1
|
Kosushkin SA, Ustyantsev IG, Borodulina OR, Vassetzky NS, Kramerov DA. Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure. BIOLOGY 2022; 11:biology11101403. [PMID: 36290307 PMCID: PMC9599045 DOI: 10.3390/biology11101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The genomes of higher organisms including humans are invaded by millions of repetitive elements (transposons), which can sometimes be deleterious or beneficial for hosts. Many aspects of the mechanisms underlying the expansion of transposons in the genomes remain unclear. Short retrotransposons (SINEs) are one of the most abundant classes of genomic repeats. Their amplification relies on two major processes: transcription and reverse transcription. Here, short retrotransposons of dogs and other canids called Can SINE were analyzed. Their amplification was extraordinarily active in the wolf and, particularly, dog breeds relative to other canids. We also studied a variation of their transcription mechanism involving the polyadenylation of transcripts. An analysis of specific signals involved in this process allowed us to conclude that Can SINEs could alternate amplification with and without polyadenylation in their evolution. Understanding the mechanisms of transposon replication can shed light on the mechanisms of genome function. Abstract SINEs, non-autonomous short retrotransposons, are widespread in mammalian genomes. Their transcripts are generated by RNA polymerase III (pol III). Transcripts of certain SINEs can be polyadenylated, which requires polyadenylation and pol III termination signals in their sequences. Our sequence analysis divided Can SINEs in canids into four subfamilies, older a1 and a2 and younger b1 and b2. Can_b2 and to a lesser extent Can_b1 remained retrotranspositionally active, while the amplification of Can_a1 and Can_a2 ceased long ago. An extraordinarily high Can amplification was revealed in different dog breeds. Functional polyadenylation signals were analyzed in Can subfamilies, particularly in fractions of recently amplified, i.e., active copies. The transcription of various Can constructs transfected into HeLa cells proposed AATAAA and (TC)n as functional polyadenylation signals. Our analysis indicates that older Can subfamilies (a1, a2, and b1) with an active transcription terminator were amplified by the T+ mechanism (with polyadenylation of pol III transcripts). In the currently active Can_b2 subfamily, the amplification mechanisms with (T+) and without the polyadenylation of pol III transcripts (T−) irregularly alternate. The active transcription terminator tends to shorten, which renders it nonfunctional and favors a switch to the T− retrotransposition. The activity of a truncated terminator is occasionally restored by its elongation, which rehabilitates the T+ retrotransposition for a particular SINE copy.
Collapse
|
2
|
Gregory LC, Dattani MT. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J Clin Endocrinol Metab 2020; 105:5614788. [PMID: 31702014 DOI: 10.1210/clinem/dgz184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Congenital hypopituitarism (CH) is characterized by the presence of deficiencies in one or more of the 6 anterior pituitary (AP) hormones secreted from the 5 different specialized cell types of the AP. During human embryogenesis, hypothalamo-pituitary (HP) development is controlled by a complex spatio-temporal genetic cascade of transcription factors and signaling molecules within the hypothalamus and Rathke's pouch, the primordium of the AP. EVIDENCE ACQUISITION This mini-review discusses the genes and pathways involved in HP development and how mutations of these give rise to CH. This may present in the neonatal period or later on in childhood and may be associated with craniofacial midline structural abnormalities such as cleft lip/palate, visual impairment due to eye abnormalities such as optic nerve hypoplasia (ONH) and microphthalmia or anophthalmia, or midline forebrain neuroradiological defects including agenesis of the septum pellucidum or corpus callosum or the more severe holoprosencephaly. EVIDENCE SYNTHESIS Mutations give rise to an array of highly variable disorders ranging in severity. There are many known causative genes in HP developmental pathways that are routinely screened in CH patients; however, over the last 5 years this list has rapidly increased due to the identification of variants in new genes and pathways of interest by next-generation sequencing. CONCLUSION The majority of patients with these disorders do not have an identified molecular basis, often making management challenging. This mini-review aims to guide clinicians in making a genetic diagnosis based on patient phenotype, which in turn may impact on clinical management.
Collapse
Affiliation(s)
- Louise Cheryl Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
3
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
4
|
Brachet C, Kozhemyakina EA, Boros E, Heinrichs C, Balikova I, Soblet J, Smits G, Vilain C, Mathers PH. Truncating RAX Mutations: Anophthalmia, Hypopituitarism, Diabetes Insipidus, and Cleft Palate in Mice and Men. J Clin Endocrinol Metab 2019; 104:2925-2930. [PMID: 30811539 PMCID: PMC6543774 DOI: 10.1210/jc.2018-02316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT The transcription factor RAX is a paired-type homeoprotein that plays a critical role in eye and forebrain development of vertebrate species. RAX knockout mice have anophthalmia, cleft palate, and an abnormal hypothalamus and display perinatal lethality. In humans, homozygous or compound heterozygous RAX mutations have been reported to cause bilateral microphthalmia or anophthalmia without consistent associated features. Congenital hypopituitarism can be associated with various eye or craniofacial anomalies; however, the co-occurrence of congenital hypopituitarism, anophthalmia, cleft palate, and diabetes insipidus has been very rare. RESULTS We report the case of a child with anophthalmia, congenital hypopituitarism, diabetes insipidus, and bilateral cleft lip and palate who had a homozygous frameshift truncating mutation c.266delC (p.Pro89Argfs*114) in exon 1 of the RAX gene. Rax knockout mice show loss of ventral forebrain structures, pituitary, and basosphenoid bone and palate and a misplaced anterior pituitary gland along the roof of the oral cavity. CONCLUSIONS Our patient's phenotype was more severe than that reported in other patients. Although most of the previously reported patients with RAX mutations showed either a missense or some less severe mutation in at least one of their RAX alleles, our patient was homozygous for truncating mutations that would yield a severe, null protein phenotype. The severity of the genetic defect, the precise match between the knockout mouse and the patient's endocrine phenotypes, and the prominent roles of RAX in eye and pituitary development and diencephalic patterning suggest that the RAX null mutations could fully account for the observed phenotype.
Collapse
Affiliation(s)
- Cécile Brachet
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Elena A Kozhemyakina
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Emese Boros
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Claudine Heinrichs
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Irina Balikova
- Pediatric Ophthalmology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Peter H Mathers
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
5
|
Gregory LC, Dattani MT. Embryologic and Genetic Disorders of the Pituitary Gland. CONTEMPORARY ENDOCRINOLOGY 2019:3-27. [DOI: 10.1007/978-3-030-11339-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Blum WF, Klammt J, Amselem S, Pfäffle HM, Legendre M, Sobrier ML, Luton MP, Child CJ, Jones C, Zimmermann AG, Quigley CA, Cutler GB, Deal CL, Lebl J, Rosenfeld RG, Parks JS, Pfäffle RW. Screening a large pediatric cohort with GH deficiency for mutations in genes regulating pituitary development and GH secretion: Frequencies, phenotypes and growth outcomes. EBioMedicine 2018; 36:390-400. [PMID: 30266296 PMCID: PMC6197701 DOI: 10.1016/j.ebiom.2018.09.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Werner F Blum
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany; Center of Child and Adolescent Medicine, Justus Liebig University, Feulgenstrasse 12, 35392 Giessen, Germany.
| | - Jürgen Klammt
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany
| | - Serge Amselem
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Heike M Pfäffle
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany
| | - Marie Legendre
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Marie-Laure Sobrier
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Marie-Pierre Luton
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | | | - Christine Jones
- Eli Lilly and Company, Werner-Reimers-Strasse 2-4, 61352 Bad Homburg, Germany
| | | | | | | | - Cheri L Deal
- University of Montreal and CHU Ste-Justine, Montreal, Canada
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, University Hospital Motol, V Uvalu 84, 150 06 Prague, 5, Czech Republic
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, USA
| | - John S Parks
- Division of Pediatric Endocrinology and Diabetes, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA 30322, USA
| | - Roland W Pfäffle
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Guo QH, Wang CZ, Wu ZQ, Qin Y, Han BY, Wang AP, Wang BA, Dou JT, Wu XS, Mu YM. Multi-genic pattern found in rare type of hypopituitarism: a whole-exome sequencing study of Han Chinese with pituitary stalk interruption syndrome. J Cell Mol Med 2017; 21:3626-3632. [PMID: 28707430 PMCID: PMC5706574 DOI: 10.1111/jcmm.13272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare type of hypopituitarism manifesting various degrees of pituitary hormone deficiency. Although mutations have been identified in some familial cases, the underpinning mechanisms of sporadic patients with PSIS who are in a vast majority remain elusive, necessitating a comprehensive study using systemic approaches. We postulate that other genetic mechanisms may be responsible for the sporadic PSIS. To test this hypothesis, we conducted a study in 24 patients with PSIS of Han Chinese with no family history using whole‐exome sequencing (WES) and bioinformatic analysis. We identified a group of heterozygous mutations in 92% (22 of 24) of the patients, and these genes are mostly associated with Notch, Shh, Wnt signalling pathways. Importantly, 83% (20 of 24) of the patients had more than one mutation in those pathways suggesting synergy of compound mutations underpin the pathogenesis of sporadic PSIS.
Collapse
Affiliation(s)
- Qing-Hua Guo
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan, China
| | - Cheng-Zhi Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Qiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yan Qin
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui City, Henan, China
| | - Bai-Yu Han
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology and Metabolism, The 264 Hospital of PLA, Taiyuan, Shanxi, China
| | - An-Ping Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Bao-An Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Jing-Tao Dou
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Sheng Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Yi-Ming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
9
|
Avbelj Stefanija M, Kotnik P, Bratanič N, Žerjav Tanšek M, Bertok S, Bratina N, Battelino T, Trebušak Podkrajšek K. Novel Mutations in HESX1 and PROP1 Genes in Combined Pituitary Hormone Deficiency. Horm Res Paediatr 2016; 84:153-8. [PMID: 26111865 DOI: 10.1159/000433468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The HESX1 gene is essential in forebrain development and pituitary organogenesis, and its mutations are the most commonly identified genetic cause of septo-optic dysplasia (SOD). The PROP1 gene is involved in anterior pituitary cell lineage specification and is commonly implicated in non-syndromic combined pituitary hormone deficiency (CPHD). We aimed to assess the involvement of HESX1 and PROP1 mutations in a cohort of patients with SOD and CPHD. METHODS Six patients with sporadic SOD and 16 patients with CPHD from 14 pedigrees were screened for mutations in HESX1 and PROP1 genes by exon sequencing. Half of the CPHD patients had variable associated clinical characteristics, such as hearing loss, orofacial cleft, kidney disorder or developmental delay. Novel variants were evaluated in silico and verified in SNP databases. RESULTS A novel heterozygous p.Glu102Gly mutation in the HESX1 gene and a novel homozygous p.Arg121Thr mutation in the PROP1 gene were detected in 2 pedigrees with CPHD. A small previously reported deletion in PROP1 c.301_302delAG was detected in a separate patient with CPHD, in heterozygous state. No mutations were identified in patients with SOD. CONCLUSIONS Our results expand the spectrum of mutations implicated in CPHD. The frequency of 15% of the PROP1 mutations in CPHD was low, likely due to the clinical heterogeneity of the cohort.
Collapse
Affiliation(s)
- Magdalena Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016; 7:9. [PMID: 27158268 PMCID: PMC4859970 DOI: 10.1186/s13100-016-0065-9] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans.
Collapse
Affiliation(s)
- Dustin C. Hancks
- />Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Haig H. Kazazian
- />McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
11
|
Castinetti F, Reynaud R, Quentien MH, Jullien N, Marquant E, Rochette C, Herman JP, Saveanu A, Barlier A, Enjalbert A, Brue T. Combined pituitary hormone deficiency: current and future status. J Endocrinol Invest 2015; 38:1-12. [PMID: 25200994 DOI: 10.1007/s40618-014-0141-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/17/2014] [Indexed: 12/20/2022]
Abstract
Over the last two decades, the understanding of the mechanisms involved in pituitary ontogenesis has largely increased. Since the first description of POU1F1 human mutations responsible for a well-defined phenotype without extra-pituitary malformation, several other genetic defects of transcription factors have been reported with variable degrees of phenotype-genotype correlations. However, to date, despite the identification of an increased number of genetic causes of isolated or multiple pituitary deficiencies, the etiology of most (80-90 %) congenital cases of hypopituitarism remains unsolved. Identifying new etiologies is of importance as a post-natal diagnosis to better diagnose and treat the patients (delayed pituitary deficiencies, differential diagnosis of a pituitary mass on MRI, etc.), and as a prenatal diagnosis to decrease the risk of early death (undiagnosed corticotroph deficiency for instance). The aim of this review is to summarize the main etiologies and phenotypes of combined pituitary hormone deficiencies, associated or not with extra-pituitary anomalies, and to suggest how the identification of such etiologies could be improved in the near future.
Collapse
Affiliation(s)
- F Castinetti
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France.
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France.
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France.
| | - R Reynaud
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Enfants, Service de Pédiatrie multidisciplinaire, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - M-H Quentien
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - N Jullien
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
| | - E Marquant
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Enfants, Service de Pédiatrie multidisciplinaire, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - C Rochette
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - J-P Herman
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
| | - A Saveanu
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- APHM, Hôpital de la Conception, Laboratoire de Biologie Moléculaire, 13005, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - A Barlier
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- APHM, Hôpital de la Conception, Laboratoire de Biologie Moléculaire, 13005, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - A Enjalbert
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital de la Conception, Laboratoire de Biologie Moléculaire, 13005, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - T Brue
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| |
Collapse
|
12
|
Newbern K, Natrajan N, Kim HG, Chorich L.P, Halvorson L, Cameron RS, Layman LC. Identification of HESX1 mutations in Kallmann syndrome. Fertil Steril 2013; 99:1831-7. [PMID: 23465708 PMCID: PMC3888813 DOI: 10.1016/j.fertnstert.2013.01.149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To determine whether HESX1 mutations are present in patients with idiopathic hypogonadotropic hypogonadism (IHH)/Kallmann syndrome (KS). DESIGN Polymerase chain reaction-based DNA sequencing was performed on 217 well-characterized IHH/KS patients. Putative missense mutations were analyzed by sorting intolerant from tolerant (SIFT) and Clustal Ω. SETTING Academic medical center. PATIENT(S) Two hundred seventeen patients with IHH/KS and 192 controls. INTERVENTION(S) Deoxyribonucleic acid was extracted from patients and controls; genotype/phenotype comparisons were made. MAIN OUTCOME MEASURE(S) Deoxyribonucleic acid sequence of HESX1, SIFT analysis, and ortholog alignment. RESULT(S) Two novel heterozygous missense mutations (p.H42Y and p.V75L) and previously reported heterozygous missense mutation p.Q6H in HESX1 were identified in 3 of 217 patients (1.4%). All were males with KS. Both p.Q6H and p.H42Y were predicted to be deleterious by SIFT, whereas p.V75L was conserved in 8 of 9 species. No other IHH/KS gene mutations were present. CONCLUSION(S) HESX1 mutations may cause KS in addition to more severe phenotypes. Our findings expand the phenotypic spectrum of HESX1 mutations in humans, thereby broadening its role in development.
Collapse
Affiliation(s)
- Kayce Newbern
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
| | | | - Hyung-Goo Kim
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
- Institute of Molecular Medicine and Genetics; Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
| | - Lynn .P. Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
- Institute of Molecular Medicine and Genetics; Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
| | - Lisa Halvorson
- Section of Reproductive Endocrinology, Department of Obstetrics & Gynecology, University of Texas Southwest, Dallas, TX
| | - Richard S. Cameron
- Institute of Molecular Medicine and Genetics; Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
- Department of Medicine, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
- Institute of Molecular Medicine and Genetics; Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
- Neuroscience Program; Medical College of Georgia, Georgia Health Sciences University, Augusta, GA
| |
Collapse
|
13
|
Retroelements in human disease. Gene 2013; 518:231-41. [PMID: 23333607 DOI: 10.1016/j.gene.2013.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 12/16/2022]
Abstract
Retroelements are an abundant class of noncoding DNAs present in about half of the human genome. Among them, L1, Alu and SVA are currently active. They "jump" by retrotransposition, shuffle genomic regions by 5' and 3' transduction, and promote or inhibit gene transcription by providing alternative promoters or generating antisense and/or regulatory noncoding RNAs. Recent data also suggest that retroelement insertions into exons and introns of genes induce different types of genetic disease, including cancer. Retroelements interfere with the expression of genes by inducing alternative splicing via exon skipping and exonization using cryptic splice sites, and by providing polyadenylation signals. Here we summarize our current understanding of the molecular mechanisms of retroelement-induced mutagenesis which causes fifty different types of human disease. We categorize these mutagenic effects according to eleven different mechanisms and show that most of them may be explained either by traditional exon definition or transcriptional interference, a previously unrecognized molecular mechanism. In summary, this review gives an overview of retroelement insertions in genes that cause significant changes in their transcription and cotranscriptional splicing and show a remarkable level of complexity.
Collapse
|
14
|
Lucci-Cordisco E, Scommegna S, Orteschi D, Galeazzi D, Neri G, Boscherini B. Three unrelated patients with congenital anterior pituitary aplasia and a characteristic physical and neuropsychological phenotype: a new syndrome? Am J Med Genet A 2012; 158A:2750-5. [PMID: 22987613 DOI: 10.1002/ajmg.a.35579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/26/2012] [Indexed: 11/07/2022]
Abstract
Anterior pituitary aplasia (APA) is a very rare cause of congenital-onset multiple pituitary hormone deficiency (CO-MPHD). We report on molecular analysis and clinical follow-up of three previously reported cases of APA [Scommegna et al., 2004], who share a characteristic physical and neuropsychological profile. Mutation analysis of genes encoding transcription factors involved in pituitary development (PROP1, POUF1, HESX1, LHX3, and LHX4) did not demonstrate a any mutation. In order to identify the genetic cause underlying the phenotypes we performed an array-based comparative genomic hybridization (array-CGH), which showed a cryptic interstitial deletion of 9p (200 kb), including the TEK and MOBKL2B, in one patient. Although an apparently identical deletion was carried by the clinically normal father, we assumed that the patient's phenotype might be due to a recessive mutation in the other allele. However, sequence analysis of exons and splice junctions of these genes did not detect pathogenic or predisposing variants in the three patients. We suggest that the constellation of clinical signs in these patients constitutes a previously undescribed syndrome, whose genetic cause has yet to be identified.
Collapse
|
15
|
Di Iorgi N, Allegri AEM, Napoli F, Bertelli E, Olivieri I, Rossi A, Maghnie M. The use of neuroimaging for assessing disorders of pituitary development. Clin Endocrinol (Oxf) 2012; 76:161-76. [PMID: 21955099 DOI: 10.1111/j.1365-2265.2011.04238.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Magnetic resonance imaging (MRI) is the radiological examination method of choice for evaluating hypothalamo-pituitary-related endocrine disease and is considered essential in the assessment of patients with suspected hypothalamo-pituitary pathology. Physicians involved in the care of such patients have, in MRI, a valuable tool that can aid them in determining the pathogenesis of their patients' underlying pituitary conditions. Indeed, the use of MRI has led to an enormous increase in our knowledge of pituitary morphology, improving, in particular, the differential diagnosis of hypopituitarism. Specifically, MRI allows detailed and precise anatomical study of the pituitary gland by differentiating between the anterior and posterior pituitary lobes. MRI recognition of pituitary hyperintensity in the posterior part of the sella, now considered a marker of neurohypophyseal functional integrity, has been the most striking finding in the diagnosis and understanding of certain forms of 'idiopathic' and permanent growth hormone deficiency (GHD). Published data show a number of correlations between pituitary abnormalities as observed on MRI and a patient's endocrine profile. Indeed, several trends have emerged and have been confirmed: (i) a normal MRI or anterior pituitary hypoplasia generally indicates isolated growth hormone deficiency that is mostly transient and resolves upon adult height achievement; (ii) patients with multiple pituitary hormone deficiencies (MPHD) seldom show a normal pituitary gland; and (iii) the classic triad of ectopic posterior pituitary, pituitary stalk hypoplasia/agenesis and anterior pituitary hypoplasia is more frequently reported in MPHD patients and is generally associated with permanent GHD. Pituitary abnormalities have also been reported in patients with hypopituitarism carrying mutations in several genes encoding transcription factors. Establishing endocrine and MRI phenotypes is extremely useful for the selection and management of patients with hypopituitarism, both in terms of possible genetic counselling and in the early diagnosis of evolving anterior pituitary hormone deficiencies. Going forward, neuroimaging techniques are expected to progressively expand and improve our knowledge and understanding of pituitary diseases.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Paediatrics, IRCCS G. Gaslini, University of Genova, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Vivenza D, Godi M, Faienza MF, Mellone S, Moia S, Rapa A, Petri A, Bellone S, Riccomagno S, Cavallo L, Giordano M, Bona G. A novel HESX1 splice mutation causes isolated GH deficiency by interfering with mRNA processing. Eur J Endocrinol 2011; 164:705-13. [PMID: 21325470 DOI: 10.1530/eje-11-0047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Mutations in HESX1 represent a rare cause of GH deficiency (GHD) associated with a broad spectrum of other anomalies. We searched for causative mutations in a cohort of 244 Italian patients affected by combined and isolated GHD (IGHD). METHODS The HESX1 gene-coding region and exon-intron boundaries were screened by denaturing HPLC scanning. RESULTS A novel mutation adjacent to the invariant donor splice site of intron 2 (c.357+3G>A) was identified at the heterozygous state in an IGHD patient. The in vitro and in vivo mRNA analysis of the wild-type HESX1 allele revealed the presence of the whole cDNA and two isoforms lacking exon 2 and exons 2-3 respectively. The mutant HESX1 allele yielded only two splicing products, the whole cDNA and the cDNA missing exons 2-3, whereas the mRNA lacking exon 2 was absent. An in vitro assay demonstrated that the exon 2-deleted mRNA, predicting a prematurely truncated protein, is subjected to nonsense-mediated mRNA decay (NMD). CONCLUSIONS The c.357+3G>A mutation prevents the generation of one of the alternative isoforms normally produced by the wild-type allele, predicting a truncated HESX1 protein. The mutation is likely to cause IGHD in the heterozygous patient by interfering with the downregulation of HESX1 expression mediated by alternative splicing and NMD. Our results open new insight into the mechanism of HESX1 regulation suggesting that the coupling of alternative splicing and NMD might play a fundamental role in directing the HESX1 expression, and that the alteration of this process might lead to severe consequences.
Collapse
Affiliation(s)
- Daniela Vivenza
- Laboratorio di Oncologia Ospedale Santa Croce e Carle, 12100 Cuneo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McCabe MJ, Alatzoglou KS, Dattani MT. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab 2011; 25:115-24. [PMID: 21396578 DOI: 10.1016/j.beem.2010.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Septo-optic dysplasia (SOD) is a highly heterogeneous condition comprising variable phenotypes including midline and forebrain abnormalities, optic nerve and pituitary hypoplasia. Most instances of SOD are sporadic and several aetiologies including drug and alcohol abuse have been suggested to account for the pathogenesis of the condition. However, a number of familial cases have been described with an increasing number of mutations in developmental transcription factors including HESX1, SOX2, SOX3 and OTX2 being implicated in its aetiology. These factors are essential for normal forebrain/pituitary development, and disruptions to these genes could account for the features observed in SOD and other midline disorders. The variable phenotypes observed within the condition are most likely due to the varying contributions of genetic and environmental factors. This review will discuss the current knowledge about SOD. Further study of these and other novel factors may shed light on the complex aetiology of this condition.
Collapse
Affiliation(s)
- Mark James McCabe
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, 30 Guilford Street, London, UK.
| | | | | |
Collapse
|
18
|
Chen JM, Férec C, Cooper DN. LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease: mutation detection bias and multiple mechanisms of target gene disruption. J Biomed Biotechnol 2010; 2006:56182. [PMID: 16877817 PMCID: PMC1510945 DOI: 10.1155/jbb/2006/56182] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
LINE-1 (L1) elements are the most abundant autonomous non-LTR retrotransposons in the human genome. Having recently performed a meta-analysis of L1 endonuclease-mediated retrotranspositional events causing human genetic disease, we have extended this study by focusing on two key issues, namely, mutation detection bias and the multiplicity of mechanisms of target gene disruption. Our analysis suggests that whereas an ascertainment bias may have generally militated against the detection of autosomal L1-mediated insertions, autosomal L1 direct insertions could have been disproportionately overlooked owing to their unusually large size. Our analysis has also indicated that the mechanisms underlying the functional disruption of target genes by L1-mediated retrotranspositional events are likely to be dependent on several different factors such as the type of insertion (L1 direct, L1 trans-driven Alu, or SVA), the precise locations of the inserted sequences within the target gene regions, the length of the inserted sequences, and possibly also their orientation.
Collapse
Affiliation(s)
- Jian-Min Chen
- INSERM U613, Génétique
Moléculaire et Génétique Épidémiologique,
29220 Brest, France
- Faculté de Médecine de Brest
et des Sciences de la Santé, Université de Bretagne Occidentale, 29238
Brest, France
- Etablissement Français du Sang-Bretagne,
35000 Rennes, France
- *Jian-Min Chen:
| | - Claude Férec
- INSERM U613, Génétique
Moléculaire et Génétique Épidémiologique,
29220 Brest, France
- Faculté de Médecine de Brest
et des Sciences de la Santé, Université de Bretagne Occidentale, 29238
Brest, France
- Etablissement Français du Sang-Bretagne,
35000 Rennes, France
- Hôpital Morvan, CHRU Brest, Laboratoire de
Génétique Moléculaire et d'Histocompatibilité, 29200 Brest, France
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine,
Cardiff University, Heath Park Campus, Cardiff CF14 4XN, UK
| |
Collapse
|
19
|
Webb EA, Dattani MT. Septo-optic dysplasia. Eur J Hum Genet 2010; 18:393-397. [PMID: 19623216 PMCID: PMC2987262 DOI: 10.1038/ejhg.2009.125] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 11/09/2022] Open
Abstract
This review summarises the key clinical features of septo-optic dysplasia (SOD), the significant inroads that progress in genetics has made into our understanding of the aetiology of the condition over the last decade, and the pitfalls and challenges that we face in the management of these phenotypically variable patients.
Collapse
Affiliation(s)
- Emma A Webb
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, London, UK
| | - Mehul T Dattani
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, London, UK
| |
Collapse
|
20
|
Kelberman D, Rizzoti K, Lovell-Badge R, Robinson ICAF, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 2009; 30:790-829. [PMID: 19837867 PMCID: PMC2806371 DOI: 10.1210/er.2009-0008] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.
Collapse
Affiliation(s)
- Daniel Kelberman
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Lai X, Lan X, Chen H, Wang X, Wang K, Wang M, Yu H, Zhao M. A novel SNP of the Hesx1 gene in bovine and its associations with average daily gain. Mol Biol Rep 2009; 36:1677-81. [PMID: 18853282 DOI: 10.1007/s11033-008-9368-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
As an essential repressor, the homeobox gene Hesx1/HESX1 is required within the anterior neural plate for normal forebrain development. Mutations within the Hesx1 gene have been associated with GH deficiency or combined pituitary hormone deficiency. We detected the polymorphism of Hesx1 gene by PCR-SSCP and DNA sequencing methods in 702 individuals from four Chinese cattle breeds. A novel single nucleotide polymorphism (SNP) (IVS1 + 382T > C) was detected. The frequencies of genotype TC in four breeds were 0.000-0.222. Polymorphism of the Hesx1 gene was shown to be associated with growth in the Nanyang breed. Individuals with genotype TC was significantly lower average daily gain than TT at 18 months (P < 0.05).
Collapse
Affiliation(s)
- Xinsheng Lai
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, No.22 Xinong Road, Yangling, Shaanxi, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Roze C, Touraine P, Leger J, de Roux N. [Congenital hypogonadotropic hypogonadism]. ANNALES D'ENDOCRINOLOGIE 2009; 70:2-13. [PMID: 19200533 DOI: 10.1016/j.ando.2008.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 02/01/2023]
Abstract
Congenital hypogonadotropic hypogonadism is defined by reduced steroid hormone synthesis and secretion due to low LH and FSH secretion. It is a rare disease with an unknown prevalence (about 1/5000). It results from a fetal defect in GnRH neuron migration, a defect of pituitary development or from a functional defect of the hypothalamopituitary axis between GnRH neurons and gonadotropic cells. The diagnosis should be considered at birth in males with micropenis, during adolescence in case of delayed puberty or absent puberty, and during adulthood in case of infertility. It may be restricted to the gonadotropic axis, combined with other endocrine system defects or be part of a complex syndrome. Several gene defects have now been described. Molecular studies should be performed to confirm the diagnosis and to help provide appropriate genetic counseling. Treatment to induce puberty should be provided at adolescence, followed by hormonal substitution treatment during adulthood. Specific infertility treatment may also be proposed but patients with the dominant form of gonadotropic deficiency should be informed of the risk of transmission.
Collapse
Affiliation(s)
- C Roze
- Inserm U690, hôpital Robert-Debré, 75019 Paris, France
| | | | | | | |
Collapse
|
23
|
Sajedi E, Gaston-Massuet C, Signore M, Andoniadou CL, Kelberman D, Castro S, Etchevers HC, Gerrelli D, Dattani MT, Martinez-Barbera JP. Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism. Dis Model Mech 2008; 1:241-54. [PMID: 19093031 PMCID: PMC2590837 DOI: 10.1242/dmm.000711] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/28/2008] [Indexed: 01/20/2023] Open
Abstract
A homozygous substitution of the highly conserved isoleucine at position 26 by threonine (I26T) in the transcriptional repressor HESX1 has been associated with anterior pituitary hypoplasia in a human patient, with no forebrain or eye defects. Two individuals carrying a homozygous substitution of the conserved arginine at position 160 by cysteine (R160C) manifest septo-optic dysplasia (SOD), a condition characterised by pituitary abnormalities associated with midline telencephalic structure defects and optic nerve hypoplasia. We have generated two knock-in mouse models containing either the I26T or R160C substitution in the genomic locus. Hesx1(I26T/I26T) embryos show pituitary defects comparable with Hesx1(-/-) mouse mutants, with frequent occurrence of ocular abnormalities, although the telencephalon develops normally. Hesx1(R160C/R160C) mutants display forebrain and pituitary defects that are identical to those observed in Hesx1(-/-) null mice. We also show that the expression pattern of HESX1 during early human development is very similar to that described in the mouse, suggesting that the function of HESX1 is conserved between the two species. Together, these results suggest that the I26T mutation yields a hypomorphic allele, whereas R160C produces a null allele and, consequently, a more severe phenotype in both mice and humans.
Collapse
Affiliation(s)
- Ezat Sajedi
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Corneli G, Vivenza D, Prodam F, Di Dio G, Vottero A, Rapa A, Bellone S, Bernasconi S, Bona G. Heterozygous mutation of HESX1 causing hypopituitarism and multiple anatomical malformations without features of septo-optic dysplasia. J Endocrinol Invest 2008; 31:689-93. [PMID: 18852528 DOI: 10.1007/bf03346416] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Isolated GH deficiency or combined pituitary hormone deficiencies have been associated with mutations in transcription factors encoding genes that control organogenesis or cell differentiation. Among these factors, Hesx1 is essential for the development of the optic nerve and regulates some of the earliest stages in pituitary development and is intimately involved in orchestrating the expression of other factors involved in pituitary organogenesis. Mutations in HESX1 are reported in patients with hypopituitarism either with typical septo-optic dysplasia (SOD) or with neuromorphological abnormalities not included in classical SOD. The present report describes clinical features, biochemical parameters, and characterization of a missense mutation (Gln6His) in exon1 of HESX1 in a pre-pubertal child who progressively developed multiple hypopituitarism, firstly GH and, afterwards, TSH and ACTH deficiencies, in a pluri-malformative syndrome characterized by short stature and anatomical malformations not associated with a classical SOD phenotype. This finding further supports the necessity to stay alert in evaluating a gene that plays a minor role in the pathogenesis of sporadic hypopituitarism, such as HESX1 gene even when the phenotype does not fit in with a classical SOD syndrome.
Collapse
Affiliation(s)
- G Corneli
- Division of Pediatrics, Department of Medical Sciences, Amedeo Avogadro University of Novara, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
[Clinical and genetic aspects of combined pituitary hormone deficiencies]. ANNALES D'ENDOCRINOLOGIE 2008; 69:7-17. [PMID: 18291347 DOI: 10.1016/j.ando.2008.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DEFINITION Congenital hypopituitarism is characterized by multiple pituitary hormone deficiency, including somatotroph, thyrotroph, lactotroph, corticotroph or gonadotroph deficiencies, due to mutations of pituitary transcription factors involved in pituitary ontogenesis. INCIDENCE Congenital hypopituitarism is rare compared with the high incidence of hypopituitarism induced by pituitary adenomas, transsphenoidal surgery or radiotherapy. The incidence of congenital hypopituitarism is estimated to be between 1:3000 and 1:4000 births. CLINICAL SIGNS Clinical presentation is variable, depending on the type and severity of deficiencies and on the age at diagnosis. If untreated, main symptoms include short stature, cognitive alterations or delayed puberty. DIAGNOSIS A diagnosis of combined pituitary hormone deficiency (CPHD) must be suspected when evident causes of hypopituitarism (sellar tumor, postsurgical or radioinduced hypopituitarism...) have been ruled out. Clinical, biological and radiological work-up is very important to better determine which transcription factor should be screened. Confirmation is provided by direct sequencing of the transcription factor genes. AETIOLOGY Congenital hypopituitarism is due to mutations of several genes encoding pituitary transcription factors. Phenotype varies with the factor involved: PROP1 (somatolactotroph, thyrotroph, gonadotroph and sometimes corticotroph deficiencies; pituitary hyper and hypoplasia), POU1F1 (somatolactotroph and thyrotroph deficiencies, pituitary hypoplasia), HESX1 (variable pituitary deficiencies, septo-optic dysplasia), and less frequently LHX3 (somatolactotroph, thyrotroph and gonadotroph deficiencies, limited head and neck rotation) and LHX4 (variable pituitary deficiencies, ectopic neurohypophysis, cerebral abnormalities). MANAGEMENT An appropriate replacement of hormone deficiencies is required. Strict follow-up is necessary because patients develop new deficiencies (for example late onset corticotroph deficiency in patients with PROP1 mutations). GENETIC COUNSELLING: Type of transmission varies with the factor and the mutation involved (recessive transmission for PROP1 and LHX3, dominant for LHX4, autosomal or recessive for POU1F1 and HESX1). PROGNOSIS It is equivalent to patients without pituitary deficiencies if treatment is started immediately when diagnosis is confirmed, and if a specialized follow-up is performed.
Collapse
|
26
|
Kelberman D, Dattani MT. Septo-optic dysplasia - novel insights into the aetiology. HORMONE RESEARCH 2008; 69:257-65. [PMID: 18259104 DOI: 10.1159/000114856] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 08/29/2007] [Indexed: 12/14/2022]
Abstract
Septo-optic dysplasia (SOD) is a highly heterogeneous condition comprising a variable phenotype of optic nerve hypoplasia, midline brain abnormalities and pituitary hypoplasia with consequent endocrine deficits. The majority of cases are sporadic and several aetiologies have been suggested to account for the pathogenesis of the condition. However, a number of familial cases have been described and the identification of mutations in key developmental genes including HESX1, SOX2 and SOX3 in patients with SOD and associated phenotypes suggests that a genetic causation is likely in the more common sporadic cases of the condition. The precise aetiology of SOD is most likely multifactorial involving contributions from environmental factors in addition to an important role for crucial developmental genes. The variability of the penetrance and phenotypes within a single SOD pedigree may also suggest a complex interaction between genetics and the environment, and at present, the understanding of these interactions is rudimentary. Further study of these critical factors may shed light on the aetiology of this complex disorder. We have reviewed recent literature selecting relevant references based on the keywords HESX1, SOX2, SOX3, Septo-optic dysplasia, genetics and pituitary development.
Collapse
|
27
|
Mehta A, Dattani MT. Developmental disorders of the hypothalamus and pituitary gland associated with congenital hypopituitarism. Best Pract Res Clin Endocrinol Metab 2008; 22:191-206. [PMID: 18279788 DOI: 10.1016/j.beem.2007.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pituitary gland is a complex organ secreting six hormones from five different cell types. It is the end product of a carefully orchestrated pattern of expression of signalling molecules and transcription factors. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, SOX2 and SOX3. The expression pattern of these transcription factors dictates the phenotype that results when the gene encoding the relevant transcription factor is mutated. The highly variable phenotype may consist of isolated hypopituitarism or more complex disorders such as septo-optic dysplasia and holoprosencephaly. However, the overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified; characterization of these will further elucidate the pathogenesis of this complex condition and also shed light on normal pituitary development and function.
Collapse
Affiliation(s)
- Ameeta Mehta
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | |
Collapse
|
28
|
Tappino B, Regis S, Corsolini F, Filocamo M. An Alu insertion in compound heterozygosity with a microduplication in GNPTAB gene underlies Mucolipidosis II. Mol Genet Metab 2008; 93:129-33. [PMID: 17964840 DOI: 10.1016/j.ymgme.2007.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 11/22/2022]
Abstract
Mucolipidosis type II (ML II) is a fatal, autosomal recessive, lysosomal storage disorder characterized by severe clinical and radiologic features. ML II results from mutations in alpha and beta subunits, encoded by the GlcNAc-1-phosphotransferase gene (GNPTAB). Most of the 40 different GNPTAB mutations reported so far are insertions and deletions predicting diverse types of aberrant proteins. Alu mobile elements have however never been involved in these events up to now. The Italian ML II patient of our study showed an Alu retrotrasposition in GNPTAB exon 5. The Alu insertion mutation (NM_024312.3:c.555_556insHSU14569) generated a transcript with a skipping of the target exon 5 and a frameshift p.S122fs, causing a premature translation termination codon at position 123. This insertion mutation was found in compound heterozygosity with the frameshift p.S887KfsX33, resulting from a new mono-nucleotide duplication (c.2659dupA) that occurred in GNPTAB exon 13. A possible involvement of cis-splicing elements having an exonic location, such as exon enhancers (ESEs), is discussed as mechanism that led to the production of the aberrant mRNA splicing.
Collapse
Affiliation(s)
- B Tappino
- Laboratorio Diagnosi Pre-Postnatale Malattie Metaboliche, IRCCS G. Gaslini, L.go G. Gaslini, 16147 Genoa, Italy
| | | | | | | |
Collapse
|
29
|
Kelberman D, Dattani MT. Hypopituitarism oddities: congenital causes. HORMONE RESEARCH 2007; 68 Suppl 5:138-44. [PMID: 18174732 DOI: 10.1159/000110610] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The last 15 years have witnessed an explosion in our knowledge of hypothalamo-pituitary development, acquired mainly from naturally-occurring and transgenic animal models. A complex genetic cascade dictates organ commitment, cell differentiation and cell proliferation within the anterior pituitary. Mutations in genes encoding both signalling molecules and transcription factors have been implicated in the aetiology of hypopituitarism, with or without other syndromic features, in mice and humans. These include HESX1, LHX3, LHX4, PROP1, POU1F1 and, more recently, SOX3 and SOX2. Phenotypes associated with mutations in genes encoding these factors and their inheritance may be highly variable. PHENOTYPIC PROFILE Mutations in genes implicated in early pituitary development may be associated with extrapituitary phenotypes, which in turn may be highly variable. For example, dominant and recessive mutations in HESX1 may be associated with septo-optic dysplasia, combined pituitary hormone deficiency (CPHD) and isolated growth hormone (GH) deficiency. Duplications and polyalanine expansions within the transcription factor SOX3 have recently been described in association with infundibular hypoplasia, hypopituitarism and variable mental retardation, whilst mutations in SOX2 are associated with variable hypopituitarism in association with learning difficulties, oesophageal atresia and anophthalmia. Mutations within the LIM domain gene LHX3 are associated with a recessive phenotype characterised by deficiencies in GH, thyroid-stimulating hormone (TSH), luteinising hormone (LH) and follicle-stimulating hormone (FSH) with sparing of the corticotrophs, in association with a short stiff neck with limited rotation. A single mutation has been described within the LHX4 gene, and is dominantly inherited and associated with GH, TSH and adrenocorticotrophic hormone (ACTH) deficiency. The mutation is associated with a hypoplastic anterior pituitary, an undescended posterior pituitary and pointed cerebellar tonsils. PROP1 and POU1F: Recessive mutations within the pituitary-specific transcription factor Prophet of Pit1, or PROP1, are associated with CPHD (GH, prolactin [PRL] and TSH deficiency with additional LH and FSH deficiency). An enlarged sella turcica with appearances suggestive of a pituitary tumour is occasionally observed in association with PROP1 mutations. ACTH deficiency can evolve in a number of patients, reflecting the need for constant review of the phenotype. Mutations within POU1F1 are associated with GH, TSH and PRL deficiencies, with the TSH deficiency being highly variable. Magnetic resonance imaging reveals either a normal or hypoplastic anterior pituitary. Mutations may be either dominantly or recessively inherited, and the R271W mutation, which is believed to act as a dominant negative mutation, represents a mutational 'hot spot'. CONCLUSIONS In the future, genetic analysis together with functional analysis of the mutations at the protein level will have a greater role to play in understanding the mechanisms leading to particular hypopituitary phenotypes and in predicting the evolution of these disorders. However, there is no substitute for careful delineation of the clinical, biochemical and neuroradiological phenotype prior to undertaking genetic studies.
Collapse
Affiliation(s)
- Daniel Kelberman
- Developmental Endocrinology Research Group, Institute of Child Health, London, UK
| | | |
Collapse
|
30
|
DNMT1 interacts with the developmental transcriptional repressor HESX1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:131-43. [PMID: 17931718 PMCID: PMC2233781 DOI: 10.1016/j.bbamcr.2007.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 01/18/2023]
Abstract
Hesx1 is a highly conserved homeobox gene present in vertebrates, but absent from invertebrates. Gene targeting experiments in mice have shown that this transcriptional repressor is required for normal forebrain and pituitary development. In humans, mutations in HESX1 impairing either its repressing activity or DNA binding properties lead to a comparable phenotype to that observed in Hesx1 deficient mice. In an attempt to gain insights into the molecular function of HESX1, we have performed a yeast two-hybrid screen and identified DNA methyltransferase 1 (DNMT1) as a HESX1 binding protein. We show that Dnmt1 is co-expressed with Hesx1 within the anterior forebrain and in the developing Rathke's pouch. Mapping of the interacting regions indicates that the entire HESX1 protein is required to establish binding to a portion of the N-terminus of DNMT1 and its catalytic domain in the C-terminus. The HESX1–DNMT1 complexes can be immunoprecipitated in cells and co-localise in the nucleus. These results establish a link between HESX1 and DNMT1 and suggest a novel mechanism for the repressing properties of HESX1.
Collapse
|
31
|
Kelberman D, Dattani MT. Hypothalamic and pituitary development: novel insights into the aetiology. Eur J Endocrinol 2007; 157 Suppl 1:S3-14. [PMID: 17785694 DOI: 10.1530/eje-07-0156] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The anterior pituitary gland is a central regulator of growth, reproduction and homeostasis, and is the end-product of a carefully orchestrated pattern of expression of signalling molecules and transcription factors leading to the development of this complex organ secreting six hormones from five different cell types. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of combined pituitary hormone deficiency (CPHD). These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, TBX19, SOX2 and SOX3. The expression pattern of these transcription factors dictates the phenotype that results when the gene encoding the relevant transcription factor is mutated. The highly variable phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia and holoprosencephaly. Since mutations in any one transcription factor are uncommon, and since the overall incidence of mutations in known transcription factors is low in patients with CPHD, it is clear that many genes remain to be identified, and the characterization of these will further elucidate the pathogenesis of these complex conditions and also shed light on normal pituitary development.
Collapse
Affiliation(s)
- Daniel Kelberman
- Developmental Endocrine Research Group, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | |
Collapse
|
32
|
Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007; 23:183-91. [PMID: 17331616 DOI: 10.1016/j.tig.2007.02.006] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 01/15/2007] [Accepted: 02/12/2007] [Indexed: 01/20/2023]
Abstract
Although a large proportion (44%) of the human genome is occupied by transposons and transposon-like repetitive elements, only a small proportion (<0.05%) of these elements remain active today. Recent evidence indicates that approximately 35-40 subfamilies of Alu, L1 and SVA elements (and possibly HERV-K elements) remain actively mobile in the human genome. These active transposons are of great interest because they continue to produce genetic diversity in human populations and also cause human diseases by integrating into genes. In this review, we examine these active human transposons and explore mechanistic factors that influence their mobilization.
Collapse
Affiliation(s)
- Ryan E Mills
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
33
|
McNay DEG, Turton JP, Kelberman D, Woods KS, Brauner R, Papadimitriou A, Keller E, Keller A, Haufs N, Krude H, Shalet SM, Dattani MT. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab 2007; 92:691-7. [PMID: 17148560 DOI: 10.1210/jc.2006-1609] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Mutations in the transcription factor HESX1 have previously been described in association with septooptic dysplasia (SOD) as well as isolated defects of the hypothalamic-pituitary axis. OBJECTIVE Given that previous screening was carried out by SSCP detection alone and limited to coding regions, we performed an in-depth genetic analysis of HESX1 to establish the true contribution of HESX1 genetic defects to the etiology of hypopituitarism. DESIGN Nonfamilial patients (724) with either SOD (n = 314) or isolated pituitary dysfunction, optic nerve hypoplasia, or midline neurological abnormalities (n = 410) originally screened by SSCP were rescreened by heteroduplex detection for mutations in the coding and regulatory regions of HESX1. In addition, direct sequencing of HESX1 was performed in 126 patients with familial hypopituitarism from 66 unrelated families and in 11 patients born to consanguineous parents. PATIENTS All patients studied had at least one of the three classical features associated with SOD (optic nerve hypoplasia, hypopituitarism, midline forebrain defects). RESULTS Novel sequence changes identified included a functionally significant heterozygous mutation at a highly conserved residue (E149K) in a patient with isolated GH deficiency and digital abnormalities. The overall incidence of coding region mutations within the cohort was less than 1%. CONCLUSIONS Mutations within HESX1 are a rare cause of SOD and hypopituitarism. However, the large number of familial patients with SOD in whom no mutations were identified is suggestive of an etiological role for other genetic factors. Furthermore, we have found that within our cohort SOD is associated with a reduced maternal age compared with isolated defects of the hypothalamopituitary axis.
Collapse
Affiliation(s)
- David E G McNay
- Biochemistry, Endocrinology, and Metabolism Unit, Institute of Child Health, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Septo-optic dysplasia (SOD) is a highly heterogeneous condition comprising a variable phenotype of optic nerve hypoplasia, midline forebrain abnormalities and pituitary hypoplasia with consequent endocrine deficits. The majority of cases are sporadic and several aetiologies including drug and alcohol abuse have been suggested to account for the pathogenesis of the condition. However, a number of familial cases have been described and the identification of mutations in the key developmental gene HESX1 in patients with SOD and associated phenotypes suggests that a genetic causation is likely in the more common sporadic cases of the condition. More recently, we have implicated duplications of SOX3 and mutations of both SOX2 and SOX3 in the aetiology of variants of SOD. As with other developmental disorders such as holoprosencephaly, the precise aetiology is most likely multifactorial involving contributions from environmental factors in addition to an important role for crucial developmental genes. This potentially complex interaction between genetics and the environment is borne out by the variability of the penetrance and phenotypes in patients with genetic SOD, but at present, the understanding of these interactions is rudimentary. Further study of these critical factors may shed light on the aetiology of this complex disorder.
Collapse
Affiliation(s)
- Daniel Kelberman
- Developmental Endocrine Research Group, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | |
Collapse
|
35
|
Abstract
The functions of the pituitary hormones have been relatively well studied; however, understanding the regulation of their synthesis and release have been an ongoing subject of intense research. This review provides an overview of the pituitary cell types and their hormone products. Current understanding of the expression and regulation of the pituitary hormone genes, control of the synthesis and release of the corresponding hormones, and developmental changes are reviewed. This review concludes with a discussion of several of these genes and the genetic disorders with which they are associated.
Collapse
Affiliation(s)
- Clement C Cheung
- Department of Pediatrics, University of California, San Francisco, CA 94142, USA.
| | | |
Collapse
|
36
|
Apoil PA, Kuhlein E, Robert A, Rubie H, Blancher A. HIGM syndrome caused by insertion of an AluYb8 element in exon 1 of the CD40LG gene. Immunogenetics 2006; 59:17-23. [PMID: 17146684 DOI: 10.1007/s00251-006-0175-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
A new mutation of the CD40LG gene that encodes the CD40 ligand molecule was characterized in a young patient harboring a hyper-IgM with immunodeficiency syndrome. Inactivation of CD40LG gene resulted from the insertion of an AluYb8 element in exon 1 responsible for a total deficiency of CD40 ligand expression by T lymphocytes. Maternal transmission of the X-linked mutation was confirmed by gene-specific polymerase chain reaction. This is the 17th case report concerning a human genetic disease caused by an Alu element insertion in a coding sequence.
Collapse
Affiliation(s)
- P A Apoil
- Laboratoire d'Immunogénétique Moléculaire, Université Paul Sabatier, Hôpital Purpan, 1 place Baylac, 31059 Toulouse, France
| | | | | | | | | |
Collapse
|
37
|
Sobrier ML, Maghnie M, Vié-Luton MP, Secco A, di Iorgi N, Lorini R, Amselem S. Novel HESX1 mutations associated with a life-threatening neonatal phenotype, pituitary aplasia, but normally located posterior pituitary and no optic nerve abnormalities. J Clin Endocrinol Metab 2006; 91:4528-36. [PMID: 16940453 DOI: 10.1210/jc.2006-0426] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Hesx1 is one of the earliest homeodomain transcription factors expressed during pituitary development. Very few HESX1 mutations have been identified in humans; although in those cases the disease phenotype shows considerable variability, all but one of the patients display an ectopic posterior pituitary and/or optic nerve abnormalities. OBJECTIVE The objectives of the study were to describe the complex phenotype associated with the panhypopituitarism of two unrelated Italian patients who, at birth, presented with hypoglycemic seizures and respiratory distress complicated by shock, in a familial context of neonatal death in one family and spontaneous miscarriage in both families and to identify the molecular basis of this unusual syndrome. MAIN OUTCOME MEASURES Magnetic resonance imaging of the pituitary region, study of HESX1 gene and transcripts, and assessment of the ability of mutated HESX1 proteins to repress transcription were measured. RESULTS Magnetic resonance imaging examination showed an anterior pituitary aplasia in a flat sella turcica and a normally located posterior pituitary in both patients. A constellation of extrapituitary developmental defects were found in the two patients, but without any optic nerve abnormalities. Sequencing of HESX1 exons and their flanking intronic regions revealed two different homozygous mutations. A frameshift (c.449_450delAC) was identified in one case, whereas the other patient carried a splice defect (c.357 + 2Tb > C) confirmed by the study of HESX1 transcripts. If translated, these mutations would lead to the synthesis of truncated proteins partly or entirely lacking the homeodomain, with no transcriptional repression, as shown by their inability to inhibit PROP1 activity. CONCLUSIONS These observations reveal two novel HESX1 mutations in a so-far-undescribed disease phenotype characterized by a life-threatening neonatal condition associated with anterior pituitary aplasia, in the absence of ectopic posterior pituitary and optic nerve abnormalities, two features classically associated with HESX1 defects.
Collapse
Affiliation(s)
- Marie-Laure Sobrier
- Institut National de la Santé et de la Recherche Médicale, U654, Hôpital Henri-Mondor, Créteil F-94010, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Reynaud R, Gueydan M, Saveanu A, Vallette-Kasic S, Enjalbert A, Brue T, Barlier A. Genetic screening of combined pituitary hormone deficiency: experience in 195 patients. J Clin Endocrinol Metab 2006; 91:3329-36. [PMID: 16735499 DOI: 10.1210/jc.2005-2173] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT Mutations in transcription factors result in combined pituitary hormone deficiency (CPHD). OBJECTIVE A genetic screening strategy, based on endocrine and neuroradiological phenotype according to published knowledge, was applied to establish the prevalence of gene defects in each category of patients and provide a useful framework for clinicians to determine the genetic etiology and recurrence risks for individuals and families. DESIGN One hundred ninety-five CPHD patients from the international GENHYPOPIT network were studied, according to their phenotype, for POU1F1, PROP1, LHX3, LHX4, and HESX1. PATIENTS Patients selected had two pituitary hormone deficiencies or at least one deficiency with intracerebral malformations. RESULTS Total prevalence of mutations was 13.3 and 52.4% in 20 patients with familial CPHD history. No mutation of HESX1 was observed in 16 patients harboring septooptic dysplasia. A mutation of LHX4 gene, previously reported, was found in one familial case from 39 patients bearing pituitary stalk interruption syndrome. In 109 patients without extrapituitary abnormalities, 20 had PROP1 mutations, including eight patients with a family history of CPHD. Among 20 patients without pituitary stalk interruption syndrome, no LHX3 gene defect was found, even with a neck rotation deficit. One POU1F1 gene defect was found in one patient presenting the rare postpubertal association of thyrotroph (TSH deficiency) and somatotroph (GH deficiency) deficits. CONCLUSIONS Mutation of PROP1 gene remains the first to be looked for, and POU1F1 mutations should be sought in GH deficiency and TSH deficiency postpubertal population without extrapituitary malformations. Identification of gene defects allows early treatment of any deficit and prevention of their potentially fatal consequences. Genotyping appears highly beneficial at an individual and familial level.
Collapse
Affiliation(s)
- Rachel Reynaud
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital de la Conception, 13385 Marseille Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Maghnie M, Rossi A, di Iorgi N, Gastaldi R, Tortori-Donati P, Lorini R. Hypothalamic-pituitary magnetic resonance imaging in growth hormone deficiency. Expert Rev Endocrinol Metab 2006; 1:413-423. [PMID: 30764079 DOI: 10.1586/17446651.1.3.413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accurate analysis of the hypothalamic-pituitary area is essential in the diagnosis of endocrine-related diseases. High-quality magnetic resonance imaging represents the examination modality of choice in the evaluation of hypothalamic-pituitary morphology. Indeed, the advent of molecular biology and neuroimaging techniques has led to significant progress in the understanding of the pathogenesis of disorders affecting the pituitary gland, specifically by demonstrating a clear phenotype-genotype relationship. Animal studies, along with the correlation of a particular genetic profile to certain endocrine and magnetic resonance imaging phenotypes in humans, have yielded great insights into pituitary development. Today, there is convincing evidence to support the hypothesis that marked magnetic resonance imaging differences in pituitary morphology indicate a variety of disorders that affect anterior pituitary gland organogenesis and function with a variety of diverse prognoses.
Collapse
Affiliation(s)
- Mohamad Maghnie
- a IRCCS Giannina Gaslini, Department of Pediatrics, Largo Gerolamo Gaslini 5, 16147, Genova, Italy.
| | - Andrea Rossi
- b IRCCS Giannina Gaslini, Department of Neuradiology, Largo Gerolamo Gaslini 5, 16147, Genova, Italy.
| | - Natascia di Iorgi
- c IRCCS Giannina Gaslini, Department of Pediatrics, Largo Gerolamo Gaslini 5, 16147, Genova, Italy.
| | - Roberto Gastaldi
- d IRCCS Giannina Gaslini, Department of Pediatrics, Largo Gerolamo Gaslini 5, 16147, Genova, Italy.
| | - Paolo Tortori-Donati
- e IRCCS Giannina Gaslini, Department of Neuroradiology, Largo Gerolamo Gaslini 5, 16147, Genova, Italy.
| | - Renata Lorini
- f IRCCS Giannina Gaslini, Department of Pediatrics, Largo Gerolamo Gaslini 5, 16147, Genova, Italy.
| |
Collapse
|
40
|
Chou SJ, Hermesz E, Hatta T, Feltner D, El-Hodiri HM, Jamrich M, Mahon K. Conserved regulatory elements establish the dynamic expression of Rpx/HesxI in early vertebrate development. Dev Biol 2006; 292:533-45. [PMID: 16527264 DOI: 10.1016/j.ydbio.2005.12.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 12/06/2005] [Accepted: 12/23/2005] [Indexed: 10/24/2022]
Abstract
TheRpx/Hesx1 homeobox gene is expressed during gastrulation in the anterior visceral and definitive endoderm and the cephalic neural plate. At later stages of development, its expression is restricted to Rathke's pouch, the primordium of the pituitary gland. This expression pattern suggests the presence of at least two distinct regulatory regions that control early and late Rpx transcription. Using transgenic mice, we have demonstrated that regulatory sequences in the 5' upstream region of Rpx are important for early expression in the anterior endoderm and neural plate and regulatory elements in the 3' region are required for late expression in Rathke's pouch. We have found that the genetically required LIM homeodomain-containing proteins Lim1/Lhx1 and Lhx3 are directly involved in the regulation of Rpx transcription. They bind two LIM protein-binding sites in the 5' upstream region of Rpx, which are required for Rpx promoter activity in both mice and Xenopus. Furthermore, we have found that a conserved enhancer in the 3' regulatory sequences of Rpx is not only required, but is also sufficient for the expression of Rpx transgenes in the developing Rathke's pouch.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Embryo, Mammalian/cytology
- Embryo, Nonmammalian
- Endoderm/cytology
- Gastrula
- Gene Expression Regulation, Developmental
- Genes, Homeobox
- Genes, Reporter
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Hypothalamus/embryology
- Hypothalamus/metabolism
- Lac Operon
- Luciferases/metabolism
- Mice
- Mice, Transgenic
- Models, Biological
- Point Mutation
- Promoter Regions, Genetic
- Protein Binding
- Regulatory Sequences, Nucleic Acid/genetics
- Transgenes
- Vertebrates/embryology
- Xenopus
Collapse
Affiliation(s)
- Shen-Ju Chou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Arrigo T, Wasniewska M, De Luca F, Valenzise M, Lombardo F, Vivenza D, Vaccaro T, Coradi E, Biason-Lauber A. Congenital adenohypophysis aplasia: clinical features and analysis of the transcriptional factors for embryonic pituitary development. J Endocrinol Invest 2006; 29:208-13. [PMID: 16682832 DOI: 10.1007/bf03345541] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
UNLABELLED Anterior pituitary agenesis (APA) has very rarely been reported. Therefore, its phenotypical and genotypical features are not well known. The aim of this study was to ascertain whether the clinical picture in 4 subjects with APA and multiple pituitary hormone deficiencies (MPHD) was different compared to the one observed in a selected control group consisting of 7 MPHD individuals with hypoplastic (and not aplastic) adenohypophysis and pituitary stalk interruption syndrome. Another goal was to investigate genetic basis of APA by analyzing for the first time in this condition many of the transcriptional factors which are required for both structural development and cellular differentiation of hypophysis. Age at diagnosis was significantly lower in APA children than in controls (1.5+/-2.3 vs 11.1+/-7.6 yr, p<0.0005). Microphallus and neonatal cholestasis were observed only in APA subjects (chi-squared=4.3, p<0.05) and also neonatal hypoglycemia was more frequent in APA patients than in controls (X2=4.05, p<0.05). Molecular analyses of the genes of the transcriptional factors POU1F1, PROP1, LHX3, LHX4, ISL1 and HESX1 detected no mutations in APA patients. CONCLUSIONS a) if compared with a selected cohort of MPHD patients with both adenohypophysis hypoplasia and pituitary stalk interruption syndrome, the ones with APA show an earlier and more severe picture of hypopituitarism; b) mutations in several transcription factors that are known to be essential for the development of Rathke's pouch are not necessarily found in humans with APA.
Collapse
Affiliation(s)
- T Arrigo
- Department of Pediatrics, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kelberman D, Dattani MT. The role of transcription factors implicated in anterior pituitary development in the aetiology of congenital hypopituitarism. Ann Med 2006; 38:560-77. [PMID: 17438671 DOI: 10.1080/07853890600994963] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The anterior pituitary gland is a central regulator of growth, reproduction and homeostasis, and is the end-product of a carefully orchestrated pattern of expression of signalling molecules and transcription factors leading to the development of this complex organ secreting six hormones from five different cell types. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of combined pituitary hormone deficiency (CPHD). These include the transcription factors HESX1, PROP1, POU1FI, LHX3, LHX4, TBX19 (TPIT), SOX3 and SOX2. The expression pattern of these transcription factors, their interaction with co-factors and their impact on target genes dictate the phenotype that results when the gene encoding the relevant transcription factor is mutated. The highly variable phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Since mutations in any one transcription factor are uncommon, and since the overall incidence of mutations in known transcription factors is low in patients with CPHD, it is clear that many genes remain to be identified, and characterization of these will further elucidate the pathogenesis of these complex conditions, and also shed light on normal pituitary development.
Collapse
Affiliation(s)
- Daniel Kelberman
- Biochemistry, Endocrinology and Metabolism Unit, Institute for Child Health, London, UK
| | | |
Collapse
|