1
|
Peng Y, Ma Y, Luo Z, Jiang Y, Xu Z, Yu R. Lactobacillus reuteri in digestive system diseases: focus on clinical trials and mechanisms. Front Cell Infect Microbiol 2023; 13:1254198. [PMID: 37662007 PMCID: PMC10471993 DOI: 10.3389/fcimb.2023.1254198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives Digestive system diseases have evolved into a growing global burden without sufficient therapeutic measures. Lactobacillus reuteri (L. reuteri) is considered as a new potential economical therapy for its probiotic effects in the gastrointestinal system. We have provided an overview of the researches supporting various L. reuteri strains' application in treating common digestive system diseases, including infantile colic, diarrhea, constipation, functional abdominal pain, Helicobacter pylori infection, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases. Methods The summarized literature in this review was derived from databases including PubMed, Web of Science, and Google Scholar. Results The therapeutic effects of L. reuteri in digestive system diseases may depend on various direct and indirect mechanisms, including metabolite production as well as modulation of the intestinal microbiome, preservation of the gut barrier function, and regulation of the host immune system. These actions are largely strain-specific and depend on the activation or inhibition of various certain signal pathways. It is well evidenced that L. reuteri can be effective both as a prophylactic measure and as a preferred therapy for infantile colic, and it can also be recommended as an adjuvant strategy to diarrhea, constipation, Helicobacter pylori infection in therapeutic settings. While preclinical studies have shown the probiotic potential of L. reuteri in the management of functional abdominal pain, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases, its application in these disease settings still needs further study. Conclusion This review focuses on the probiotic effects of L. reuteri on gut homeostasis via certain signaling pathways, and emphasizes the importance of these probiotics as a prospective treatment against several digestive system diseases.
Collapse
Affiliation(s)
- Yijing Peng
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Wuxi Children’s Hospital, Children’s Hospital of Jiangnan University, Wuxi, China
| | - Yizhe Ma
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Pediatric, Jiangyin People’s Hospital of Nantong University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yifan Jiang
- School of Medicine, Nantong University, Nantong, China
| | - Zhimin Xu
- College of Resources and Environment, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
2
|
Yang Z, Liu X, Wu Y, Peng J, Wei H. Effect of the Microbiome on Intestinal Innate Immune Development in Early Life and the Potential Strategy of Early Intervention. Front Immunol 2022; 13:936300. [PMID: 35928828 PMCID: PMC9344006 DOI: 10.3389/fimmu.2022.936300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Early life is a vital period for mammals to be colonized with the microbiome, which profoundly influences the development of the intestinal immune function. For neonates to resist pathogen infection and avoid gastrointestinal illness, the intestinal innate immune system is critical. Thus, this review summarizes the development of the intestinal microbiome and the intestinal innate immune barrier, including the intestinal epithelium and immune cells from the fetal to the weaning period. Moreover, the impact of the intestinal microbiome on innate immune development and the two main way of early-life intervention including probiotics and fecal microbiota transplantation (FMT) also are discussed in this review. We hope to highlight the crosstalk between early microbial colonization and intestinal innate immunity development and offer some information for early intervention.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangchen Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
3
|
Lasaviciute G, Barz M, van der Heiden M, Arasa C, Tariq K, Quin J, Östlund Farrants AK, Sverremark-Ekström E. Gut commensal Limosilactobacillus reuteri induces atypical memory-like phenotype in human dendritic cells in vitro. Gut Microbes 2022; 14:2045046. [PMID: 35258405 PMCID: PMC8920211 DOI: 10.1080/19490976.2022.2045046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Memory-like responses in innate immune cells confer nonspecific protection against secondary exposures. A number of microbial agents have been found to induce enhanced or diminished recall responses in innate cells, however, studies investigating the ability of probiotic bacteria to trigger such effects are lacking. Here, we show that priming of human monocytes with a secretome from the gut probiotic bacterium Limosilactobacillus (L.) reuteri induces a mixed secondary response phenotype in monocyte-derived dendritic cells (mo-DCs), with a strong IL-6 and IL-1β response but low TNFα, IL-23 and IL-27 secretion. Instead, blood DC priming with L. reuteri-secretome resembles a tolerant state upon secondary exposure. A similar pattern was found in conventional and gut-like (retinoic acid exposed) DCs, although retinoic acid hampered TNFα and IL-6 production and enrichment of histone modifications in L. reuteri-secretome primed mo-DC cultures. Further, we show that the memory-like phenotype of mo-DCs, induced by priming stimuli, is important for subsequent T helper (Th) cell differentiation pathways and might determine the inflammatory nature of Th cells. We also show enhanced recall responses characterized by robust inflammatory cytokines and lactate production in the gut-like mo-DCs derived from β-glucan primed monocytes. Such responses were accompanied with enriched histone modifications at the promoter of genes associated with a trained phenotype in myeloid cells. Altogether, we demonstrate that a gut commensal-derived secretome prompts recall responses in human DCs which differ from that induced by classical training agents such as β-glucan. Our results could be beneficial for future therapeutic interventions where T cell responses are needed to be modulated.
Collapse
Affiliation(s)
- Gintare Lasaviciute
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Myriam Barz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marieke van der Heiden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Claudia Arasa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kanwal Tariq
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jaclyn Quin
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden,CONTACT Eva Sverremark-Ekström Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
4
|
Cell-Free Culture Supernatants of Lactobacilli Modify the Expression of Virulence Factors Genes in Staphylococcus aureus. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.96806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
5
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Front Endocrinol (Lausanne) 2020; 11:125. [PMID: 32265832 PMCID: PMC7105744 DOI: 10.3389/fendo.2020.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease mediated by genetic, epigenetic, and environmental factors. In recent years, the emergence of high-throughput sequencing has allowed us to investigate the role of gut microbiota in the development of T1D. Significant changes in the composition of gut microbiome, also termed dysbiosis, have been found in subjects with clinical or preclinical T1D. However, whether the dysbiosis is a cause or an effect of the disease remains unclear. Currently, increasing evidence has supported a causal link between intestine microflora and T1D development. The current review will focus on recent research regarding the associations between intestine microbiome and T1D progression with an intention to evaluate the causality. We will also discuss the possible mechanisms by which imbalanced gut microbiota leads to the development of T1D.
Collapse
|
6
|
The Nature of Antibacterial Adaptive Immune Responses against Staphylococcus aureus Is Dependent on the Growth Phase and Extracellular Peptidoglycan. Infect Immun 2019; 88:IAI.00733-19. [PMID: 31685545 DOI: 10.1128/iai.00733-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus has evolved different strategies to evade the immune response, which play an important role in its pathogenesis. The bacteria express and shed various cell wall components and toxins during different stages of growth that may affect the protective T cell responses to extracellular and intracellular S. aureus However, if and how the dendritic cell (DC)-mediated T cell response against S. aureus changes during growth of the bacterium remain elusive. In this study, we show that exponential-phase (EP) S. aureus bacteria were endocytosed very efficiently by human DCs, and these DCs strongly promoted production of the T cell polarizing factor interleukin-12 (IL-12). In contrast, stationary-phase (SP) S. aureus bacteria were endocytosed less efficiently by DCs, and these DCs produced small amounts of IL-12. The high level of IL-12 production induced by EP S. aureus led to the development of a T helper 1 (Th1) cell response, which was inhibited after neutralization of IL-12. Furthermore, preincubation with the staphylococcal cell wall component peptidoglycan (PGN), characteristically shed during the exponential growth phase, modulated the DC response to EP S. aureus PGN preincubation appeared to inhibit IL-12p35 expression, leading to downregulation of IL-12 and an increase of IL-23 production by DCs, enhancing Th17 cell development. Taken together, our data indicate that exponential-phase S. aureus bacteria induce a stronger IL-12-dependent Th1 cell response than stationary-phase S. aureus and that this Th1 cell response shifted toward a Th17 cell response in the presence of PGN.
Collapse
|
7
|
Qazi KR, Bach Jensen G, van der Heiden M, Björkander S, Holmlund U, Haileselassie Y, Kokkinou E, Marchini G, Jenmalm MC, Abrahamsson T, Sverremark-Ekström E. Extremely Preterm Infants Have Significant Alterations in Their Conventional T Cell Compartment during the First Weeks of Life. THE JOURNAL OF IMMUNOLOGY 2019; 204:68-77. [PMID: 31801814 DOI: 10.4049/jimmunol.1900941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
Abstract
Extremely preterm neonates are particularly susceptible to infections, likely because of severely impaired immune function. However, little is known on the composition of the T cell compartment in early life in this vulnerable population. We conducted a comprehensive phenotypic flow cytometry-based longitudinal analysis of the peripheral conventional T cell compartment of human extremely low gestational age neonates (ELGAN) with extremely low birth weight (ELBW; <1000 g) participating in a randomized placebo-controlled study of probiotic supplementation. PBMCs from ELGAN/ELBW neonates were collected at day 14, day 28, and postmenstrual week 36. Comparisons were made with full-term 14-d-old neonates. Total CD4+ and CD8+ T cell frequencies were markedly lower in the preterm neonates. The reduction was more pronounced among the CD8+ population, resulting in an increased CD4/CD8 ratio. The preterm infants were also more Th2 skewed than the full-term infants. Although the frequency of regulatory T cells seemed normal in the ELGAN/ELBW preterm neonates, their expression of the homing receptors α4β7, CCR4, and CCR9 was altered. Notably, ELGAN/ELBW infants developing necrotizing enterocolitis before day 14 had higher expression of CCR9 in CD4+T cells at day 14. Chorioamnionitis clearly associated with reduced T regulatory cell frequencies and functional characteristics within the preterm group. Finally, probiotic supplementation with Lactobacillus reuteri did not impose any phenotypic changes of the conventional T cell compartment. In conclusion, notable immaturities of the T cell compartment in ELGAN/ELBW neonates may at least partially explain their increased susceptibility to severe immune-mediated morbidities.
Collapse
Affiliation(s)
- Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
| | - Georg Bach Jensen
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden.,Department of Paediatrics, Linköping University, 581 83 Linköping, Sweden; and
| | - Marieke van der Heiden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Ulrika Holmlund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Yeneneh Haileselassie
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Efthymia Kokkinou
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Giovanna Marchini
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria C Jenmalm
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Thomas Abrahamsson
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden.,Department of Paediatrics, Linköping University, 581 83 Linköping, Sweden; and
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Savino F, Galliano I, Savino A, Daprà V, Montanari P, Calvi C, Bergallo M. Lactobacillus reuteri DSM 17938 Probiotics May Increase CC-Chemokine Receptor 7 Expression in Infants Treated With for Colic. Front Pediatr 2019; 7:292. [PMID: 31380326 PMCID: PMC6646728 DOI: 10.3389/fped.2019.00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
Aim: Studies have shown that Lactobacilli reuteri probiotics can affect cells that play a key role in the immune system. This in vivo Italian study investigated how Lactobacillus reuteri DSM 17938 influenced CC-chemokine receptor 7 (CCR7) and interleukin 10 (IL-10) in breastfed colicky infants. Methods: Our University hospital in Turin recruited 50 healthy outpatients, at a median age of approximately 1 month, from September 2017 to August 2018. They were randomized to daily Lactobacillus reuteri DSM17938 (1 × 108 cfu) or a placebo for 28 days from recruitment. We collected peripheral blood and evaluated the expression of CCR7 messenger ribonucleic acid using the real-time TaqMan reverse transcription polymerase chain reaction method at baseline and after the study period. Results: We found increased expression of CC-chemokine receptor 7 in infants treated with the probiotic, but not the controls (p < 0.0026). No differences were observed for interleukin 10 after the study period in either group. At baseline, daily crying time was comparable in the probiotic and control groups: 341 (25) vs. 337 (29) min., respectively (p = 0.450). After 28 days, daily mean crying time decrease statistically in the probiotic group: 78 (23) vs. 232 (31), respectively (p < 0.001). Conclusion: The increase in CC-chemokine receptor 7 might have been a response to probiotic treatment. As a relatively small sample was used to conduct this study, our research needs to be replicated in different settings, and over time, to produce comparable findings.
Collapse
Affiliation(s)
- Francesco Savino
- Department of Paediatrics, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Andrea Savino
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Valentina Daprà
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
9
|
Savino F, Galliano I, Garro M, Savino A, Daprà V, Montanari P, Bergallo M. Regulatory T cells and Toll-like receptor 2 and 4 mRNA expression in infants with colic treated with Lactobacillus reuteri DSM17938. Benef Microbes 2018; 9:917-925. [DOI: 10.3920/bm2017.0194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulatory T cells induce immune homeostasis and the expression of Toll like receptors (TLRs); subsequent inflammatory cytokine release may be involved. Recent studies have shown a microbial imbalance in the gut of colicky infants (with a prevalence of gram-negative bacteria, such as Escherichia coli), and accumulating evidence has shown the efficacy of a probiotic (Lactobacillus reuteri) in breastfed subjects, but the underlying mechanism remains undefined. The study enrolled 59 infants younger than 60 days, of whom 34 subjects had colic and 25 were healthy controls. With a double-blind, placebo-controlled randomised study performed in our unit from October 2016 to July 2017, infants with colic were randomly assigned to receive oral daily L. reuteri DSM17938 (1×108 cfu) or placebo for 28 days. Peripheral blood was collected to assess the expression of FoxP3, TLR2 and TLR4 mRNA using real-time TaqMan RT-PCR at baseline and after the study period. Our findings showed increased mRNA expression of the transcription factor forkhead box P3 (FoxP3) in infants treated with L. reuteri DSM 17938 for 28 days (P<0.009) and increased TLR2 and TLR4 mRNA expression in both treated and placebo subjects. After L. reuteri administration for 28 days in infants with colic, we observed a significant decrease in daily crying time (302.3±19.86 min/day on day 0 vs 76.75±22.15 min/day on day 28, P=0.001). This study provides evidence that the observed increase in FoxP3 expression and reduction in crying time might be responses to probiotic treatment, while the increase in TLR2 and TLR4 mRNA expression might be related to age. Exploiting these new findings may lead to an unprecedented level of therapeutic control over immune tolerance using probiotics.
Collapse
Affiliation(s)
- F. Savino
- Department of Paediatrics, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Piazza Polonia, 94, 10126 Turin, Italy
| | - I. Galliano
- Dipartimento delle Scienze di Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Scuola di Medicina, Piazza Polonia, 94, 10126 Turin, Italy
| | - M. Garro
- Department of Paediatrics, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Piazza Polonia, 94, 10126 Turin, Italy
| | - A. Savino
- Department of Paediatrics, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Piazza Polonia, 94, 10126 Turin, Italy
| | - V. Daprà
- Dipartimento delle Scienze di Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Scuola di Medicina, Piazza Polonia, 94, 10126 Turin, Italy
| | - P. Montanari
- Dipartimento delle Scienze di Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Scuola di Medicina, Piazza Polonia, 94, 10126 Turin, Italy
| | - M. Bergallo
- Dipartimento delle Scienze di Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Scuola di Medicina, Piazza Polonia, 94, 10126 Turin, Italy
| |
Collapse
|
10
|
Metwally AA, Yang J, Ascoli C, Dai Y, Finn PW, Perkins DL. MetaLonDA: a flexible R package for identifying time intervals of differentially abundant features in metagenomic longitudinal studies. MICROBIOME 2018; 6:32. [PMID: 29439731 PMCID: PMC5812052 DOI: 10.1186/s40168-018-0402-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Microbial longitudinal studies are powerful experimental designs utilized to classify diseases, determine prognosis, and analyze microbial systems dynamics. In longitudinal studies, only identifying differential features between two phenotypes does not provide sufficient information to determine whether a change in the relative abundance is short-term or continuous. Furthermore, sample collection in longitudinal studies suffers from all forms of variability such as a different number of subjects per phenotypic group, a different number of samples per subject, and samples not collected at consistent time points. These inconsistencies are common in studies that collect samples from human subjects. RESULTS We present MetaLonDA, an R package that is capable of identifying significant time intervals of differentially abundant microbial features. MetaLonDA is flexible such that it can perform differential abundance tests despite inconsistencies associated with sample collection. Extensive experiments on simulated datasets quantitatively demonstrate the effectiveness of MetaLonDA with significant improvement over alternative methods. We applied MetaLonDA to the DIABIMMUNE cohort ( https://pubs.broadinstitute.org/diabimmune ) substantiating significant early lifetime intervals of exposure to Bacteroides and Bifidobacterium in Finnish and Russian infants. Additionally, we established significant time intervals during which novel differentially relative abundant microbial genera may contribute to aberrant immunogenicity and development of autoimmune disease. CONCLUSION MetaLonDA is computationally efficient and can be run on desktop machines. The identified differentially abundant features and their time intervals have the potential to distinguish microbial biomarkers that may be used for microbial reconstitution through bacteriotherapy, probiotics, or antibiotics. Moreover, MetaLonDA can be applied to any longitudinal count data such as metagenomic sequencing, 16S rRNA gene sequencing, or RNAseq. MetaLonDA is publicly available on CRAN ( https://CRAN.R-project.org/package=MetaLonDA ).
Collapse
Affiliation(s)
- Ahmed A. Metwally
- Department of Bioengineering, University of Illinois at Chicago, Chicago, 60607 IL USA
- Department of Medicine, University of Illinois at Chicago, Chicago, 60612 IL USA
- Department of Computer Science, University of Illinois at Chicago, Chicago, 60607 IL USA
| | - Jie Yang
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, 60607 IL USA
| | - Christian Ascoli
- Department of Medicine, University of Illinois at Chicago, Chicago, 60612 IL USA
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, 60607 IL USA
| | - Patricia W. Finn
- Department of Medicine, University of Illinois at Chicago, Chicago, 60612 IL USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, 60612 IL USA
| | - David L. Perkins
- Department of Bioengineering, University of Illinois at Chicago, Chicago, 60607 IL USA
- Department of Medicine, University of Illinois at Chicago, Chicago, 60612 IL USA
- Department of Surgery, University of Illinois at Chicago, Chicago, 60612 IL USA
| |
Collapse
|
11
|
Savino F, Garro M, Montanari P, Galliano I, Bergallo M. Crying Time and RORγ/FOXP3 Expression in Lactobacillus reuteri DSM17938-Treated Infants with Colic: A Randomized Trial. J Pediatr 2018; 192:171-177.e1. [PMID: 28969887 DOI: 10.1016/j.jpeds.2017.08.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate crying time, retinoid-related orphan receptor-γ (RORγ) and forkhead box P3 (FOXP3) messenger RNA levels (transcription factors that can modulate T cell responses to gut microbes), and to investigate gut microbiota and fecal calprotectin in infants treated with Lactobacillus reuteri for infantile colic. STUDY DESIGN A double-blind, placebo-controlled randomized trial was conducted in primary care in Torino from August 1, 2015 to September 30, 2016. Patients suffering from infantile colic were randomly assigned to receive daily oral L reuteri (1 × 108 colony forming unit) or placebo for 1 month. Daily crying times were recorded in a structured diary. FOXP3 and RORγ messenger RNA in the peripheral blood was assessed with real-time TaqMan reverse transcription polymerase chain reaction. Gut microbiota and fecal calprotectin were evaluated. RESULTS After infants with colic were supplemented with L reuteri DSM 17938 for 30 days, crying times were significantly shorter among infants with colic in the probiotic group compared with infants in the placebo group (74.67 ± 25.04 [IQR = 79] minutes /day vs 147.85 [IQR = 135] minutes /day [P = .001]). The FOXP3 concentration increased significantly (P = .009), resulting in decreased RORγ/FOXP3 ratios: 0.61 (IQR = 0.60) at day 0 and 0.48 (IQR = 0.28) at day 30 (P = .028). Furthermore, the probiotic increased the percentage of Lactobacillus (P = .049) and decreased fecal calprotectin (P = .0001). CONCLUSIONS Infants with colic treated with L reuteri for 30 days had a significantly decreased crying time and an increased FOXP3 concentration, resulting in a decreased RORγ/FOXP3 ratio. The treatment reduced fecal calprotectin. TRIAL REGISTRATION ClinicalTrials.gov: NCT00893711.
Collapse
Affiliation(s)
- Francesco Savino
- Department of Pediatrics, Universitary Hospital Città della Salute e della Scienza di Torino, Turin, Italy.
| | - Maria Garro
- Department of Pediatrics, Universitary Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, University of Turin, School of Medicine, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, School of Medicine, Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, School of Medicine, Turin, Italy
| |
Collapse
|
12
|
Bene KP, Kavanaugh DW, Leclaire C, Gunning AP, MacKenzie DA, Wittmann A, Young ID, Kawasaki N, Rajnavolgyi E, Juge N. Lactobacillus reuteri Surface Mucus Adhesins Upregulate Inflammatory Responses Through Interactions With Innate C-Type Lectin Receptors. Front Microbiol 2017; 8:321. [PMID: 28326063 PMCID: PMC5339304 DOI: 10.3389/fmicb.2017.00321] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB, upon interaction of L. reuteri ATCC PTA 6475 and ATCC 53608 strains with human monocyte-derived dendritic cells (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also indicated that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly, in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by atomic force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.
Collapse
Affiliation(s)
- Krisztián P Bene
- Department of Immunology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Devon W Kavanaugh
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Charlotte Leclaire
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Allan P Gunning
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Donald A MacKenzie
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | | | - Ian D Young
- Food and Health Programme, Institute of Food Research Norwich, UK
| | | | - Eva Rajnavolgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Nathalie Juge
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| |
Collapse
|
13
|
Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacol Res 2017; 119:219-226. [PMID: 28188825 DOI: 10.1016/j.phrs.2017.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
The gut microbiota interact with innate immune cells and play an important role in shaping the immune system. Many factors may influence the composition of the microbiota such as mode of birth, diet, infections and medication including antibiotics. In diseases with a multifactorial etiology, like type 1 diabetes, manipulation and alterations of the microbiota in animal models have been shown to influence the incidence and onset of disease. The microbiota are an important part of the internal environment and understanding how these bacteria interact with the innate immune cells to generate immune tolerance may open up opportunities for development of new therapeutic strategies. In this review, we discuss recent findings in relation to the microbiota, particularly in the context of type 1 diabetes.
Collapse
|
14
|
Kada H, Teramae JN, Tokuda IT. Effective Suppression of Pathological Synchronization in Cortical Networks by Highly Heterogeneous Distribution of Inhibitory Connections. Front Comput Neurosci 2016; 10:109. [PMID: 27803659 PMCID: PMC5067923 DOI: 10.3389/fncom.2016.00109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/30/2016] [Indexed: 01/09/2023] Open
Abstract
Even without external random input, cortical networks in vivo sustain asynchronous irregular firing with low firing rate. In addition to detailed balance between excitatory and inhibitory activities, recent theoretical studies have revealed that another feature commonly observed in cortical networks, i.e., long-tailed distribution of excitatory synapses implying coexistence of many weak and a few extremely strong excitatory synapses, plays an essential role in realizing the self-sustained activity in recurrent networks of biologically plausible spiking neurons. The previous studies, however, have not considered highly non-random features of the synaptic connectivity, namely, bidirectional connections between cortical neurons are more common than expected by chance and strengths of synapses are positively correlated between pre- and postsynaptic neurons. The positive correlation of synaptic connections may destabilize asynchronous activity of networks with the long-tailed synaptic distribution and induce pathological synchronized firing among neurons. It remains unclear how the cortical network avoids such pathological synchronization. Here, we demonstrate that introduction of the correlated connections indeed gives rise to synchronized firings in a cortical network model with the long-tailed distribution. By using a simplified feed-forward network model of spiking neurons, we clarify the underlying mechanism of the synchronization. We then show that the synchronization can be efficiently suppressed by highly heterogeneous distribution, typically a lognormal distribution, of inhibitory-to-excitatory connection strengths in a recurrent network model of cortical neurons.
Collapse
Affiliation(s)
- Hisashi Kada
- Department of Mechanical Engineering, Ritsumeikan University Kusatsu-Shi, Japan
| | - Jun-Nosuke Teramae
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University Suita, Japan
| | - Isao T Tokuda
- Department of Mechanical Engineering, Ritsumeikan University Kusatsu-Shi, Japan
| |
Collapse
|