1
|
Blue EE, Moore KJ, North KE, Desrosiers TA, Carmichael SL, White JJ, Chong JX, Bamshad MJ, Jenkins MM, Almli LM, Brody LC, Freedman SF, Reefhuis J, Romitti PA, Shaw GM, Werler M, Kay DM, Browne ML, Feldkamp ML, Finnell RH, Nembhard WN, Pangilinan F, Olshan AF. Exome sequencing identifies novel genes underlying primary congenital glaucoma in the National Birth Defects Prevention Study. Birth Defects Res 2024; 116:e2384. [PMID: 38990107 PMCID: PMC11245170 DOI: 10.1002/bdr2.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Primary congenital glaucoma (PCG) affects approximately 1 in 10,000 live born infants in the United States (U.S.). PCG has a autosomal recessive inheritance pattern, and variable expressivity and reduced penetrance have been reported. Likely causal variants in the most commonly mutated gene, CYP1B1, are less prevalent in the U.S., suggesting that alternative genes may contribute to the condition. This study utilized exome sequencing to investigate the genetic architecture of PCG in the U.S. and to identify novel genes and variants. METHODS We studied 37 family trios where infants had PCG and were part of the National Birth Defects Prevention Study (births 1997-2011), a U.S. multicenter study of birth defects. Samples underwent exome sequencing and sequence reads were aligned to the human reference sample (NCBI build 37/hg19). Variant filtration was conducted under de novo and Mendelian inheritance models using GEMINI. RESULTS Among candidate variants, CYP1B1 was most represented (five trios, 13.5%). Twelve probands (32%) had potentially pathogenic variants in other genes not previously linked to PCG but important in eye development and/or to underlie Mendelian conditions with potential phenotypic overlap (e.g., CRYBB2, RXRA, GLI2). CONCLUSION Variation in the genes identified in this population-based study may help to further explain the genetics of PCG.
Collapse
Affiliation(s)
- Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Kristin J Moore
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tania A Desrosiers
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suzan L Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Janson J White
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jessica X Chong
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michael J Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lynn M Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lawrence C Brody
- Division of Genomics and Society, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sharon F Freedman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Martha Werler
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts, USA
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| | - Denise M Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marilyn L Browne
- New York State Department of Health, Birth Defects Registry, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, USA
| | - Marcia L Feldkamp
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Wendy N Nembhard
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Faith Pangilinan
- Division of Genomics and Society, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Castro JTDSD, Saab CL, Souto MPA, Ortolam JG, Steiner CE, Rezende TJRD, Reis F. Sjogren-Larsson syndrome brain volumetric reductions demonstrated with an automated software. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:809-815. [PMID: 37793403 PMCID: PMC10550349 DOI: 10.1055/s-0043-1772601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/05/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Sjogren-Larsson syndrome (SLS) is a neurocutaneous disease with an autosomal recessive inheritance, caused by mutations in the gene that encodes fatty aldehyde dehydrogenase (ALDH3A2), clinically characterized by ichthyosis, spastic diplegia, and cognitive impairment. Brain imaging plays an essential role in the diagnosis, demonstrating a nonspecific leukoencephalopathy. Data regarding brain atrophy and grey matter involvement is scarce and discordant. OBJECTIVE We performed a volumetric analysis of the brain of two siblings with SLS with the aim of detecting deep grey matter nuclei, cerebellar grey matter, and brainstem volume reduction in these patients. METHODS Volume data obtained from the brain magnetic resonance imaging (MRI) of the two patients using an automated segmentation software (Freesurfer) was compared with the volumes of a healthy control group. RESULTS Statistically significant volume reduction was found in the cerebellum cortex, the brainstem, the thalamus, and the pallidum nuclei. CONCLUSION Volume reduction in grey matter leads to the hypothesis that SLS is not a pure leukoencephalopathy. Grey matter structures affected in the present study suggest a dysfunction more prominent in the thalamic motor pathways.
Collapse
Affiliation(s)
- José Thiago de Souza de Castro
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Anestesiologia, Oncologia e Radiologia, Campinas SP, Brazil.
| | - Camilo Lotfi Saab
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Anestesiologia, Oncologia e Radiologia, Campinas SP, Brazil.
| | - Mariam Patrícia Auada Souto
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Clínica Médica, Campinas SP, Brazil.
| | - Juliane Giselle Ortolam
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Anestesiologia, Oncologia e Radiologia, Campinas SP, Brazil.
| | - Carlos Eduardo Steiner
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Medicina Translacional , Campinas SP, Brazil.
| | | | - Fabiano Reis
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Anestesiologia, Oncologia e Radiologia, Campinas SP, Brazil.
| |
Collapse
|
3
|
Dai HD, Qiu F, Jackson K, Fruttiger M, Rizzo WB. Untargeted Metabolomic Analysis of Sjögren-Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites 2023; 13:682. [PMID: 37367841 DOI: 10.3390/metabo13060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare inherited neurocutaneous disease characterized by ichthyosis, spastic diplegia or tetraplegia, intellectual disability and a distinctive retinopathy. SLS is caused by bi-allelic mutations in ALDH3A2, which codes for fatty aldehyde dehydrogenase (FALDH) and results in abnormal lipid metabolism. The biochemical abnormalities in SLS are not completely known, and the pathogenic mechanisms leading to symptoms are still unclear. To search for pathways that are perturbed in SLS, we performed untargeted metabolomic screening in 20 SLS subjects along with age- and sex-matched controls. Of 823 identified metabolites in plasma, 121 (14.7%) quantitatively differed in the overall SLS cohort from controls; 77 metabolites were decreased and 44 increased. Pathway analysis pointed to disrupted metabolism of sphingolipids, sterols, bile acids, glycogen, purines and certain amino acids such as tryptophan, aspartate and phenylalanine. Random forest analysis identified a unique metabolomic profile that had a predictive accuracy of 100% for discriminating SLS from controls. These results provide new insight into the abnormal biochemical pathways that likely contribute to disease in SLS and may constitute a biomarker panel for diagnosis and future therapeutic studies.
Collapse
Affiliation(s)
- Hongying Daisy Dai
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - William B Rizzo
- Department of Pediatrics and Child Health Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Children's Hospital & Medical Center, Omaha, NE 68114, USA
| |
Collapse
|
4
|
Horta Remedios M, Liang W, González LN, Li V, Da Ros VG, Cohen DJ, Zaremberg V. Ether lipids and a peroxisomal riddle in sperm. Front Cell Dev Biol 2023; 11:1166232. [PMID: 37397249 PMCID: PMC10309183 DOI: 10.3389/fcell.2023.1166232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.
Collapse
Affiliation(s)
| | - Weisheng Liang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lucas N. González
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Victoria Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Dorninger F, Werner ER, Berger J, Watschinger K. Regulation of plasmalogen metabolism and traffic in mammals: The fog begins to lift. Front Cell Dev Biol 2022; 10:946393. [PMID: 36120579 PMCID: PMC9471318 DOI: 10.3389/fcell.2022.946393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their unique chemical structure, plasmalogens do not only exhibit distinct biophysical and biochemical features, but require specialized pathways of biosynthesis and metabolization. Recently, major advances have been made in our understanding of these processes, for example by the attribution of the gene encoding the enzyme, which catalyzes the final desaturation step in plasmalogen biosynthesis, or by the identification of cytochrome C as plasmalogenase, which allows for the degradation of plasmalogens. Also, models have been presented that plausibly explain the maintenance of adequate cellular levels of plasmalogens. However, despite the progress, many aspects around the questions of how plasmalogen metabolism is regulated and how plasmalogens are distributed among organs and tissues in more complex organisms like mammals, remain unresolved. Here, we summarize and interpret current evidence on the regulation of the enzymes involved in plasmalogen biosynthesis and degradation as well as the turnover of plasmalogens. Finally, we focus on plasmalogen traffic across the mammalian body - a topic of major importance, when considering plasmalogen replacement therapies in human disorders, where deficiencies in these lipids have been reported. These involve not only inborn errors in plasmalogen metabolism, but also more common diseases including Alzheimer's disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| |
Collapse
|
6
|
Koch J, Watschinger K, Werner ER, Keller MA. Tricky Isomers—The Evolution of Analytical Strategies to Characterize Plasmalogens and Plasmanyl Ether Lipids. Front Cell Dev Biol 2022; 10:864716. [PMID: 35573699 PMCID: PMC9092451 DOI: 10.3389/fcell.2022.864716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Typically, glycerophospholipids are represented with two esterified fatty acids. However, by up to 20%, a significant proportion of this lipid class carries an ether-linked fatty alcohol side chain at the sn-1 position, generally referred to as ether lipids, which shape their specific physicochemical properties. Among those, plasmalogens represent a distinct subgroup characterized by an sn-1 vinyl-ether double bond. The total loss of ether lipids in severe peroxisomal defects such as rhizomelic chondrodysplasia punctata indicates their crucial contribution to diverse cellular functions. An aberrant ether lipid metabolism has also been reported in multifactorial conditions including Alzheimer’s disease. Understanding the underlying pathological implications is hampered by the still unclear exact functional spectrum of ether lipids, especially in regard to the differentiation between the individual contributions of plasmalogens (plasmenyl lipids) and their non-vinyl-ether lipid (plasmanyl) counterparts. A primary reason for this is that exact identification and quantification of plasmalogens and other ether lipids poses a challenging and usually labor-intensive task. Diverse analytical methods for the detection of plasmalogens have been developed. Liquid chromatography–tandem mass spectrometry is increasingly used to resolve complex lipid mixtures, and with optimized parameters and specialized fragmentation strategies, discrimination between ethers and plasmalogens is feasible. In this review, we recapitulate historic and current methodologies for the recognition and quantification of these important lipids and will discuss developments in this field that can contribute to the characterization of plasmalogens in high structural detail.
Collapse
Affiliation(s)
- Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Markus A. Keller,
| |
Collapse
|
7
|
Lambert LH, Shaikh N, Marx JL, Ramsey DJ. End-stage crystalline maculopathy with retinal atrophy in Sjögren-Larsson syndrome: a case report and review of the literature. THERAPEUTIC ADVANCES IN RARE DISEASE 2022; 3:26330040221122496. [PMID: 37180414 PMCID: PMC10032463 DOI: 10.1177/26330040221122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 05/16/2023]
Abstract
Sjögren-Larsson syndrome (SLS) is a rare, autosomal recessive neurocutaneous disorder. It is caused by the inheritance of sequence variants in the ALDH3A2 gene, which codes for fatty aldehyde dehydrogenase (FALDH). Universal signs of the condition are congenital ichthyosis, spastic paresis of the lower and upper limbs, and reduced intellectual ability. In addition to this clinical triad, patients with SLS experience dry eyes and decreased visual acuity caused by a progressive retinal degeneration. Examination of the retina in patients with SLS often reveals glistening yellow crystal-like deposits surrounding the fovea. This crystalline retinopathy often develops in childhood and is considered pathognomonic for the disease. The metabolic disorder typically shortens lifespan to half that of the unaffected population. However, now that patients with SLS live longer, it becomes increasingly important to understand the natural course of the disease. Our case describes a 58-year-old woman with advanced SLS whose ophthalmic examination illustrates the end-stage of the retinal degeneration. Optical coherence tomography (OCT) and fluorescein angiography confirm the disease is restricted to the neural retina with dramatic thinning of the macula. This case is unique since it is among the most advanced both in terms of chronological age and severity of retinal disease. While the accumulation of fatty aldehydes, alcohols, and other precursor molecules is the probable cause of retinal toxicity, a more complete understanding of the course of retinal degeneration may aid in the development of future treatments. The aim of our presentation of this case is to increase awareness of the disease and to foster interest in therapeutic research which may benefit patients with this rare condition.
Collapse
Affiliation(s)
- Lester H. Lambert
- Department of Ophthalmology, Tufts University
School of Medicine, Boston, MA, USA
- Department of Surgery, Division of
Ophthalmology, Lahey Hospital & Medical Center, Burlington, MA,
USA
| | - Noreen Shaikh
- Department of Ophthalmology, Tufts University
School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Beth Israel
Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jeffrey L. Marx
- Department of Ophthalmology, Tufts University
School of Medicine, Boston, MA, USA
- Department of Surgery, Division of
Ophthalmology, Lahey Hospital & Medical Center, Burlington, MA,
USA
| | - David J. Ramsey
- Department of Ophthalmology, Tufts University
School of Medicine, Boston, MA, USA
- Department of Surgery, Division of
Ophthalmology, Lahey Hospital & Medical Center, 41 Mall Road,
Burlington, MA, 01803, USA
| |
Collapse
|
8
|
Warrack S, Love T, Rizzo WB. A Neurodegenerative Phenotype Associated With Sjögren-Larsson Syndrome. J Child Neurol 2021; 36:1011-1016. [PMID: 34315315 PMCID: PMC8458237 DOI: 10.1177/08830738211029390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sjögren-Larsson syndrome (SLS) is a rare neurologic disorder caused by pathogenic sequence variants in ALDH3A2 and characterized by ichthyosis, spasticity, intellectual disability, and a crystalline retinopathy. Neurologic symptoms develop in the first 2 years of life. Except for worsening ambulation due to spastic diplegia and contractures, the neurologic disease has been considered static and a neurodegenerative course is distinctly unusual. We describe a young child with Sjögren-Larsson syndrome who exhibited an early and severely progressive neurologic phenotype that may have been triggered by a febrile rotavirus infection. Together with 7 additional published cases of these atypical patients, we emphasize that a neurodegenerative course can be an extreme outcome for a minority of patients with Sjögren-Larsson syndrome.
Collapse
Affiliation(s)
- Simone Warrack
- Department of Pediatrics, Child Health Research Institute, University of Nebraska Medical Center and Children’s Hospital & Medical Center, Omaha, NE, U.S.A
| | - Terri Love
- Department of Pediatrics, Child Health Research Institute, University of Nebraska Medical Center and Children’s Hospital & Medical Center, Omaha, NE, U.S.A
| | - William B. Rizzo
- Department of Pediatrics, Child Health Research Institute, University of Nebraska Medical Center and Children’s Hospital & Medical Center, Omaha, NE, U.S.A.,Direct correspondence to Dr. William Rizzo at 985940 Nebraska Medical Center, Omaha, Nebraska, 68198-5940, U.S.A. , Telephone: 402-559-2560, FAX: 402-559-2540
| |
Collapse
|
9
|
Holmes RS. Evolution of aldehyde dehydrogenase genes and proteins in diploid and allotetraploid Xenopus frog species. Chem Biol Interact 2021; 351:109671. [PMID: 34599912 DOI: 10.1016/j.cbi.2021.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022]
Abstract
At least 19 human aldehyde dehydrogenase (ALDH) genes and enzymes have been studied among vertebrate organisms. BLAT and BLAST analyses were undertaken of Xenopus tropicalis (western clawed frog) and Xenopus laevis (African clawed frog) genomes which are related diploid (N = 20) and allotetraploid (N = 36) species, respectively. The corresponding ALDH genes and proteins within these Xenopus genomes were identified and studied. Evidence is presented for tetraploid copies of 10 Xenopus laevis ALDH genes, whereas another 7 identified ALDH genes were diploid in nature. Xenopus laevis and Xenopus tropicalis ALDH amino acid sequences were highly homologous with the human enzymes, with the exception of the mitochondrial signal peptide sequences. Amino acids performing catalytic and structural roles were conserved and identified based on previous reports of 3D structures for the corresponding mammalian enzymes.
Collapse
Affiliation(s)
- Roger S Holmes
- Griffith Research Institute for Drug Discovery (GRIDD) and School of Environment and Science, Griffith University, Nathan, 4111, Brisbane Queensland, Australia.
| |
Collapse
|
10
|
Villar-Vera C, Cuesta Peredo A, Monfort-Belenguer L, Abellán Sanchez MR, Martínez-Costa C. Síndrome de Sjögren-Larsson en España; descripción de 3 nuevos casos. An Pediatr (Barc) 2021. [DOI: 10.1016/j.anpedi.2020.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Villar-Vera C, Cuesta Peredo A, Monfort-Belenguer L, Abellán Sanchez MR, Martínez-Costa C. Sjögren-Larsson syndrome in Spain: Description of three new cases. An Pediatr (Barc) 2021; 95:203-204. [PMID: 34340960 DOI: 10.1016/j.anpede.2020.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/31/2020] [Indexed: 10/20/2022] Open
Affiliation(s)
- Cristina Villar-Vera
- Unidad de Neuropediatría, Servicio de Pediatría, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - Ana Cuesta Peredo
- Laboratorio de Bioquímica y Patología Molecular, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Lucía Monfort-Belenguer
- Unidad de Neuropediatría, Servicio de Pediatría, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | | |
Collapse
|
12
|
Rajeshwari M, Karthi S, Singh R, Efthymiou S, Gowda VK, Varalakshmi P, Srinivasan VM, Houlden H, Keller MA, Rizzo WB, Ashokkumar B. Novel ALDH3A2 mutations in structural and functional domains of FALDH causing diverse clinical phenotypes in Sjögren-Larsson syndrome patients. Hum Mutat 2021; 42:1015-1029. [PMID: 34082469 DOI: 10.1002/humu.24236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 11/07/2022]
Abstract
Mutations in ALDH3A2 cause Sjögren-Larsson syndrome (SLS), a neuro-ichthyotic condition due to the deficiency of fatty aldehyde dehydrogenase (FALDH). We screened for novel mutations causing SLS among Indian ethnicity, characterized the identified mutations in silico and in vitro, and retrospectively evaluated their role in phenotypic heterogeneity. Interestingly, asymmetric distribution of nonclassical traits was observed in our cases. Nerve conduction studies suggested intrinsic-minus-claw hands in two siblings, a novel neurological phenotype to SLS. Genetic testing revealed five novel homozygous ALDH3A2 mutations in six cases: Case-1-NM_000382.2:c.50C>A, NP_000373.1:p.(Ser17Ter); Case-2-NM_000382.2:c.199G>T, NP_000373.1:p.(Glu67Ter); Case-3-NM_000382.2:c.1208G>A, NP_000373.1:p.(Gly403Asp); Case-4-NM_000382.2:c.1325C>T, NP_000373.1:p.(Pro442Leu); Case-5 and -6 NM_000382.2:c.1349G>A, NP_000373.1:p.(Trp450Ter). The mutations identified were predicted to be pathogenic and disrupt the functional domains of the FALDH. p.(Pro442Leu) at the C-terminal α-helix, might impair the substrate gating process. Mammalian expression studies with exon-9 mutants confirmed the profound reduction in the enzyme activity. Diminished aldehyde-oxidizing activity was observed with cases-2 and 3. Cases-2 and 3 showed epidermal hyperplasia with mild intracellular edema, spongiosis, hypergranulosis, and perivascular-interstitial lymphocytic infiltrate and a leaky eosinophilic epidermis. The presence of keratin-containing milia-like lipid vacuoles implies defective lamellar secretion with p.(Gly403Asp). This study improves our understanding of the clinical and mutational diversity in SLS, which might help to fast-track diagnostic and therapeutic interventions of this debilitating disorder.
Collapse
Affiliation(s)
- Mohan Rajeshwari
- School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sellamuthu Karthi
- Department of Biochemistry & Molecular Biology, Sealy Center for Molecular Medicine, UTMB, Gavelston, Texas, USA
| | - Reetu Singh
- School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London, UK
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | | | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London, UK
| | - Markus A Keller
- Human Genetics Section, Medical University of Innsbruck, Innsbruck, Austria
| | - William B Rizzo
- Division of Inherited Metabolic Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
13
|
Cunha DL, Richardson R, Tracey-White D, Abbouda A, Mitsios A, Horneffer-van der Sluis V, Takis P, Owen N, Skinner J, Welch AA, Moosajee M. REP1 deficiency causes systemic dysfunction of lipid metabolism and oxidative stress in choroideremia. JCI Insight 2021; 6:146934. [PMID: 33755601 PMCID: PMC8262314 DOI: 10.1172/jci.insight.146934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations in CHM, encoding for Rab escort protein 1 (REP1). Loss of functional REP1 leads to the accumulation of unprenylated Rab proteins and defective intracellular protein trafficking, the putative cause for photoreceptor, retinal pigment epithelium (RPE), and choroidal degeneration. CHM is ubiquitously expressed, but adequate prenylation is considered to be achieved, outside the retina, through the isoform REP2. Recently, the possibility of systemic features in CHM has been debated; therefore, in this study, whole metabolomic analysis of plasma samples from 25 CHM patients versus age- and sex-matched controls was performed. Results showed plasma alterations in oxidative stress-related metabolites, coupled with alterations in tryptophan metabolism, leading to significantly raised serotonin levels. Lipid metabolism was disrupted with decreased branched fatty acids and acylcarnitines, suggestive of dysfunctional lipid oxidation, as well as imbalances of several sphingolipids and glycerophospholipids. Targeted lipidomics of the chmru848 zebrafish provided further evidence for dysfunction, with the use of fenofibrate over simvastatin circumventing the prenylation pathway to improve the lipid profile and increase survival. This study provides strong evidence for systemic manifestations of CHM and proposes potentially novel pathomechanisms and targets for therapeutic consideration.
Collapse
Affiliation(s)
- Dulce Lima Cunha
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Rose Richardson
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Dhani Tracey-White
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Alessandro Abbouda
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Andreas Mitsios
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Panteleimon Takis
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Nicholas Owen
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jane Skinner
- Department of Public Health & Primary Care, Norwich Medical School, Norfolk, United Kingdom
| | - Ailsa A. Welch
- Department of Public Health & Primary Care, Norwich Medical School, Norfolk, United Kingdom
| | - Mariya Moosajee
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
14
|
Franzen MH, LeRiger MM, Kugler JA, Pellegrino KP, Rizzo WB. Sjögren-Larsson syndrome: Anesthetic considerations and practical recommendations. Paediatr Anaesth 2020; 30:1390-1395. [PMID: 33037729 PMCID: PMC8916001 DOI: 10.1111/pan.14034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Sjögren-Larsson syndrome is a rare inherited neurocutaneous disorder characterized by congenital ichthyosis, spasticity, intellectual disability, seizures, and ophthalmologic changes. Most individuals with Sjögren-Larsson syndrome live well into adulthood and often require surgical intervention to manage their symptomatology. AIMS The aim of this work was to review the clinical aspects of Sjögren-Larsson syndrome, highlight the unique anesthetic considerations associated with this disease, and provide practical recommendations about anesthetic management. METHODS A retrospective case review from February 2013 to October 2019 was performed based on subject participation in a Sjögren-Larsson syndrome longitudinal study at the University of Nebraska Medical Center. Anesthetic and surgical records were reviewed for the following data: age, sex, relevant comorbid conditions, anesthetic induction and maintenance agents, intravenous and oral analgesics, muscle relaxants, and anesthetic-related complications. RESULTS Fourteen patients with Sjögren-Larsson syndrome undergoing 48 anesthetic events were identified. A variety of anesthetic techniques was utilized. No serious adverse events were encountered. The most common clinical observations were related to the ichthyosis seen in Sjögren-Larsson syndrome, which led to difficulty in adherence of electrocardiogram leads and intravenous catheter dressings. CONCLUSIONS We found that anesthesia can be safely administered in patients with Sjögren-Larsson syndrome. Providers should be aware of anesthetic management issues in Sjögren-Larsson syndrome including challenges placing and securing lines and monitors secondary to the ichthyosis.
Collapse
Affiliation(s)
- Marcellene H. Franzen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA,Division of Pediatric Anesthesiology, Children’s Hospital and Medical Center, Omaha, NE, USA
| | - Michelle M. LeRiger
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA,Division of Pediatric Anesthesiology, Children’s Hospital and Medical Center, Omaha, NE, USA
| | - Jane A. Kugler
- Department of Pediatric Anesthesiology, Boys Town National Research Hospital, Omaha, NE, USA
| | - Kaitlyn P. Pellegrino
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA,Division of Pediatric Anesthesiology, Children’s Hospital and Medical Center, Omaha, NE, USA
| | - William B. Rizzo
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
15
|
Krupenko NI, Sharma J, Pediaditakis P, Helke KL, Hall MS, Du X, Sumner S, Krupenko SA. Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder. Hum Genomics 2020; 14:41. [PMID: 33168096 PMCID: PMC7654619 DOI: 10.1186/s40246-020-00291-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Mitochondrial folate enzyme ALDH1L2 (aldehyde dehydrogenase 1 family member L2) converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2 simultaneously producing NADPH. We have recently reported that the lack of the enzyme due to compound heterozygous mutations was associated with neuro-ichthyotic syndrome in a male patient. Here, we address the role of ALDH1L2 in cellular metabolism and highlight the mechanism by which the enzyme regulates lipid oxidation. Methods We generated Aldh1l2 knockout (KO) mouse model, characterized its phenotype, tissue histology, and levels of reduced folate pools and applied untargeted metabolomics to determine metabolic changes in the liver, pancreas, and plasma caused by the enzyme loss. We have also used NanoString Mouse Inflammation V2 Code Set to analyze inflammatory gene expression and evaluate the role of ALDH1L2 in the regulation of inflammatory pathways. Results Both male and female Aldh1l2 KO mice were viable and did not show an apparent phenotype. However, H&E and Oil Red O staining revealed the accumulation of lipid vesicles localized between the central veins and portal triads in the liver of Aldh1l2-/- male mice indicating abnormal lipid metabolism. The metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from β-oxidation. Specifically, drastically increased plasma acylcarnitine and acylglycine conjugates were indicative of impaired β-oxidation in the liver. Our metabolomics data further showed that mechanistically, the regulation of lipid metabolism by ALDH1L2 is linked to coenzyme A biosynthesis through the following steps. ALDH1L2 enables sufficient NADPH production in mitochondria to maintain high levels of glutathione, which in turn is required to support high levels of cysteine, the coenzyme A precursor. As the final outcome, the deregulation of lipid metabolism due to ALDH1L2 loss led to decreased ATP levels in mitochondria. Conclusions The ALDH1L2 function is important for CoA-dependent pathways including β-oxidation, TCA cycle, and bile acid biosynthesis. The role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous diseases. On a broader scale, our study links folate metabolism to the regulation of lipid homeostasis and the energy balance in the cell. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-020-00291-3.
Collapse
Affiliation(s)
- Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Jaspreet Sharma
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Madeline S Hall
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Xiuxia Du
- Department of Bioinformatics & Genomics, UNC Charlotte, Charlotte, NC, USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA. .,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Liu YD, Lin HJ, Li CY, Sun GF, Hu XB, Ma MY, Sun Y, Feng BZ, Li QB, Kong QX. Compound heterozygous mutations in the ALDH3A2 gene cause Sjögren-Larsson syndrome: a case report. Int J Neurosci 2020; 130:1156-1160. [PMID: 31944864 DOI: 10.1080/00207454.2020.1716750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Sjögren-Larsson syndrome is a rare, autosomal, recessive neurocutaneous disorder caused by mutations in the ALDH3A2 gene, which encodes the fatty aldehyde dehydrogenase enzyme. Deficiency in fatty aldehyde dehydrogenase results in an abnormal accumulation of toxic fatty aldehydes in the brain and skin, which cause spasticity, intellectual disability, ichthyosis, and other clinical manifestations. We present the clinical features and mutation analyses of a case of SLS.Materials and Methods: The family history and clinical data of the patient were collected. Genomic DNA was extracted from peripheral blood samples of the patient and her parents, and next-generation sequencing was performed. The candidate mutation sites that required further validation were then sequenced by Sanger sequencing. Bioinformatics software PSIPRED and RaptorX were used to predict the secondary and tertiary structures of proteins.Results: The patient, a five-year-old girl with complaints of cough for three days and intermittent convulsions for seven hours, was admitted to the hospital. Other clinical manifestations included spastic paraplegia, mental retardation, tooth defects, and ichthyosis. Brain magnetic resonance imaging showed periventricular leukomalacia. Genetic screening revealed compound heterozygous mutations in the ALDH3A2 gene: a frameshift mutation c.779delA (p.K260Rfs*6) and a missense mutation c.1157A > G (p.N386S). Neither of the ALDH3A2 alleles in the compound heterozygote patient were able to generate normal fatty aldehyde dehydrogenase, which were likely responsible for her phenotype of Sjögren-Larsson syndrome.Conclusion: The compound heterozygous mutations found in the ALDH3A2 gene support the diagnosis of Sjögren-Larsson syndrome in the patient and expand the genotype spectrum of the gene.
Collapse
Affiliation(s)
- Yi-Dan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, China.,Institute of Epilepsy, Jining Medical University, Jining, Shandong, 272000, China
| | - Hong-Juan Lin
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, China
| | - Chun-Yan Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, China.,Institute of Epilepsy, Jining Medical University, Jining, Shandong, 272000, China
| | - Guang-Fei Sun
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, China
| | - Xi-Bin Hu
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, China
| | - Meng-Yu Ma
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, China.,Institute of Epilepsy, Jining Medical University, Jining, Shandong, 272000, China
| | - Ying Sun
- North China Medical Feng Feng General Hospital, Handan, Hebei, 056200, China
| | - Bang-Zhe Feng
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiu-Bo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, China.,Institute of Epilepsy, Jining Medical University, Jining, Shandong, 272000, China
| |
Collapse
|
17
|
Staps P, van Gaalen J, van Domburg P, Steijlen PM, Ferdinandusse S, den Heijer T, Seyger MMB, Theelen T, Willemsen MAAP. Sjögren-Larsson syndrome: The mild end of the phenotypic spectrum. JIMD Rep 2020; 53:61-70. [PMID: 32395410 PMCID: PMC7203653 DOI: 10.1002/jmd2.12099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare inborn error of lipid metabolism. The syndrome is caused by mutations in the ALDH3A2 gene, resulting in a deficiency of fatty aldehyde dehydrogenase. Most patients have a clearly recognizable severe phenotype, with congenital ichthyosis, intellectual disability, and spastic diplegia. In this study, we describe two patients with a remarkably mild phenotype. In both patients, males with actual ages of 45 and 61 years, the diagnosis was only established at an adult age. Their skin had been moderately affected from childhood onward, and both men remained ambulant with mild spasticity of their legs. Cognitive development, as reflected by school performance and professional career, had been unremarkable. Magnetic resonance spectroscopy of the first patient was lacking the characteristic lipid peak. We performed a literature search to identify additional SLS patients with a mild phenotype. We compared the clinical, radiologic, and molecular features of the mildly affected patients with the classical phenotype. We found 10 cases in the literature with a molecular proven diagnosis and a mild phenotype. Neither a genotype-phenotype correlation nor an alternative explanation for the strikingly mild phenotypes was found. New biochemical techniques to study the underlying metabolic defect in SLS, like lipidomics, may in the future help to unravel the reasons for the exceptionally mild phenotypes. In the meantime, it is important to recognize these mildly affected patients to provide them with appropriate care and genetic counseling, and to increase our insights in the true disease spectrum of SLS.
Collapse
Affiliation(s)
- Pippa Staps
- Department of Pediatric NeurologyRadboud University Medical Center, Amalia Children's Hospital, Donders Institute for Brain Cognition and BehaviourNijmegenThe Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Peter M. Steijlen
- Department of Dermatology, The GROW School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Tom den Heijer
- Department of NeurologyFranciscus Gasthuis and VlietlandRotterdamThe Netherlands
| | - Marieke M. B. Seyger
- Department of DermatologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Thomas Theelen
- Department of Ophthalmology, Donders Institute for Brain Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Michèl A. A. P. Willemsen
- Department of Pediatric NeurologyRadboud University Medical Center, Amalia Children's Hospital, Donders Institute for Brain Cognition and BehaviourNijmegenThe Netherlands
| |
Collapse
|
18
|
Bindu PS. Sjogren-Larsson Syndrome: Mechanisms and Management. APPLICATION OF CLINICAL GENETICS 2020; 13:13-24. [PMID: 32021380 PMCID: PMC6954685 DOI: 10.2147/tacg.s193969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022]
Abstract
Sjogren Larsson syndrome (SLS) is a rare autosomal recessive inborn error of lipid metabolism due to mutations in the ALDH3A2 that result in a deficiency of fatty aldehyde dehydrogenase (FALDH). The syndrome has a high prevalence in Sweden where it was first described, but now known to occur worldwide. The classical triad of ichthyosis, mental retardation and spasticity characterizes clinical features. Preterm birth is common. “Glistening white dots” in the retina is a pathognomic clinical feature. Magnetic resonance imaging of the brain demonstrates leukoencephalopathy predominant in the periventricular region. Cerebral MR spectroscopy reveals a characteristic abnormal lipid peak at 1.3ppm and a small peak at 0.9ppm. The primary role of FALDH is oxidation of medium and long-chain aliphatic aldehydes derived from fatty alcohol, phytanic acid, ether glycerolipids and sphingolipids. The diagnosis is based on the typical phenotype, demonstration of the enzyme deficiency and presence of biallelic mutations in the ALDH3A2. The management of SLS largely remains symptomatic currently. However, several potential therapeutic options are being developed, keeping in view of the fundamental metabolic defects or correcting the genetic defect. This review aims to summarize the clinical, genetic and biochemical findings, pathogenetic mechanisms and the current therapeutic options, in SLS.
Collapse
Affiliation(s)
- Parayil Sankaran Bindu
- TY Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
19
|
Chen W, Fan H, Liang R, Zhang R, Zhang J, Zhu J. Taraxacum officinale extract ameliorates dextran sodium sulphate-induced colitis by regulating fatty acid degradation and microbial dysbiosis. J Cell Mol Med 2019; 23:8161-8172. [PMID: 31565850 PMCID: PMC6850927 DOI: 10.1111/jcmm.14686] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Numerous data show that taraxacum officinale extract (TOE) exerts protective effects on inflammatory diseases. However, the underlying mechanisms by which TOE affects dextran sulphate sodium (DSS)-induced colitis remain unclear. After DSS-induced colitis were treated with different concentrations of TOE for 8 days, the bodyweight, disease activity index (DAI), colon lengths and pathological scoring were assessed, and histopathological examination was confirmed by HE staining. Furthermore, a transcriptome sequencing was performed by using the colon tissues between TOE and DSS groups, and the differentially expressed genes were conducted for the Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) and were validated by qRT-PCR and immunohistochemistry analysis. In addition, a 16S rDNA sequencing was carried out to distinguish the differential gut microbiota by using the mouse faecal samples between TOE and DSS groups. We found that TOE attenuated the clinical symptoms, lowered the inflammatory scoring and inhibited the secretion of proinflammatory factors TNF-α, IL-1β and IL-6 in DSS-induced colitis. KEGG and GSEA analysis demonstrated that fatty acid degradation and cytokine-receptor signalling were predominantly enriched in TOE-treated colitis as compared with the DSS group. Further investigations revealed that TOE increased the expression levels of Adh5, Aldh3a2 and Acox3, but decreased those of CCL20, CCR6 and CXCL1/5 in DSS-induced colitis, where TOE also induced the enrichment of S24-7 and adlercreutzia, but decreased the amount of anaerostipes, enterococcus, enterobacteriaceae and peptostreptococcaceae. In conclusion, TOE ameliorated DSS-induced colitis by regulating fatty acid degradation and microbial dysbiosis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huining Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Liang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinshui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
20
|
Fouzdar-Jain S, Suh DW, Rizzo WB. Sjögren-Larsson syndrome: a complex metabolic disease with a distinctive ocular phenotype. Ophthalmic Genet 2019; 40:298-308. [DOI: 10.1080/13816810.2019.1660379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samiksha Fouzdar-Jain
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Children’s Hospital & Medical Center, Omaha, NE, USA
- Department of Ophthalmology and Visual Science, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Donny W Suh
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Children’s Hospital & Medical Center, Omaha, NE, USA
- Department of Ophthalmology and Visual Science, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - William B Rizzo
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
21
|
Sarret C, Ashkavand Z, Paules E, Dorboz I, Pediaditakis P, Sumner S, Eymard-Pierre E, Francannet C, Krupenko NI, Boespflug-Tanguy O, Krupenko SA. Deleterious mutations in ALDH1L2 suggest a novel cause for neuro-ichthyotic syndrome. NPJ Genom Med 2019; 4:17. [PMID: 31341639 PMCID: PMC6650503 DOI: 10.1038/s41525-019-0092-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
Neuro-ichthyotic syndromes are a group of rare genetic diseases mainly associated with perturbations in lipid metabolism, intracellular vesicle trafficking, or glycoprotein synthesis. Here, we report a patient with a neuro-ichthyotic syndrome associated with deleterious mutations in the ALDH1L2 (aldehyde dehydrogenase 1 family member L2) gene encoding for mitochondrial 10-formyltetrahydrofolate dehydrogenase. Using fibroblast culture established from the ALDH1L2-deficient patient, we demonstrated that the enzyme loss impaired mitochondrial function affecting both mitochondrial morphology and the pool of metabolites relevant to β-oxidation of fatty acids. Cells lacking the enzyme had distorted mitochondria, accumulated acylcarnitine derivatives and Krebs cycle intermediates, and had lower ATP and increased ADP/AMP indicative of a low energy index. Re-expression of functional ALDH1L2 enzyme in deficient cells restored the mitochondrial morphology and the metabolic profile of fibroblasts from healthy individuals. Our study underscores the role of ALDH1L2 in the maintenance of mitochondrial integrity and energy balance of the cell, and suggests the loss of the enzyme as the cause of neuro-cutaneous disease.
Collapse
Affiliation(s)
- Catherine Sarret
- IGCNC, Institut Pascal, UMR CNRS-UCA-SIGMA, Aubière, France
- Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Zahra Ashkavand
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
| | - Evan Paules
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Imen Dorboz
- INSERM UMR1141, DHU PROTECT, PARIS-DIDEROT, University Sorbonne Paris-Cite, Paris, France
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Eléonore Eymard-Pierre
- Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Christine Francannet
- Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Natalia I. Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Odile Boespflug-Tanguy
- INSERM UMR1141, DHU PROTECT, PARIS-DIDEROT, University Sorbonne Paris-Cite, Paris, France
- Department of Child Neurology and Metabolic Disorders, LEUKOFRANCE, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sergey A. Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
22
|
Abdel-Hamid MS, Issa MY, Elbendary HM, Abdel-Ghafar SF, Rafaat K, Hosny H, Girgis M, Abdel-Salam GMH, Zaki MS. Phenotypic and mutational spectrum of thirty-five patients with Sjögren–Larsson syndrome: identification of eleven novel ALDH3A2 mutations and founder effects. J Hum Genet 2019; 64:859-865. [DOI: 10.1038/s10038-019-0637-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/21/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023]
|
23
|
Weustenfeld M, Eidelpes R, Schmuth M, Rizzo WB, Zschocke J, Keller MA. Genotype and phenotype variability in Sjögren-Larsson syndrome. Hum Mutat 2018; 40:177-186. [PMID: 30372562 PMCID: PMC6587760 DOI: 10.1002/humu.23679] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022]
Abstract
The Sjögren-Larsson syndrome (SLS) is a rare autosomal recessive disorder caused by pathogenic variants in the ALDH3A2 gene, which codes for fatty aldehyde dehydrogenase (FALDH). FALDH prevents the accumulation of toxic fatty aldehydes by converting them into fatty acids. Pathogenic ALDH3A2 variants cause symptoms such as ichthyosis, spasticity, intellectual disability, and a wide range of less common clinical features. Interpreting patient-to-patient variability is often complicated by inconsistent reporting and negatively impacts on establishing robust criteria to measure the success of SLS treatments. Thus, with this study, patient-centered literature data was merged into a concise genotype-based, open-access database (www.LOVD.nl/ALDH3A2). One hundred and seventy eight individuals with 90 unique SLS-causing variants were included with phenotypic data being available for more than 90%. While the three lead symptoms did occur in almost all cases, more heterogeneity was observed for other frequent clinical manifestations of SLS. However, a stringent genotype-phenotype correlation analysis was hampered by the considerable variability in reporting phenotypic features. Consequently, we compiled a set of recommendations of how to generate comprehensive SLS patient descriptions in the future. This will be of benefit on multiple levels, for example, in clinical diagnosis, basic research, and the development of novel treatment options for SLS.
Collapse
Affiliation(s)
| | - Reiner Eidelpes
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - William B Rizzo
- Department of Pediatrics, UNMC Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Johannes Zschocke
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|