1
|
Thompson MD, Chidiac P, Jose PA, Hauser AS, Gorvin CM. Genetic variants of accessory proteins and G proteins in human genetic disease. Crit Rev Clin Lab Sci 2025:1-22. [PMID: 39743506 DOI: 10.1080/10408363.2024.2431853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins. Pathogenic variants of the genes encoding G protein α and β subunits are examined in diverse phenotypes. Variants in the genes encoding accessory proteins that modify or organize G protein coupling have been associated with disease; these include the contribution of variants of the regulator of G protein signaling (RGS) to hypertension; the role of variants of activator of G protein signaling type III in phenotypes such as hypoxia; the contribution of variation at the RGS10 gene to short stature and immunological compromise; and the involvement of variants of G protein-coupled receptor kinases (GRKs), such as GRK4, in hypertension. Variation in genes that encode proteins involved in GPCR signaling are outlined in the context of the changes in structure and function that may be associated with human phenotypes.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Margo TE, Chen FS, Chen YJ, Chen CK. Grk1 Missense Mutations in Type II Oguchi Disease: A Literature Review. ANNALS OF BIOMEDICAL RESEARCH 2024; 5:1-7. [PMID: 39906762 PMCID: PMC11793915 DOI: 10.61545/abr-5-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Oguchi disease is a rare form of congenital stationary night blindness resulting from arrestin-1 (SAG) or rhodopsin kinase (GRK1) loss-of-function mutations. Unlike other congenital nyctalopias, patients with Oguchi disease can reach the dark-adapted state, albeit only after several hours of sustained darkness exposure. The mechanism underlying rhodopsin kinase dysfunction in Oguchi disease remains understudied. Previous research utilized the Grk1 knockout mice to reveal its role in phototransduction, the process that transduces light into neuronal signals in rod and cone photoreceptors. By studying Grk1 missense mutations via a knock-in approach, a more complete picture of the Oguchi disease mechanism involving GRK1 may be readily harvested. We summarize here the current knowledge on the Type II Oguchi disease with Grk1 missense mutations by focusing on the interaction of GRK1 with other proteins, and how these interactions influence dark adaptation. We call for more detailed analyses of GRK1 missense mutations in animal models, particularly V380D and L157P, to reveal novel disease mechanisms to gain further insight onto GRK1's action and function.
Collapse
Affiliation(s)
- Theodore Edward Margo
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Frank Sungping Chen
- Division of Otolaryngology, PeaceHealth Medical Group, Eugene, Oregan, OR 97401, USA
| | - Yu-Jiun Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ching-Kang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Ophthalmology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Li X, Jiang Z, Su Y, Wang K, Jiang X, Sun K, Yang Y, Zhou Y, Zhu X, Zhang L. Deletion of Emc1 in photoreceptor cells causes retinal degeneration in mice. FEBS J 2023; 290:4356-4370. [PMID: 37098815 DOI: 10.1111/febs.16807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/27/2023]
Abstract
The endoplasmic reticulum membrane protein complex (EMC) plays a critical role in the synthesis of multipass membrane proteins. Genetic studies indicated that mutations in EMC1 gene were associated with retinal degeneration diseases; however, the role of EMC1 in photoreceptor has not been confirmed. Here, we show that Emc1 ablation in the photoreceptor cells of mice recapitulated the retinitis pigmentosa phenotypes, including an attenuated scotopic electroretinogram response and the progressive degeneration of rod cells and cone cells. Histopathological examination of tissues from rod-specific Emc1 knockout mice revealed mislocalized rhodopsin and irregularly arranged cone cells at the age of 2 months. Further immunoblotting analysis revealed decreased levels of membrane proteins and endoplasmic reticulum chaperones in 1-month-old rod-specific Emc1 knockout mice retinae, and this led us to speculate that the loss of membrane proteins is the main cause of the degeneration of photoreceptors. EMC1 most likely regulated the membrane protein levels at an earlier step in the biosynthetic process before the proteins translocated into the endoplasmic reticulum. The present study demonstrates the essential roles of Emc1 in photoreceptor cells, and reveals the mechanism through which EMC1 mutations are linked to retinitis pigmentosa.
Collapse
Affiliation(s)
- Xiao Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujing Su
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaifang Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
4
|
Aziz N, Ullah M, Rashid A, Hussain Z, Shah K, Awan A, Khan M, Ullah I, Rehman AU. A novel homozygous missense substitution p.Thr313Ile in the PDE6B gene underlies autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family. BMC Ophthalmol 2023; 23:116. [PMID: 36959549 PMCID: PMC10035148 DOI: 10.1186/s12886-023-02845-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is one of the most frequent hereditary retinal diseases that often starts with night blindness and eventually leads to legal blindness. Our study aimed to identify the underlying genetic cause of autosomal recessive retinitis pigmentosa (arRP) in a consanguineous Pakistani family. METHODS Following a detailed ophthalmological examination of the patients by an ophthalmologist, whole-exome sequencing was performed on the proband's DNA to delineate the genetic cause of RP in the family. In-depth computational methods, in-silico analysis, and familial co-segregation study were performed for variant detection and validation. RESULTS We studied an inbred Pakistani family with two siblings affected by retinitis pigmentosa. The proband, a 32 years old female, was clinically diagnosed with RP at the age of 6 years. A classical night blindness symptom was reported in the proband since her early childhood. OCT report showed a major reduction in the outer nuclear layer and the ellipsoid zone width, leading to the progression of the disease. Exome sequencing revealed a novel homozygous missense mutation (c.938C > T;p.Thr313Ile) in exon 12 of the PDE6B gene. The mutation p.Thr313Ile co-segregated with RP phenotype in the family. The altered residue (p.Thr313) was super conserved evolutionarily across different vertebrate species, and all available in silico tools classified the mutation as highly pathogenic. CONCLUSION We present a novel homozygous pathogenic mutation in the PDE6B gene as the underlying cause of arRP in a consanguineous Pakistani family. Our findings highlight the importance of missense mutations in the PDE6B gene and expand the known mutational repertoire of PDE6B-related RP.
Collapse
Affiliation(s)
- Nobia Aziz
- Department of Biotechnology and Genetic Engineering, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Mukhtar Ullah
- Institute of Molecular and Clinical Ophthalmology Basel, University of Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Abdur Rashid
- Department of Higher Education Archives and Libraries Peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Zubair Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Khadim Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Azeem Awan
- LRBT Secondary Eye Hospital, Reerah Galla, Balakot Road, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan.
| |
Collapse
|
5
|
Wei X, Li H, Wu S, Zhu T, Sui R. Genetic analysis and clinical features of three Chinese patients with Oguchi disease. Doc Ophthalmol 2023; 146:17-32. [PMID: 36417138 DOI: 10.1007/s10633-022-09910-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Oguchi disease is a rare autosomal recessive form of congenital stationary night blindness caused by disease-causing variants in the rhodopsin kinase gene (GRK1) or the arrestin gene (SAG). Our study aims to describe the clinical features and identify the genetic defects for three Chinese patients with Oguchi disease. METHODS We conducted detailed ophthalmologic examinations for three patients from three unrelated non-consanguineous Chinese families. Targeted next-generation sequencing (targeted NGS) and copy number variations (CNVs) analysis were applied to screen pathogenic variants. Sanger sequencing validation, quantitative real-time PCR (qPCR), and segregation analysis were further performed for confirmation. Subsequently, a combined genetic and structural biology approach was used to infer the likely functional consequences of novel variants. RESULTS All three patients presented with typical clinical features of Oguchi disease, including night blindness, characteristic fundus appearance (Mizuo-Nakamura phenomenon), attenuated rod responses, and negative ERG waveforms. Their visual acuity and visual field were normal. Genetic analysis revealed two pathogenic variants in SAG and four pathogenic variants in GRK1. Patient 1 was identified to harbor compound heterozygous SAG variants c.874C > T (p.R292*) and exon2 deletion. Compound heterozygous GRK1 variants c.55C > T (p.R19*) and c.1412delC (p.P471Lfs*52) were found in patient 2. In patient 3, compound heterozygous GRK1 variants c.946C > A (p.R316S) and c.1388 T > C (p. L463P) were detected. CONCLUSIONS We reported the first two Chinese Oguchi patients with novel GRK1 pathogenic variants (P471Lfs*52, R316S, L463P) and one Oguchi case with SAG, indicating both GRK1 and SAG are important causative genes in Chinese Oguchi patients.
Collapse
Affiliation(s)
- Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Shijing Wu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
6
|
Tawfik CA, Elbagoury NM, Khater NI, Essawi ML. Mutation analysis reveals novel and known mutations in SAG gene in first two Egyptian families with Oguchi disease. BMC Ophthalmol 2022; 22:217. [PMID: 35549688 PMCID: PMC9103117 DOI: 10.1186/s12886-022-02444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Oguchi disease is a rare type of congenital stationary night blindness associated with an abnormal fundus appearance. It is inherited in an autosomal recessive manner where two types exist according to the gene affected; type 1 associated with S-antigen (SAG) gene mutations and type 2 associated with rhodopsin kinase (GRK1) gene mutations. Purpose The aim of this work was to describe the clinical and genetic findings of the first two reported families of Oguchi disease in Egypt and African region. Methods Four members of two consanguineous Egyptian families with history of night blindness since childhood underwent complete ophthalmological examination, standard automated static perimetry, fundus color photography, fundus autofluorescence (FAF), fundus fluorescein angiography (FFA) in light-adapted state and spectral-domain optical coherence tomography (SD-OCT) of both the macula and the optic nerve head as well as central corneal thickness with repeated fundus photography following prolonged dark adaptation. Mutation screening of 7 coding exons of GRK1 gene and 15 coding exons of SAG gene as well as some flanking regions were performed using Sanger sequencing technique. The variants were tested for pathogenicity using different in silico functional analysis tools. Results The clinical examination and investigations confirmed Oguchi disease phenotype. One patient showed p.R193* (c.577C > T) which is a previously reported SAG gene mutation in a homozygous form. The other three patients from a different family showed (c.649–1 G > C), a novel canonical splice site SAG gene mutation in a homozygous form. Conclusion The identification of the novel canonical splice site SAG gene variant in three members of the same family with clinically confirmed Oguchi disease reinforces its pathogenicity. A fourth patient from another family carried a previously reported mutation in the same gene. SAG gene variants may be the underlying genetic cause for Oguchi disease in Egypt. Our findings have expanded the spectrum of Oguchi disease-associated mutations in SAG gene and may serve as a basis for genetic diagnosis for Oguchi disease.
Collapse
Affiliation(s)
- Caroline Atef Tawfik
- Department of Ophthalmology, Ain Shams University, 38 Abbasseya, Nour Mosque, El-Mohamady, Al Waili, Cairo, 11566, Egypt.
| | - Nagham Maher Elbagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Noha Ibrahim Khater
- Department of Ophthalmology, Cairo University, Giza, Egypt.,Al Mouneer Diabetic Eye Center, Dokki, Giza, Egypt
| | - Mona Lotfi Essawi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Jiang X, Mahroo OA. Negative electroretinograms: genetic and acquired causes, diagnostic approaches and physiological insights. Eye (Lond) 2021; 35:2419-2437. [PMID: 34127841 PMCID: PMC8377097 DOI: 10.1038/s41433-021-01604-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
The dark-adapted human electroretinogram (ERG) response to a standard bright flash includes a negative-going a-wave followed by a positive-going b-wave that crosses the baseline. An electronegative waveform (or negative ERG) results when the b-wave is selectively reduced such that the ERG fails to cross the baseline following the a-wave. In the context of a normally sized a-wave, it indicates a site of retinal dysfunction occurring after phototransduction (commonly at the photoreceptor to bipolar cell synapse). This is an important finding. In genetic disease, the pattern of ERG abnormality can point to variants in a small group of genes (frequently those associated with congenital stationary night blindness and X-linked retinoschisis, but negative ERGs can also be seen in other conditions including syndromic disease). In acquired disease, there are numerous causes, but specific features may point to melanoma-associated retinopathy (MAR). In some cases, the visual symptoms precede the diagnosis of the melanoma and so the ERG findings can initiate investigations facilitating early detection and treatment. Negative ERGs can occur in other paraneoplastic conditions, and in a range of other diseases. This review will outline the physiological basis for the negative ERG, report prevalences in the literature from different cohorts, discuss the range of causes, displaying examples of a number of ERG phenotypes, highlight features of a clinical approach to patients, and briefly discuss further insights relating to current flows shaping the a-wave trough and from single-cell transcriptome analysis.
Collapse
Affiliation(s)
- Xiaofan Jiang
- grid.83440.3b0000000121901201Institute of Ophthalmology, University College London, London, UK ,grid.439257.e0000 0000 8726 5837Retinal and Genetics Services, Moorfields Eye Hospital, London, UK ,grid.425213.3Section of Ophthalmology and Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital Campus, London, UK
| | - Omar A. Mahroo
- grid.83440.3b0000000121901201Institute of Ophthalmology, University College London, London, UK ,grid.439257.e0000 0000 8726 5837Retinal and Genetics Services, Moorfields Eye Hospital, London, UK ,grid.425213.3Section of Ophthalmology and Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital Campus, London, UK ,grid.5335.00000000121885934Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Poulter JA, Gravett MSC, Taylor RL, Fujinami K, De Zaeytijd J, Bellingham J, Rehman AU, Hayashi T, Kondo M, Rehman A, Ansar M, Donnelly D, Toomes C, Ali M, De Baere E, Leroy BP, Davies NP, Henderson RH, Webster AR, Rivolta C, Zeitz C, Mahroo OA, Arno G, Black GCM, McKibbin M, Harris SA, Khan KN, Inglehearn CF. New variants and in silico analyses in GRK1 associated Oguchi disease. Hum Mutat 2021; 42:164-176. [PMID: 33252155 PMCID: PMC7898643 DOI: 10.1002/humu.24140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
Abstract
Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.
Collapse
Affiliation(s)
- James A. Poulter
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | - Rachel L. Taylor
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
| | - Kaoru Fujinami
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
- Keio University School of MedicineTokyoJapan
| | | | | | - Atta Ur Rehman
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV)University of LausanneLausanneSwitzerland
| | | | - Mineo Kondo
- Mie University Graduate School of MedicineMieJapan
| | - Abdur Rehman
- Department of Genetics, Faculty of ScienceHazara University MansehraDhodialPakistan
| | - Muhammad Ansar
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
| | - Dan Donnelly
- School of Biomedical Sciences, University of LeedsLeedsUK
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | | | - Bart P. Leroy
- Ghent UniversityGhentBelgium
- Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | | | | | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Carlo Rivolta
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
- Department of OphthalmologyUniversity Hospital BaselBaselSwitzerland
| | - Christina Zeitz
- Sorbonne UniversitéINSERM, CNRS, Institut de la VisionParisFrance
| | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Gavin Arno
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Graeme C. M. Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Leeds Teaching Hospitals NHS Trust, St James’ University HospitalLeedsUK
| | | | - Kamron N. Khan
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| |
Collapse
|