1
|
Mohammadi Z, Enayati S, Zarei N, Saberi S, Mafakher L, Azizi M, Khalaj V. A Novel Anti-CD22 scFv.Bim Fusion Protein Effectively Induces Apoptosis in Malignant B cells and Promotes Cytotoxicity. Appl Biochem Biotechnol 2022; 194:5878-5906. [PMID: 35838885 DOI: 10.1007/s12010-022-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Abstract
CD22 is a B-cell surface antigen which is highly expressed in cancerous B-cell lineages. Anti-CD22 antibodies are currently under focus as promising biologics against hematologic B-cell malignancies. Herein, we introduce a novel active recombinant anti-CD22 scFv.Bim fusion protein for targeting this cancerous antigen. An expression cassette encoding anti-CD22 scFv.Bim fusion protein was expressed in Pichia pastoris. The binding ability, cytotoxicity, and apoptotic activity of the purified recombinant protein against CD22+ Raji cell line were assessed by flow cytometry, microscopy, and MTT assay. Using bioinformatics, the 3D structure of the fusion protein and its interaction with CD22 were assessed. The in vitro binding analysis by immunofluorescence microscopy and flow cytometry demonstrated the specific binding of scFv.Bim to CD22+ Raji cells but not to CD22- Jurkat cells. MTT data and Annexin V/PI flow cytometry analysis confirmed the apoptotic activity of anti-CD22 scFv.Bim against Raji cells but not Jurkat cells. In silico analysis also revealed the satisfactory stereochemical quality of the 3D model and molecular interactions toward CD22. This novel recombinant anti-CD22 scFv.Bim fusion protein could successfully deliver the pro-apoptotic peptide, BIM, to the target cells and thus nominates it as a promising molecule in treating B-cell malignancies.
Collapse
Affiliation(s)
- Zahra Mohammadi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, 12th of Farvardin Jonoobi Ave, Jomhoori Street, Tehran, Iran
| | - Somayeh Enayati
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, 12th of Farvardin Jonoobi Ave, Jomhoori Street, Tehran, Iran
| | - Najmeh Zarei
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, 12th of Farvardin Jonoobi Ave, Jomhoori Street, Tehran, Iran
| | - Samaneh Saberi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, 12th of Farvardin Jonoobi Ave, Jomhoori Street, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Azizi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, 12th of Farvardin Jonoobi Ave, Jomhoori Street, Tehran, Iran.
| | - Vahid Khalaj
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, 12th of Farvardin Jonoobi Ave, Jomhoori Street, Tehran, Iran.
| |
Collapse
|
2
|
Teufl M, Zajc CU, Traxlmayr MW. Engineering Strategies to Overcome the Stability-Function Trade-Off in Proteins. ACS Synth Biol 2022; 11:1030-1039. [PMID: 35258287 PMCID: PMC8938945 DOI: 10.1021/acssynbio.1c00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In addition to its
biological function, the stability of a protein
is a major determinant for its applicability. Unfortunately, engineering
proteins for improved functionality usually results in destabilization
of the protein. This so-called stability–function trade-off
can be explained by the simple fact that the generation of a novel
protein function—or the improvement of an existing one—necessitates
the insertion of mutations, i.e., deviations from
the evolutionarily optimized wild-type sequence. In fact, it was demonstrated
that gain-of-function mutations are not more destabilizing than other
random mutations. The stability–function trade-off is a universal
phenomenon during protein evolution that has been observed with completely
different types of proteins, including enzymes, antibodies, and engineered
binding scaffolds. In this review, we discuss three types of strategies
that have been successfully deployed to overcome this omnipresent
obstacle in protein engineering approaches: (i) using highly stable
parental proteins, (ii) minimizing the extent of destabilization during
functional engineering (by library optimization and/or coselection
for stability and function), and (iii) repairing damaged mutants through
stability engineering. The implementation of these strategies in protein
engineering campaigns will facilitate the efficient generation of
protein variants that are not only functional but also stable and
therefore better-suited for subsequent applications.
Collapse
Affiliation(s)
- Magdalena Teufl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| | - Charlotte U. Zajc
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| | - Michael W. Traxlmayr
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| |
Collapse
|
3
|
Song SJ, Diao HP, Moon B, Yun A, Hwang I. The B1 Domain of Streptococcal Protein G Serves as a Multi-Functional Tag for Recombinant Protein Production in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:878677. [PMID: 35548280 PMCID: PMC9083265 DOI: 10.3389/fpls.2022.878677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 05/17/2023]
Abstract
Plants have long been considered a cost-effective platform for recombinant production. A recently recognized additional advantage includes the low risk of contamination of human pathogens, such as viruses and bacterial endotoxins. Indeed, a great advance has been made in developing plants as a "factory" to produce recombinant proteins to use for biopharmaceutical purposes. However, there is still a need to develop new tools for recombinant protein production in plants. In this study, we provide data showing that the B1 domain of Streptococcal protein G (GB1) can be a multi-functional domain of recombinant proteins in plants. N-terminal fusion of the GB1 domain increased the expression level of various target proteins ranging from 1.3- to 3.1-fold at the protein level depending on the target proteins. GB1 fusion led to the stabilization of the fusion proteins. Furthermore, the direct detection of GB1-fusion proteins by the secondary anti-IgG antibody eliminated the use of the primary antibody for western blot analysis. Based on these data, we propose that the small GB1 domain can be used as a versatile tag for recombinant protein production in plants.
Collapse
|
4
|
|
5
|
Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants. Methods Mol Biol 2019. [PMID: 31267459 DOI: 10.1007/978-1-4939-9624-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Highly soluble and stable proteins are desirable for many different applications, from basic science to reaching a cancer patient in the form of a biological drug. For X-ray crystallography-where production of a protein crystal might take weeks and even months-a stable protein sample of high purity and concentration can greatly increase the chances of producing a well-diffracting crystal. For a patient receiving a specific protein drug, its safety, efficacy, and even cost are factors affected by its solubility and stability. Increased protein expression and protein stability can be achieved by randomly altering the coding sequence. As the number of mutants generated might be overwhelming, a powerful protein expression and stability screen is required. In this chapter, we describe a colony filtration technology, which allows us to screen random mutagenesis libraries for increased thermal stability-the Hot CoFi blot. We share how to create the random mutagenesis library, how to perform the Hot CoFi blot, and how to identify more thermally stable clones. We use the Tobacco Etch Virus protease as a target to exemplify the procedure.
Collapse
|
6
|
Kim DY, Kandalaft H, Hussack G, Raphael S, Ding W, Kelly JF, Henry KA, Tanha J. Evaluation of a noncanonical Cys40-Cys55 disulfide linkage for stabilization of single-domain antibodies. Protein Sci 2019; 28:881-888. [PMID: 30803088 DOI: 10.1002/pro.3595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022]
Abstract
Incorporation of noncanonical disulfide linkages into single-domain antibodies (sdAbs) has been shown to enhance thermostability and other properties. Here, we evaluated the effects of introducing a novel disulfide linkage formed between Cys residues at IMGT positions 40 and 55 on the melting temperatures (T m s), reversibility of thermal unfolding, solubility, and antigen-binding affinities of three types of sdAbs (VH H, VH , and VL domains). The Cys40-Cys55 disulfide linkage was tolerated by 9/9 VH Hs, 12/12 VH s, and 2/11 VL s tested and its formation was confirmed by mass spectrometry. Using circular dichroism, we found that the Cys40-Cys55 disulfide linkage increased sdAb T m by an average of 10.0°C (range: 0-21.8°C). However, enhanced thermostability came at the cost of a partial loss of refolding ability upon thermal denaturation as well as, for some sdAbs, significantly decreased solubility and antigen-binding affinity. Thus, Cys40/Cys55 can be added to the panel of known locations for introducing stabilizing noncanonical disulfide linkages into antibody variable domains, although its effects should be tested empirically for individual sdAbs.
Collapse
Affiliation(s)
- Dae Young Kim
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Hiba Kandalaft
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Wen Ding
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - John F Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
7
|
Henry KA, Kandalaft H, Lowden MJ, Rossotti MA, van Faassen H, Hussack G, Durocher Y, Kim DY, Tanha J. A disulfide-stabilized human V L single-domain antibody library is a source of soluble and highly thermostable binders. Mol Immunol 2017; 90:190-196. [PMID: 28820969 DOI: 10.1016/j.molimm.2017.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
We have previously shown that incorporation of a second intradomain disulfide linkage into camelid VHH and human VH/VL single-domain antibodies confers increased thermostability. Here, we explored the effects of introducing an additional disulfide linkage, formed between Cys48 and Cys64 (Kabat numbering), into a phage-displayed synthetic human VL library. In comparison to an identical library bearing only the highly conserved Cys23-Cys88 disulfide linkage, the disulfide-stabilized VL library tolerated a similar degree of randomization but retained a higher level of functional diversity after selection with protein L. Both libraries yielded soluble, antigen-specific VLs that recognized a model antigen (maltose-binding protein) with similar affinities, in the micromolar range; however, the disulfide-stabilized antigen-specific VLs were much more thermostable (average ΔTm ∼10°C) than non-disulfide-stabilized VLs. This work provides proof-of-concept for building synthetic antibody libraries using disulfide-constrained immunoglobulin domains, thus avoiding pitfalls of post-hoc disulfide linkage engineering such as impaired antigen binding and reduced expression yield.
Collapse
Affiliation(s)
- Kevin A Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Hiba Kandalaft
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Michael J Lowden
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Henk van Faassen
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | - Dae Young Kim
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada; School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
8
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nat Commun 2013; 4:2901. [DOI: 10.1038/ncomms3901] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/08/2013] [Indexed: 11/08/2022] Open
|
10
|
Andrady C, Sharma SK, Chester KA. Antibody-enzyme fusion proteins for cancer therapy. Immunotherapy 2011; 3:193-211. [PMID: 21322759 DOI: 10.2217/imt.10.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Advances in biomolecular technology have allowed the development of genetically fused antibody-enzymes. Antibody-enzyme fusion proteins have been used to target tumors for cancer therapy in two ways. In one system, an antibody-enzyme is pretargeted to the tumor followed by administration of an inactive prodrug that is converted to its active form by the pretargeted enzyme. This system has been described as antibody-directed enzyme prodrug therapy. The other system uses antibody-enzyme fusion proteins as direct therapeutics, where the enzyme is toxic in its own right. The key feature in this approach is that the antibody is used to internalize the toxic enzyme into the tumor cell, which activates cell-death processes. This antibody-enzyme system has been largely applied to deliver ribonucleases. This article addresses these two antibody-enzyme targeting strategies for cancer therapy from concept to (pre)clinical trials.
Collapse
Affiliation(s)
- Carima Andrady
- Cancer Research UK Targeting & Imaging Group, Department of Oncology, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E6BT, UK.
| | | | | |
Collapse
|
11
|
Impact of valency of a glycoprotein B-specific monoclonal antibody on neutralization of herpes simplex virus. J Virol 2010; 85:1793-803. [PMID: 21123390 DOI: 10.1128/jvi.01924-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) glycoprotein B (gB) is an integral part of the multicomponent fusion system required for virus entry and cell-cell fusion. Here we investigated the mechanism of viral neutralization by the monoclonal antibody (MAb) 2c, which specifically recognizes the gB of HSV type 1 (HSV-1) and HSV-2. Binding of MAb 2c to a type-common discontinuous epitope of gB resulted in highly efficient neutralization of HSV at the postbinding/prefusion stage and completely abrogated the viral cell-to-cell spread in vitro. Mapping of the antigenic site recognized by MAb 2c to the recently solved crystal structure of the HSV-1 gB ectodomain revealed that its discontinuous epitope is only partially accessible within the observed multidomain trimer conformation of gB, likely representing its postfusion conformation. To investigate how MAb 2c may interact with gB during membrane fusion, we characterized the properties of monovalent (Fab and scFv) and bivalent [IgG and F(ab')(2)] derivatives of MAb 2c. Our data show that the neutralization capacity of MAb 2c is dependent on cross-linkage of gB trimers. As a result, only bivalent derivatives of MAb 2c exhibited high neutralizing activity in vitro. Notably, bivalent MAb 2c not only was capable of preventing mucocutaneous disease in severely immunodeficient NOD/SCID mice upon vaginal HSV-1 challenge but also protected animals even with neuronal HSV infection. We also report for the first time that an anti-gB specific monoclonal antibody prevents HSV-1-induced encephalitis entirely independently from complement activation, antibody-dependent cellular cytotoxicity, and cellular immunity. This indicates the potential for further development of MAb 2c as an anti-HSV drug.
Collapse
|
12
|
Abstract
Phage display has been extensively used to study protein-protein interactions, receptor- and antibody-binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described.
Collapse
|
13
|
Epstein-Barr viruses that express a CD21 antibody provide evidence that gp350's functions extend beyond B-cell surface binding. J Virol 2009; 84:1139-47. [PMID: 19889766 DOI: 10.1128/jvi.01953-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The gp350 glycoprotein encoded by BLLF1 is crucial for efficient Epstein-Barr virus (EBV) infection of resting B cells. Gp350 binds to CD21, but whether this interaction sums up its functions remains unknown. We generated gp350-null EBVs that display CD19-, CD21-, or CD22-specific antibodies at their surface (designated as DeltaBLLF1-Ab). Gp350-complemented (DeltaBLLF1-C) and DeltaBLLF1-Ab were found to bind equally well to B cells. Surprisingly, DeltaBLLF1 binding was reduced only 1.7-fold relative to its complemented counterparts. Furthermore, B cells exposed to DeltaBLLF1-Ab or DeltaBLLF1 viruses presented structural antigens with comparable efficiency and achieved 25 to 80% of the T-cell activation elicited by DeltaBLLF1-C. These findings show that the gp350-CD21 interaction pair plays only a modest role during virus transfer to the endosomal compartment. However, primary B cells or Raji B cells infected with DeltaBLLF1-C viruses displayed a 35- to 70-fold higher infection rates than those exposed to DeltaBLLF1, DeltaBLLF1-CD22Ab, or DeltaBLLF1-CD19Ab viruses. Complementation of the gp350 knockout phenotype with CD21Ab substantially enhanced infection rates relative to DeltaBLLF1 but remained sevenfold (Raji B-cell line) to sixfold (primary B cells) less efficient than with gp350. We therefore infer that gp350 mainly exerts its functions after the internalization step, presumably during release of the viral capsid from the endosomal compartment, and that CD21-dependent but also CD21-independent molecular mechanisms are involved in this process. The latter appear to be characteristic of B-cell infection since transfection of CD21 in 293 cells improved the infection rates with both DeltaBLLF1-CD21Ab and DeltaBLLF1-C to a similar extent.
Collapse
|
14
|
Schirrmann T, Krauss J, Arndt MAE, Rybak SM, Dübel S. Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther 2008; 9:79-95. [DOI: 10.1517/14712590802631862] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Yang LJ, Hou YC, Bai YJ, Yao LB, Su CZ. Analysis of primary structure and modeling of spatial structure of single-chain variable region of antibody against human gastric cancer. Shijie Huaren Xiaohua Zazhi 2008; 16:2333-2336. [DOI: 10.11569/wcjd.v16.i21.2333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the sequence of heavy and light chain of the variable region (VH and VL) in the anti-human gastric cancer antibody, select a suitable linker peptide to construct single chain antibody, model the 3-D structure and predict the relationship between its structure and function.
METHODS: Using the sequences of VH and VL, which derived from the phage display library of antibodies against human gastric cancer, a suitable linker peptide was chosen to obtain the primary structure of the single-chain antibody with considering the C-terminal and N-terminal structural character. Furthermore, the 3-D theoretical structure was modeled with computer-guided homology modeling method. The stable spatial conformation of the single-chain variable region was determined with mechanism optimization and molecular dynamic simulation. The structural property and physical-chemical characters were analyzed using the distance geometry, surface electrostatic distribution and solvent accessible surface calculation.
RESULTS: The conformation of the successfully constructed single-chain antibody was stable. Except one amino acid conformation of connecting peptide, others' were reasonable. VL CDR1, CDR2 and VH CDR3 solution accessibility surface area distributed strongly, but VL CDR3, VH CDR1, and CDR2 were comparatively weak. VH CDR3 region had strong electronegativity.
CONCLUSION: The 3-D structure of the created single chain antibody is proved reasonable and reliable.
Collapse
|
16
|
Yang LJ, Hou YC, Yao LB, Su CZ. Analysis of primary structure and modeling of spatial structure of heavy chain variable region of antibody against human gastric cancer. Shijie Huaren Xiaohua Zazhi 2008; 16:413-416. [DOI: 10.11569/wcjd.v16.i4.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To confirm the primary structure of heavy chain variable regions (VH) of antibody against human gastric cancer based on the sequence analysis method and to model its three-dimensional structure using homology modeling method.
METHODS: The VH gene selected from the phage display library of antibodies against human gastric cancer was sequenced and analyzed. Its three-dimensional structure was modeled with computer homology modeling techniques and optimized using molecular mechanism method.
RESULTS: The sequence of VH was in agreement with the characteristics of the mouse antibody variable region. The FR and CDR were determined by Kabat analysis. The spatial structure of the VH was constructed and optimized with molecular mechanism method to obtain the stable 3-D structure.
CONCLUSION: The primary and three-dimensional structures of VH are reasonable and reliable and lay the theoretical foundation for further biological experiments.
Collapse
|
17
|
Bispecific anti-CD20/22 antibodies inhibit B-cell lymphoma proliferation by a unique mechanism of action. Blood 2007; 111:2211-9. [PMID: 18025153 DOI: 10.1182/blood-2007-08-110072] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combination immunotherapy with anti-CD20 and anti-CD22 mAbs shows promising activity in non-Hodgkin lymphoma. Therefore, bispecific mAbs (bsAbs) were recombinantly constructed from veltuzumab (humanized anti-CD20) and epratuzumab (humanized anti-CD22) and evaluated in vitro and in vivo. While none of the parental mAbs alone or mixed had notable antiproliferative activity against Burkitt lymphoma cells when not cross-linked, the bsAbs [eg, anti-CD20 IgG-anti-CD22 (scFv)(2)] were inhibitory without cross-linking and synergistic with B-cell antigen (BCR)-mediated inhibition. The bsAbs demonstrated higher antibody-dependent cellulary cytoxicity (ADCC) activity than the parental mAbs, but not complement-dependent cytoxicity (CDC) of the parental CD20 mAb. Cross-linking both CD20 and CD22 with the bsAbs resulted in the prominent redistribution of not only CD20 but also CD22 and BCR into lipid rafts. Surprisingly, appreciable translocation of CD22 into lipid rafts was also observed after treatment with epratuzumab. Finally, the bsAbs inhibited Daudi lymphoma transplant growth, but showed a significant advantage over the parental anti-CD20 mAb only at the highest dose tested. These results suggest that recombinantly fused, complementary, bispecific, anti-CD20/22 antibodies exhibit functional features distinct from their parental antibodies, perhaps representing new candidate therapeutic molecules.
Collapse
|
18
|
Wang Y, Feng J, Huang Y, Gu X, Sun Y, Li Y, Shen B. The design, construction and function of a new chimeric anti-CD20 antibody. J Biotechnol 2007; 129:726-31. [PMID: 17433484 DOI: 10.1016/j.jbiotec.2007.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 02/05/2007] [Accepted: 02/19/2007] [Indexed: 11/28/2022]
Abstract
A novel murine IgM-type anti-human CD20 monoclonal antibody (mAb) 1-28 was prepared in our Lab, which can induce apoptosis and inhibit proliferation of Daudi and Raji cells. However, the efficacy of 1-28mAb in human cancer therapy is likely to be limited by human anti-mouse antibody responses. A chimeric antibody, C1-28, containing 1-28mAb variable region genes fused to human constant region genes (gamma 1, kappa) was constructed. However, C1-28 lost the antigen-binding activity. Here, using sequence similarity and known 3D structure of antibody variable regions as template, the spatial conformations of 1-28 variable regions (i.e. V(H) and V(L)) were analyzed with computer-guided homology modeling methods. According to the surface electrostatic distribution and interaction free energy analysis, the relationship between structure and stability of 1-28 variable regions was studied theoretically and a new chimeric anti-CD20 antibody scFv-Ig named 5S was designed. Expression level of 5S in the culture supernatant was determined to be around 50mug/mL using sandwich ELISA method with chimeric antibody Rituxan as reference. 5S retained its murine counterpart's binding activity by fluorescence-activated cell-sorting analysis. Furthermore, it could kill CD20 positive Daudi and Raji cells by complement-dependent cytotoxicity. For binding affinity often decreased even lost when IgM antibody was constructed into chimeric IgG1 form, our success give a hint about how to construct a IgG1-type chimeric antibody from IgM-type murine antibody to preserve its binding activity.
Collapse
Affiliation(s)
- Yugang Wang
- Institute of Basic Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Dai M, Fisher HE, Temirov J, Kiss C, Phipps ME, Pavlik P, Werner JH, Bradbury ARM. The creation of a novel fluorescent protein by guided consensus engineering. Protein Eng Des Sel 2007; 20:69-79. [PMID: 17277006 DOI: 10.1093/protein/gzl056] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Consensus engineering has been used to increase the stability of a number of different proteins, either by creating consensus proteins from scratch or by modifying existing proteins so that their sequences more closely match a consensus sequence. In this paper we describe the first application of consensus engineering to the ab initio creation of a novel fluorescent protein. This was based on the alignment of 31 fluorescent proteins with >62% homology to monomeric Azami green (mAG) protein, and used the sequence of mAG to guide amino acid selection at positions of ambiguity. This consensus green protein is extremely well expressed, monomeric and fluorescent with red shifted absorption and emission characteristics compared to mAG. Although slightly less stable than mAG, it is better expressed and brighter under the excitation conditions typically used in single molecule fluorescence spectroscopy or confocal microscopy. This study illustrates the power of consensus engineering to create stable proteins using the subtle information embedded in the alignment of similar proteins and shows that the benefits of this approach may extend beyond stability.
Collapse
Affiliation(s)
- Mingha Dai
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Arndt MAE, Krauss J, Vu BK, Newton DL, Rybak SM. A Dimeric Angiogenin Immunofusion Protein Mediates Selective Toxicity Toward CD22+ Tumor Cells. J Immunother 2005; 28:245-51. [PMID: 15838381 DOI: 10.1097/01.cji.0000161396.96582.10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To improve selective cytotoxicity and pharmacokinetics of an anti-CD22 antibody single chain Fv (scFv)-ribonuclease fusion protein, a dimeric derivative was generated. Human angiogenin was fused via a (G4S)3 spacer peptide to the carboxy-terminal end of the stable dimeric anti-CD22 VL-VH zero-linker scFv MLT-7. The dimeric fusion protein and a monovalent counterpart were produced as soluble proteins in the periplasm of Escherichia coli. Comparative studies with homogeneously purified fusion proteins revealed that both constructs specifically bound to the target antigen and retained ribonucleolytic activity. However, they exhibited a markedly different capability for killing CD22+ tumor cells. The monomeric construct inhibited protein synthesis of target cells in a dose-dependent manner, but 50% inhibition (IC50) could be achieved only at the highest tested concentration (>350 nM). In contrast, the dimeric fusion protein efficiently killed CD22+ Raji and Daudi tumor cell lines with IC50 values of 74 nM and 118 nM, respectively. These results show that the therapeutic potential of scFv-ANG fusion proteins can be markedly enhanced by engineering dimeric derivatives.
Collapse
|
21
|
Juárez-González VR, Riaño-Umbarila L, Quintero-Hernández V, Olamendi-Portugal T, Ortiz-León M, Ortíz E, Possani LD, Becerril B. Directed Evolution, Phage Display and Combination of Evolved Mutants: A Strategy to Recover the Neutralization Properties of the scFv Version of BCF2 a Neutralizing Monoclonal Antibody Specific to Scorpion Toxin Cn2. J Mol Biol 2005; 346:1287-97. [PMID: 15713481 DOI: 10.1016/j.jmb.2004.12.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/15/2004] [Accepted: 12/30/2004] [Indexed: 11/25/2022]
Abstract
BCF2, a monoclonal antibody raised against scorpion toxin Cn2, is capable of neutralizing both, the toxin and the whole venom of the Mexican scorpion Centruroides noxius Hoffmann. The single chain antibody fragment (scFv) of BCF2 was constructed and expressed in Escherichia coli. Although its affinity for the Cn2 toxin was shown to be in the nanomolar range, it was non-neutralizing in vivo due to a low stability. In order to recover the neutralizing capacity, the scFv of BCF2 was evolved by error-prone PCR and the variants were panned by phage display. Seven improved mutants were isolated from three different libraries. One of these mutants, called G5 with one mutation at CDR1 and another at CDR2 of the light chain, showed an increased affinity to Cn2, as compared to the parental scFv. A second mutant, called B7 with a single change at framework 2 of heavy chain, also had a higher affinity. Mutants G5 and B7 were also improved in their stability but they were unable to neutralize the toxin. Finally, we constructed a variant containing the changes present in G5 and B7. The purpose of this construction was to combine the increments in affinity and stability borne by these mutants. The result was a triple mutant capable of neutralizing the Cn2 toxin. This variant showed the best affinity constant (KD=7.5x10(-11) M), as determined by surface plasmon resonance (BIAcore). The k(on) and k(off) were improved threefold and fivefold, respectively, leading to 15-fold affinity improvement. Functional stability determinations by ELISA in the presence of different concentrations of guanidinium hydrochloride (Gdn-HCl) revealed that the triple mutant is significantly more stable than the parental scFv. These results suggest that not only improving the affinity but also the stability of our scFv were important for recovering its neutralization capacity. These findings pave the way for the generation of recombinant neutralizing antisera against scorpion stings based on scFvs.
Collapse
Affiliation(s)
- V R Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Arndt MAE, Krauss J, Rybak SM. Antigen binding and stability properties of non-covalently linked anti-CD22 single-chain Fv dimers. FEBS Lett 2004; 578:257-61. [PMID: 15589829 DOI: 10.1016/j.febslet.2004.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/18/2004] [Accepted: 11/01/2004] [Indexed: 11/15/2022]
Abstract
By varying linker length and domain orientation three multivalent derivatives of a monovalent anti-CD22 single-chain fragment variable (scFv) antibody were generated. Shortening the linker of the V(H)-V(L) oriented scFv to 5 or 0 residues resulted in the formation of diabodies or a mixture of tetramers and trimers, respectively. Unexpectedly, a V(L)-0-V(H) scFv assembled to homogenous dimers, remained substantially more stable than the V(H)-5-V(L) diabody when incubated in human serum at 37 degrees C, and retained its dimeric state when concentrated up to 4 mg/ml. These properties suggest the V(L)-0-V(H) scFv could become an attractive vehicle for the selective delivery of multiple effector molecules to CD22(+) tumor cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Bispecific/metabolism
- Antibody Affinity/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Binding Sites, Antibody
- Cell Adhesion Molecules/metabolism
- Cell Line
- Chromatography, Affinity
- Chromatography, Gel
- Dimerization
- Escherichia coli/genetics
- Flow Cytometry
- Humans
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/immunology
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/immunology
- Jurkat Cells
- Lectins/metabolism
- Lymphoma, B-Cell/immunology
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen, B-Cell/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Temperature
Collapse
|
23
|
Krauss J, Arndt MAE, Zhu Z, Newton DL, Vu BK, Choudhry V, Darbha R, Ji X, Courtenay-Luck NS, Deonarain MP, Richards J, Rybak SM. Impact of antibody framework residue VH-71 on the stability of a humanised anti-MUC1 scFv and derived immunoenzyme. Br J Cancer 2004; 90:1863-70. [PMID: 15150594 PMCID: PMC2409732 DOI: 10.1038/sj.bjc.6601759] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Anti-MUC1 single-chain Fv (scFv) fragments generated from the humanised antibody huHMFG1 had adequate antigen-binding properties but very poor stability irrespective of the applied linker or domain orientation. Mutagenesis of heavy-chain framework residue VH-71, previously described as a key residue for maintaining the CDR-H2 main-chain conformation and thus important for antigen binding, markedly stabilised the scFv while having only a minor effect on the binding affinity of the molecule. Because of its improved stability, the engineered fragment exhibited immunoreactivity with tumour cells even after 7 days of incubation in human serum at 37°C. It also showed, in contrast to the wild-type scFv, a concentration-dependent binding to the target antigen when displayed on phage. When fusing the scFv to the recombinant ribonuclease rapLRI, only the fusion protein generated with the stable mutant scFv was able to kill MUC1+ tumour cells with an IC50 of 80 nM. We expect this novel immunoenzyme to become a promising tool for the treatment of MUC1+ malignancies.
Collapse
Affiliation(s)
- J Krauss
- SAIC, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - M A E Arndt
- SAIC, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Z Zhu
- SAIC, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - D L Newton
- SAIC, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - B K Vu
- SAIC, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - V Choudhry
- Laboratory of Experimental and Computational Biology, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - R Darbha
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - X Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - N S Courtenay-Luck
- Antisoma Research Ltd, West Africa House, Hanger Lane, Ealing W5 3QR, UK
- Imperial College of Science, Technology & Medicine, London SW7 2AZ, UK
| | - M P Deonarain
- Imperial College of Science, Technology & Medicine, London SW7 2AZ, UK
| | - J Richards
- Imperial College of Science, Technology & Medicine, London SW7 2AZ, UK
| | - S M Rybak
- Developmental Therapeutics Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Developmental Therapeutics Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA. E-mail:
| |
Collapse
|
24
|
Steipe B. Consensus-Based Engineering of Protein Stability: From Intrabodies to Thermostable Enzymes. Methods Enzymol 2004; 388:176-86. [PMID: 15289071 DOI: 10.1016/s0076-6879(04)88016-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Boris Steipe
- University of Toronto, Program in Proteomics and Bioinformatics, Department of Biochemistry, Ontario, Canada
| |
Collapse
|