1
|
Aitken RJ. Paternal age, de novo mutations, and offspring health? New directions for an ageing problem. Hum Reprod 2024:deae230. [PMID: 39361588 DOI: 10.1093/humrep/deae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/07/2024] [Indexed: 10/05/2024] Open
Abstract
This Directions article examines the mechanisms by which a father's age impacts the health and wellbeing of his children. Such impacts are significant and include adverse birth outcomes, dominant genetic conditions, neuropsychiatric disorders, and a variety of congenital developmental defects. As well as age, a wide variety of environmental and lifestyle factors are also known to impact offspring health via changes mediated by the male germ line. This picture of a dynamic germ line responsive to a wide range of intrinsic and extrinsic factors contrasts with the results of trio studies indicating that the incidence of mutations in the male germ line is low and exhibits a linear, monotonic increase with paternal age (∼two new mutations per year). While the traditional explanation for this pattern of mutation has been the metronomic plod of replication errors, an alternative model pivots around the 'faulty male' hypothesis. According to this concept, the genetic integrity of the male germ line can be dynamically impacted by age and a variety of other factors, and it is the aberrant repair of such damage that drives mutagenesis. Fortunately, DNA proofreading during spermatogenesis is extremely effective and these mutant cells are either repaired or deleted by apoptosis/ferroptosis. There appear to be only two mechanisms by which mutant germ cells can escape this apoptotic fate: (i) if the germ cells acquire a mutation that by enhancing proliferation or suppressing apoptosis, permits their clonal expansion (selfish selection hypothesis) or (ii) if a genetically damaged spermatozoon manages to fertilize an oocyte, which then fixes the damage as a mutation (or epimutation) as a result of defective DNA repair (oocyte collusion hypothesis). Exploration of these proposed mechanisms should not only help us better understand the aetiology of paternal age effects but also inform potential avenues of remediation.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Johnson MTJ, Arif I, Marchetti F, Munshi-South J, Ness RW, Szulkin M, Verrelli BC, Yauk CL, Anstett DN, Booth W, Caizergues AE, Carlen EJ, Dant A, González J, Lagos CG, Oman M, Phifer-Rixey M, Rennison DJ, Rosenberg MS, Winchell KM. Effects of urban-induced mutations on ecology, evolution and health. Nat Ecol Evol 2024; 8:1074-1086. [PMID: 38641700 DOI: 10.1038/s41559-024-02401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.
Collapse
Affiliation(s)
- Marc T J Johnson
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada.
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Irtaqa Arif
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jason Munshi-South
- Department of Biology and Louis Calder Center, Fordham University, Armonk, NY, USA
| | - Rob W Ness
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Marta Szulkin
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel N Anstett
- Department of Plant Biology, Department of Entomology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Warren Booth
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Aude E Caizergues
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Elizabeth J Carlen
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO, USA
| | - Anthony Dant
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - César González Lagos
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Madeleine Oman
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Diana J Rennison
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael S Rosenberg
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
3
|
Vuong NB, Quang HV, Linh Trang BN, Duong DH, Toan NL, Tong HV. Association of PKLR gene copy number, expression levels and enzyme activity with 2,3,7,8-TCDD exposure in individuals exposed to Agent Orange/Dioxin in Vietnam. CHEMOSPHERE 2023; 329:138677. [PMID: 37060958 DOI: 10.1016/j.chemosphere.2023.138677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) is the most toxic congener of dioxin and has serious long-term effects on the environment and human health. Pyruvate Kinase L/R (PKLR) gene expression levels and gene variants are associated with pyruvate kinase enzyme deficiency, which has been identified as the cause of several diseases linked to dioxin exposure. In this study, we estimated PKLR gene copy number and gene expression levels using real-time quantitative PCR (RT-qPCR) assays, genotyped PKLR SNP rs3020781 by Sanger sequencing, and quantified plasma pyruvate kinase enzyme activity in 100 individuals exposed to Agent Orange/Dioxin near Bien Hoa and Da Nang airfields in Vietnam and 100 healthy controls. The means of PKLR copy numbers and PKLR gene expression levels were significantly higher, while pyruvate kinase enzyme activity was significantly decreased in Agent Orange/Dioxin-exposed individuals compared to healthy controls (P < 0.0001). Positive correlations of PKLR gene copy number and gene expression with 2,3,7,8-TCDD concentrations were observed (r = 0.2, P = 0.045 and r = 0.54, P < 0.0001, respectively). In contrast, pyruvate kinase enzyme activity was inversely correlated with 2,3,7,8-TCDD concentrations (r = -0.52, P < 0.0001). PKLR gene copy number and gene expression levels were also inversely correlated with pyruvate kinase enzyme activity. Additionally, PKLR SNP rs3020781 was found to be associated with 2,3,7,8-TCDD concentrations and PKLR gene expression. In conclusion, PKLR copy number, gene expression levels, and pyruvate kinase enzyme activity are associated with 2,3,7,8-TCDD exposure in individuals living in Agent Orange/Dioxin-contaminated areas.
Collapse
Affiliation(s)
- Nguyen Ba Vuong
- Department of Haematology, Toxicology, Radiation, and Occupation, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Ha Van Quang
- The Center of Toxicological and Radiological Training and Research, Vietnam Military Medical University, Viet Nam
| | - Bui Ngoc Linh Trang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Dao Hong Duong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Viet Nam; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam.
| |
Collapse
|
4
|
Aitken RJ. Role of sperm DNA damage in creating de novo mutations in human offspring: the ‘post-meiotic oocyte collusion’ hypothesis. Reprod Biomed Online 2022; 45:109-124. [DOI: 10.1016/j.rbmo.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
|
5
|
Pugsley K, Scherer SW, Bellgrove MA, Hawi Z. Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Mol Psychiatry 2022; 27:710-730. [PMID: 34002022 PMCID: PMC8960415 DOI: 10.1038/s41380-021-01142-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Although the full aetiology of autism spectrum disorder (ASD) is unknown, familial and twin studies demonstrate high heritability of 60-90%, indicating a predominant role of genetics in the development of the disorder. The genetic architecture of ASD consists of a complex array of rare and common variants of all classes of genetic variation usually acting additively to augment individual risk. The relative contribution of heredity in ASD persists despite selective pressures against the classic autistic phenotype; a phenomenon thought to be explained, in part, by the incidence of spontaneous (or de novo) mutations. Notably, environmental exposures attributed as salient risk factors for ASD may play a causal role in the emergence of deleterious de novo variations, with several ASD-associated agents having significant mutagenic potential. To explore this hypothesis, this review article assesses published epidemiological data with evidence derived from assays of mutagenicity, both in vivo and in vitro, to determine the likely role such agents may play in augmenting the genetic liability in ASD. Broadly, these exposures were observed to elicit genomic alterations through one or a combination of: (1) direct interaction with genetic material; (2) impaired DNA repair; or (3) oxidative DNA damage. However, the direct contribution of these factors to the ASD phenotype cannot be determined without further analysis. The development of comprehensive prospective birth cohorts in combination with genome sequencing is essential to forming a causal, mechanistic account of de novo mutations in ASD that links exposure, genotypic alterations, and phenotypic consequences.
Collapse
Affiliation(s)
- Kealan Pugsley
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Stephen W. Scherer
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Goldmann JM, Hampstead JE, Wong WSW, Wilfert AB, Turner TN, Jonker MA, Bernier R, Huynen MA, Eichler EE, Veltman JA, Maxwell GL, Gilissen C. Differences in the number of de novo mutations between individuals are due to small family-specific effects and stochasticity. Genome Res 2021; 31:1513-1518. [PMID: 34301630 PMCID: PMC8415378 DOI: 10.1101/gr.271809.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
The number of de novo mutations (DNMs) in the human germline is correlated with parental age at conception, but this explains only part of the observed variation. We investigated whether there is a family-specific contribution to the number of DNMs in offspring. The analysis of DNMs in 111 dizygotic twin pairs did not identify a substantial family-specific contribution. This result was corroborated by comparing DNMs of 1669 siblings to those of age-matched unrelated offspring following correction for parental age. In addition, by modeling DNM data from 1714 multi-offspring families, we estimated that the family-specific contribution explains ∼5.2% of the variation in DNM number. Furthermore, we found no substantial difference between the observed number of DNMs and those predicted by a stochastic Poisson process. We conclude that there is a small family-specific contribution to DNM number and that stochasticity explains a large proportion of variation in DNM counts.
Collapse
Affiliation(s)
- Jakob M Goldmann
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.,Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Juliet E Hampstead
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.,Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Wendy S W Wong
- Inova Translational Medicine Institute (ITMI), Inova Health Systems, Falls Church, Virginia 22042, USA
| | - Amy B Wilfert
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Tychele N Turner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Marianne A Jonker
- Department for Health Evidence, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen 6525 GA, The Netherlands
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - George L Maxwell
- Department of Obstetrics and Gynecology, Inova Fairfax Department and Inova Schar Cancer Institute, Falls Church, Virginia 22042, USA
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.,Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
7
|
Trost B, Loureiro LO, Scherer SW. Discovery of genomic variation across a generation. Hum Mol Genet 2021; 30:R174-R186. [PMID: 34296264 PMCID: PMC8490016 DOI: 10.1093/hmg/ddab209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
Over the past 30 years (the timespan of a generation), advances in genomics technologies have revealed tremendous and unexpected variation in the human genome and have provided increasingly accurate answers to long-standing questions of how much genetic variation exists in human populations and to what degree the DNA complement changes between parents and offspring. Tracking the characteristics of these inherited and spontaneous (or de novo) variations has been the basis of the study of human genetic disease. From genome-wide microarray and next-generation sequencing scans, we now know that each human genome contains over 3 million single nucleotide variants when compared with the ~ 3 billion base pairs in the human reference genome, along with roughly an order of magnitude more DNA—approximately 30 megabase pairs (Mb)—being ‘structurally variable’, mostly in the form of indels and copy number changes. Additional large-scale variations include balanced inversions (average of 18 Mb) and complex, difficult-to-resolve alterations. Collectively, ~1% of an individual’s genome will differ from the human reference sequence. When comparing across a generation, fewer than 100 new genetic variants are typically detected in the euchromatic portion of a child’s genome. Driven by increasingly higher-resolution and higher-throughput sequencing technologies, newer and more accurate databases of genetic variation (for instance, more comprehensive structural variation data and phasing of combinations of variants along chromosomes) of worldwide populations will emerge to underpin the next era of discovery in human molecular genetics.
Collapse
Affiliation(s)
- Brett Trost
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Livia O Loureiro
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Aitken RJ, Bakos HW. Should we be measuring DNA damage in human spermatozoa? New light on an old question. Hum Reprod 2021; 36:1175-1185. [PMID: 33532854 DOI: 10.1093/humrep/deab004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Assessments of sperm DNA damage are controversial because of perceived uncertainties over the relationship with pregnancy and the limited range of therapies available should positive results be returned. In this article, we highlight recent data supporting a chain of associations between oxidative stress in the male germ line, DNA damage in spermatozoa, defective DNA repair in the oocyte, the mutational load carried by the resulting embryo and the long-term health trajectory of the offspring. Any condition capable of generating oxidative damage in spermatozoa (age, obesity, smoking, prolonged abstinence, varicocele, chemical exposures, radiation etc.) is capable of influencing offspring health in this manner, creating a range of pathologies in the progeny including neuropsychiatric disorders and cancer. If sperm DNA damage is detected, there are several therapeutic interventions that can be introduced to improve DNA quality prior to the use of these cells in ART. We therefore argue that infertility specialists should be engaged in the diagnosis and remediation of sperm DNA damage as a matter of best practice, in order to minimize the risk of adverse health outcomes in children conceived using ART.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hassan W Bakos
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia
- Monash IVF Group Limited, Level 2, 1 Fennell Street, Parramatta, NSW 2151 Australia
| |
Collapse
|
9
|
Carlson J, DeWitt WS, Harris K. Inferring evolutionary dynamics of mutation rates through the lens of mutation spectrum variation. Curr Opin Genet Dev 2020; 62:50-57. [PMID: 32619789 DOI: 10.1016/j.gde.2020.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/04/2023]
Abstract
There are many possible failure points in the transmission of genetic information that can produce heritable germline mutations. Once a mutation has been passed from parents to offspring for several generations, it can be difficult or impossible to identify its root cause; however, sometimes the nature of the ancestral and derived DNA sequences can provide mechanistic clues about a genetic change that happened hundreds or thousands of generations ago. Here, we review evidence that the sequence context 'spectrum' of germline mutagenesis has been evolving surprisingly rapidly over the history of humans and other species. We go on to discuss possible causal factors that might underlie rapid mutation spectrum evolution.
Collapse
Affiliation(s)
- Jedidiah Carlson
- Department of Genome Sciences, Foege Hall, University of Washington, Seattle, WA 98105, United States
| | - William S DeWitt
- Department of Genome Sciences, Foege Hall, University of Washington, Seattle, WA 98105, United States; Computational Biology Program, Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave E, Seattle, WA 98109, United States
| | - Kelley Harris
- Department of Genome Sciences, Foege Hall, University of Washington, Seattle, WA 98105, United States; Computational Biology Program, Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave E, Seattle, WA 98109, United States.
| |
Collapse
|
10
|
Marchetti F, Douglas GR, Yauk CL. A Return to the Origin of the EMGS: Rejuvenating the Quest for Human Germ Cell Mutagens and Determining the Risk to Future Generations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:42-54. [PMID: 31472026 DOI: 10.1002/em.22327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 05/23/2023]
Abstract
Fifty years ago, the Environmental Mutagen Society (now Environmental Mutagenesis and Genomics Society) was founded with a laser-focus on germ cell mutagenesis and the protection of "our most vital assets"-the sperm and egg genomes. Yet, five decades on, despite the fact that many agents have been demonstrated to induce inherited changes in the offspring of exposed laboratory rodents, there is no consensus on whether human germ cell mutagens exist. We argue that it is time to reevaluate the available data and conclude that we already have evidence for the existence of environmental exposures that impact human germ cells. What is missing are definite data to demonstrate a significant increase in de novo mutations in the offspring of exposed parents. We believe that with over two decades of research advancing knowledge and technologies in genomics, we are at the cusp of generating data to conclusively show that environmental exposures cause heritable de novo changes in the human offspring. We call on the research community to harness our technologies, synergize our efforts, and return to our Founders' original focus. The next 50 years must involve collaborative work between clinicians, epidemiologists, genetic toxicologists, genomics experts and bioinformaticians to precisely define how environmental exposures impact germ cell genomes. It is time for the research and regulatory communities to prepare to interpret the coming outpouring of data and develop a framework for managing, communicating and mitigating the risk of exposure to human germ cell mutagens. Environ. Mol. Mutagen. 61:42-54, 2020. © 2019 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. DNA Copy Number Variations as Markers of Mutagenic Impact. Int J Mol Sci 2019; 20:ijms20194723. [PMID: 31554154 PMCID: PMC6801639 DOI: 10.3390/ijms20194723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA copy number variation (CNV) occurs due to deletion or duplication of DNA segments resulting in a different number of copies of a specific DNA-stretch on homologous chromosomes. Implications of CNVs in evolution and development of different diseases have been demonstrated although contribution of environmental factors, such as mutagens, in the origin of CNVs, is poorly understood. In this review, we summarize current knowledge about mutagen-induced CNVs in human, animal and plant cells. Differences in CNV frequencies induced by radiation and chemical mutagens, distribution of CNVs in the genome, as well as adaptive effects in plants, are discussed. Currently available information concerning impact of mutagens in induction of CNVs in germ cells is presented. Moreover, the potential of CNVs as a new endpoint in mutagenicity test-systems is discussed.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
12
|
Beal MA, Meier MJ, Williams A, Rowan-Carroll A, Gagné R, Lindsay SJ, Fitzgerald T, Hurles ME, Marchetti F, Yauk CL. Paternal exposure to benzo(a)pyrene induces genome-wide mutations in mouse offspring. Commun Biol 2019; 2:228. [PMID: 31240266 PMCID: PMC6586636 DOI: 10.1038/s42003-019-0476-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/23/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the effects of environmental exposures on germline mutation rates has been a decades-long pursuit in genetics. We used next-generation sequencing and comparative genomic hybridization arrays to investigate genome-wide mutations in the offspring of male mice exposed to benzo(a)pyrene (BaP), a common environmental pollutant. We demonstrate that offspring developing from sperm exposed during the mitotic or post-mitotic phases of spermatogenesis have significantly more de novo single nucleotide variants (1.8-fold; P < 0.01) than controls. Both phases of spermatogenesis are susceptible to the induction of heritable mutations, although mutations arising from post-fertilization events are more common after post-mitotic exposure. In addition, the mutation spectra in sperm and offspring of BaP-exposed males are consistent. Finally, we report a significant increase in transmitted copy number duplications (P = 0.001) in BaP-exposed sires. Our study demonstrates that germ cell mutagen exposures induce genome-wide mutations in the offspring that may be associated with adverse health outcomes.
Collapse
Affiliation(s)
- Marc A. Beal
- Carleton University, Ottawa, Ontario K1S 5B6 Canada
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Sarah J. Lindsay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Tomas Fitzgerald
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Matthew E. Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| |
Collapse
|
13
|
Nguyen DT, Nguyen HH, Nguyen TD, Nguyen TTH, Nakano K, Maejima K, Sasaki-Oku A, Nguyen VB, Nguyen DB, Le BQ, Wong JH, Tsunoda T, Nakagawa H, Fujimoto A, Nong VH. Whole Genome Sequencing of a Vietnamese Family from a Dioxin Contamination Hotspot Reveals Novel Variants in the Son with Undiagnosed Intellectual Disability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122629. [PMID: 30477169 PMCID: PMC6313569 DOI: 10.3390/ijerph15122629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 11/24/2022]
Abstract
Although it has been a half-century since dioxin-contaminated herbicides were used to defoliate the landscape during the Vietnam War, dioxin contamination “hotspots” still remain in Vietnam. Environmental and health impacts of these hotspots need to be evaluated. Intellectual disability (ID) is one of the diseases found in the children of people exposed to the herbicides. This study aims to identify genetic alterations of a patient whose family lived in a dioxin hotspot. The patient’s father had a highly elevated dioxin concentration. He was affected with undiagnosed moderate ID. To analyze de novo mutations and genetic variations, and to identify causal gene(s) for ID, we performed whole genome sequencing (WGS) of the proband and his parents. Two de novo missense mutations were detected, each one in ETS2 and ZNF408 genes, respectively. Compound heterozygosity was identified in CENPF and TTN genes. Existing knowledge on the genes and bioinformatics analyses suggest that EST2, ZNF408, and CENPF might be promising candidates for ID causative genes.
Collapse
Affiliation(s)
- Dang Ton Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam.
- RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan.
| | - Hai Ha Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam.
| | - Thuy Duong Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam.
| | - Thi Thanh Hoa Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam.
| | - Kaoru Nakano
- RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan.
| | - Kazuhiro Maejima
- RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan.
| | - Aya Sasaki-Oku
- RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan.
| | - Van Ba Nguyen
- Vietnam Military Medical University, Ha Dong, Hanoi 100000, Vietnam.
| | - Duy Bac Nguyen
- Vietnam Military Medical University, Ha Dong, Hanoi 100000, Vietnam.
| | - Bach Quang Le
- Vietnam Military Medical University, Ha Dong, Hanoi 100000, Vietnam.
| | - Jing Hao Wong
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Tatsuhiko Tsunoda
- RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan.
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Hidewaki Nakagawa
- RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan.
| | - Akihiro Fujimoto
- RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan.
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Van Hai Nong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam.
| |
Collapse
|