genomic variations of P. chinensis possibly reflecting the immune system repertoire of a species with a larval phenotype in sexually mature individuals. The new Asian icefish reference genome provides a solid foundation for future studies.
Collapse
Affiliation(s)
- Jie Zhang
- Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.
| | - Jiwei Qi
- Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Fanglei Shi
- Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ran Tian
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yuepan Geng
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Huaying Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Yujie Qu
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource, Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China.
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba, QLD 4102, Australia.
| | - Ming Li
- Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
37
|
Shimura M, Kuranobu N, Ogawa-Tominaga M, Akiyama N, Sugiyama Y, Ebihara T, Fushimi T, Ichimoto K, Matsunaga A, Tsuruoka T, Kishita Y, Umetsu S, Inui A, Fujisawa T, Tanikawa K, Ito R, Fukuda A, Murakami J, Kaji S, Kasahara M, Shiraki K, Ohtake A, Okazaki Y, Murayama K. Clinical and molecular basis of hepatocerebral mitochondrial DNA depletion syndrome in Japan: evaluation of outcomes after liver transplantation. Orphanet J Rare Dis 2020; 15:169. [PMID: 32703289 PMCID: PMC7379809 DOI: 10.1186/s13023-020-01441-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatocerebral mitochondrial DNA depletion syndrome (MTDPS) is a disease caused by defects in mitochondrial DNA maintenance and leads to liver failure and neurological complications during infancy. Liver transplantation (LT) remains controversial due to poor outcomes associated with extrahepatic symptoms. The purposes of this study were to clarify the current clinical and molecular features of hepatocerebral MTDPS and to evaluate the outcomes of LT in MTDPS patients in Japan. RESULTS We retrospectively assessed the clinical and genetic findings, as well as the clinical courses, of 23 hepatocerebral MTDPS patients from a pool of 999 patients who were diagnosed with mitochondrial diseases between 2007 and 2019. Causative genes were identified in 18 of 23 patients: MPV17 (n = 13), DGUOK (n = 3), POLG (n = 1), and MICOS13 (n = 1). Eight MPV17-deficient patients harbored c.451dupC and all three DGUOK-deficient patients harbored c.143-307_170del335. The most common initial manifestation was failure to thrive (n = 13, 56.5%). The most frequent liver symptom was cholestasis (n = 21, 91.3%). LT was performed on 12 patients, including nine MPV17-deficient and two DGUOK-deficient patients. Among the 12 transplanted patients, five, including one with mild intellectual disability, survived; while seven who had remarkable neurological symptoms before LT died. Five of the MPV17-deficient survivors had either c.149G > A or c.293C > T. CONCLUSIONS MPV17 was the most common genetic cause of hepatocerebral MTDPS. The outcome of LT for MTDPS was not favorable, as previously reported, however, patients harboring MPV17 mutations associated with mild phenotypes such as c.149G > A or c.293C > T, and exhibiting no marked neurologic manifestations before LT, had a better prognosis after LT.
Collapse
Affiliation(s)
- Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Naomi Kuranobu
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Minako Ogawa-Tominaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Nana Akiyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Yohei Sugiyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Tomohiro Ebihara
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Takuya Fushimi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Keiko Ichimoto
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Tomoko Tsuruoka
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shuichiro Umetsu
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Tobu Hospital, 3-6-1, Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-0012, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Tobu Hospital, 3-6-1, Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-0012, Japan
| | - Tomoo Fujisawa
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Tobu Hospital, 3-6-1, Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-0012, Japan
| | - Ken Tanikawa
- Department of Diagnostic Pathology, Yame General Hospital, 540-2, Takatsuka, Yame-shi, Fukuoka, 834-0034, Japan
| | - Reiko Ito
- Department of General Pediatrics and Interdisciplinary Medicine, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Jun Murakami
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama Chuo Hospital, Kawasaki 1756, Tsuyama-shi, Okayama, 708-0841, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kazuo Shiraki
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan.,Center for Intractable Diseases, Saitama Medical University Hospital, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan.
| |
Collapse
|
38
|
Human Mpv17-like protein with a mitigating effect on mtDNA damage is involved in cAMP/PKA signaling in the mitochondrial matrix. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118792. [PMID: 32621840 DOI: 10.1016/j.bbamcr.2020.118792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
Human Mpv17-like protein (M-LPH/Mpv17L) is thought to play a role in minimizing mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage. We have recently demonstrated that, in addition to an increase of mtDNA damage, M-LPH-knockout (M-LPH-KO) in HepG2 cells causes a significant reduction of mitochondrial transcription factor A (TFAM) protein, an essential factor for mtDNA maintenance, along with an increase in its phosphorylation. These intracellular changes suggested an association of M-LPH with the cAMP/PKA signaling pathway, as selective degradation of TFAM by mitochondrial protease is driven by protein kinase A (PKA)-dependent phosphorylation. In the present study, we observed that M-LPH-KO in HepG2 cells caused an increase in the level of mitochondrial cAMP and a reduction of total cellular cyclic nucleotide phosphodiesterase (PDE) activity. In vitro-synthesized M-LPH showed PDE activity, which was inhibited by IBMX, a non-selective inhibitor of PDE. Furthermore, M-LPH-KO promoted PKA-dependent phosphorylation of some mitochondrial proteins. Taken together, the present findings suggest that M-LPH, which has structural features atypical of PDE family members, might be a novel human PDE involved in cAMP/PKA signaling in the mitochondrial matrix.
Collapse
|
39
|
Canonne M, Wanet A, Nguyen TTA, Khelfi A, Ayama-Canden S, Van Steenbrugge M, Fattaccioli A, Sokal E, Najimi M, Arnould T, Renard P. MPV17 does not control cancer cell proliferation. PLoS One 2020; 15:e0229834. [PMID: 32155188 PMCID: PMC7064194 DOI: 10.1371/journal.pone.0229834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
MPV17 is described as a mitochondrial inner membrane channel. Although its function remains elusive, mutations in the MPV17 gene result in hepato-cerebral mitochondrial DNA depletion syndrome in humans. In this study, we show that MPV17 silencing does not induce depletion in mitochondrial DNA content in cancer cells. We also show that MPV17 does not control cancer cell proliferation despite the fact that we initially observed a reduced proliferation rate in five MPV17-silenced cancer cell lines with two different shRNAs. However, shRNA-mediated MPV17 knockdown performed in this work provided misguiding results regarding the resulting proliferation phenotype and only a rescue experiment was able to shed definitive light on the implication of MPV17 in cancer cell proliferation. Our results therefore emphasize the caution that is required when scientific conclusions are drawn from a work based on lentiviral vector-based gene silencing and clearly demonstrate the need to systematically perform a rescue experiment in order to ascertain the specific nature of the experimental results.
Collapse
Affiliation(s)
- Morgane Canonne
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Anaïs Wanet
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Thuy Truong An Nguyen
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Alexis Khelfi
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Sophie Ayama-Canden
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Van Steenbrugge
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
- * E-mail:
| |
Collapse
|
40
|
Martorano L, Peron M, Laquatra C, Lidron E, Facchinello N, Meneghetti G, Tiso N, Rasola A, Ghezzi D, Argenton F. The zebrafish orthologue of the human hepatocerebral disease gene MPV17 plays pleiotropic roles in mitochondria. Dis Model Mech 2019; 12:dmm.037226. [PMID: 30833296 PMCID: PMC6451431 DOI: 10.1242/dmm.037226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial DNA depletion syndromes (MDS) are a group of rare autosomal recessive disorders with early onset and no cure available. MDS are caused by mutations in nuclear genes involved in mitochondrial DNA (mtDNA) maintenance, and characterized by both a strong reduction in mtDNA content and severe mitochondrial defects in affected tissues. Mutations in MPV17, a nuclear gene encoding a mitochondrial inner membrane protein, have been associated with hepatocerebral forms of MDS. The zebrafish mpv17 null mutant lacks the guanine-based reflective skin cells named iridophores and represents a promising model to clarify the role of Mpv17. In this study, we characterized the mitochondrial phenotype of mpv17−/− larvae and found early and severe ultrastructural alterations in liver mitochondria, as well as significant impairment of the respiratory chain, leading to activation of the mitochondrial quality control. Our results provide evidence for zebrafish Mpv17 being essential for maintaining mitochondrial structure and functionality, while its effects on mtDNA copy number seem to be subordinate. Considering that a role in nucleotide availability had already been postulated for MPV17, that embryos blocked in pyrimidine synthesis do phenocopy mpv17−/− knockouts (KOs) and that mpv17−/− KOs have impaired Dihydroorotate dehydrogenase activity, we provided mpv17 mutants with the pyrimidine precursor orotic acid (OA). Treatment with OA, an easily available food supplement, significantly increased both iridophore number and mtDNA content in mpv17−/− mutants, thus linking the loss of Mpv17 to pyrimidine de novo synthesis and opening a new simple therapeutic approach for MPV17-related MDS. Summary: The zebrafish mpv17−/− mutant shows a severe mitochondrial phenotype with ultrastructural alterations and oxidative phosphorylation impairment. The pyrimidine precursor orotic acid ameliorates mpv17−/− phenotype and increases mitochondrial DNA content, linking the loss of Mpv17 to pyrimidine de novo synthesis.
Collapse
Affiliation(s)
- Laura Martorano
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Margherita Peron
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Claudio Laquatra
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Elisa Lidron
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Nicola Facchinello
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Giacomo Meneghetti
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Via Libero Temolo 4, 20126 Milan, Italy
| | - Francesco Argenton
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| |
Collapse
|
41
|
Baumann M, Schreiber H, Schlotter‐Weigel B, Löscher WN, Stucka R, Karall D, Strom TM, Bauer P, Krabichler B, Fauth C, Glaeser D, Senderek J. MPV17
mutations in juvenile‐ and adult‐onset axonal sensorimotor polyneuropathy. Clin Genet 2018; 95:182-186. [DOI: 10.1111/cge.13462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Matthias Baumann
- Department of Pediatrics IMedical University of Innsbruck Innsbruck Austria
| | - Herbert Schreiber
- Neurological Practice Center and Neuropoint Patient Academy Ulm Germany
| | - Beate Schlotter‐Weigel
- Friedrich‐Baur‐Institute at the Department of NeurologyUniversity Hospital Munich Germany
| | - Wolfgang N. Löscher
- Clinical Department of NeurologyMedical University of Innsbruck Innsbruck Austria
| | - Rolf Stucka
- Friedrich‐Baur‐Institute at the Department of NeurologyUniversity Hospital Munich Germany
| | - Daniela Karall
- Department of Pediatrics IMedical University of Innsbruck Innsbruck Austria
| | - Tim M. Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, and Institute of Human GeneticsTechnische Universität München Munich Germany
| | - Peter Bauer
- Institute for Medical Genetics and Applied Genomics Tübingen Germany
| | - Birgit Krabichler
- Division of Human GeneticsMedical University of Innsbruck Innsbruck Austria
| | - Christine Fauth
- Division of Human GeneticsMedical University of Innsbruck Innsbruck Austria
| | | | - Jan Senderek
- Friedrich‐Baur‐Institute at the Department of NeurologyUniversity Hospital Munich Germany
| |
Collapse
|
42
|
Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2018; 2:184-199. [PMID: 31225486 PMCID: PMC6551628 DOI: 10.15698/cst2018.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| |
Collapse
|