1
|
Huang R, Wang W, Chen Z, Chai J, Qi Q, Zheng H, Chen B, Wu H, Liu H. Identifying immune cell infiltration and effective diagnostic biomarkers in Crohn's disease by bioinformatics analysis. Front Immunol 2023; 14:1162473. [PMID: 37622114 PMCID: PMC10445157 DOI: 10.3389/fimmu.2023.1162473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Background Crohn's disease (CD) has an increasing incidence and prevalence worldwide. It is currently believed that both the onset and progression of the disease are closely related to immune system imbalance and the infiltration of immune cells. The aim of this study was to investigate the molecular immune mechanisms associated with CD and its fibrosis through bioinformatics analysis. Methods Three datasets from the Gene Expression Omnibus data base (GEO) were downloaded for data analysis and validation. Single sample gene enrichment analysis (ssGSEA) was used to evaluate the infiltration of immune cells in CD samples. Immune cell types with significant differences were identified by Wilcoxon test and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. Differentially expressed genes (DEGs) were screened and then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional correlation analysis, as well as protein-protein interaction (PPI) network analysis. The cytoHubba program and the GSE75214 dataset were used to screen for hub genes and plot Receiver operating characteristic (ROC)curves to screen for possible biomarkers of CD based on diagnostic efficacy. The hub genes of CD were correlated with five significantly different immune cells. In addition, validation was performed by real time quantitative PCR (RT-qPCR) experiments in colonic tissue of CD intestinal fibrosis rats to further identify hub genes that are more related to CD intestinal fibrosis. Results The DEGs were analyzed separately by 10 algorithms and narrowed down to 9 DEGs after taking the intersection. 4 hub genes were further screened by the GSE75214 validation set, namely COL1A1, CXCL10, MMP2 and FGF2. COL1A1 has the highest specificity and sensitivity for the diagnosis of CD and is considered to have the potential to diagnose CD. Five immune cells with significant differences were screened between CD and health controls (HC). Through the correlation analysis between five kinds of immune cells and four biomarkers, it was found that CXCL10 was positively correlated with activated dendritic cells, effector memory CD8+ T cells. MMP2 was positively correlated with activated dendritic cells, gamma delta T cells (γδ T) and mast cells. MMP2 and COL1A1 were significantly increased in colon tissue of CD fibrosis rats. Conclusion MMP2, COL1A1, CXCL10 and FGF2 can be used as hub genes for CD. Among them, COL1A1 can be used as a biomarker for the diagnosis of CD. MMP2 and CXCL10 may be involved in the development and progression of CD by regulating activated dendritic cell, effector memory CD8+ T cell, γδ T cell and mast cell. In addition, MMP2 and COL1A1 may be more closely related to CD intestinal fibrosis.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Acupuncture and Immunological Effects, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjia Wang
- Key Laboratory of Acupuncture and Immunological Effects, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyi Chen
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Chai
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Handan Zheng
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingli Chen
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Lymphatic Tissue Bioengineering for the Treatment of Postsurgical Lymphedema. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9040162. [PMID: 35447722 PMCID: PMC9025804 DOI: 10.3390/bioengineering9040162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 01/28/2023]
Abstract
Lymphedema is characterized by progressive and chronic tissue swelling and inflammation from local accumulation of interstitial fluid due to lymphatic injury or dysfunction. It is a debilitating condition that significantly impacts a patient's quality of life, and has limited treatment options. With better understanding of the molecular mechanisms and pathophysiology of lymphedema and advances in tissue engineering technologies, lymphatic tissue bioengineering and regeneration have emerged as a potential therapeutic option for postsurgical lymphedema. Various strategies involving stem cells, lymphangiogenic factors, bioengineered matrices and mechanical stimuli allow more precisely controlled regeneration of lymphatic tissue at the site of lymphedema without subjecting patients to complications or iatrogenic injuries associated with surgeries. This review provides an overview of current innovative approaches of lymphatic tissue bioengineering that represent a promising treatment option for postsurgical lymphedema.
Collapse
|
3
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-675tomkjw'); waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
4
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-62v2kivtk' or 159=(select 159 from pg_sleep(9))--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
5
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6w8jpumgz'); waitfor delay '0:0:18' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
6
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6' and 2*3*8=6*8 and 'q4ng'='q4ng] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
7
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6-1); waitfor delay '0:0:18' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
8
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6inyod6yy'); waitfor delay '0:0:0' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
9
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6uo9qdmbo' or 900=(select 900 from pg_sleep(15))--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
10
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6xjcyx5xp'; waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
11
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6kliwx55t'; waitfor delay '0:0:0' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
12
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-60"xor(if(now()=sysdate(),sleep(15),0))xor"z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
13
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6jpd2wffe'); waitfor delay '0:0:9' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
14
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 PMCID: PMC8371859 DOI: 10.1186/s41232-021-00175-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/05/2023] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn’s disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer’s disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
15
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-60'xor(if(now()=sysdate(),sleep(15),0))xor'z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
16
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6" and 2*3*8=6*8 and "1plv"="1plv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
17
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6xkcvwszk'); waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
18
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6-1 waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
19
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-60"xor(if(now()=sysdate(),sleep(9),0))xor"z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
20
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6-1; waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
21
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
22
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6f9cyjbik')); waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
23
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6algupclm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
24
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6-1); waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
25
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6y8xz2ym5')); waitfor delay '0:0:0' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
26
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6fqqx42pj'; waitfor delay '0:0:9' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
27
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-64yudfa9k'; waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
28
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6uldec7js')); waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
29
|
Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen 2021; 41:25. [PMID: 34404493 DOI: 10.1186/s41232-021-00175-6%' and 2*3*8=6*8 and 'qtjh'!='qtjh%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2024] Open
Abstract
The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
30
|
Ocansey DKW, Pei B, Xu X, Zhang L, Olovo CV, Mao F. Cellular and molecular mediators of lymphangiogenesis in inflammatory bowel disease. J Transl Med 2021; 19:254. [PMID: 34112196 PMCID: PMC8190852 DOI: 10.1186/s12967-021-02922-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies reporting the intricate crosstalk between cellular and molecular mediators and the lymphatic endothelium in the development of inflammatory bowel diseases (IBD) suggest altered inflammatory cell drainage and lymphatic vasculature, implicating the lymphatic system as a player in the occurrence, development, and recurrence of intestinal diseases. This article aims to review recent data on the modulatory functions of cellular and molecular components of the IBD microenvironment on the lymphatic system, particularly lymphangiogenesis. It serves as a promising therapeutic target for IBD management and treatment. The interaction with gut microbiota is also explored. Main text Evidence shows that cells of the innate and adaptive immune system and certain non-immune cells participate in the complex processes of inflammatory-induced lymphangiogenesis through the secretion of a wide spectrum of molecular factors, which vary greatly among the various cells. Lymphangiogenesis enhances lymphatic fluid drainage, hence reduced infiltration of immunomodulatory cells and associated-inflammatory cytokines. Interestingly, some of the cellular mediators, including mast cells, neutrophils, basophils, monocytes, and lymphatic endothelial cells (LECs), are a source of lymphangiogenic molecules, and a target as they express specific receptors for lymphangiogenic factors. Conclusion The effective target of lymphangiogenesis is expected to provide novel therapeutic interventions for intestinal inflammatory conditions, including IBD, through both immune and non-immune cells and based on cellular and molecular mechanisms of lymphangiogenesis that facilitate inflammation resolution.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
31
|
Nasser J, Bergman DT, Fulco CP, Guckelberger P, Doughty BR, Patwardhan TA, Jones TR, Nguyen TH, Ulirsch JC, Lekschas F, Mualim K, Natri HM, Weeks EM, Munson G, Kane M, Kang HY, Cui A, Ray JP, Eisenhaure TM, Collins RL, Dey K, Pfister H, Price AL, Epstein CB, Kundaje A, Xavier RJ, Daly MJ, Huang H, Finucane HK, Hacohen N, Lander ES, Engreitz JM. Genome-wide enhancer maps link risk variants to disease genes. Nature 2021; 593:238-243. [PMID: 33828297 PMCID: PMC9153265 DOI: 10.1038/s41586-021-03446-x] [Citation(s) in RCA: 307] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease1. Many of the underlying causal variants may affect enhancers2,3, but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types4. Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.
Collapse
Affiliation(s)
- Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Bristol Myers Squibb, Cambridge, MA, USA
| | - Philine Guckelberger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Benjamin R Doughty
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tejal A Patwardhan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | | | - Tung H Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Fritz Lekschas
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Kristy Mualim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Heini M Natri
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Elle M Weeks
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Kane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Helen Y Kang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - John P Ray
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Ryan L Collins
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kushal Dey
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Hanspeter Pfister
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Office of Science and Technology Policy, Executive Office of the President, White House, Washington, DC, USA.
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
32
|
Shen W, Li Y, Cao L, Cai X, Ge Y, Zhu W. Decreased Expression of Prox1 Is Associated With Postoperative Recurrence in Crohn's Disease. J Crohns Colitis 2018; 12:1210-1218. [PMID: 29947772 DOI: 10.1093/ecco-jcc/jjy091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Prox1 is a transcription factor necessary for lymphangiogenesis and lymphatic function. The aim of the study was to assess the correlation between the expression of Prox1 and postoperative recurrence in Crohn's disease [CD]. METHODS Forty CD patients who underwent ileo-colonic resection were included. Expression levels of Prox1 and D2-40 were detected using immunohistochemistry. Expression levels of Prox1, VEGFR3, and VEGFC protein were also detected in fresh CD specimens using western blotting and quantitative polymerase chain reaction [Q-PCR]. Endoscopic recurrence was used as the endpoint. Patients comprised two groups: endoscopic recurrence [Group R+] and no endoscopic recurrence [Group R-]. RESULTS Prox1 protein expression was significantly higher in CD than in normal tissues [p <0.05], as detected using both immunohistochemistry and western blotting. Analysis of inter-relationships revealed significant correlation between Prox1 expression and lymphatic vessel density [p <0.001, r = 0.823]. There was also significant correlation between Prox1 expression and the visceral fat area [VFA] [p = 0.002, r = -0.469]. The Group R- patients had significantly higher Prox1 expression than the Group R+ patients [21.08 ± 1.61 versus 15.64 ± 1.17, p = 0.011]. Also, the lymphatic vessel density value was lower in Group R+ than in Group R- patients [6.02 ± 0.39 versus 8.13 ± 0.59, p = 0.004]. Moreover, there was a significant difference in the VFA between Group R- and Group R+ patients [64.43 ± 7.76 versus 90.44 ± 6.11, p = 0.016]. In addition to Prox1, VEGFC/VEGFR3 was found to increase, which was further confirmed using Q-PCR. CONCLUSIONS Prox1 expression could be useful as a protective factor against recurrence in CD patients. The therapeutic role of Prox1 may lead to improved treatments.
Collapse
Affiliation(s)
- Weisong Shen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Cao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingchen Cai
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuanyuan Ge
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Nunes NS, Kim S, Sundby M, Chandran P, Burks SR, Paz AH, Frank JA. Temporal clinical, proteomic, histological and cellular immune responses of dextran sulfate sodium-induced acute colitis. World J Gastroenterol 2018; 24:4341-4355. [PMID: 30344419 PMCID: PMC6189848 DOI: 10.3748/wjg.v24.i38.4341] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the temporal clinical, proteomic, histological and cellular immune profiles of dextran sulfate sodium (DSS)-induced acute colitis.
METHODS Acute colitis was induced in C57Bl/6 female mice by administration of 1%, 2% or 3% DSS in drinking water for 7 d. Animals were monitored daily for weight loss, stool consistency and blood in the stool, while spleens and colons were harvested on day 8. A time course analysis was performed in mice ingesting 3% DSS, which included colon proteomics through multiplex assay, colon histological scoring by a blinded investigator, and immune response through flow cytometry or immunohistochemistry of the spleen, mesenteric lymph node and colon.
RESULTS Progressive worsening of clinical colitis was observed with increasing DSS from 1% to 3%. In mice ingesting 3% DSS, colon shortening and increase in pro-inflammatory factors starting at day 3 was observed, with increased spleen weights at day 6 and day 8. This coincided with cellular infiltration in the colon from day 2 to day 8, with progressive accumulation of macrophages F4/80+, T helper CD4+ (Th), T cytotoxic CD8+ (Tcyt) and T regulatory CD25+ (Treg) cells, and progressive changes in colonic pathology including destruction of crypts, loss of goblet cells and depletion of the epithelial barrier. Starting on day 4, mesenteric lymph node and/or spleen presented with lower levels of Treg, Th and Tcyt cells, suggesting an immune cell tropism to the gut.
CONCLUSION These results demonstrate that the severity of experimental colitis is dependent on DSS concentration, correlated with clinical, proteomic, histological and cellular immune response on 3% DSS.
Collapse
Affiliation(s)
- Natalia Schneider Nunes
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
- Gastroenterology and Hepatology Sciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-093, Brazil
| | - Saejeong Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Maggie Sundby
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Parwathy Chandran
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Scott Robert Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ana Helena Paz
- Gastroenterology and Hepatology Sciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-093, Brazil
| | - Joseph Alan Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
34
|
Ge Y, Li Y, Gong J, Zhu W. Mesenteric organ lymphatics and inflammatory bowel disease. Ann Anat 2018; 218:199-204. [PMID: 29723582 DOI: 10.1016/j.aanat.2018.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/14/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder and its etiology is unclear yet. Current theory in IBD is focused on genetics, immunity and intestinal microbes. Emerging clinical evidence and experimental results suggest that morphologic abnormalities and dysfunction of mesenteric lymphatics may have potential roles in the pathogenesis and disease course of IBD. In this review, we summarize the findings of specific investigations of the lymphatics and explore its role in IBD.
Collapse
Affiliation(s)
- Yuanyuan Ge
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 PR China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 PR China.
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 PR China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 PR China
| |
Collapse
|
35
|
Lee AS, Sung MJ, Kim W, Jung YJ. COMP-angiopoietin-1 ameliorates inflammation-induced lymphangiogenesis in dextran sulfate sodium (DSS)-induced colitis model. J Mol Med (Berl) 2018; 96:459-467. [PMID: 29610929 PMCID: PMC5897474 DOI: 10.1007/s00109-018-1633-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
Alterations in the intestinal lymphatic network are pathological processes as related to inflammatory bowel disease (IBD). In this study, we demonstrated that reduction in inflammation-induced lymphangiogenesis ameliorates experimental acute colitis. A soluble and stable angiopoietin-1 (Ang1) variant, COMP-Ang1, possesses anti-inflammatory and angiogenic effects. We investigated the effects of COMP-Ang1 on an experimental colonic inflammation model. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium (DSS) via drinking water. We determined body weight, disease activity indices, histopathological scores, lymphatic density, anti-ER-HR3 staining, and the expression of members of the vascular endothelial growth factor (VEGF) family and various inflammatory cytokines in the mice. The density of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) and VEGFR-3-positive lymphatic vessels increased in mice with DSS-induced colitis. We observed that COMP-Ang1-treated mice showed less weight loss, fewer clinical signs of colitis, and longer colons than Ade-DSS-treated mice. COMP-Ang1 also significantly reduced the density of LYVE-1-positive lymphatic vessels and the disruption of colonic architecture that is normally associated with colitis and repressed the immunoregulatory response. Further, COMP-Ang1 treatment reduced both M1 and M2 macrophage infiltration into the inflamed colon, which involved inhibition of VEGF-C and D expression. Thus, COMP-Ang1, which acts by reducing inflammation-induced lymphangiogenesis, may be used as a novel therapeutic for the treatment of IBD and other inflammatory diseases. KEY MESSAGES COMP-Ang1 decreases inflammatory-induced lymphangiogenesis in experimental acute colitis. COMP-Ang1 improves the symptom of DSS-induced inflammatory response. COMP-Ang1 reduces the expression of pro-inflammatory cytokines in inflamed colon. COMP-Ang1 reduces the expression of VEGFs in inflamed colon. COMP-Ang1 prevents infiltration of macrophages in a DSS-induced colitis model.
Collapse
Affiliation(s)
- Ae Sin Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Mi Jeong Sung
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Division of Nephrology, Chonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Yu Jin Jung
- Department of Internal Medicine, Division of Nephrology, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
36
|
Lyons J, Brubaker DK, Ghazi PC, Baldwin KR, Edwards A, Boukhali M, Strasser SD, Suarez-Lopez L, Lin YJ, Yajnik V, Kissil JL, Haas W, Lauffenburger DA, Haigis KM. Integrated in vivo multiomics analysis identifies p21-activated kinase signaling as a driver of colitis. Sci Signal 2018; 11:eaan3580. [PMID: 29487189 PMCID: PMC6719711 DOI: 10.1126/scisignal.aan3580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal tract that has limited treatment options. To gain insight into the pathogenesis of chronic colonic inflammation (colitis), we performed a multiomics analysis that integrated RNA microarray, total protein mass spectrometry (MS), and phosphoprotein MS measurements from a mouse model of the disease. Because we collected all three types of data from individual samples, we tracked information flow from RNA to protein to phosphoprotein and identified signaling molecules that were coordinately or discordantly regulated and pathways that had complex regulation in vivo. For example, the genes encoding acute-phase proteins were expressed in the liver, but the proteins were detected by MS in the colon during inflammation. We also ascertained the types of data that best described particular facets of chronic inflammation. Using gene set enrichment analysis and trans-omics coexpression network analysis, we found that each data set provided a distinct viewpoint on the molecular pathogenesis of colitis. Combining human transcriptomic data with the mouse multiomics data implicated increased p21-activated kinase (Pak) signaling as a driver of colitis. Chemical inhibition of Pak1 and Pak2 with FRAX597 suppressed active colitis in mice. These studies provide translational insights into the mechanisms contributing to colitis and identify Pak as a potential therapeutic target in IBD.
Collapse
Affiliation(s)
- Jesse Lyons
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas K Brubaker
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phaedra C Ghazi
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Katherine R Baldwin
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Pediatric Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda Edwards
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Myriam Boukhali
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha Dale Strasser
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi-Jang Lin
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Vijay Yajnik
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph L Kissil
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin M Haigis
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Merigo F, Brandolese A, Facchin S, Missaggia S, Bernardi P, Boschi F, D’Incà R, Savarino EV, Sbarbati A, Sturniolo GC. Glucose transporter expression in the human colon. World J Gastroenterol 2018; 24:775-793. [PMID: 29467549 PMCID: PMC5807937 DOI: 10.3748/wjg.v24.i7.775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate by immunostaining glucose transporter expression in human colorectal mucosa in controls and patients with inflammatory bowel disease (IBD).
METHODS Colorectal samples were obtained from patients undergoing lower endoscopic colonoscopy or recto-sigmoidoscopy. Patients diagnosed with ulcerative colitis (n = 18) or Crohn’s disease (n = 10) and scheduled for diagnostic colonoscopy were enrolled. Patients who underwent colonoscopy for prevention screening of colorectal cancer or were followed-up after polypectomy or had a history of lower gastrointestinal symptoms were designated as the control group (CTRL, n = 16). Inflammatory status of the mucosa at the sampling site was evaluated histologically and/or endoscopically. A total of 147 biopsies of colorectal mucosa were collected and processed for immunohistochemistry analysis. The expression of GLUT2, SGLT1, and GLUT5 glucose transporters was investigated using immunoperoxidase labeling. To compare immunoreactivity of GLUT5 and LYVE-1, which is a marker for lymphatic vessel endothelium, double-labeled confocal microscopy was used.
RESULTS Immunohistochemical analysis revealed that GLUT2, SGLT1, and GLUT5 were expressed only in short epithelial portions of the large intestinal mucosa. No important differences were observed in glucose transporter expression between the samples obtained from the different portions of the colorectal tract and between the different patient groups. Unexpectedly, GLUT5 expression was also identified in vessels, mainly concentrated in specific areas where the vessels were clustered. Immunostaining with LYVE-1 and GLUT5 antibodies revealed that GLUT5-immunoreactive (-IR) clusters of vessels were concentrated in areas internal to those that were LYVE-1 positive. GLUT5 and LYVE-1 did not appear to be colocalized but rather showed a close topographical relationship on the endothelium. Based on their LYVE-1 expression, GLUT5-IR vessels were identified as lymphatic. Both inflamed and non-inflamed mucosal colorectal tissue biopsies from the IBD and CTRL patients showed GLUT5-IR clusters of lymphatic vessels.
CONCLUSION Glucose transporter immunoreactivity is present in colorectal mucosa in controls and IBD patients. GLUT5 expression is also associated with lymphatic vessels. This novel finding aids in the characterization of lymphatic vasculature in IBD patients.
Collapse
Affiliation(s)
- Flavia Merigo
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Alessandro Brandolese
- Department of Medicine, Gastroenterology Section, University of Verona, Verona I-37134, Italy
| | - Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Silvia Missaggia
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Paolo Bernardi
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona I-37134, Italy
| | - Renata D’Incà
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| |
Collapse
|
38
|
Maisel K, Sasso MS, Potin L, Swartz MA. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Adv Drug Deliv Rev 2017; 114:43-59. [PMID: 28694027 PMCID: PMC6026542 DOI: 10.1016/j.addr.2017.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Lymphatic vessels are the primary route of communication from peripheral tissues to the immune system; as such, they represent an important component of local immunity. In addition to their transport functions, new immunomodulatory roles for lymphatic vessels and lymphatic endothelial cells have come to light in recent years, demonstrating that lymphatic vessels help shape immune responses in a variety of ways: promoting tolerance to self-antigens, archiving antigen for later presentation, dampening effector immune responses, and resolving inflammation, among others. In addition to these new biological insights, the growing field of immunoengineering has begun to explore therapeutic approaches to utilize or exploit the lymphatic system for immunotherapy.
Collapse
Affiliation(s)
- Katharina Maisel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Maria Stella Sasso
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lambert Potin
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
39
|
Li J, Chen Y, Zhang L, Xing L, Xu H, Wang Y, Shi Q, Liang Q. Total saponins of panaxnotoginseng promotes lymphangiogenesis by activation VEGF-C expression of lymphatic endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:293-302. [PMID: 27553977 PMCID: PMC5108701 DOI: 10.1016/j.jep.2016.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/14/2016] [Accepted: 08/20/2016] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lymphatic system plays an important role in maintaining the fluid homeostasis and normal immune responses, anatomic or functional obstruction of which leads to lymphedema, and treatments for therapeutic lymphangiogenesis are efficiency for secondary lymphedema. Total saponins of panaxnotoginseng (PNS) are a mixture isolated from Panaxnotoginseng (Burkill) F.H.Chen, which has been used as traditional Chinese medicine in China for treatment of cardio- and cerebro-vascular diseases. The aim of this study was to determine the effect and mechanism of PNS on lymphangiogenesis. METHODS The Tg (fli1: egfp; gata1: dsred) transgenic zebrafish embryos were treated with different concentrations of PNS (10, 50, 100μM) for 48h with or without the 6h pretreatment of the 30μM Vascular endothelial growth factors receptor (VEGFR)-3 kinase inhibitor, followed with morphological observation and lympangiogenesis of thoracic duct assessment. The effect of PNS on cell viability, migration, tube formation and Vascular endothelial growth factors (VEGF)-C mRNA and protein expression of lymphatic endothelial cells (LECs) were determined. The role of phosphatidylinositol-3 (PI-3)-kinase (PI3K), extracellular signal-regulated kinase (ERK)1/2 pathways, c-Jun N-terminal kinase (JNK) and P38 mitogen activated protein kinases (MAPK) signaling in PNS-induced VEGF-C expression of LECs by using pharmacological agents to block each signal. RESULTS PNS promotes lymphangiogenesis of thoracic duct in zebrafish with or without VEGFR3 Kinase inhibitor pre-impairment. PNS promotes proliferation, migration and tube formation of LECs. The tube formation induced by PNS could be blocked by VEGFR3 Kinase inhibitor. PNS induce VEGF-C expression of LEC, which could be blocked by ERK1/2, PI3K and P38MAPK signaling inhibitors. CONCLUSION PNS activates lymphangiogenesis both in vivo and in vitro by up-regulating VEGF-C expression and activation of ERK1/2, PI3K and P38MAPK signaling. These findings provide a novel insight into the role of PNS in lymphangiogenesis and suggest that it might be an attractive and suitable therapeutic agent for treating secondary lymphedema or other lymphatic system impairment related disease.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yan Chen
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Li Zhang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Hao Xu
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yongjun Wang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qi Shi
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qianqian Liang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
40
|
Jeon EJ, Davaatseren M, Hwang JT, Park JH, Hur HJ, Lee AS, Sung MJ. Effect of Oral Administration of 3,3'-Diindolylmethane on Dextran Sodium Sulfate-Induced Acute Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7702-7709. [PMID: 27700072 DOI: 10.1021/acs.jafc.6b02604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In patients with inflammatory bowel disease (IBD), inflammation is induced and maintained by lymphangiogenesis and angiogenesis. 3,3'-Diindolylmethane (DIM) is a natural product formed in acidic conditions from indole-3-carbinol in cruciferous vegetables, and it is known for its chemotherapeutic activity. This study evaluated DIM's effects on angiogenesis, lymphangiogenesis, and inflammation in a mouse colitis model. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium (DSS) via drinking water. DIM remarkably attenuated the clinical signs and histological characteristics in mice with DSS-induced colitis. DIM suppressed neutrophil infiltration and pro-inflammatory cytokines. Moreover, it significantly suppressed the expression of vascular endothelial growth factor (VEGF)-A and VEGF receptor (VEGFR)-2, indicating that the mechanism may be related to the repression of pro-angiogenesis activity. DIM also remarkably suppressed the expression of VEGF-C, VEGF-D, VEGFR-3, and angiopoietin-2; thus, the mechanism may also be related to the suppression of lymphangiogenesis. Therefore, DIM is a possible treatment option for inflammation of the intestine and associated angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Eun-Joo Jeon
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Munkhtugs Davaatseren
- Department of Food Science and Technology, Chung-ang University , Ansung, Keongki, Republic of Korea
| | - Jin-Taek Hwang
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Jae Ho Park
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Haeng Jeon Hur
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Ae Sin Lee
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Mi Jeong Sung
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| |
Collapse
|
41
|
Ding XL, Man YN, Hao J, Zhu CH, Liu C, Yang X, Wu XZ. The Antitumor Effect of Gekko Sulfated Glycopeptide by Inhibiting bFGF-Induced Lymphangiogenesis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7396392. [PMID: 27190997 PMCID: PMC4844873 DOI: 10.1155/2016/7396392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/16/2016] [Accepted: 03/20/2016] [Indexed: 12/21/2022]
Abstract
Objective. To study the antilymphangiogenesis effect of Gekko Sulfated Glycopeptide (GSPP) on human lymphatic endothelial cells (hLECs). Methods. MTS was conducted to confirm the antiproliferation effect of GSPP on hLECs; flow cytometry was employed to detect hLECs cycle distribution; the antimigration effect of GSPP on hLECs was investigated by wound healing experiment and transwell experiment; tube formation assay was used to examine its inhibitory effect on the lymphangiogenesis; western blotting was conducted to detect the expression of extracellular signal-regulated kinase1/2 (Erk1/2) and p-Erk1/2 after GSPP and basic fibroblast growth factor (bFGF) treatment. Nude mice models were established to investigate the antitumor effect of GSPP in vivo. Decreased lymphangiogenesis caused by GSPP in vivo was verified by immunohistochemical staining. Results. In vitro, GSPP (10 μg/mL, 100 μg/mL) significantly inhibited bFGF-induced hLECs proliferation, migration, and tube-like structure formation (P < 0.05) and antagonized the phosphorylation activation of Erk1/2 induced by bFGF. In vivo, GSPP treatment (200 mg/kg/d) not only inhibited the growth of colon carcinoma, but also inhibited the tumor lymphangiogenesis. Conclusion. GSPP possesses the antitumor ability by inhibiting bFGF-inducing lymphangiogenesis in vitro and in vivo, which may further inhibit tumor lymphatic metastasis.
Collapse
Affiliation(s)
- Xiu-Li Ding
- Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China
| | - Ya-Nan Man
- Department of Radiotherapy, The Second Affiliated Hospital of Tianjin Medical University, Ping-Jiang Road, He-Xi District, Tianjin 300060, China
| | - Jian Hao
- Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China
| | - Cui-Hong Zhu
- Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China
| | - Chang Liu
- Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China
| | - Xue Yang
- Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China
| | - Xiong-Zhi Wu
- Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China
| |
Collapse
|
42
|
Angiogenesis in Inflammatory Bowel Disease. Int J Inflam 2015; 2015:970890. [PMID: 26839731 PMCID: PMC4709626 DOI: 10.1155/2015/970890] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is an important component of pathogenesis of inflammatory bowel disease (IBD). Chronic inflammation and angiogenesis are two closely related processes. Chronic intestinal inflammation is dependent on angiogenesis and this angiogenesis is modulated by immune system in IBD. Angiogenesis is a very complex process which includes multiple cell types, growth factors, cytokines, adhesion molecules, and signal transduction. Lymphangiogenesis is a new research area in the pathogenesis of IBD. While angiogenesis supports inflammation via leukocyte migration, carrying oxygen and nutrients, on the other hand, it has a major role in wound healing. Angiogenic molecules look like perfect targets for the treatment of IBD, but they have risk for serious side effects because of their nature.
Collapse
|
43
|
Jitariu AA, Cimpean AM, Kundnani NR, Raica M. Platelet-derived growth factors induced lymphangiogenesis: evidence, unanswered questions and upcoming challenges. Arch Med Sci 2015; 11:57-66. [PMID: 25861290 PMCID: PMC4379379 DOI: 10.5114/aoms.2015.49217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between angiogenesis and lymphangiogenesis in embryonic development continues during postnatal life and has specific mechanisms involving factors that initiate activation of the intracellular cascade for their specific receptors. Platelet-derived growth factors (PDGFs) and their corresponding receptors (PDGFRs) are known as important regulators of blood vessel development in both normal and pathologic angiogenesis. Despite some recent papers which reported a potential role of the PDGF/PDGFR axis in lymphatic spread of tumor cells, a few papers have suggested the potential role of PDGFs in tumor lymphangiogenesis development. The present paper summarizes the potential lymphangiogenic role of the PDGF/PDGFR axis, underlying upcoming challenges in the field.
Collapse
Affiliation(s)
| | | | | | - Marius Raica
- Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
44
|
D'Alessio S, Correale C, Tacconi C, Gandelli A, Pietrogrande G, Vetrano S, Genua M, Arena V, Spinelli A, Peyrin-Biroulet L, Fiocchi C, Danese S. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Invest 2014; 124:3863-78. [PMID: 25105363 DOI: 10.1172/jci72189] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 06/26/2014] [Indexed: 12/11/2022] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases (IBDs) of unknown etiology that are associated with an aberrant mucosal immune response. Neoangiogenesis and vascular injury are observed in IBD along with increased lymphangiogenesis. While the pathogenic role of angiogenesis in IBD is well characterized, it is not clear how or if increased lymphangiogenesis promotes disease. Here, we determined that enhancing lymphangiogenesis and lymphatic function reduces experimental IBD. Specifically, we demonstrated that adenoviral induction of prolymphangiogenic factor VEGF-C provides marked protection against the development of acute and chronic colitis in 2 different animal models. VEGF-C-dependent protection was observed in combination with increased inflammatory cell mobilization and bacterial antigen clearance from the inflamed colon to the draining lymph nodes. Moreover, we found that the VEGF-C/VEGFR3 pathway regulates macrophage (MΦ) plasticity and activation both in cultured MΦs and in vivo, imparting a hybrid M1-M2 phenotype. The protective function of VEGF-C was meditated by the so-called resolving MΦs during chronic experimental colitis in a STAT6-dependent manner. Together, these findings shed light on the contribution of lymphatics to the pathogenesis of gut inflammation and suggest that correction of defective lymphatic function with VEGF-C has potential as a therapeutic strategy for IBD.
Collapse
|
45
|
The effects of infliximab or adalimumab on vascular endothelial growth factor and angiopoietin 1 angiogenic factor levels in inflammatory bowel disease: serial observations in 37 patients. Inflamm Bowel Dis 2014; 20:695-702. [PMID: 24562175 DOI: 10.1097/mib.0000000000000004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Infliximab and adalimumab effectiveness might be related with changes in angiogenic factors. The aim of the study was to compare the concentrations of angiogenic proteins in patients with inflammatory bowel disease (IBD) and healthy controls and to analyze changes in the levels during infliximab and adalimumab treatment. METHODS A prospective case-control study was conducted in 37 patients with IBD starting treatment with infliximab (16 with Crohn's disease and 6 with ulcerative colitis) or adalimumab (15 with Crohn's disease) and 40 control subjects. Four samples were taken from IBD patients, one before each of the first 3 doses of infliximab/adalimumab and one at week 14. Serum levels of vascular endothelial growth factor (VEGF), placental growth factor, angiopoietin 1 (Ang1), angiopoietin 2, and Tie2 were measured using enzyme-linked immunosorbent assay. RESULTS Patients with IBD had higher VEGF levels than control subjects (511.5 ± 255.6 versus 395.5 ± 256.4; P = 0.05). Patients who achieved remission at the third dose of anti-TNF-alpha had lower VEGF levels at baseline (453.5 ± 250.7 versus 667.5 ± 153.9 pg/mL) and before the second (409.7 ± 217 versus 681.3 ± 350.6 pg/mL) and third (400.5 ± 222.8 versus 630.4 ± 243.1 pg/mL) doses compared with those with no remission (P < 0.05). Ang1 levels decreased before each treatment dose in patients who achieved remission (P < 0.05). High baseline VEGF levels predicted for a poor response to anti-TNF-alpha therapy (area under the receiver operating characteristics curve = 0.8), whereas high Ang1 levels were associated with disease remission (area under the receiver operating characteristics curve = 0.7). Concentrations of angiogenic proteins did not correlate with clinical activity scores. CONCLUSIONS Circulating VEGF and Ang1 levels decrease after anti-TNF-alpha therapy and may predict response to treatment. Whether these changes are a direct effect of anti-TNF-alpha therapy or a sign of disease improvement remains to be elucidated.
Collapse
|
46
|
Linares PM, Chaparro M, Gisbert JP. Angiopoietins in inflammation and their implication in the development of inflammatory bowel disease. A review. J Crohns Colitis 2014; 8:183-90. [PMID: 23859759 DOI: 10.1016/j.crohns.2013.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/19/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiopoietins are essential angiogenic mediators. Since inflammatory bowel disease (IBD) involves inflammation, ulceration and regeneration of the intestinal mucosa, the angiopoietin system has been proposed as a factor to maintain pathological angiogenesis during the development of the IBD. AIM To review the potential role of angiopoietins in the inflammation driven by angiogenesis during the course of the IBD. METHODS Publications were identified by PubMed searches using the following key words: angiopoietin; Tie-2 receptor; angiogenesis; inflammatory bowel disease and inflammation, in various combinations. RESULTS Angiopoietin-1 acts as a regulator of blood vessel maturation and has anti-inflammatory properties, whereas angiopoietin-2 marks the onset of angiogenesis and is required for normal formation of lymph vessels. Both angiopoietins make use of their angiogenic regulatory effects via the angiopoietin tyrosine-kinase receptor (Tie-2). While angiogenesis has been shown to promote and sustain many events of inflammation, the involvement of the angiopoietin system in IBD has been reported in few studies. It is not clear whether the angiopoietins' role in the development of intestinal inflammation is due to an imbalance in the levels of these proteins or this system exerts its pro-angiogenic properties through a different mechanism during the close-loop relationship between angiogenesis and inflammation. CONCLUSIONS Angiopoietins have key functions in the angiogenic process, and their abnormal activation might depend on their surrounding inflamed environment. The determination of these angiogenic factors in serum and tissue could be useful for monitoring IBD progression.
Collapse
Affiliation(s)
- Pablo M Linares
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain.
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| |
Collapse
|
47
|
Relationship between levels of angiogenic and lymphangiogenic factors and the endoscopic, histological and clinical activity, and acute-phase reactants in patients with inflammatory bowel disease. J Crohns Colitis 2013; 7:e569-79. [PMID: 23642997 DOI: 10.1016/j.crohns.2013.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiogenic and lymphangiogenic factors (ALFs) may play an important role in inflammatory bowel disease (IBD). Our aims were to evaluate levels of ALFs in serum and the colonic mucosa culture supernatant (MCS) of patients with active and quiescent IBD and healthy subjects and to correlate them with the endoscopic, clinical and histological activity and with acute-phase reactants. METHODS This is a prospective study of 28 controls and 72 IBD patients. Serum and MCS concentration of VEGFA, VEGFC, VEGFD, VEGFR1, VEGFR2, VEGFR3, PlGF, Ang1, Ang2 and Tie2 were measured by ELISA. Activity was established by specific indexes (CDAI, Mayo score, SES-CD, D'Haens scale and Riley index). Acute-phase reactants were routinely measured. RESULTS MCS levels of all ALFs except VEGFR3 were higher in patients with endoscopic (p<0.05), clinical (p<0.05) and histological (p<0.01) activity than in those without it. In serum, VEGFA, VEGFC and Ang1 and VEGFA and Ang1 levels were lower in patients in remission than in patients with clinical and histological activity, respectively (p<0.05). There was a correlation between serum and MCS concentrations for VEGFD, VEGFR3, PlGF and Tie2 (r=0.25, r=0.48, r=-0.45 and r=0.36; p<0.05). Ang2 in MCS was the best predictor for the diagnosis of endoscopic, histological and clinical activity (area under ROC curve>0.8). CONCLUSIONS MCS determination suggests a local increase in ALFs that correlates with IBD activity. Although the correlation between ALFs in serum and MCS was not good, the study of some of these factors as possible targets of new drugs for IBD constitutes a key new line of research.
Collapse
|
48
|
He J, Xiong S, Zhang J, Wang J, Sun A, Mei X, Sun X, Zhang C, Wang Q. Protective effects of hydrogen-rich saline on ulcerative colitis rat model. J Surg Res 2013; 185:174-81. [PMID: 23773716 DOI: 10.1016/j.jss.2013.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/08/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is associated with enhanced production of reactive oxygen species and altered angiogenesis. Molecular hydrogen has been documented as a novel antioxidant to treat various reactive oxygen species-related diseases. The present study aimed to investigate the effects of hydrogen on UC using a rat model. MATERIALS AND METHODS UC in rats was induced with intracolonically administrated acetic acid. Hydrogen was supplied through intraperitoneal injection of 10 or 20 mL/kg hydrogen-rich saline. The hydrogen treatment was performed once every 2 d and lasted 2 wk. The stool consistency and weight loss were used to evaluate UC development. Colonic mucosal damage at the end of the experiment was scored using the macroscopic and microscopic observations. Vascular endothelial growth factor expression in the colonic mucosa was determined using immunohistochemistry. RESULTS The administration of acetic acid induced acute rat UC, as indicated by diarrhea, weight loss, and colonic mucosal damage. Treatment with hydrogen-rich saline reduced the weight loss and diarrhea and alleviated the colonic mucosal damage in the UC rats. In addition, the expression of vascular endothelial growth factor in the UC rats increased and could be inhibited by hydrogen treatment. CONCLUSIONS Antioxidative hydrogen-rich saline effectively protected the rats from UC, which might be, at least in part, because of inhibition of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Jinghu He
- Department of Anatomy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lönn J, Nakka S, Olsson H, Bengtsson T, Almer S, Nayeri F. Differences in the expression of hepatocyte growth factor in acute and chronic bowel inflammation—Implications for diagnosis? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.48a2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Nakka SS, Johansson J, Shahzad F, Hanning A, Nayeri F. A methachromatic-based experimental model for identification of bowel as the focus of an acute inflammation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojgas.2013.31007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|