1
|
Seyedi D, Espandar N, Hojatizadeh M, Mohammadi Y, Sadri F, Rezaei Z. Noncoding RNAs in rheumatoid arthritis: modulators of the NF-κB signaling pathway and therapeutic implications. Front Immunol 2024; 15:1486476. [PMID: 39530095 PMCID: PMC11550995 DOI: 10.3389/fimmu.2024.1486476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint inflammation and gradual tissue destruction. New research has shown how important noncoding RNAs (ncRNAs) are for changing immune and inflammatory pathways, such as the WNT signaling pathway, which is important for activating synovial fibroblasts and osteoblasts to work. This article examines the current understanding of several ncRNAs, such as miRNAs, lncRNAs, and circRNAs, that influence NF-κB signaling in the pathogenesis of RA. We investigate how these ncRNAs impact NF-κB signaling components, altering cell proliferation, differentiation, and death in joint tissues. The paper also looks at how ncRNAs can be used as potential early detection markers and therapeutic targets in RA because they can change important pathogenic pathways. This study highlights the therapeutic potential of targeting ncRNAs in RA therapy techniques, with the goal of reducing inflammation and stopping disease progression. This thorough analysis opens up new possibilities for understanding the molecular foundations of RA and designing novel ncRNA-based treatments.
Collapse
Affiliation(s)
- Dina Seyedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmadin Espandar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Maryam Hojatizadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
2
|
Zheng Y, Cai X, Ren F, Yao Y. The role of non-coding RNAs in fibroblast-like synoviocytes in rheumatoid arthritis. Int J Rheum Dis 2024; 27:e15376. [PMID: 39439368 DOI: 10.1111/1756-185x.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovial hyperplasia, and fibroblast-like synoviocytes (FLSs) constitute the majority of cells in the synovial tissue, playing a crucial role in the onset of RA. Dysregulation of FLSs function is a critical strategy in treating joint damage associated with RA. Non-coding RNAs, a class of RNA molecules that do not encode proteins, participate in the development of various diseases. This article aims to review the progress in the study of long non-coding RNAs, microRNAs, and circular RNAs in FLSs. Non-coding RNAs are involved in the pathogenesis of RA, directly or indirectly regulating FLSs' proliferation, migration, invasion, apoptosis, and inflammatory responses. Furthermore, non-coding RNAs also influence DNA methylation and osteogenic differentiation in FLSs. Therefore, non-coding RNAs hold promise as biomarkers for diagnosing RA. Targeting non-coding RNAs in FLSs locally represents a potential strategy for future therapies in RA.
Collapse
Affiliation(s)
- Yongquan Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Li HM, Wang LJ, Wang YP, Li XM, Pan HF. Differences in the expression of long noncoding RNAs in peripheral blood mononuclear cells indicate potential biomarkers for rheumatoid arthritis. Int Immunopharmacol 2024; 134:112218. [PMID: 38733828 DOI: 10.1016/j.intimp.2024.112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) play an increasingly important role in various autoimmune diseases. We aimed to characterize the expression profiles of lncRNAs in peripheral blood mononuclear cells (PBMCs) from RA patients and to assess the potential of these lncRNAs as RA biomarkers. METHODS Whole-transcriptome sequencing was used to establish a lncRNA expression profile. A total of 155 RA patients, 145 healthy controls, 59 systemic lupus erythematosus (SLE) patients and 59 primary Sjögren's syndrome (pSS) patients were recruited for this study. Four candidate lncRNAs (linc00152, lnc-ADM-1, ITSN1-2, and lnc-FTH1-7) were validated via qRT-PCR in independent samples, and their expression, association with RA clinical features and value as RA biomarkers were evaluated. RESULTS Linc00152 and lnc-ADM-1 exhibited upregulated expression (p = 0.001, p = 0.014, respectively), while ITSN1-2 and lnc-FTH1-7 exhibited downregulated expression (both p < 0.001, respectively) in RA patients compared to controls. Lnc-ADM-1 and lnc-FTH1-7 expression correlated positively with the C4 level (p = 0.016 and p = 0.012, respectively). ITSN1-2 levels were negatively associated with CRP levels (p = 0.024). Linc00152, lnc-ADM-1, ITSN1-2, and lnc-FTH1-7 showed potential as RA biomarkers, with the four-lncRNA panel distinguishing RA patients from controls, SLE patients, or pSS patients (AUC = 0.886, 0.746, and 0.749, respectively). CONCLUSION The altered expression of linc00152, lnc-ADM-1, ITSN1-2 and lnc-FTH1-7 in RA patients suggested that these genes may serve as potential biomarkers for RA and could be involved in its pathogenesis.
Collapse
Affiliation(s)
- Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Li-Jun Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi-Ping Wang
- Westmead Institute for Medical Research, University of Sydney, Westmead, 2145 NSW, Australia
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Sun S, Liang L, Tian R, Huang Q, Ji Z, Li X, Lin P, Zheng S, Peng Y, Yuan Q, Pan X, Li T, Yuan Z, Huang Y. LncRNA expression profiling in exosomes derived from synovial fluid of patients with rheumatoid arthritis. Int Immunopharmacol 2024; 130:111735. [PMID: 38412675 DOI: 10.1016/j.intimp.2024.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To identify the long non-coding RNA (lncRNA) expression profiling in exosomes derived from synovial fluid of rheumatoid arthritis (RA) patients, and carry out bioinformatics analysis on target genes of differentially expressed lncRNAs. METHODS Exosomes were isolated from synovial fluid via ultracentrifugation. RNAs were extracted from exosomes by using HiPure Liquid RNA/miRNA kits, followed by lncRNA sequencing. Differentially expressed lncRNAs in RA were screened, and bioinformatics analysis of their target genes was carried out. qRT-PCR was used to verify the lncRNA expression levels. RESULTS Compared with osteoarthritis (OA), 347 lncRNAs were found differentially expressed in RA. Compared with gout, 805 lncRNAs were found differentially expressed in RA. Compared with both OA and gout, 85 lncRNAs were found specially expressed in RA (65 were upregulated (including ENST00000433825.1)). Functional analysis of target genes of the specially expressed lncRNAs revealed significant enrichment of "autophagy" and "mTOR signaling pathway". The qRT-PCR results indicated that ENST00000433825.1 was highly expressed in RA, compared with both OA and gout (P < 0.05), which matched the lncRNA sequencing results. Correlation analysis showed that the level of ENST00000433825.1 in RA patients was significantly and positively correlated with the level of C-reactive protein (CRP) (P < 0.001). CONCLUSIONS The lncRNA expression profiling in exosomes derived from synovial fluid of RA was significantly different from OA and gout. ENST00000433825.1 was highly and uniquely expressed in RA and significantly and positively correlated with CRP, which might provide a diagnostic and therapeutic biomarker for RA.
Collapse
Affiliation(s)
- Shanmiao Sun
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ling Liang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Rui Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Higher Education Mega Center, 100 Outside Ring West Road, Guangzhou 510006, Guangdong, China
| | - Qidang Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Zhuyi Ji
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Xingjian Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Paifeng Lin
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Shaoling Zheng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Yalian Peng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Higher Education Mega Center, 100 Outside Ring West Road, Guangzhou 510006, Guangdong, China
| | - Xia Pan
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China.
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing 526299, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Higher Education Mega Center, 100 Outside Ring West Road, Guangzhou 510006, Guangdong, China.
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China.
| |
Collapse
|
5
|
Lei HT, Wang JH, Yang HJ, Wu HJ, Nian FH, Jin FM, Yang J, Tian XM, Wang HD. LncRNA-mediated cell autophagy: An emerging field in bone destruction in rheumatoid arthritis. Biomed Pharmacother 2023; 168:115716. [PMID: 37866000 DOI: 10.1016/j.biopha.2023.115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
In recent years, research on the mechanism of bone destruction in rheumatoid arthritis (RA) has remained in the initial stages, and the mechanism has not been fully elucidated to date. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in RA bone destruction via autophagy, but the specific regulatory mechanism of lncRNA-mediated autophagy is unclear. Therefore, in this article, we review the mechanisms of lncRNA-mediated autophagy in fibroblast-like synoviocytes and chondrocytes in RA bone destruction. We explain that lncRNAs mediate autophagy and participate in many specific pathological processes of RA bone destruction by regulating signalling pathways and the expression of target genes. Specific lncRNAs can be used as markers for molecular diagnosis, mechanistic regulation, treatment and prognosis of RA.
Collapse
Affiliation(s)
- Hai-Tao Lei
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Jin-Hai Wang
- Traditional Chinese Medicine Department, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Hui-Jun Yang
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Hai-Juan Wu
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Fang-Hong Nian
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Fang-Mei Jin
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Jing Yang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xue-Mei Tian
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China.
| | - Hai-Dong Wang
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China.
| |
Collapse
|
6
|
Wang J, Zhang Y, Ma T, Wang T, Wen P, Song W, Zhang B. Screening crucial lncRNAs and genes in osteoarthritis by integrated analysis. Adv Rheumatol 2023; 63:7. [PMID: 36849988 DOI: 10.1186/s42358-023-00288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most frequent chronic diseases with high morbidity worldwide, marked by degradation of the cartilage and bone, joint instability, stiffness, joint space stenosis and subchondral sclerosis. Due to the elusive mechanism of osteoarthritis (OA), we aimed to identify potential markers for OA and explore the molecular mechanisms underlying OA. METHODS Expression profiles data of OA were collected from the Gene Expression Omnibus database to identify differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) in OA. Functional annotation and protein-protein interaction (PPI) networks were performed. Then, nearby DEmRNAs of DElncRNAs was obtained. Moreover, GO and KEGG pathway enrichment analysis of nearby DEmRNAs of DElncRNAs was performed. Finally, expression validation of selected mRNAs and lncRNAs was performed by quantitative reverse transcriptase-polymerase chain reaction. RESULTS In total, 2080 DEmRNAs and 664 DElncRNAs were determined in OA. PI3K-Akt signaling pathway, Endocytosis and Rap1 signaling pathway were significantly enriched KEGG pathways in OA. YWHAB, HSPA8, NEDD4L and SH3KBP1 were four hub proteins in PPI network. The AC093484.4/TRPV2 interact pair may be involved in the occurrence and development of OA. CONCLUSION Our study identified several DEmRNAs and DElncRNAs associated with OA. The molecular characters could provide more information for further study on OA.
Collapse
Affiliation(s)
- Jun Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Yumin Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Tao Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Tao Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Pengfei Wen
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Wei Song
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China.
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
7
|
Hypoxia and TNF-α Synergistically Induce Expression of IL-6 and IL-8 in Human Fibroblast-like Synoviocytes via Enhancing TAK1/NF-κB/HIF-1α Signaling. Inflammation 2023; 46:912-924. [PMID: 36607540 DOI: 10.1007/s10753-022-01779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Hypoxia and increased levels of inflammatory cytokines in the joints are characteristics of rheumatoid arthritis (RA). However, the effects of hypoxia and tumor necrosis factor-α (TNF-α) on interleukin (IL)-6 and IL-8 production on fibroblast-like synoviocytes (FLSs) remain to be clarified. This study aimed to explore how hypoxia and TNF-α affect the expression of IL-6 and IL-8 in human FLSs isolated from RA patients. Hypoxia or TNF-α treatment alone significantly increased the expression and promoter activity of IL-6, IL-8, and hypoxia-inducible factor-1α (HIF-1α). Treatment of hypoxic FLSs with TNF-α further significantly elevated the expression of these cytokines and enhanced promoter activity of HIF-1α, which was abrogated by treatment with the HIF-1α inhibitor YC-1. Similarly, TNF-α alone elevated the phosphorylation and promoter activity of nuclear factor-κBp65 (NF-κBp65) in the FLSs. These effects were further enhanced by the combined treatment of hypoxia and TNFα but were attenuated by the NF-κB inhibitor BAY11-7082. NF-κB-p65 inhibition decreased the effect of TNF-α on HIF-1α upregulation in the FLSs in response to hypoxia. The combination of hypoxia and TNF-α also significantly upregulated transforming growth factor-β-activated kinase 1 (TAK1) expression, and silencing TAK1 dramatically decreased NF-κB-p65, HIF-1α, IL-6, and IL-8 expression under the same conditions. Our results indicate that hypoxia and TNF-α synergistically increase IL-6 and IL-8 expression in human FLSs via enhancing TAK1/NF-κB/HIF-1α signaling.
Collapse
|
8
|
A review on the role of LINC00152 in different disorders. Pathol Res Pract 2023; 241:154274. [PMID: 36563561 DOI: 10.1016/j.prp.2022.154274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
LINC00152 is an important lncRNA in human disorders. It is mainly regarded as a tumor-promoting lncRNA. Mechanistically, LINC00152 serves as a molecular sponge for miR-143a-3p, miR-125a-5p, miR-139, miR-215, miR-193a/b-3p, miR-16-5p, miR-206, miR-195, miR-138, miR-185-5p, miR-103, miR-612, miR-150, miR-107, miR-205-5p and miR-153-3p. In addition, it can regulate activity of mTOR, EGFR/PI3K/AKT, ERK/MAPK, Wnt/β-Catenin, EGFR, NF-κB, HIF-1 and PTEN. In this review, we provide a concise but comprehensive explanation about the role of LINC00152 in tumor development and progression as well as its role in the pathology of non-malignant conditions with the aim of facilitating the clinical implementation of this lncRNA as a diagnostic or prognostic tumor marker and therapeutic target.
Collapse
|
9
|
Zhao J, Guo S, Schrodi SJ, He D. Absent in melanoma 2 (AIM2) in rheumatoid arthritis: novel molecular insights and implications. Cell Mol Biol Lett 2022; 27:108. [PMID: 36476420 PMCID: PMC9730612 DOI: 10.1186/s11658-022-00402-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absent in melanoma 2 (AIM2), a member of the Pyrin and HIN domain protein family, is a cytoplasmic receptor that recognizes double-stranded DNA. AIM2 exhibits limited expression under physiological conditions but is widely expressed in many human diseases, including autoimmune diseases, and plays an essential role in the immune response. Rheumatoid arthritis (RA) is an autoimmune disease that poses a severe threat to physical and mental health, and is caused by several genetic and metabolic factors. Multiple immune cells interact to form a complex inflammatory network that mediates inflammatory responses and bone destruction. Abnormal AIM2 expression in multiple immune cell populations (T cells, B cells, fibroblast-like synoviocytes, monocytes, and macrophages) may regulate multiple functional responses in RA through mechanisms such as pyroptosis, PANoptosis, and regulation of other molecules. In this review, we describe and summarize the functional regulation and impact of AIM2 expression in immune cells to improve our understanding of the complex pathological mechanisms. These insights may provide potential directions for the development of new clinical diagnostic strategies for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- grid.412540.60000 0001 2372 7462Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China ,grid.412540.60000 0001 2372 7462Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China ,grid.412540.60000 0001 2372 7462Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- grid.14003.360000 0001 2167 3675Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Steven J. Schrodi
- grid.14003.360000 0001 2167 3675Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Dongyi He
- grid.412540.60000 0001 2372 7462Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China ,grid.412540.60000 0001 2372 7462Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China ,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China ,grid.412540.60000 0001 2372 7462Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Ravaei A, Zimmer-Bensch G, Govoni M, Rubini M. lncRNA-mediated synovitis in rheumatoid arthritis: A perspective for biomarker development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:103-119. [PMID: 36126801 DOI: 10.1016/j.pbiomolbio.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a regulatory class of noncoding RNAs with a wide range of activities such as transcriptional and post-transcriptional regulations. Emerging evidence has demonstrated that various lncRNAs contribute to the initiation and progression of Rheumatoid Arthritis (RA) through distinctive mechanisms. The present study reviews the recent findings on lncRNA role in RA development. It focuses on the involvement of different lncRNAs in the main steps of RA pathogenesis including T cell activation, cytokine dysregulation, fibroblast-like synoviocyte (FLS) activation and joint destruction. Besides, it discusses the current findings on RA diagnosis and the potential of lncRNAs as diagnostic, prognostic and predictive biomarkers in Rheumatology clinic.
Collapse
Affiliation(s)
- Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany.
| | - Marcello Govoni
- Department of Medical Science, Section of Rheumatology, University of Ferrara, Ferrara, Italy.
| | - Michele Rubini
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
11
|
Ma K. Editorial: Autoantibodies and the role of RNA/RNA therapy in rheumatoid arthritis. Front Immunol 2022; 13:1037843. [PMID: 36341462 PMCID: PMC9632725 DOI: 10.3389/fimmu.2022.1037843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
|
12
|
Huang W, Li X, Huang C, Tang Y, Zhou Q, Chen W. LncRNAs and Rheumatoid Arthritis: From Identifying Mechanisms to Clinical Investigation. Front Immunol 2022; 12:807738. [PMID: 35087527 PMCID: PMC8786719 DOI: 10.3389/fimmu.2021.807738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoinflammatory disease, and the synovial hyperplasia, pannus formation, articular cartilage damage and bone matrix destruction caused by immune system abnormalities are the main features of RA. The use of Disease Modifying Anti-Rheumatic Drugs (DMARDs) has achieved great advances in the therapy of RA. Yet there are still patients facing the problem of poor response to drug therapy or drug intolerance. Current therapy methods can only moderate RA progress, but cannot stop or reverse the damage it has caused. Recent studies have reported that there are a variety of long non-coding RNAs (LncRNAs) that have been implicated in mediating many aspects of RA. Understanding the mechanism of LncRNAs in RA is therefore critical for the development of new therapy strategies and prevention strategies. In this review, we systematically elucidate the biological roles and mechanisms of action of LncRNAs and their mechanisms of action in RA. Additionally, we also highlight the potential value of LncRNAs in the clinical diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Wentao Huang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xue Li
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenli Chen
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Wu H, Chen S, Li A, Shen K, Wang S, Wang S, Wu P, Luo W, Pan Q. LncRNA Expression Profiles in Systemic Lupus Erythematosus and Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Front Immunol 2022; 12:792884. [PMID: 35003113 PMCID: PMC8732359 DOI: 10.3389/fimmu.2021.792884] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two common multisystem autoimmune diseases that share, among others, many clinical manifestations and serological features. The role of long non-coding RNAs (lncRNAs) has been of particular interest in the pathogenesis of autoimmune diseases. Here, we aimed to summarize the roles of lncRNAs as emerging novel biomarkers and therapeutic targets in SLE and RA. We conducted a narrative review summarizing original articles on lncRNAs associated with SLE and RA, published until November 1, 2021. Based on the studies on lncRNA expression profiles in samples (including PBMCs, serum, and exosomes), it was noted that most of the current research is focused on investigating the regulatory mechanisms of these lncRNAs in SLE and/or RA. Several lncRNAs have been hypothesized to play key roles in these diseases. In SLE, lncRNAs such as GAS5, NEAT1, TUG1, linc0949, and linc0597 are dysregulated and may serve as emerging novel biomarkers and therapeutic targets. In RA, many validated lncRNAs, such as HOTAIR, GAS5, and HIX003209, have been identified as promising novel biomarkers for both diagnosis and treatment. The shared lncRNAs, for example, GAS5, may participate in SLE pathogenesis through the mitogen-activated protein kinase pathway and trigger the AMP-activated protein kinase pathway in RA. Here, we summarize the data on key lncRNAs that may drive the pathogenesis of SLE and RA and could potentially serve as emerging novel biomarkers and therapeutic targets in the coming future.
Collapse
Affiliation(s)
- Han Wu
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kangyuan Shen
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuting Wang
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sijie Wang
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ping Wu
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenying Luo
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
14
|
Yao Q, Song Z, Wang B, Jia X, Song R, Zhang J. Identification of lncRNA and mRNA Expression Profile in Relapsed Graves' Disease. Front Cell Dev Biol 2021; 9:756560. [PMID: 34926448 PMCID: PMC8673561 DOI: 10.3389/fcell.2021.756560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Graves’ disease (GD) is a common autoimmune disease, and its pathogenesis is unclear. Studies have found that the occurrence of GD is related to the immune disorder caused by the interaction of genetic susceptibility and environmental factors. The CD4+ T cell subset is closely related to the immune disorder of GD. LncRNAs are RNA molecules with a length of more than 200 nt and are involved in a variety of autoimmune diseases. However, the roles of lncRNAs in recurrent GD are still elusive. The purpose of this study is to identify lncRNA and mRNA expression profile in relapsed Graves’ disease. Method: CD4+ T cells from 12 recurrent GD and 8 healthy controls were collected for high-throughput sequencing. The gene-weighted co-expression network analysis (WGCNA) was used to construct the co-expression module relevant to recurrent GD, and the key genes in the module were verified by RT-PCR. Results: There are 602 upregulated lncRNAs and 734 downregulated lncRNAs in CD4+ T cells in recurrent GD patients compared with the healthy controls. The module most relevant to GD recurrence was constructed using WGCNA, and the key genes in the module were verified by RT-PCR. We found that the expression of RPL8, OAS2, NFAT5, DROSHA, NONHSAT093153.2, NONHSAT118924.2, and NONHSAT209004.1 was significantly decreased in GD group (p < 0.001, p < 0.001, p < 0.01, p < 0.05, p < 0.001, p < 0.05, and p < 0.01, respectively). Conclusion: LncRNAs are closely related to the recurrence of GD. For the first time, we constructed the expression profile of lncRNAs and mRNAs in CD4+ T cells in recurrent GD patients.
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhenyu Song
- Ovarian Cancer Program, Department of Gynaecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jinan Zhang
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
15
|
Zhang J, Gao F, Xie J. LncRNA linc00152/NF-κB feedback loop promotes fibroblast-like synovial cells inflammation in rheumatoid arthritis via regulating miR-103a/TAK1 axis and YY1 expression. Immun Inflamm Dis 2021; 9:681-693. [PMID: 34061447 PMCID: PMC8342216 DOI: 10.1002/iid3.417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Overexpressed inflammatory cytokines are the main factors causing rheumatoid arthritis (RA) tissue damage and pathological deterioration, and lncRNAs has found to beinvolved in some autoinflammatory diseases. METHODS We designed this study to investigate the effect of lncRNA linc00152 on rheumatoid arthritis inflammation and explore its molecular mechanism. RESULT We found that linc00152 was not only up-regulated in rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), but also stimulated by TNF-α/IL-1β in adose- and time-dependent manner in RAFLS and this expression depends on the NF-κB signaling pathway. Conversely, linc00152 promoted TNF-α/IL-1β expression in RAFLS induced by TNF-α/IL-1β. In addition, we found that linc00152 promoted TAK1 expression by targeting inhibition of miR-103a and activated TAK1-mediated NF-κB pathway. NF-kB indirectly promotes linc00152 expression by promoting the transcription activity of YY1, and YY1 directly promotes linc00152 expression by binding the promoter of linc00152. CONCLUSION Our data suggested that the linc00152/NF-κB feedback loop promotes RAFLS inflammation via regulating miR-103a/TAK1 axis and YY1 expression. Thus, linc00152 acts as a switch to control this regulatory circuit and may serve as a diagnostic and therapeutic target for RA treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Rheumatology and ImmunologyWeihai Municipal HospitalWeihaiShandongChina
| | - Fei‐Fei Gao
- Department of Rheumatology and ImmunologyWeihai Municipal HospitalWeihaiShandongChina
| | - Jie Xie
- Department of Out‐PatientWeihai Municipal HospitalWeihaiShandongChina
| |
Collapse
|
16
|
Ahmad S, Abbas M, Ullah MF, Aziz MH, Beylerli O, Alam MA, Syed MA, Uddin S, Ahmad A. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Semin Cancer Biol 2021; 85:155-163. [PMID: 34314819 DOI: 10.1016/j.semcancer.2021.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Madiha Abbas
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Moammir H Aziz
- James H. Quillen VA Medical Center, Johnson City, TN, 37604, USA
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Majid Ali Alam
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahab Uddin
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Center, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|