1
|
Stanton E, Sheridan S, Urata M, Chai Y. From Bedside to Bench and Back: Advancing Our Understanding of the Pathophysiology of Cleft Palate and Implications for the Future. Cleft Palate Craniofac J 2024; 61:759-773. [PMID: 36457208 DOI: 10.1177/10556656221142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE To provide a comprehensive understanding of the pathophysiology of cleft palate (CP) and future perspectives. DESIGN Literature review. SETTING Setting varied across studies by level of care and geographical locations. INTERVENTIONS No interventions were performed. MAIN OUTCOME MEASURE(S) Primary outcome measures were to summarize our current understanding of palatogenesis in humans and animal models, the pathophysiology of CP, and potential future treatment modalities. RESULTS Animal research has provided considerable insight into the pathophysiology, molecular and cellular mechanisms of CP that have allowed for the development of novel treatment strategies. However, much work has yet to be done to connect our mouse model investigations and discoveries to CP in humans. The success of innovative strategies for tissue regeneration in mice provides promise for an exciting new avenue for improved and more targeted management of cleft care with precision medicine in patients. However, significant barriers to clinical translation remain. Among the most notable challenges include the differences in some aspects of palatogenesis and tissue repair between mice and humans, suggesting that potential therapies that have worked in animal models may not provide similar benefits to humans. CONCLUSIONS Increased translation of pathophysiological and tissue regeneration studies to clinical trials will bridge a wide gap in knowledge between animal models and human disease. By enhancing interaction between basic scientists and clinicians, and employing our animal model findings of disease mechanisms in concert with what we glean in the clinic, we can generate a more targeted and improved treatment algorithm for patients with CP.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samuel Sheridan
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Mark Urata
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
3
|
Chu G, Li P, Zhao Q, He R, Zhao Y. Mutation spectrum of Kallmann syndrome: identification of five novel mutations across ANOS1 and FGFR1. Reprod Biol Endocrinol 2023; 21:23. [PMID: 36859276 PMCID: PMC9976430 DOI: 10.1186/s12958-023-01074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Kallmann syndrome (KS) is a common type of idiopathic hypogonadotropic hypogonadism. To date, more than 30 genes including ANOS1 and FGFR1 have been identified in different genetic models of KS without affirmatory genotype-phenotype correlation, and novel mutations have been found. METHODS A total of 35 unrelated patients with clinical features of disorder of sex development were recruited. Custom-panel sequencing or whole-exome sequencing was performed to detect the pathogenic mutations. Sanger sequencing was performed to verify single-nucleotide variants. Copy number variation-sequencing (CNV-seq) was performed to determine CNVs. The pathogenicity of the identified variant was predicted in silico. mRNA transcript analysis and minigene reporter assay were performed to test the effect of the mutation on splicing. RESULTS ANOS1 gene c.709 T > A and c.711 G > T were evaluated as pathogenic by several commonly used software, and c.1063-2 A > T was verified by transcriptional splicing assay. The c.1063-2 A > T mutation activated a cryptic splice acceptor site downstream of the original splice acceptor site and resulted in an aberrant splicing of the 24-basepair at the 5' end of exon 8, yielding a new transcript with c.1063-1086 deletion. FRFR1 gene c.1835delA was assessed as pathogenic according to the ACMG guideline. The CNV of del(8)(p12p11.22)chr8:g.36140000_38460000del was judged as pathogenic according to the ACMG & ClinGen technical standards. CONCLUSIONS Herein, we identified three novel ANOS1 mutations and two novel FGFR1 variations in Chinese KS families. In silico prediction and functional experiment evaluated the pathogenesis of ANOS1 mutations. FRFR1 c.1835delA mutation and del(8)(p12p11.22)chr8:g.36140000_38460000del were assessed as pathogenic variations. Therefore, our study expands the spectrum of mutations associated with KS and provides diagnostic evidence for patients who carry the same mutation in the future.
Collapse
Affiliation(s)
- Guoming Chu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Qian Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Rong He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
4
|
Grinspon RP, Castro S, Brunello FG, Sansó G, Ropelato MG, Rey RA. Diagnosis of Male Central Hypogonadism During Childhood. J Endocr Soc 2021; 5:bvab145. [PMID: 34589657 PMCID: PMC8475809 DOI: 10.1210/jendso/bvab145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The diagnosis of male central (or hypogonadotropic) hypogonadism, typically based on low luteinizing hormone (LH) and testosterone levels, is challenging during childhood since both hormones are physiologically low from the sixth month until the onset of puberty. Conversely, follicle-stimulating hormone (FSH) and anti-Müllerian hormone (AMH), which show higher circulating levels during infancy and childhood, are not used as biomarkers for the condition. We report the case of a 7-year-old boy with a history of bilateral cryptorchidism who showed repeatedly low FSH and AMH serum levels during prepuberty. Unfortunately, the diagnosis could not be ascertained until he presented with delayed puberty at the age of 14 years. A gonadotropin-releasing hormone (GnRH) test showed impaired LH and FSH response. By then, his growth and bone mineralization were partially impaired. Gene panel sequencing identified a variant in exon 15 of FGFR1, affecting the tyrosine kinase domain of the receptor, involved in GnRH neuron migration and olfactory bulb morphogenesis. Testosterone replacement was started, which resulted in the development of secondary sexual characteristics and partial improvement of bone mineral density. This case illustrates the difficulty in making the diagnosis of central hypogonadism in boys during childhood based on classical criteria, and how serum FSH and AMH assessment may be helpful if it is suspected before the age of puberty, and confirm it using next-generation sequencing. The possibility of making an early diagnosis of central hypogonadism may be useful for a timely start of hormone replacement therapy, and to avoid delays that could affect growth and bone health as well as psychosocial adjustment.
Collapse
Affiliation(s)
- Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Sebastián Castro
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Franco G Brunello
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Gabriela Sansó
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - María Gabriela Ropelato
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
5
|
Nie M, Yu B, Chen R, Sun B, Mao J, Wang X, Zhang H, Wu X. Novel rare variants in FGFR1 and clinical characteristics analysis in a series of congenital hypogonadotropic hypogonadism patients. Clin Endocrinol (Oxf) 2021; 95:153-162. [PMID: 33548149 DOI: 10.1111/cen.14436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We aimed to analyse FGFR1 rare variants in a series of Chinese congenital hypogonadotropic hypogonadism (CHH) patients. In addition, we intended to understand the clinical characteristics and the response to treatment of CHH patients with FGFR1 rare variants. PATIENTS AND METHODS A total of 357 CHH patients were recruited at Peking Union Medical College Hospital. We used Sanger sequencing to analyse FGFR1 gene. In silico analysis was carried out to study the pathogenicity of novel missense variants. The clinical, endocrinological and therapeutic effects from patients carrying FGFR1 rare variants were analysed retrospectively. RESULTS Thimissense mutations.rty patients in this series were found to harbour 29 FGFR1 rare variants, with 8 recurrent and 21 novel variants. After comprehensive analysis, 18 out of 21 novel variants were classified as likely pathogenic (LP) ones. These variants are widely spread throughout the FGFR1 gene and almost all FGFR1 functional domains, which exhibited no hot spot. Cryptorchidism, cleft palate and dental abnormality incidence in this CHH series that possessed FGFR1 LP variants were approximately 38.5%, 7.6% and 3.8%, respectively. Among patients who accepted the fertility-promoting treatment, 8 out of 10 patients succeeded in spermatogenesis. CONCLUSIONS Eighteen novel LP variants were found to expand the spectrum of FGFR1 rare variants. In CHH patients possessing FGFR1 variants, we found that the rate of spermatogenesis was high following fertility-promoting therapy and the existence of cryptorchidism may represent the underlying factors which affect spermatogenesis.
Collapse
Affiliation(s)
- Min Nie
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bingqing Yu
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rongrong Chen
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bang Sun
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangfeng Mao
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Wang
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueyan Wu
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Duan C, Allard J. Gonadotropin-releasing hormone neuron development in vertebrates. Gen Comp Endocrinol 2020; 292:113465. [PMID: 32184073 DOI: 10.1016/j.ygcen.2020.113465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are master regulators of the reproductive axis in vertebrates. During early mammalian embryogenesis, GnRH1 neurons emerge in the nasal/olfactory placode. These neurons undertake a long-distance migration, moving from the nose to the preoptic area and hypothalamus. While significant advances have been made in understanding the functional importance of the GnRH1 neurons in reproduction, where GnRH1 neurons come from and how are they specified during early development is still under debate. In addition to the GnRH1 gene, most vertebrate species including humans have one or two additional GnRH genes. Compared to the GnRH1 neurons, much less is known about the development and regulation of GnRH2 neuron and GnRH3 neurons. The objective of this article is to review what is currently known about GnRH neuron development. We will survey various cell autonomous and non-autonomous factors implicated in the regulation of GnRH neuron development. Finally, we will discuss emerging tools and new approaches to resolve open questions pertaining to GnRH neuron development.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - John Allard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
7
|
Stamou M, Ng SY, Brand H, Wang H, Plummer L, Best L, Havlicek S, Hibberd M, Khor CC, Gusella J, Balasubramanian R, Talkowski M, Stanton LW, Crowley WF. A Balanced Translocation in Kallmann Syndrome Implicates a Long Noncoding RNA, RMST, as a GnRH Neuronal Regulator. J Clin Endocrinol Metab 2020; 105:5601163. [PMID: 31628846 PMCID: PMC7112981 DOI: 10.1210/clinem/dgz011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Kallmann syndrome (KS) is a rare, genetically heterogeneous Mendelian disorder. Structural defects in KS patients have helped define the genetic architecture of gonadotropin-releasing hormone (GnRH) neuronal development in this condition. OBJECTIVE Examine the functional role a novel structural defect affecting a long noncoding RNA (lncRNA), RMST, found in a KS patient. DESIGN Whole genome sequencing, induced pluripotent stem cells and derived neural crest cells (NCC) from the KS patient were contrasted with controls. SETTING The Harvard Reproductive Sciences Center, Massachusetts General Hospital Center for Genomic Medicine, and Singapore Genome Institute. PATIENT A KS patient with a unique translocation, t(7;12)(q22;q24). INTERVENTIONS/MAIN OUTCOME MEASURE/RESULTS A novel translocation was detected affecting the lncRNA, RMST, on chromosome 12 in the absence of any other KS mutations. Compared with controls, the patient's induced pluripotent stem cells and NCC provided functional information regarding RMST. Whereas RMST expression increased during NCC differentiation in controls, it was substantially reduced in the KS patient's NCC coincident with abrogated NCC morphological development and abnormal expression of several "downstream" genes essential for GnRH ontogeny (SOX2, PAX3, CHD7, TUBB3, and MKRN3). Additionally, an intronic single nucleotide polymorphism in RMST was significantly implicated in a genome-wide association study associated with age of menarche. CONCLUSIONS A novel deletion in RMST implicates the loss of function of a lncRNA as a unique cause of KS and suggests it plays a critical role in the ontogeny of GnRH neurons and puberty.
Collapse
Affiliation(s)
- Maria Stamou
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital, Boston
| | - Shi-Yan Ng
- Institute of Molecular & Cell Biology, Singapore
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Neurology, Psychiatry, & Pathology Departments, Massachusetts General Hospital, Boston
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA
| | - Harold Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Lacey Plummer
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital, Boston
| | - Lyle Best
- Turtle Mountain Community College, Belcourt, ND
- Family Medicine Department, University of North Dakota, Grand Forks, ND
| | | | - Martin Hibberd
- London School of Hygiene & Tropical Medicine, Keppel Street, London
- Genome Institute of Singapore, Singapore
| | | | - James Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | | | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Neurology, Psychiatry, & Pathology Departments, Massachusetts General Hospital, Boston
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA
| | - Lawrence W Stanton
- Genome Institute of Singapore, Singapore
- Qatar Biomedical Research Institute (QBRI), Hamad BIn Khalifa University (HBRI), Doha, Qatar
| | - William F Crowley
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Correspondence and Reprint Requests: William F. Crowley, Jr., M.D., Center for Genomic Medicine CPZN-6.6312 - 185 Cambridge Street, Boston, MA 02114. E-mail:
| |
Collapse
|
8
|
Festa A, Umano GR, Miraglia del Giudice E, Grandone A. Genetic Evaluation of Patients With Delayed Puberty and Congenital Hypogonadotropic Hypogonadism: Is it Worthy of Consideration? Front Endocrinol (Lausanne) 2020; 11:253. [PMID: 32508745 PMCID: PMC7248176 DOI: 10.3389/fendo.2020.00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Delayed puberty is a common reason of pediatric endocrinological consultation. It is often a self-limited (or constitutional) condition with a strong familial basis. The type of inheritance is variable but most commonly autosomal dominant. Despite this strong genetic determinant, mutations in genes implicated in the regulation of hypothalamic-pituitary-gonadal axis have rarely been identified in cases of self-limited delayed puberty and often in relatives of patients with congenital hypogonadotropic hypogonadism (i.e., FGFR1 and GNRHR genes). However, recently, next-generation sequencing analysis has led to the discovery of new genes (i.e., IGSF10, HS6ST1, FTO, and EAP1) that are implicated in determining isolated self-limited delayed puberty in some families. Despite the heterogeneity of genetic defects resulting in delayed puberty, genetic testing may become a useful diagnostic tool for the correct classification and management of patients with delayed puberty. This article will discuss the benefits and the limitations of genetic testing execution in cases of delayed puberty.
Collapse
|
9
|
Neocleous V, Fanis P, Toumba M, Tanteles GA, Schiza M, Cinarli F, Nicolaides NC, Oulas A, Spyrou GM, Mantzoros CS, Vlachakis D, Skordis N, Phylactou LA. GnRH Deficient Patients With Congenital Hypogonadotropic Hypogonadism: Novel Genetic Findings in ANOS1, RNF216, WDR11, FGFR1, CHD7, and POLR3A Genes in a Case Series and Review of the Literature. Front Endocrinol (Lausanne) 2020; 11:626. [PMID: 32982993 PMCID: PMC7485345 DOI: 10.3389/fendo.2020.00626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease caused by Gonadotropin-Releasing Hormone (GnRH) deficiency. So far a limited number of variants in several genes have been associated with the pathogenesis of the disease. In this original research and review manuscript the retrospective analysis of known variants in ANOS1 (KAL1), RNF216, WDR11, FGFR1, CHD7, and POLR3A genes is described, along with novel variants identified in patients with CHH by the present study. Methods: Seven GnRH deficient unrelated Cypriot patients underwent whole exome sequencing (WES) by Next Generation Sequencing (NGS). The identified novel variants were initially examined by in silico computational algorithms and structural analysis of their predicted pathogenicity at the protein level was confirmed. Results: In four non-related GnRH males, a novel X-linked pathogenic variant in ANOS1 gene, two novel autosomal dominant (AD) probably pathogenic variants in WDR11 and FGFR1 genes and one rare AD probably pathogenic variant in CHD7 gene were identified. A rare autosomal recessive (AR) variant in the SRA1 gene was identified in homozygosity in a female patient, whilst two other male patients were also, respectively, found to carry novel or previously reported rare pathogenic variants in more than one genes; FGFR1/POLR3A and SRA1/RNF216. Conclusion: This report embraces the description of novel and previously reported rare pathogenic variants in a series of genes known to be implicated in the biological development of CHH. Notably, patients with CHH can harbor pathogenic rare variants in more than one gene which raises the hypothesis of locus-locus interactions providing evidence for digenic inheritance. The identification of such aberrations by NGS can be very informative for the management and future planning of these patients.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Pediatric Endocrine Clinic, IASIS Hospital, Paphos, Cyprus
| | - George A. Tanteles
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Clinical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Melpo Schiza
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Feride Cinarli
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nicolas C. Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Childrens Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasis Oulas
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christos S. Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, United States
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- St George's, University of London Medical School at the University of Nicosia, Nicosia, Cyprus
- *Correspondence: Nicos Skordis
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Leonidas A. Phylactou
| |
Collapse
|
10
|
Maione L, Dwyer AA, Francou B, Guiochon-Mantel A, Binart N, Bouligand J, Young J. GENETICS IN ENDOCRINOLOGY: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol 2018; 178:R55-R80. [PMID: 29330225 DOI: 10.1530/eje-17-0749] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are rare, related diseases that prevent normal pubertal development and cause infertility in affected men and women. However, the infertility carries a good prognosis as increasing numbers of patients with CHH/KS are now able to have children through medically assisted procreation. These are genetic diseases that can be transmitted to patients' offspring. Importantly, patients and their families should be informed of this risk and given genetic counseling. CHH and KS are phenotypically and genetically heterogeneous diseases in which the risk of transmission largely depends on the gene(s) responsible(s). Inheritance may be classically Mendelian yet more complex; oligogenic modes of transmission have also been described. The prevalence of oligogenicity has risen dramatically since the advent of massively parallel next-generation sequencing (NGS) in which tens, hundreds or thousands of genes are sequenced at the same time. NGS is medically and economically more efficient and more rapid than traditional Sanger sequencing and is increasingly being used in medical practice. Thus, it seems plausible that oligogenic forms of CHH/KS will be increasingly identified making genetic counseling even more complex. In this context, the main challenge will be to differentiate true oligogenism from situations when several rare variants that do not have a clear phenotypic effect are identified by chance. This review aims to summarize the genetics of CHH/KS and to discuss the challenges of oligogenic transmission and also its role in incomplete penetrance and variable expressivity in a perspective of genetic counseling.
Collapse
Affiliation(s)
- Luigi Maione
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Andrew A Dwyer
- Boston College, William F. Connell School of Nursing, Chestnut Hill, Massachusetts, USA
| | - Bruno Francou
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Jérôme Bouligand
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Jacques Young
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Next-generation sequencing of patients with congenital anosmia. Eur J Hum Genet 2017; 25:1377-1387. [PMID: 29255181 DOI: 10.1038/s41431-017-0014-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/10/2017] [Accepted: 09/09/2017] [Indexed: 02/05/2023] Open
Abstract
We performed whole exome or genome sequencing in eight multiply affected families with ostensibly isolated congenital anosmia. Hypothesis-free analyses based on the assumption of fully penetrant recessive/dominant/X-linked models obtained no strong single candidate variant in any of these families. In total, these eight families showed 548 rare segregating variants that were predicted to be damaging, in 510 genes. Three Kallmann syndrome genes (FGFR1, SEMA3A, and CHD7) were identified. We performed permutation-based analysis to test for overall enrichment of these 510 genes carrying these 548 variants with genes mutated in Kallmann syndrome and with a control set of genes mutated in hypogonadotrophic hypogonadism without anosmia. The variants were found to be enriched for Kallmann syndrome genes (3 observed vs. 0.398 expected, p = 0.007), but not for the second set of genes. Among these three variants, two have been already reported in genes related to syndromic anosmia (FGFR1 (p.(R250W)), CHD7 (p.(L2806V))) and one was novel (SEMA3A (p.(T717I))). To replicate these findings, we performed targeted sequencing of 16 genes involved in Kallmann syndrome and hypogonadotrophic hypogonadism in 29 additional families, mostly singletons. This yielded an additional 6 variants in 5 Kallmann syndrome genes (PROKR2, SEMA3A, CHD7, PROK2, ANOS1), two of them already reported to cause Kallmann syndrome. In all, our study suggests involvement of 6 syndromic Kallmann genes in isolated anosmia. Further, we report a yet unreported appearance of di-genic inheritance in a family with congenital isolated anosmia. These results are consistent with a complex molecular basis of congenital anosmia.
Collapse
|
12
|
Withdrawn: Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era. Endocr Rev 2017. [PMID: 27454361 DOI: 10.1210/er.2015-1045.2016.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).
Collapse
|
13
|
Strategies to Mitigate Variability in Engineering Human Nasal Cartilage. Sci Rep 2017; 7:6490. [PMID: 28747655 PMCID: PMC5529506 DOI: 10.1038/s41598-017-06666-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023] Open
Abstract
Skin cancer and its associated treitments can have devastating consequences for survivors; this is particularly true when cancer occurs on the nose. Recent work has applied cell-based tissue engineering (TE) strategies to develop nasal cartilage constructs for reconstruction of the nose. In this study, we have generated human nasal cartilage on a clinically approved collagen scaffold to investigate the donor-to-donor variability of TE cartilage and evaluated strategies to mitigate it. We also evaluated the gene expression of the family of fibroblast growth factor receptors (FGFR1-4) and their association with tissue quality. FGFR1 was significantly positively correlated with GAG/DNA; a measure of chondrogenic capacity. We implemented two strategies: hypoxic culture and co-culture with mesenchymal stromal cells (MSCs) to increase tissue quality. Total glycosaminoglycan (GAG) content varied significantly between donors initially, with >10–fold difference between the best and worst donor tissue. Our co-culture strategy was able to increase TE construct quality from poor quality donor tissue while supressing hypertrophy relative to MSCs alone. However, no differences were observed with the use of hypoxic culture. Tissues generated using co-culture with MSCs became vascularized and calcified in vivo, demonstrating a non-stable cartilage phenotype in co-culture and MSCs cartilage constructs.
Collapse
|
14
|
Akkuş G, Kotan LD, Durmaz E, Mengen E, Turan İ, Ulubay A, Gürbüz F, Yüksel B, Tetiker T, Topaloğlu AK. Hypogonadotropic Hypogonadism due to Novel FGFR1 Mutations. J Clin Res Pediatr Endocrinol 2017; 9:95-100. [PMID: 28008864 PMCID: PMC5463295 DOI: 10.4274/jcrpe.3908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE The underlying genetic etiology of hypogonadotropic hypogonadism (HH) is heterogeneous. Fibroblast growth factor signaling is pivotal in the ontogeny of gonadotropin-releasing hormone neurons. Loss-of-function mutations in FGFR1 gene cause variable HH phenotypes encompassing pubertal delay to idiopathic HH (IHH) or Kallmann syndrome (KS). As FGFR1 mutations are common, recognizing mutations and associated phenotypes may enhance clinical management. METHODS Using a candidate gene approach, we screened 52 IHH/KS patients. RESULTS We identified three novel (IVS3-1G>C and p.W2X, p.R209C) FGFR1 gene mutations. Despite predictive null protein function, patients from the novel mutation families had normosmic IHH without non-reproductive phenotype. CONCLUSION These findings further emphasize the great variability of FGFR1 mutation phenotypes in IHH/KS.
Collapse
Affiliation(s)
- Gamze Akkuş
- Çukurova University Faculty of Medicine, Division of Endocrinology, Adana, Turkey
| | - Leman Damla Kotan
- Çukurova University Faculty of Medicine, Division of Pediatric Endocrinology, Adana, Turkey
| | - Erdem Durmaz
- İzmir University Faculty of Medicine, Division of Pediatric Endocrinology, İzmir, Turkey
| | - Eda Mengen
- Çukurova University Faculty of Medicine, Division of Pediatric Endocrinology, Adana, Turkey
| | - İhsan Turan
- Çukurova University Faculty of Medicine, Division of Pediatric Endocrinology, Adana, Turkey
| | - Ayça Ulubay
- Çukurova University Faculty of Medicine, Department of Forensic Medicine, Adana, Turkey
| | - Fatih Gürbüz
- Çukurova University Faculty of Medicine, Division of Pediatric Endocrinology, Adana, Turkey
| | - Bilgin Yüksel
- Çukurova University Faculty of Medicine, Division of Pediatric Endocrinology, Adana, Turkey
| | - Tamer Tetiker
- Çukurova University Faculty of Medicine, Division of Endocrinology, Adana, Turkey
| | - A. Kemal Topaloğlu
- Çukurova University Faculty of Medicine, Division of Pediatric Endocrinology, Adana, Turkey
,* Address for Correspondence: Çukurova University Faculty of Medicine, Division of Pediatric Endocrinology, Adana, Turkey E-mail:
| |
Collapse
|
15
|
Dubourg C, Carré W, Hamdi-Rozé H, Mouden C, Roume J, Abdelmajid B, Amram D, Baumann C, Chassaing N, Coubes C, Faivre-Olivier L, Ginglinger E, Gonzales M, Levy-Mozziconacci A, Lynch SA, Naudion S, Pasquier L, Poidvin A, Prieur F, Sarda P, Toutain A, Dupé V, Akloul L, Odent S, de Tayrac M, David V. Mutational Spectrum in Holoprosencephaly Shows That FGF is a New Major Signaling Pathway. Hum Mutat 2016; 37:1329-1339. [DOI: 10.1002/humu.23038] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Christèle Dubourg
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Wilfrid Carré
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Houda Hamdi-Rozé
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Charlotte Mouden
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Joëlle Roume
- Service de Génétique Médicale; CHI; Poissy France
| | | | - Daniel Amram
- Unité de Génétique Clinique; CHI; Créteil France
| | | | | | | | | | | | - Marie Gonzales
- Service de Génétique et Embryologie Médicales; Hôpital Armand Trousseau; Paris France
| | | | - Sally-Ann Lynch
- Medical Genetics; Our Lady's Children Hospital; Dublin Ireland
| | | | | | - Amélie Poidvin
- Service d'Endocrinologie; CHU Robert Debré; Paris France
| | | | - Pierre Sarda
- Département de Génétique Médicale; CHU; Montpellier France
| | | | - Valérie Dupé
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Linda Akloul
- Service de Génétique Clinique; CHU; Rennes France
| | - Sylvie Odent
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Service de Génétique Clinique; CHU; Rennes France
| | - Marie de Tayrac
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Véronique David
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| |
Collapse
|
16
|
Hirata A, Katayama K, Tsuji T, Imura H, Natsume N, Sugahara T, Kunieda T, Nakamura H, Otsuki Y. Homeobox family Hoxc localization during murine palate formation. Congenit Anom (Kyoto) 2016; 56:172-9. [PMID: 26718736 DOI: 10.1111/cga.12153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 12/29/2022]
Abstract
Homeobox genes play important roles in craniofacial morphogenesis. However, the characteristics of the transcription factor Hoxc during palate formation remain unclear. We examined the immunolocalization patterns of Hoxc5, Hoxc4, and Hoxc6 in palatogenesis of cleft palate (Eh/Eh) mice. On the other hand, mutations in the FGF/FGFR pathway are exclusively associated with syndromic forms of cleft palate. We also examined the immunolocalization of Fgfr1 and Erk1/2 to clarify their relationships with Hoxc in palatogenesis. Some palatal epithelial cells showed Hoxc5 labeling, while almost no labeling of mesenchymal cells was observed in +/+ mice. As palate formation progressed in +/+ mice, Hoxc5, Hoxc4, and Hoxc6 were observed in medial epithelial seam cells. Hoxc5 and Hoxc6 were detected in the oral epithelium. The palatal mesenchyme also showed intense staining for Fgfr1 and Erk1/2 with progression of palate formation. In contrast, the palatal shelves of Eh/Eh mice exhibited impaired horizontal growth and failed to fuse, resulting in a cleft. Hoxc5 was observed in a few epithelial cells and diffusely in the mesenchyme of Eh/Eh palatal shelves. No or little labeling of Fgfr1 and Erk1/2 was detected in the cleft palate of Eh/Eh mice. These findings suggest that Hoxc genes are involved in palatogenesis. Furthermore, there may be the differences in the localization pattern between Hoxc5, Hoxc4, and Hoxc6. Additionally, Hoxc distribution in palatal cells during palate development may be correlated with FGF signaling. (228/250 words) © 2016 Japanese Teratology Society.
Collapse
Affiliation(s)
- Azumi Hirata
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kentaro Katayama
- Division of Functional Morphology, Department of Basic Veterinary Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Takehito Tsuji
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, Japan
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, Japan
| | - Toshio Sugahara
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, Japan
| | - Tetsuo Kunieda
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Nakamura
- Department of Oral Histology, School of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | | |
Collapse
|
17
|
Regulation of FGF signaling: Recent insights from studying positive and negative modulators. Semin Cell Dev Biol 2016; 53:101-14. [DOI: 10.1016/j.semcdb.2016.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
|
18
|
Mazen I, Amin H, Kamel A, El Ruby M, Bignon-Topalovic J, Bashamboo A, McElreavey K. Homozygous Mutation of the FGFR1 Gene Associated with Congenital Heart Disease and 46,XY Disorder of Sex Development. Sex Dev 2016; 10:16-22. [PMID: 27055092 DOI: 10.1159/000444948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/19/2022] Open
Abstract
Congenital heart diseases (CHDs) are the most common cause of all birth defects and account for nearly 25% of all major congenital anomalies leading to mortality in the first year of life. Extracardiac anomalies including urogenital aberrations are present in ∼30% of all cases. Here, we present a rare case of a 46,XY patient with CHD associated with ambiguous genitalia consisting of a clitoris-like phallus and a bifid scrotum. Exome sequencing revealed novel homozygous mutations in the FGFR1 and STARD3 genes that may be associated with the phenotype.
Collapse
Affiliation(s)
- Inas Mazen
- Department of Clinical Genetics, National Research Center, Cairo, Egypt
| | | | | | | | | | | | | |
Collapse
|
19
|
Hong S, Hu P, Marino J, Hufnagel SB, Hopkin RJ, Toromanović A, Richieri-Costa A, Ribeiro-Bicudo LA, Kruszka P, Roessler E, Muenke M. Dominant-negative kinase domain mutations in FGFR1 can explain the clinical severity of Hartsfield syndrome. Hum Mol Genet 2016; 25:1912-1922. [PMID: 26931467 DOI: 10.1093/hmg/ddw064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
Abstract
Mutations in FGFR1 have recently been associated with Hartsfield syndrome, a clinically distinct syndromic form of holoprosencephaly (HPE) with ectrodactly, which frequently includes combinations of craniofacial, limb and brain abnormalities not typical for classical HPE. Unrelated clinical conditions generally without craniofacial or multi-system malformations include Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. FGFR1 is a principal cause for these less severe diseases as well. Here we demonstrate that of the nine FGFR1 mutations recently detected in our screen of over 200 HPE probands by next generation sequencing, only five distinct mutations in the kinase domain behave as dominant-negative mutations in zebrafish over-expression assays. Three FGFR1 mutations seen in HPE probands behave identical to wild-type FGFR1 in rescue assays, including one apparent de novo variation. Interestingly, in one HPE family, a deleterious FGFR1 allele was transmitted from one parent and a loss-of-function allele in FGF8 from the other parent to both affected daughters. This family is one of the clearest examples to date of gene:gene synergistic interactions causing HPE in humans.
Collapse
Affiliation(s)
- Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Sophia B Hufnagel
- Department of Medical Genetics, Cincinnati Children's Medical Center, Cincinnati, OH, USA and
| | - Robert J Hopkin
- Department of Medical Genetics, Cincinnati Children's Medical Center, Cincinnati, OH, USA and
| | - Alma Toromanović
- Department of Pediatrics, University Clinical Center Tuzla, Tuzla, Bosnia and Herzegovina
| | | | | | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA,
| |
Collapse
|
20
|
Stamou MI, Cox KH, Crowley WF. Withdrawn: Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era. Endocr Rev 2016; 2016:4-22. [PMID: 27454361 PMCID: PMC6958992 DOI: 10.1210/er.2015-1045.2016.1.test] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/15/2015] [Indexed: 12/17/2022]
Abstract
The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).
Collapse
Affiliation(s)
- M I Stamou
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - K H Cox
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - William F Crowley
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
21
|
Stamou MI, Cox KH, Crowley WF. Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era. Endocr Rev 2015; 36:603-21. [PMID: 26394276 PMCID: PMC4702497 DOI: 10.1210/er.2015-1045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Abstract
The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3) substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery.
Collapse
Affiliation(s)
- M I Stamou
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - K H Cox
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - William F Crowley
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
22
|
Sarfati J, Bouvattier C, Bry-Gauillard H, Cartes A, Bouligand J, Young J. Kallmann syndrome with FGFR1 and KAL1 mutations detected during fetal life. Orphanet J Rare Dis 2015; 10:71. [PMID: 26051373 PMCID: PMC4469106 DOI: 10.1186/s13023-015-0287-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/20/2015] [Indexed: 01/24/2023] Open
Abstract
Kallmann syndrome (KS) patients carrying FGFR1 mutations can transmit the disorder to their offspring as can asymptomatic female carriers of mutations in KAL1. We describe for the first time two cases in which KS was suspected during fetal life because of the family context and malformation detection by fetal ultrasound: syndactyly or unilateral renal agenesis in subjects with respectively FGFR1 and KAL1 mutations. In relevant family history, ultrasound monitoring can detect KS associated signs before birth and thus enable neonatal diagnosis and early management. These observations also underline the importance of genetic counselling for patients who may transmit KS to their offspring.
Collapse
Affiliation(s)
- Julie Sarfati
- Univ Paris-Sud, Le Kremlin Bicêtre, F-94276, France.,Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France.,Department of Reproductive Endocrinology, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France
| | - Claire Bouvattier
- Univ Paris-Sud, Le Kremlin Bicêtre, F-94276, France.,Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France.,Department of Pediatric Endocrinology, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France
| | - Hélène Bry-Gauillard
- Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France.,Department of Reproductive Endocrinology, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France
| | - Alejandra Cartes
- Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France.,Department of Reproductive Endocrinology, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France
| | - Jérôme Bouligand
- Univ Paris-Sud, Le Kremlin Bicêtre, F-94276, France.,INSERM UMR-1185, Le Kremlin Bicêtre, F-94276, France.,Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France.,Molecular Genetics and Hormonology Department, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France
| | - Jacques Young
- Univ Paris-Sud, Le Kremlin Bicêtre, F-94276, France. .,INSERM UMR-1185, Le Kremlin Bicêtre, F-94276, France. .,Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France. .,Department of Reproductive Endocrinology, 78 rue du Général Leclerc, Le Kremlin-Bicêtre, F-94275, France.
| |
Collapse
|
23
|
Younkin SG, Scharpf RB, Schwender H, Parker MM, Scott AF, Marazita ML, Beaty TH, Ruczinski I. A genome-wide study of inherited deletions identified two regions associated with nonsyndromic isolated oral clefts. ACTA ACUST UNITED AC 2015; 103:276-83. [PMID: 25776870 DOI: 10.1002/bdra.23362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND DNA copy number variants play an important part in the development of common birth defects such as oral clefts. Individual patients with multiple birth defects (including oral clefts) have been shown to carry small and large chromosomal deletions. METHODS We investigated the role of polymorphic copy number deletions by comparing transmission rates of deletions from parents to offspring in case-parent trios of European ancestry ascertained through a cleft proband with trios ascertained through a normal offspring. DNA copy numbers in trios were called using the joint hidden Markov model in the freely available PennCNV software. All statistical analyses were performed using Bioconductor tools in the open source environment R. RESULTS We identified a 67 kb region in the gene MGAM on chromosome 7q34, and a 206 kb region overlapping genes ADAM3A and ADAM5 on chromosome 8p11, where deletions are more frequently transmitted to cleft offspring than control offspring. CONCLUSIONS These genes or nearby regulatory elements may be involved in the etiology of oral clefts.
Collapse
Affiliation(s)
- Samuel G Younkin
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Forni PE, Wray S. GnRH, anosmia and hypogonadotropic hypogonadism--where are we? Front Neuroendocrinol 2015; 36:165-77. [PMID: 25306902 PMCID: PMC4703044 DOI: 10.1016/j.yfrne.2014.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
Gonadotropin releasing hormone (GnRH) neurons originate the nasal placode and migrate into the brain during prenatal development. Once within the brain, these cells become integral components of the hypothalamic-pituitary-gonadal axis, essential for reproductive function. Disruption of this system causes hypogonadotropic hypogonadism (HH). HH associated with anosmia is clinically defined as Kallman syndrome (KS). Recent work examining the developing nasal region has shed new light on cellular composition, cell interactions and molecular cues responsible for the development of this system in different species. This review discusses some developmental aspects, animal models and current advancements in our understanding of pathologies affecting GnRH. In addition we discuss how development of neural crest derivatives such as the glia of the olfactory system and craniofacial structures control GnRH development and reproductive function.
Collapse
Affiliation(s)
- Paolo E Forni
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States.
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
25
|
Evidence of olfactory deficits as part of the phenotypic spectrum of nonsyndromic orofacial clefting. J Craniofac Surg 2014; 26:84-6. [PMID: 25534055 DOI: 10.1097/scs.0000000000001242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Improved understanding of the phenotypic spectrum associated with nonsyndromic orofacial clefting (OFC) has the potential to inform efforts to uncover the etiology of this complex trait. Prior studies report that individuals with OFC are characterized by impaired olfactory ability. In this study, we test whether olfactory dysfunction extends to the unaffected parents of children with OFC. The University of Pennsylvania Smell Identification Test was used to measure olfactory ability in a sample of 60 unaffected mothers and fathers with cleft-affected children. The proportion of deficit was compared with reference data obtained from published sex- and age-specific norms on more than 2700 individuals. The proportion of deficit was significantly higher in unaffected parents compared with baseline control subjects (41.7% vs 12.6%; P < 0.001). Of unaffected fathers, 41.7% displayed evidence of deficit compared with 15.1% of male control subjects (P = 0.001), whereas 41.7% of mothers exhibited deficits compared with 10.4% of female control subjects (P < 0.001). Olfactory deficits are present at a high proportion in the unaffected parents of individuals with OFC. This suggests that the deficits observed in affected cases may not simply be a secondary consequence of surgical repair and may instead be an informative phenotype reflecting underlying etiology.
Collapse
|
26
|
Trabado S, Lamothe S, Maione L, Bouvattier C, Sarfati J, Brailly-Tabard S, Young J. Congenital hypogonadotropic hypogonadism and Kallmann syndrome as models for studying hormonal regulation of human testicular endocrine functions. ANNALES D'ENDOCRINOLOGIE 2014; 75:79-87. [PMID: 24815726 DOI: 10.1016/j.ando.2014.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Men with Kallmann syndrome (KS) and those with congenital isolated hypogonadotropic hypogonadism with normal olfaction share a chronic, usually profound deficit, in FSH and LH, the two pituitary gonadotropins. Many studies indicate that this gonadotropin deficiency is already present during fetal life, thus explaining the micropenis, cryptorchidism and marked testicular hypotrophy already present at birth. In addition, neonatal activation of gonadotropin secretion is compromised in boys with severe CHH/Kallmann, preventing the first phase of postnatal testicular activation. Finally, CHH is characterized by the persistence, in the vast majority of cases, of gonadotropin deficiency at the time of puberty and during adulthood. This prevents the normal pubertal testicular reactivation required for physiological sex steroid and testicular peptide production, and for spermatogenesis. CHH/KS thus represents a pathological paradigm that can help to unravel, in vivo, the role of each gonadotropin in human testicular exocrine and endocrine functions at different stages of development. Recombinant gonadotropins with pure LH or FSH activity have been used to stimulate Leydig's cells and Sertoli's cells, respectively, and thereby to clarify their paracrine interaction in vivo. The effects of these pharmacological probes can be assessed by measuring the changes they provoke in circulating testicular hormone concentrations. This review discusses the impact of chronic gonadotropin deficiency on the endocrine functions of the interstitial compartment, which contains testosterone-, estradiol- and INSL3-secreting Leydig's cells. It also examines the regulation of inhibin B and anti-Mullerian hormone (AMH) secretion in the seminiferous tubules, and the insights provided by studies of human testicular stimulation with recombinant gonadotropins, used either individually or in combination.
Collapse
Affiliation(s)
- Séverine Trabado
- Inserm U693, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; Laboratoire d'hormonologie et génétique, hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, France
| | - Sophie Lamothe
- Service d'endocrinologie et des maladies de la reproduction, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Luigi Maione
- Service d'endocrinologie et des maladies de la reproduction, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Claire Bouvattier
- Département d'endocrinologie pédiatrique, hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Julie Sarfati
- Service d'endocrinologie et des maladies de la reproduction, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Sylvie Brailly-Tabard
- Inserm U693, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; Laboratoire d'hormonologie et génétique, hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, France
| | - Jacques Young
- Inserm U693, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; Service d'endocrinologie et des maladies de la reproduction, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France.
| |
Collapse
|
27
|
The indirect role of fibroblast growth factor-8 in defining neurogenic niches of the olfactory/GnRH systems. J Neurosci 2014; 33:19620-34. [PMID: 24336726 DOI: 10.1523/jneurosci.3238-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bone morphogenic protein-4 (BMP4) and fibroblast growth factor-8 (FGF8) are thought to have opposite roles in defining epithelial versus neurogenic fate in the developing olfactory/vomeronasal system. In particular, FGF8 has been implicated in specification of olfactory and gonadotropin releasing hormone-1 (GnRH) neurons, as well as in controlling olfactory stem cell survival. Using different knock-in mouse lines and Cre-lox-mediated lineage tracing, Fgf8 expression and cell lineage was analyzed in the developing nose in relation to the expression of Bmp4 and its antagonist Noggin (Nog). FGF8 is expressed by cells that acquire an epidermal, respiratory cell fate and not by stem cells that acquire neuronal olfactory or vomeronasal cell fate. Ectodermal and mesenchymal sources of BMP4 control the expression of BMP/TGFβ antagonist Nog, whereas mesenchymal sources of Nog define the neurogenic borders of the olfactory pit. Fgf8 hypomorph mouse models, Fgf8(neo/neo) and Fgf8(neo/null), displayed severe craniofacial defects together with overlapping defects in the olfactory pit including (1) lack of neuronal formation ventrally, where GnRH neurons normally form, and (2) altered expression of Bmp4 and Nog, with Nog ectopically expressed in the nasal mesenchyme and no longer defining the GnRH and vomeronasal neurogenic border. Together our data show that (1) FGF8 is not sufficient to induce ectodermal progenitors of the olfactory pit to acquire neural fate and (2) altered neurogenesis and lack of GnRH neuron specification after chronically reduced Fgf8 expression reflected dysgenesis of the nasal region and loss of a specific neurogenic permissive milieu that was defined by mesenchymal signals.
Collapse
|
28
|
Simonis N, Migeotte I, Lambert N, Perazzolo C, de Silva DC, Dimitrov B, Heinrichs C, Janssens S, Kerr B, Mortier G, Van Vliet G, Lepage P, Casimir G, Abramowicz M, Smits G, Vilain C. FGFR1 mutations cause Hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. J Med Genet 2013; 50:585-92. [PMID: 23812909 PMCID: PMC3756455 DOI: 10.1136/jmedgenet-2013-101603] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Harstfield syndrome is the rare and unique association of holoprosencephaly (HPE) and ectrodactyly, with or without cleft lip and palate, and variable additional features. All the reported cases occurred sporadically. Although several causal genes of HPE and ectrodactyly have been identified, the genetic cause of Hartsfield syndrome remains unknown. We hypothesised that a single key developmental gene may underlie the co-occurrence of HPE and ectrodactyly. Methods We used whole exome sequencing in four isolated cases including one case-parents trio, and direct Sanger sequencing of three additional cases, to investigate the causative variants in Hartsfield syndrome. Results We identified a novel FGFR1 mutation in six out of seven patients. Affected residues are highly conserved and are located in the extracellular binding domain of the receptor (two homozygous mutations) or the intracellular tyrosine kinase domain (four heterozygous de novo variants). Strikingly, among the six novel mutations, three are located in close proximity to the ATP's phosphates or the coordinating magnesium, with one position required for kinase activity, and three are adjacent to known mutations involved in Kallmann syndrome plus other developmental anomalies. Conclusions Dominant or recessive FGFR1 mutations are responsible for Hartsfield syndrome, consistent with the known roles of FGFR1 in vertebrate ontogeny and conditional Fgfr1-deficient mice. Our study shows that, in humans, lack of accurate FGFR1 activation can disrupt both brain and hand/foot midline development, and that FGFR1 loss-of-function mutations are responsible for a wider spectrum of clinical anomalies than previously thought, ranging in severity from seemingly isolated hypogonadotropic hypogonadism, through Kallmann syndrome with or without additional features, to Hartsfield syndrome at its most severe end.
Collapse
Affiliation(s)
- Nicolas Simonis
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pingault V, Bodereau V, Baral V, Marcos S, Watanabe Y, Chaoui A, Fouveaut C, Leroy C, Vérier-Mine O, Francannet C, Dupin-Deguine D, Archambeaud F, Kurtz FJ, Young J, Bertherat J, Marlin S, Goossens M, Hardelin JP, Dodé C, Bondurand N. Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. Am J Hum Genet 2013; 92:707-24. [PMID: 23643381 DOI: 10.1016/j.ajhg.2013.03.024] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/25/2013] [Accepted: 03/29/2013] [Indexed: 12/11/2022] Open
Abstract
Transcription factor SOX10 plays a role in the maintenance of progenitor cell multipotency, lineage specification, and cell differentiation and is a major actor in the development of the neural crest. It has been implicated in Waardenburg syndrome (WS), a rare disorder characterized by the association between pigmentation abnormalities and deafness, but SOX10 mutations cause a variable phenotype that spreads over the initial limits of the syndrome definition. On the basis of recent findings of olfactory-bulb agenesis in WS individuals, we suspected SOX10 was also involved in Kallmann syndrome (KS). KS is defined by the association between anosmia and hypogonadotropic hypogonadism due to incomplete migration of neuroendocrine gonadotropin-releasing hormone (GnRH) cells along the olfactory, vomeronasal, and terminal nerves. Mutations in any of the nine genes identified to date account for only 30% of the KS cases. KS can be either isolated or associated with a variety of other symptoms, including deafness. This study reports SOX10 loss-of-function mutations in approximately one-third of KS individuals with deafness, indicating a substantial involvement in this clinical condition. Study of SOX10-null mutant mice revealed a developmental role of SOX10 in a subpopulation of glial cells called olfactory ensheathing cells. These mice indeed showed an almost complete absence of these cells along the olfactory nerve pathway, as well as defasciculation and misrouting of the nerve fibers, impaired migration of GnRH cells, and disorganization of the olfactory nerve layer of the olfactory bulbs.
Collapse
Affiliation(s)
- Veronique Pingault
- Equipe 11, Institut National de la Santé et de la Recherche Médicale Unité 955, 94000 Créteil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Maione L, Benadjaoud S, Eloit C, Sinisi AA, Colao A, Chanson P, Ducreux D, Benoudiba F, Young J. Computed tomography of the anterior skull base in Kallmann syndrome reveals specific ethmoid bone abnormalities associated with olfactory bulb defects. J Clin Endocrinol Metab 2013; 98:E537-46. [PMID: 23348397 DOI: 10.1210/jc.2012-3553] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Kallmann syndrome (KS) is characterized by congenital hypogonadotropic hypogonadism (CHH) and an impaired sense of smell related to defective development of the olfactory system. OBJECTIVE The aim of the study was to use high-resolution computed tomography (CT) to detect specific abnormalities in the ethmoid bone region surrounding the olfactory bulbs in patients with KS. PATIENTS Thirty-seven KS patients were compared to normosmic CHH (nCHH) patients (n = 15) and controls (n = 30) of similar age. DESIGN AND METHODS We conducted a prospective study in a single referral center. Subjects underwent CT in bone windows with axial, coronal, and sagittal reconstructions centered on the olfactory fossa (OF) and cribriform plate (CP). We characterized the OF structure by measuring OF height, width, and surface area and a series of angles. The CP foramina were counted bilaterally. Olfactory bulb magnetic resonance imaging, performed in parallel, was compared with CT findings. RESULTS OF height, width, and surface area were all significantly lower in KS patients than in nCHH patients and controls (P < .0001). KS patients also had wider angles than nCHH patients and controls (P < .0001). KS subjects with olfactory bulb agenesis on magnetic resonance imaging or who harbored KAL1 mutations had the most marked changes in OF measurements and angles. Coronal OF height distinguished KS patients from controls with the best sensitivity and specificity. The mean number of CP foramina was similar in KS, nCHH, and control subjects. CONCLUSIONS KS is associated with specific ethmoid bone abnormalities. The preserved number of CP foramina in KS patients suggests that the integrity of olfactory structures is not mandatory for their formation during fetal development or their maintenance in adult life.
Collapse
Affiliation(s)
- Luigi Maione
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rajith B, George Priya Doss C. Disease-Causing Mutation in Extracellular and Intracellular Domain of FGFR1 Protein: Computational Approach. Appl Biochem Biotechnol 2013; 169:1659-71. [DOI: 10.1007/s12010-012-0061-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/26/2012] [Indexed: 11/29/2022]
|
32
|
Della Valle E, Vezzani S, Rochira V, Granata ARM, Madeo B, Genovese E, Pignatti E, Marino M, Carani C, Simoni M. Prevalence of olfactory and other developmental anomalies in patients with central hypogonadotropic hypogonadism. Front Endocrinol (Lausanne) 2013; 4:70. [PMID: 23760293 PMCID: PMC3675377 DOI: 10.3389/fendo.2013.00070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 05/24/2013] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Hypogonadotropic hypogonadism (HH) is a heterogeneous disease caused by mutations in several genes. Based on the presence of hyposmia/anosmia it is distinguished into Kallmann syndrome (KS) and isolated HH. The prevalence of other developmental anomalies is not well established. METHODS We studied 36 patients with HH (31 males, 5 females, mean age 41.5), 9 with familial and 27 with sporadic HH (33 congenital, 3 adult-onset), by physical examination, smell test (BSIT Sensonics), audiometry, renal ultrasound, and magnetic resonance imaging of the olfactory structures. RESULTS Based on the smell test, patients were classified as normosmic (n = 21, 58.3%) and hypo/anosmic (n = 15, 41.6%). Hypoplasia/agenesis of olfactory bulbs was found in 40% of patients (10/25; 75% hypo/anosmic, 7.6% normosmic, p < 0.01, Fisher's test). Remarkably, olfactory structures were normal in two anosmic patients, while one normosmic patient presented a unilateral hypoplastic bulb. Fourteen of 33 patients (42.4%) presented neurosensorial hearing loss of various degrees (28.5% hypo/anosmic, 52.6% normosmic, p = NS). Renal ultrasound revealed 27.7% of cases with renal anomalies (26.6% hypo/anosmic, 28.5% normosmic, p = NS). At least one midline defect was found in 50% of the patients (53.3% hypo/anosmic, 47.6% normosmic, p = NS), including abnormal palate, dental anomalies, pectus excavatum, bimanual synkinesis, iris coloboma, and absent nasal cartilage. Anamnestically 4/31 patients reported cryptorchidism (25% hypo/anosmic, 5.2% normosmic, p = NS). CONCLUSION Hypo/anosmia is significantly related to anatomical anomalies of the olfactory bulbs/tracts but the prevalence of other developmental anomalies, especially midline defects and neurosensorial hearing loss, is high both in HH and KS and independent of the presence of anosmia/hyposmia. From the clinical standpoint KS and normosmic HH should be considered as the same complex, developmental disease.
Collapse
Affiliation(s)
- Elisa Della Valle
- Unit and Chair of Endocrinology and Metabolism, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Vezzani
- Unit and Chair of Endocrinology and Metabolism, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Rochira
- Unit and Chair of Endocrinology and Metabolism, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda USL of Modena, Modena, Italy
| | | | - Bruno Madeo
- Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda USL of Modena, Modena, Italy
| | - Elisabetta Genovese
- Department of Otolaryngology and Head and Neck Surgery, Azienda Ospedaliero-Universitaria Policlinico of Modena, Modena, Italy
| | - Elisa Pignatti
- Unit and Chair of Endocrinology and Metabolism, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Marino
- Unit and Chair of Endocrinology and Metabolism, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cesare Carani
- Unit and Chair of Endocrinology and Metabolism, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda USL of Modena, Modena, Italy
| | - Manuela Simoni
- Unit and Chair of Endocrinology and Metabolism, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda USL of Modena, Modena, Italy
- *Correspondence: Manuela Simoni, Section of Endocrinology, Geriatrics and Metabolism, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, NOCSAE, Via Giardini 1355, Modena 41126, Italy e-mail:
| |
Collapse
|
33
|
Evidence that FGFR1 loss-of-function mutations may cause variable skeletal malformations in patients with Kallmann syndrome. Adv Med Sci 2012; 57:314-21. [PMID: 23154428 DOI: 10.2478/v10039-012-0036-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Loss-of-function mutations in FGFR1 have been identified in approximately 10% of the Kallmann syndrome (KS) patients. Previous reports have focused mainly on olfactory, reproductive, and some other features such as cleft lip/palate and dental agenesis. Given the ubiquitous expression of FGFR1 during development, other abnormal phenotypes might, however, have been overlooked in these patients. Here, we demonstrate skeletal phenotypic characterization of patients presented with KS and FGFR1 mutations. MATERIAL AND METHODS Using the Sanger DNA sequencing technique a cohort of 29 KS patients was screened. RESULTS Here, we report on 5 KS patients who carry FGFR1 mutations (Gly270Asp, Gly97Ser, Met161Thr, Ser685Phe and Ala167Ser/Ala167Ser). Three patients presented with skeletal abnormalities, i.e. spine (hemivertebra and butterfly vertebra) and limb (oligodactyly of the feet, fusion of the 4th and 5th metacarpal bones) malformations in two patients and one patient, respectively. The hand phenotype found in the patient cannot be thought of as a counter-type of the hand phenotype resulting from FGFR1 gain-of-function mutations. The skeletal anomalies identified in the 3 KS patients are close to those observed in Fgfr1 conditional knockout mice. CONCLUSIONS This study demonstrates that FGFR1 loss-of-function mutations can be associated with skeletal abnormalities also in humans. Further investigations in KS patients who carry FGFR1 mutations are needed to evaluate the prevalence of skeletal defects in this genetic form of KS. Conversely, the presence of bone malformations in a KS patient should direct the geneticist towards a search for mutations in FGFR1.
Collapse
|
34
|
Doss CGP, Rajith B, Garwasis N, Mathew PR, Raju AS, Apoorva K, William D, Sadhana NR, Himani T, Dike IP. Screening of mutations affecting protein stability and dynamics of FGFR1-A simulation analysis. Appl Transl Genom 2012; 1:37-43. [PMID: 27896051 PMCID: PMC5121281 DOI: 10.1016/j.atg.2012.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/17/2012] [Accepted: 06/21/2012] [Indexed: 12/11/2022]
Abstract
Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1) destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%), PolyPhen 2.0 (61%) and SNAP (58%). From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.
Collapse
Key Words
- FGFR1
- FGFR1, Fibroblast growth factor type 1
- GD, Grantham Deviation
- GV, Grantham Variance
- MSA, Multiple Sequence Alignments
- Molecular dynamics simulation
- NCBI, National Center for Biological Information
- OMIM, Online Mendelian Inheritance in Man
- PolyPhen 2.0, Polymorphism Phenotyping
- RI, Reliability Index
- RMSD, Root Mean Square Deviation
- RMSF, Root Mean Square Fluctuation
- SIFT, Sorting Intolerant From Tolerant
- SNAP, Screening for Non acceptable Polymorphisms
- SNPs
- SNPs, Single Nucleotide Polymorphisms
- SPC, Simple Point Charge
Collapse
Affiliation(s)
- C George Priya Doss
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - B Rajith
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Nimisha Garwasis
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Pretty Raju Mathew
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Anand Solomon Raju
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - K Apoorva
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Denise William
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - N R Sadhana
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Tanwar Himani
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - I P Dike
- Department of Biological Sciences, Covenant University, Nigeria
| |
Collapse
|
35
|
Beate K, Joseph N, Nicolas DR, Wolfram K. Genetics of isolated hypogonadotropic hypogonadism: role of GnRH receptor and other genes. Int J Endocrinol 2012; 2012:147893. [PMID: 22229029 PMCID: PMC3249753 DOI: 10.1155/2012/147893] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/22/2011] [Indexed: 12/15/2022] Open
Abstract
Hypothalamic gonadotropin releasing hormone (GnRH) is a key player in normal puberty and sexual development and function. Genetic causes of isolated hypogonadotropic hypogonadism (IHH) have been identified during the recent years affecting the synthesis, secretion, or action of GnRH. Developmental defects of GnRH neurons and the olfactory bulb are associated with hyposmia, rarely associated with the clinical phenotypes of synkinesia, cleft palate, ear anomalies, or choanal atresia, and may be due to mutations of KAL1, FGFR1/FGF8, PROKR2/PROK2, or CHD7. Impaired GnRH secretion in normosmic patients with IHH may be caused by deficient hypothalamic GPR54/KISS1, TACR3/TAC3, and leptinR/leptin signalling or mutations within the GNRH1 gene itself. Normosmic IHH is predominantly caused by inactivating mutations in the pituitary GnRH receptor inducing GnRH resistance, while mutations of the β-subunits of LH or FSH are very rare. Inheritance of GnRH deficiency may be oligogenic, explaining variable phenotypes. Future research should identify additional genes involved in the complex network of normal and disturbed puberty and reproduction.
Collapse
Affiliation(s)
- Karges Beate
- Division of Endocrinology and Diabetes, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
- *Karges Beate:
| | - Neulen Joseph
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - de Roux Nicolas
- INSERM U676, Paris Diderot University, Robert Debré Hospital, 75019 Paris, France
| | - Karges Wolfram
- Division of Endocrinology and Diabetes, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
36
|
Miraoui H, Dwyer A, Pitteloud N. Role of fibroblast growth factor (FGF) signaling in the neuroendocrine control of human reproduction. Mol Cell Endocrinol 2011; 346:37-43. [PMID: 21664428 PMCID: PMC3185130 DOI: 10.1016/j.mce.2011.05.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2011] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.
Collapse
Affiliation(s)
- Hichem Miraoui
- Centre Hospitalier Universitaire Vaudois, Endocrine, Diabetes, & Metabolism Service, BH 19-701, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | | | | |
Collapse
|
37
|
Compagnucci C, Fish JL, Schwark M, Tarabykin V, Depew MJ. Pax6 regulates craniofacial form through its control of an essential cephalic ectodermal patterning center. Genesis 2011; 49:307-25. [PMID: 21309073 DOI: 10.1002/dvg.20724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Normal patterning and morphogenesis of the complex skeletal structures of the skull requires an exquisite, reciprocal cross-talk between the embryonic cephalic epithelia and mesenchyme. The mesenchyme associated with the jaws and the optic and olfactory capsules is derived from a Hox-negative cranial neural crest (CNC) population that acts much as an equivalence group in its interactions with specific local cephalic epithelial signals. Craniofacial pattern and morphogenesis is therefore controlled in large part through the regulation of these local cephalic epithelial signals. Here, we demonstrate that Pax6 is essential to the formation and maturation of the complex cephalic ectodermal patterning centers that govern the development and morphogenesis of the upper jaws and associated nasal capsules. Previous examinations of the craniofacial skeletal defects associated with Pax6 mutations have suggested that they arise from an optic-associated blockage in the migration of a specific subpopulation of midbrain CNC to the lateral frontonasal processes. We have addressed an alternative explanation for the craniofacial skeletal defects. We show that in Pax6(SeyN/SeyN) mutants regional CNC is present by E9.25 while there is already specific disruption in the early ontogenetic elaboration of cephalic ectodermal expression, associated with the nascent lambdoidal junction, of secreted signaling factors (including Fgf8 and Bmp4) and transcription factors (including Six1 and Dlx5) essential for upper jaw and/or nasal capsular development. Pax6 therefore regulates craniofacial form, at stages when CNC has just arrived in the frontonasal region, through its control of surface cephalic ectodermal competence to form an essential craniofacial patterning center.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Craniofacial Development, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Bailleul-Forestier I, Gros C, Zenaty D, Bennaceur S, Leger J, de Roux N. Dental agenesis in Kallmann syndrome individuals with FGFR1 mutations. Int J Paediatr Dent 2010; 20:305-12. [PMID: 20536592 DOI: 10.1111/j.1365-263x.2010.01056.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kallmann syndrome (KS) is a rare genetic disorder characterised by central hypogonadism with a lack of sense of smell and in some cases renal aplasia, deafness, syndactyly, cleft lip/palate, and dental agenesis. To date, five genes for KS have been identified: KAL1, located on the X chromosome, and FGFR1, PROKR2, PROK2 and FGF8, which are involved in autosomally transmitted forms of KS. AIM The study characterised the dental ageneses of individuals with KS associated with mutations in the FGFR1 gene. DESIGN Six individuals displaying dental agenesis were included. Clinical and radiological dental evaluations as well as medical anamneses were carried out. RESULTS Microdontia, screwdriver-shaped mandibular incisors, thin molar roots, and patterns of dental agenesis in both dentitions were observed. One to nine teeth were missing, most frequently, in descending order, lateral mandibular incisors, second premolars of upper and lower jaws, and lateral maxillary incisors. The pattern of dental agenesis is associated with four new mutations in the FGFR1 gene. CONCLUSION Dental agenesis may be a clinical feature of Kallmann syndrome caused by a mutation in the FGFR1 gene. These findings highlight the role that odontologists can play in the early diagnosis and treatment of gonadotropic deficiency.
Collapse
Affiliation(s)
- Isabelle Bailleul-Forestier
- Paediatric Dentistry, Garancière Hotel-Dieu Hospital, Assistance Publique-Hôpitaux de Paris, Paris Diderot University, France
| | | | | | | | | | | |
Collapse
|
39
|
Hu Y, Bouloux PM. Novel insights in FGFR1 regulation: lessons from Kallmann syndrome. Trends Endocrinol Metab 2010; 21:385-93. [PMID: 20117945 DOI: 10.1016/j.tem.2010.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 01/25/2023]
Abstract
Disrupted fibroblast growth factor receptor (FGFR)1 signalling has been shown to cause Kallmann syndrome (KS), a human genetic disorder characterised by olfactory bulb dysgenesis and hypogonadotrophic hypogonadism. Loss-of-function mutations in the KS gene KAL-2/FGFR1 account for roughly 10% of KS cases, leading to the autosomal dominant form of the disease. Anosmin-1, the KAL-1 gene product underlying X-linked KS, modulates FGFR1 signalling via regulation of FGF2/FGFR1/heparin signalling complex assembly and activity. This review covers recent advances in the potential interactions of KS-associated molecules within the FGFR1 signalling complex, and demonstrates a novel mechanism of pre-signalling modulation that mechanistically links an autosomal dominant and sex-linked mode of inheritance of this disease, highlighting the central role of FGFR1 signalling in KS.
Collapse
Affiliation(s)
- Youli Hu
- Centre for Neuroendocrinology, UCL Medical School, Royal Free Campus, London NW3 2QG, UK.
| | | |
Collapse
|
40
|
Dodé C, Hardelin JP. Clinical genetics of Kallmann syndrome. ANNALES D'ENDOCRINOLOGIE 2010; 71:149-57. [PMID: 20362962 DOI: 10.1016/j.ando.2010.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/11/2022]
Abstract
The Kallmann syndrome (KS) combines hypogonadotropic hypogonadism (HH) with anosmia. This is a clinically and genetically heterogeneous disease. KAL1, encoding the extracellular glycoprotein anosmin-1, is responsible for the X chromosome-linked recessive form of the disease (KAL1). Mutations in FGFR1 or FGF8, encoding fibroblast growth factor receptor-1 and fibroblast growth factor-8, respectively, underlie an autosomal dominant form with incomplete penetrance (KAL2). Mutations in PROKR2 and PROK2, encoding prokineticin receptor-2 and prokineticin-2, have been found in heterozygous, homozygous, and compound heterozygous states. These two genes are likely to be involved both in autosomal recessive monogenic (KAL3) and digenic/oligogenic KS transmission modes. Mutations in any of the above-mentioned KS genes have been found in less than 30% of the KS patients, which indicates that other genes involved in the disease remain to be discovered. Notably, KS may also be part of pleiotropic developmental diseases including CHARGE syndrome; this disease results in most cases from neomutations in CHD7 that encodes a chromodomain helicase DNA-binding protein.
Collapse
Affiliation(s)
- C Dodé
- Inserm U1016, département de génétique et développement, institut Cochin, 27, rue du Faubourg-Saint-Jacques, 75679 Paris cedex 14, France.
| | | |
Collapse
|
41
|
Miura K, Miura S, Yoshiura KI, Seminara S, Hamaguchi D, Niikawa N, Masuzaki H. A case of Kallmann syndrome carrying a missense mutation in alternatively spliced exon 8A encoding the immunoglobulin-like domain IIIb of fibroblast growth factor receptor 1. Hum Reprod 2010; 25:1076-80. [PMID: 20139426 DOI: 10.1093/humrep/deq006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is one of the causative genes for Kallmann syndrome (KS), which is characterized by isolated hypogonadotropic hypogonadism with anosmia/hyposmia. The third immunoglobulin-like domain (D3) of FGFR1 has the isoforms FGFR1-IIIb and FGFR1-IIIc, which are generated by alternative splicing of exons 8A and 8B, respectively. To date, the only mutations to have been identified in D3 of FGFR1 are in exon 8B. We performed mutation analysis of FGFR1 in a 23-year-old female patient with KS and found a missense mutation (c.1072C>T) in exon 8A of FGFR1. The c.1072C>T mutation was not detected in her family members or in 220 normal Japanese and 100 Caucasian female controls. No mutation in other KS genes, KS 1, prokineticin-2, prokineticin receptor-2 and FGF-8 was detected in the affected patient or in her family members. Therefore, this is the first case of KS carrying a de novo missense mutation in FGFR1 exon 8A, suggesting that isoform FGFR1-IIIb, as well as isoform FGFR1-IIIc, plays a crucial role in the pathogenesis of KS.
Collapse
Affiliation(s)
- Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Idiopathic hypogonadotropic hypogonadism in a mother and her monozygotic twins born after a single embryo transfer. Fertil Steril 2010; 93:2074.e13-6. [PMID: 20079901 DOI: 10.1016/j.fertnstert.2009.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To describe a mother with idiopathic hypogonadotropic hypogonadism (IHH) and her monozygotic (MZ) twin boys who all have the same heterozygous fibroblast growth factor receptor-1 (FGFR1) gene mutation. DESIGN Case report. SETTING University hospital. PATIENT(S) A 28-year-old mother with normosmic IHH gave birth to MZ twin boys after a transfer of a single frozen-thawed embryo. INTERVENTION(S) Clinical and biochemical evaluation of IHH. Sequence analysis of the 17 coding exons (exons 2-18) and exon-intron boundaries of FGFR1 from polymerase chain reaction-amplified genomic DNA from peripheral blood leukocytes of the subjects. MAIN OUTCOME MEASURE(S) Phenotypic features of the subjects. RESULT(S) All subjects harbored a previously undescribed heterozygous FGFR1 mutation (c.2049-1 G-->C), leading to the skipping of exon 16 and thus a loss of amino acids 684-726 in the tyrosine kinase domain of the receptor. The absence of exon 16 was verified at the cDNA level. The twins manifested with microphallus, cryptorchidism, and deficient postnatal activation of the hypothalamic-pituitary-gonadal axis, findings consistent with IHH. CONCLUSION(S) Our report underlines that assisted reproductive techniques enable the inheritance of gene mutations causing infertility. This is the first report on the phenotypic features of MZ twins with an FGFR1 mutation.
Collapse
|
43
|
Raivio T, Sidis Y, Plummer L, Chen H, Ma J, Mukherjee A, Jacobson-Dickman E, Quinton R, Van Vliet G, Lavoie H, Hughes VA, Dwyer A, Hayes FJ, Xu S, Sparks S, Kaiser UB, Mohammadi M, Pitteloud N. Impaired fibroblast growth factor receptor 1 signaling as a cause of normosmic idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2009; 94:4380-90. [PMID: 19820032 PMCID: PMC2775659 DOI: 10.1210/jc.2009-0179] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CONTEXT FGFR1 mutations have been identified in about 10% of patients with Kallmann syndrome. Recently cases of idiopathic hypogonadotropic hypogonadism (IHH) with a normal sense of smell (nIHH) have been reported. AIMS The objective of the study was to define the frequency of FGFR1 mutations in a large cohort of nIHH, delineate the spectrum of reproductive phenotypes, assess functionality of the FGFR1 mutant alleles in vitro, and investigate genotype-phenotype relationships. DESIGN FGFR1 sequencing of 134 well-characterized nIHH patients (112 men and 22 women) and 270 healthy controls was performed. The impact of the identified mutations on FGFR1 function was assessed using structural prediction and in vitro studies. RESULTS Nine nIHH subjects (five males and four females; 7%) harbor a heterozygous mutation in FGFR1 and exhibit a wide spectrum of pubertal development, ranging from absent puberty to reversal of IHH in both sexes. All mutations impair receptor function. The Y99C, Y228D, and I239T mutants impair the tertiary folding, resulting in incomplete glycosylation and reduced cell surface expression. The R250Q mutant reduces receptor affinity for FGF. The K618N, A671P, and Q680X mutants impair tyrosine kinase activity. However, the degree of functional impairment of the mutant receptors did not always correlate with the reproductive phenotype, and variable expressivity of the disease was noted within family members carrying the same FGFR1 mutation. These discrepancies were partially explained by additional mutations in known IHH loci. CONCLUSIONS Loss-of-function mutations in FGFR1 underlie 7% of nIHH with different degrees of impairment in vitro. These mutations act in concert with other gene defects in several cases, consistent with oligogenicity.
Collapse
Affiliation(s)
- Taneli Raivio
- Reproductive Endocrine Unit, Department of Medicine, The Harvard Center for Reproductive Endocrine Sciences, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bergman JEH, Bosman EA, van Ravenswaaij-Arts CMA, Steel KP. Study of smell and reproductive organs in a mouse model for CHARGE syndrome. Eur J Hum Genet 2009; 18:171-7. [PMID: 19809474 PMCID: PMC2987182 DOI: 10.1038/ejhg.2009.158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
CHARGE syndrome is a multiple congenital anomaly syndrome characterised by Coloboma, Heart defects, Atresia of choanae, Retardation of growth and/or development, Genital hypoplasia, and Ear anomalies often associated with deafness. It is caused by heterozygous mutations in the CHD7 gene and shows a highly variable phenotype. Anosmia and hypogonadotropic hypogonadism occur in the majority of the CHARGE patients, but the underlying pathogenesis is unknown. Therefore, we studied the ability to smell and aspects of the reproductive system (reproductive performance, gonadotropin-releasing hormone (GnRH) neurons and anatomy of testes and uteri) in a mouse model for CHARGE syndrome, the whirligig mouse (Chd7Whi/+). We showed that Chromodomain Helicase DNA-binding protein 7 (Chd7) is expressed in brain areas involved in olfaction and reproduction during embryonic development. We observed poorer performance in the smell test in adult Chd7Whi/+ mice, secondary either to olfactory dysfunction or to balance disturbances. Olfactory bulb and reproductive organ abnormalities were observed in a proportion of Chd7Whi/+ mice. Hypothalamic GnRH neurons were slightly reduced in Chd7Whi/+ females and reproductive performance was slightly less in Chd7Whi/+ mice. This study shows that the penetrance of anosmia and hypogonadotropic hypogonadism is lower in Chd7Whi/+ mice than in CHARGE patients. Interestingly, many phenotypic features of the Chd7 mutation showed incomplete penetrance in our model mice, despite the use of inbred, genetically identical mice. This supports the theory that the extreme variability of the CHARGE phenotype in both humans and mice might be attributed to variations in the fetal microenvironment or to purely stochastic events.
Collapse
Affiliation(s)
- Jorieke E H Bergman
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
45
|
Yu W, Serrano M, Miguel SS, Ruest LB, Svoboda KK. Cleft lip and palate genetics and application in early embryological development. Indian J Plast Surg 2009; 42 Suppl:S35-50. [PMID: 19884679 PMCID: PMC2825058 DOI: 10.4103/0970-0358.57185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The development of the head involves the interaction of several cell populations and coordination of cell signalling pathways, which when disrupted can cause defects such as facial clefts. This review concentrates on genetic contributions to facial clefts with and without cleft palate (CP). An overview of early palatal development with emphasis on muscle and bone development is blended with the effects of environmental insults and known genetic mutations that impact human palatal development. An extensive table of known genes in syndromic and non-syndromic CP, with or without cleft lip (CL), is provided. We have also included some genes that have been identified in environmental risk factors for CP/L. We include primary and review references on this topic.
Collapse
Affiliation(s)
- Wenli Yu
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| | - Maria Serrano
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| | - Symone San Miguel
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| | - L. Bruno Ruest
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| | - Kathy K.H. Svoboda
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246
| |
Collapse
|
46
|
Abstract
The Kallmann syndrome (KS) combines hypogonadotropic hypogonadism (HH) with anosmia. This is a clinically and genetically heterogeneous disease. KAL1, encoding the extracellular glycoprotein anosmin-1, is responsible for the X chromosome-linked recessive form of the disease. Mutations in FGFR1 or FGF8, encoding fibroblast growth factor receptor-1 and fibroblast growth factor-8, respectively, underlie an autosomal dominant form with incomplete penetrance. Finally, mutations in PROKR2 and PROK2, encoding prokineticin receptor-2 and prokineticin-2, have been found in heterozygous, homozygous, and compound heterozygous states. These two genes are likely to be involved both in monogenic recessive and digenic/oligogenic KS transmission modes. Notably, mutations in any of the above-mentioned KS genes have been found in less than 30% of the KS patients, which indicates that other genes involved in the disease remain to be discovered.
Collapse
|
47
|
Szabo-Rogers HL, Geetha-Loganathan P, Nimmagadda S, Fu KK, Richman JM. FGF signals from the nasal pit are necessary for normal facial morphogenesis. Dev Biol 2008; 318:289-302. [PMID: 18455717 DOI: 10.1016/j.ydbio.2008.03.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/22/2008] [Accepted: 03/17/2008] [Indexed: 01/15/2023]
Abstract
Fibroblast growth factors (FGFs) are required for brain, pharyngeal arch, suture and neural crest cell development and mutations in the FGF receptors have been linked to human craniofacial malformations. To study the functions of FGF during facial morphogenesis we locally perturb FGF signalling in the avian facial prominences with FGFR antagonists, foil barriers and FGF2 protein. We tested 4 positions with antagonist-soaked beads but only one of these induced a facial defect. Embryos treated in the lateral frontonasal mass, adjacent to the nasal slit developed cleft beaks. The main mechanisms were a block in proliferation and an increase in apoptosis in those areas that were most dependent on FGF signaling. We inserted foil barriers with the goal of blocking diffusion of FGF ligands out of the lateral edge of the frontonasal mass. The barriers induced an upregulation of the FGF target gene, SPRY2 compared to the control side. Moreover, these changes in expression were associated with deletions of the lateral edge of the premaxillary bone. To determine whether we could replicate the effects of the foil by increasing FGF levels, beads soaked in FGF2 were placed into the lateral edge of the frontonasal mass. There was a significant increase in proliferation and an expansion of the frontonasal mass but the skeletal defects were minor and not the same as those produced by the foil. Instead it is more likely that the foil repressed FGF signaling perhaps mediated by the increase in SPRY2 expression. In summary, we have found that the nasal slit is a source of FGF signals and the function of FGF is to stimulate proliferation in the cranial frontonasal mass. The FGF independent regions correlate with those previously determined to be dependent on BMP signaling. We propose a new model whereby, FGF-dependent microenvironments exist in the cranial frontonasal mass and caudal maxillary prominence and these flank BMP-dependent regions. Coordination of the proliferation in these regions leads ultimately to normal facial morphogenesis.
Collapse
Affiliation(s)
- Heather L Szabo-Rogers
- Department of Oral Health Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver BC, Canada
| | | | | | | | | |
Collapse
|
48
|
Salenave S, Chanson P, Bry H, Pugeat M, Cabrol S, Carel JC, Murat A, Lecomte P, Brailly S, Hardelin JP, Dodé C, Young J. Kallmann's syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab 2008; 93:758-63. [PMID: 18160472 DOI: 10.1210/jc.2007-1168] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Kallmann's syndrome (KS) is a genetically heterogeneous disorder consisting of congenital hypogonadotropic hypogonadism (CHH) with anosmia or hyposmia. OBJECTIVE Our objective was to compare the reproductive phenotypes of men harboring KAL1 and FGFR1/KAL2 mutations. DESIGN AND PATIENTS We studied the endocrine features reflecting gonadotropic-testicular axis function in 39 men; 21 had mutations in KAL1 and 18 in FGFR1/KAL2, but none had additional mutations in PROK-2 or PROKR-2 genes. RESULTS Puberty failed to occur in the patients with KAL1 mutations, all of whom had complete CHH. Three patients with FGFR1/KAL2 mutations had normal puberty, were eugonadal, and had normal testosterone and gonadotropin levels. Cryptorchidism was more frequent (14 of 21 vs. 3 of 15; P<00.1) and testicular volume (2.4+/-1.1 vs. 5.4+/-2.4 ml; P<0.001) was smaller in CHH subjects with KAL1 mutations than in subjects with FGFR1/KAL2 mutations. The mean basal plasma FSH level (0.72+/-0.47 vs. 1.48+/-0.62 IU/liter; P<0.05), serum inhibin B level (19.3+/-10.6 vs. 39.5+/-19.3 pg/ml; P<0.005), basal LH plasma level (0.57+/-0.54 vs. 1.0+/-0.6 IU/liter; P<0.01), and GnRH-stimulated LH plasma level (1.2+/-1.0 vs. 4.1+/-3.5 IU/liter; P<0.01) were significantly lower in the subjects with KAL1 mutations. LH pulsatility was studied in 13 CHH subjects with KAL1 mutations and seven subjects with FGFR1/KAL2 mutations; LH secretion was nonpulsatile in all the subjects, but mean LH levels were lower in those with KAL1 mutations. CONCLUSION KAL1 mutations result in a more severe reproductive phenotype than FGFR1/KAL2 mutations. The latter are associated with a broader spectrum of pubertal development and with less severe impairment of gonadotropin secretion.
Collapse
Affiliation(s)
- Sylvie Salenave
- Assistance Publique-Hôpitaux de Paris, and Univ Paris-Sud, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim SH, Hu Y, Cadman S, Bouloux P. Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome. J Neuroendocrinol 2008; 20:141-63. [PMID: 18034870 DOI: 10.1111/j.1365-2826.2007.01627.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unravelling of the genetic basis of the hypogonadotrophic hypogonadal disorders, including Kallmann syndrome (KS), has led to renewed interest into the developmental biology of gonadotrophin-releasing hormone (GnRH) neurones and, more generally, into the molecular mechanisms of reproduction. KS is characterised by the association of GnRH deficiency with diminished olfaction. Until recently, only two KS-associated genes were known: KAL1 and KAL2. KAL1 encodes the cell membrane and extracellular matrix-associated secreted protein anosmin-1 which is implicated in the X-linked form of KS. Anosmin-1 shows high affinity binding to heparan sulphate (HS) and its function remains the focus of ongoing investigation, although a role in axonal guidance and neuronal migration, which are processes essential for normal GnRH ontogeny and olfactory bulb histogenesis, has been suggested. KAL2, identified as the fibroblast growth factor receptor 1 (FGFR1) gene, has now been recognised to be the underlying genetic defect for an autosomal dominant form of KS. The diverse signalling pathways initiated upon FGFR activation can elicit pleiotropic cellular responses depending on the cellular context. Signalling through FGFR requires HS for receptor dimerisation and ligand binding. Current evidence supports a HS-dependent interaction between anosmin-1 and FGFR1, where anosmin-1 serves as a co-ligand activator enhancing the signal activity, the finer details of whose mechanism remain the subject of intense investigation. Recently, mutations in the genes encoding prokineticin 2 (PK2) and prokineticin receptor 2 (PKR2) were reported in a cohort of KS patients, further reinforcing the view of KS as a multigenic trait involving divergent pathways. Here, we review the historical and current understandings of KS and discuss the latest findings from the molecular and cellular studies of the KS-associated proteins, and describe the evidence that suggests convergence of several of these pathways during normal GnRH and olfactory neuronal ontogeny.
Collapse
Affiliation(s)
- S-H Kim
- Centre for Neuroendocrinology, Royal Free and University College Medical School, University College London, London, UK.
| | | | | | | |
Collapse
|
50
|
The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models. Curr Top Dev Biol 2008; 84:37-138. [PMID: 19186243 DOI: 10.1016/s0070-2153(08)00602-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cleft lip and cleft palate are frequent human congenital malformations with a complex multifactorial etiology. These orofacial clefts can occur as part of a syndrome involving multiple organs or as isolated clefts without other detectable defects. Both forms of clefting constitute a heavy burden to the affected individuals and their next of kin. Human and mouse facial traits are utterly dissimilar. However, embryonic development of the lip and palate are strikingly similar in both species, making the mouse a model of choice to study their normal and abnormal development. Human epidemiological and genetic studies are clearly important for understanding the etiology of lip and palate clefting. However, our current knowledge about the etiopathogenesis of these malformations has mainly been gathered throughout the years from mouse models, including those with mutagen-, teratogen- and targeted mutation-induced clefts as well as from mice with spontaneous clefts. This review provides a comprehensive description of the numerous mouse models for cleft lip and/or cleft palate. Despite a few weak points, these models have revealed a high order of molecular complexity as well as the stringent spatiotemporal regulations and interactions between key factors which govern the development of these orofacial structures.
Collapse
|