1
|
Huang H, Sun R, Xu Y, Liu R, Chen Z. PMEPA1 promotes gastric cancer cell proliferation by regulating the ubiquitin-mediated degradation of 14-3-3σ and promoting cell cycle progression. Braz J Med Biol Res 2024; 57:e13985. [PMID: 39607204 DOI: 10.1590/1414-431x2024e13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
Gastric cancer (GC) remains a global health challenge due to its heterogeneity and diverse regional epidemiology. Treatment for advanced GC often requires chemotherapy, whose effects are closely associated with the cell cycle. This association highlights the critical need to understand cell cycle regulators that can influence the effectiveness of chemotherapy. Bioinformatics analyses were performed on transcriptome data from a hospital cohort and on a publicly available database. Flow cytometry was used for cell cycle analysis. The interaction of PMEPA1 with 14-3-3σ was confirmed by coimmunoprecipitation and immunofluorescence staining. Western blot analysis was performed following inhibition of protein synthesis and degradation to assess 14-3-3σ protein stability, while ubiquitination was evaluated after treatment with the proteasome inhibitor MG132. High PMEPA1 expression was detected in GC tissues and was correlated with poor prognosis. In vitro overexpression of PMEPA1 promoted GC cell proliferation, while knockdown of PMEPA1 inhibited cell proliferation and induced G2/M arrest. In vivo study showed that overexpressing PMEPA1 promoted tumor growth, while knocking down PMEPA1 inhibited tumor growth, as indicated by the level of the proliferation marker Ki67. 14-3-3σ was identified as a downstream target of PMEPA1. PMEPA1 binds to 14-3-3σ and promoted its degradation by facilitating its ubiquitination. Overexpression of PMEPA1 increased its interactions with TTC3 and 14-3-3σ, increased 14-3-3σ ubiquitination, and reduced 14-3-3σ stability, and the opposite effects were observed after PMEPA1 knockdown. PMEPA1 recruited TTC3, allowing the ubiquitination of 14-3-3σ and leading to its degradation, thus promoting cell cycle progression in GC.
Collapse
Affiliation(s)
- Heyuan Huang
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruizheng Sun
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Xu
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Renchao Liu
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zihua Chen
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Qiu D, Hu J, Hu J, Yu A, Othmane B, He T, Ding J, Cheng X, Ren W, Tan X, Yu Q, Chen J, Zu X. PMEPA1 Is a Prognostic Biomarker That Correlates With Cell Malignancy and the Tumor Microenvironment in Bladder Cancer. Front Immunol 2021; 12:705086. [PMID: 34777336 PMCID: PMC8582246 DOI: 10.3389/fimmu.2021.705086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate transmembrane protein androgen induced 1 (PMEPA1) has been reported to promote cancer progression, but the potential role of PMEPA1 in bladder cancer (BLCA) remains elusive. We assess the role of PMEPA1 in BLCA, via a publicly available database and in vitro study. PMEPA1 was identified from 107 differentially expressed genes (DEGs) to have prognostic value. GO, KEGG, and GSEA analysis indicated that PMEPA1 was involved in cancer progression and the tumor microenvironment (TME). Then bioinformatical analysis in TCGA, GEO, TIMER, and TISIDB show a positive correlation with the inflammation and infiltration levels of three tumor-infiltrating immune cells (TAMs, CAFs, and MDSCs) and immune/stromal scores in TME. Moreover, in vitro study revealed that PMEPA1 promotes bladder cancer cell malignancy. Immunohistochemistry and survival analysis shed light on PMEPA1 potential to be a novel biomarker in predicting tumor progression and prognosis. At last, we also analyzed the role of PMEPA1 in predicting the molecular subtype and the response to several treatment options in BLCA. We found that PMEPA1 may be a novel potential biomarker to predict the progression, prognosis, and molecular subtype of BLCA.
Collapse
Affiliation(s)
- Dongxu Qiu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX, United States
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Tongchen He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ding
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xu Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Institute for Infection Prevention and Hospital Epidemiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Wenbiao Ren
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,George Whipple Lab for Cancer Research, Departments of Pathology and Urology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Xiyan Tan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoyan Yu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Discovery proteomics defines androgen-regulated glycoprotein networks in prostate cancer cells, as well as putative biomarkers of prostatic diseases. Sci Rep 2021; 11:22208. [PMID: 34782677 PMCID: PMC8592995 DOI: 10.1038/s41598-021-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Supraphysiologic androgen (SPA) inhibits cell proliferation in prostate cancer (PCa) cells by transcriptional repression of DNA replication and cell-cycle genes. In this study, quantitative glycoprotein profiling identified androgen-regulated glycoprotein networks associated with SPA-mediated inhibition of PCa cell proliferation, and androgen-regulated glycoproteins in clinical prostate tissues. SPA-regulated glycoprotein networks were enriched for translation factors and ribosomal proteins, proteins that are known to be O-GlcNAcylated in response to various cellular stresses. Thus, androgen-regulated glycoproteins are likely to be targeted for O-GlcNAcylation. Comparative analysis of glycosylated proteins in PCa cells and clinical prostate tissue identified androgen-regulated glycoproteins that are differentially expressed prostate tissues at various stages of cancer. Notably, the enzyme ectonucleoside triphosphate diphosphohydrolase 5 was found to be an androgen-regulated glycoprotein in PCa cells, with higher expression in cancerous versus non-cancerous prostate tissue. Our glycoproteomics study provides an experimental framework for characterizing androgen-regulated proteins and glycoprotein networks, toward better understanding how this subproteome leads to physiologic and supraphysiologic proliferation responses in PCa cells, and their potential use as druggable biomarkers of dysregulated AR-dependent signaling in PCa cells.
Collapse
|
4
|
Sharad S, Dobi A, Srivastava S, Srinivasan A, Li H. PMEPA1 Gene Isoforms: A Potential Biomarker and Therapeutic Target in Prostate Cancer. Biomolecules 2020; 10:biom10091221. [PMID: 32842649 PMCID: PMC7565192 DOI: 10.3390/biom10091221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
The identification of prostate transmembrane protein androgen induced 1 (PMEPA1), an androgen responsive gene, came initially from the studies of androgen regulatory gene networks in prostate cancer. It was soon followed by the documentation of the expression and functional analysis of transmembrane prostate androgen-induced protein (TMEPAI)/PMEPA1 in other solid tumors including renal, colon, breast, lung, and ovarian cancers. Further elucidation of PMEPA1 gene expression and sequence analysis revealed the presence of five isoforms with distinct extracellular domains (isoforms a, b, c, d, and e). Notably, the predicted amino acid sequences of PMEPA1 isoforms show differences at the N-termini, a conserved membrane spanning and cytoplasmic domains. PMEPA1 serves as an essential regulator of multiple signaling pathways including androgen and TGF-β signaling in solid tumors. Structure-function studies indicate that specific motifs present in the cytoplasmic domain (PY, SIM, SH3, and WW binding domains) are utilized to mediate isoform-specific functions through interactions with other proteins. The understanding of the “division of labor” paradigm exhibited by PMEPA1 isoforms further expands our knowledge of gene’s multiple functions in tumorigenesis. In this review, we aim to summarize the most recent advances in understanding of PMEPA1 isoform-specific functions and their associations with prostate cancer progression, highlighting the potentials as biomarker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| | - Albert Dobi
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| |
Collapse
|
5
|
Sharad S, Dillman AA, Sztupinszki ZM, Szallasi Z, Rosner I, Cullen J, Srivastava S, Srinivasan A, Li H. Characterization of unique PMEPA1 gene splice variants (isoforms d and e) from RNA Seq profiling provides novel insights into prognostic evaluation of prostate cancer. Oncotarget 2020; 11:362-377. [PMID: 32064040 PMCID: PMC6996919 DOI: 10.18632/oncotarget.27406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer is a disease with heterogeneity of multiple gene transcriptomes and biological signaling pathways involved in tumor development. The prostate transmembrane protein, androgen induced 1 (PMEPA1), a multifunctional protein played critical roles in prostate tumorigenesis. The pleiotropic nature of PMEPA1 in modulating androgen and TGF-β signaling as well as splice variants mechanisms for functional regulations of cancer-associated genes prompted us to investigate the biological roles of PMEPA1 isoforms in prostate cancer. In addition to 4 reported PMEPA1 isoforms (a, b, c and d), one novel isoform PMEPA1-e was identified with RNA Seq analysis of hormone responsive VCaP, LNCaP cells and human prostate cancer samples from The Cancer Genome Atlas (TCGA) dataset. We analyzed the structures, expressions, biological functions and clinical relevance of PMEPA1-e isoform and less characterized isoforms c and d in the context of prostate cancer and AR/TGF-β signaling. The expression of PMEPA1-e was induced by androgen and AR. In contrast, PMEPA1-d was responsive to TGF-β and inhibited TGF-β signaling. Both PMEPA1-d and PMPEA1-e promoted the growth of androgen independent prostate cancer cells. Although PMEPA1-c was responsive to TGF-β, it was found to have no impacts on cell growth and androgen/TGF-β signaling. The TCGA data analysis from 499 patients showed higher expression ratios of PMEAP1-b versus -d or -e strongly associated with enhanced Gleason score. Taken together, our findings first time defined the prostate tumorigenesis mediated by PMEPA1-d and -e isoforms, providing novel insights into the new strategies for prognostic evaluation and therapeutics of prostate tumor.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA.,These authors contributed equally to this work
| | - Allissa Amanda Dillman
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | | | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.,SE-NAP Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, 1085, Hungary
| | - Inger Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,These authors contributed equally to this work
| |
Collapse
|
6
|
Sharad S, Sztupinszki ZM, Chen Y, Kuo C, Ravindranath L, Szallasi Z, Petrovics G, Sreenath TL, Dobi A, Rosner IL, Srinivasan A, Srivastava S, Cullen J, Li H. Analysis of PMEPA1 Isoforms ( a and b) as Selective Inhibitors of Androgen and TGF-β Signaling Reveals Distinct Biological and Prognostic Features in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121995. [PMID: 31842254 PMCID: PMC6966662 DOI: 10.3390/cancers11121995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
Dysfunctions of androgen/TGF-β signaling play important roles in prostate tumorigenesis. Prostate Transmembrane Protein Androgen Induced 1 (PMEPA1) inhibits androgen and TGF-β signaling via a negative feedback loop. The loss of PMEPA1 confers resistance to androgen signaling inhibitors and promotes bone metastasis. Conflicting reports on the expression and biological functions of PMEPA1 in prostate and other cancers propelled us to investigate isoform specific functions in prostate cancer (PCa). One hundred and twenty laser capture micro-dissection matched normal prostate and prostate tumor tissues were analyzed for correlations between quantitative expression of PMEPA1 isoforms and clinical outcomes with Q-RT-PCR, and further validated with a The Cancer Genome Atlas (TCGA) RNA-Seq dataset of 499 PCa. Cell proliferation was assessed with cell counting, plating efficiency and soft agar assay in androgen responsive LNCaP and TGF-β responsive PC3 cells. TGF-β signaling was measured by SMAD dual-luciferase reporter assay. Higher PMEPA1-a mRNA levels indicated biochemical recurrence (p = 0.0183) and lower PMEPA1-b expression associated with metastasis (p = 0.0173). Further, lower PMEPA1-b and a higher ratio of PMEPA1-a vs. -b were correlated to higher Gleason scores and lower progression free survival rate (p < 0.01). TGF-β-responsive PMEPA1-a promoted PCa cell growth, and androgen-responsive PMEPA1-b inhibited cancer cell proliferation. PMEPA1 isoforms -a and -b were shown to be promising candidate biomarkers indicating PCa aggressiveness including earlier biochemical relapse and lower disease specific life expectancy via interrupting androgen/TGF-β signaling.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| | | | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Claire Kuo
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (Z.M.S.); (Z.S.)
- Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- SE-NAP Brain Metastasis Research group, 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Taduru L. Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Inger L. Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Department of Urology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| |
Collapse
|
7
|
Coutinho-Camillo CM, Miracca EC, dos Santos ML, Salaorni S, Sarkis AS, Nagai MA. Identification of Differentially Expressed Genes in Prostatic Epithelium in Relation to Androgen Receptor CAG Repeat Length. Int J Biol Markers 2018; 21:96-105. [PMID: 16847812 DOI: 10.1177/172460080602100205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The CAG repeat within exon 1 of the androgen receptor (AR) has been associated with the development of prostate cancer. The shorter number of glutamine residues in the protein has been associated with a higher transcriptional activity of the AR and increased relative risk for prostate cancer. In an attempt to identify differentially expressed genes in prostate cancer in relation to AR CAG repeat length variation, in this study we used total mRNA from normal and tumor tissues from 2 prostate cancer patients with AR alleles containing 19 and 26 CAG repeats to perform differential-display RT-PCR analysis. We were able to identify 48 different transcripts that showed homology to several known genes associated with different biological pathways. Among the differentially expressed genes, ATRX and SFRP1 were further validated by quantitative RT-PCR. The transcripts of both ATRX and SFRP1 genes proved to be down-regulated in most of the prostate tumors analyzed by quantitative RT-PCR. Hypermethylation of the promoter region of the SFRP1 gene was found in 17.5% (7/40) of the cases analyzed and was associated with the loss of SFRP1 expression (p=0.014). The differentially expressed genes identified in this study are implicated in several cellular pathways that, when up- or down-regulated, might play a role in the tumorigenic process of the prostate.
Collapse
Affiliation(s)
- C M Coutinho-Camillo
- Laboratório de Genética Molecular do Câncer, Disciplina de Oncologia, Departamento de Radiologia, FMUSP, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Liu S, Kumari S, Hu Q, Senapati D, Venkadakrishnan VB, Wang D, DePriest AD, Schlanger SE, Ben-Salem S, Valenzuela MM, Willard B, Mudambi S, Swetzig WM, Das GM, Shourideh M, Koochekpour S, Falzarano SM, Magi-Galluzzi C, Yadav N, Chen X, Lao C, Wang J, Billaud JN, Heemers HV. A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. eLife 2017; 6:e28482. [PMID: 28826481 PMCID: PMC5608510 DOI: 10.7554/elife.28482] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023] Open
Abstract
Standard treatment for metastatic prostate cancer (CaP) prevents ligand-activation of androgen receptor (AR). Despite initial remission, CaP progresses while relying on AR. AR transcriptional output controls CaP behavior and is an alternative therapeutic target, but its molecular regulation is poorly understood. Here, we show that action of activated AR partitions into fractions that are controlled preferentially by different coregulators. In a 452-AR-target gene panel, each of 18 clinically relevant coregulators mediates androgen-responsiveness of 0-57% genes and acts as a coactivator or corepressor in a gene-specific manner. Selectivity in coregulator-dependent AR action is reflected in differential AR binding site composition and involvement with CaP biology and progression. Isolation of a novel transcriptional mechanism in which WDR77 unites the actions of AR and p53, the major genomic drivers of lethal CaP, to control cell cycle progression provides proof-of-principle for treatment via selective interference with AR action by exploiting AR dependence on coregulators.
Collapse
Affiliation(s)
- Song Liu
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Sangeeta Kumari
- Department of Cancer BiologyCleveland ClinicClevelandUnited States
| | - Qiang Hu
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | | | - Dan Wang
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Adam D DePriest
- Department of Cancer GeneticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | - Salma Ben-Salem
- Department of Cancer BiologyCleveland ClinicClevelandUnited States
| | | | - Belinda Willard
- Department of Research Core ServicesCleveland ClinicClevelandUnited States
| | - Shaila Mudambi
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloUnited States
| | - Wendy M Swetzig
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Gokul M Das
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Mojgan Shourideh
- Department of Cancer GeneticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | | | | | - Neelu Yadav
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Xiwei Chen
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Changshi Lao
- Institute for Nanosurface Science and EngineeringShenzhen UniversityShenzhenChina
| | - Jianmin Wang
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland ClinicClevelandUnited States
- Department of UrologyCleveland ClinicClevelandUnited States
- Department of Hematology/Medical OncologyCleveland ClinicClevelandUnited States
| |
Collapse
|
9
|
Sharad S, Ravindranath L, Haffner MC, Li H, Yan W, Sesterhenn IA, Chen Y, Ali A, Srinivasan A, McLeod DG, Yegnasubramanian S, Srivastava S, Dobi A, Petrovics G. Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer. Epigenetics 2014; 9:918-27. [PMID: 24694733 PMCID: PMC4065188 DOI: 10.4161/epi.28710] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Michael C Haffner
- Sidney Kimmel Comprehensive Cancer Center; Johns Hopkins University; Baltimore, MD USA
| | - Hua Li
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Wusheng Yan
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | | | - Yongmei Chen
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Amina Ali
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA; Urology Service; Walter Reed National Military Medical Center; Bethesda, MD USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - David G McLeod
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA; Urology Service; Walter Reed National Military Medical Center; Bethesda, MD USA
| | | | - Shiv Srivastava
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Albert Dobi
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| |
Collapse
|
10
|
Kaushik AK, Vareed SK, Basu S, Putluri V, Putluri N, Panzitt K, Brennan CA, Chinnaiyan AM, Vergara IA, Erho N, Weigel NL, Mitsiades N, Shojaie A, Palapattu G, Michailidis G, Sreekumar A. Metabolomic profiling identifies biochemical pathways associated with castration-resistant prostate cancer. J Proteome Res 2014; 13:1088-100. [PMID: 24359151 PMCID: PMC3975657 DOI: 10.1021/pr401106h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite recent developments in treatment strategies, castration-resistant prostate cancer (CRPC) is still the second leading cause of cancer-associated mortality among American men, the biological underpinnings of which are not well understood. To this end, we measured levels of 150 metabolites and examined the rate of utilization of 184 metabolites in metastatic androgen-dependent prostate cancer (AD) and CRPC cell lines using a combination of targeted mass spectrometry and metabolic phenotyping. Metabolic data were used to derive biochemical pathways that were enriched in CRPC, using Oncomine concept maps (OCM). The enriched pathways were then examined in-silico for their association with treatment failure (i.e., prostate specific antigen (PSA) recurrence or biochemical recurrence) using published clinically annotated gene expression data sets. Our results indicate that a total of 19 metabolites were altered in CRPC compared to AD cell lines. These altered metabolites mapped to a highly interconnected network of biochemical pathways that describe UDP glucuronosyltransferase (UGT) activity. We observed an association with time to treatment failure in an analysis employing genes restricted to this pathway in three independent gene expression data sets. In summary, our studies highlight the value of employing metabolomic strategies in cell lines to derive potentially clinically useful predictive tools.
Collapse
Affiliation(s)
- Akash K Kaushik
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | - Shaiju K Vareed
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | - Sumanta Basu
- Department of Statistics, University of Michigan Ann Arbor
| | - Vasanta Putluri
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | - Nagireddy Putluri
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | - Katrin Panzitt
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | | | | | | | | | - Nancy L Weigel
- Molecular and Cellular Biology, Baylor College of Medicine
| | | | - Ali Shojaie
- Department of Biostatistics, University of Washington Seattle
| | | | | | - Arun Sreekumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| |
Collapse
|
11
|
Treidel LA, Whitley BN, Benowitz-Fredericks ZM, Haussmann MF. Prenatal exposure to testosterone impairs oxidative damage repair efficiency in the domestic chicken (Gallus gallus). Biol Lett 2013; 9:20130684. [PMID: 24046877 DOI: 10.1098/rsbl.2013.0684] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Elevated levels of maternal androgens in avian eggs affect numerous traits, including oxidative stress. However, current studies disagree as to whether prenatal androgen exposure enhances or ameliorates oxidative stress. Here, we tested how prenatal testosterone exposure affects oxidative stress in female domestic chickens (Gallus gallus) during the known oxidative challenge of an acute stressor. Prior to incubation, eggs were either injected with an oil vehicle or 5 ng testosterone. At either 17 or 18 days post-hatch, several oxidative stress markers were assessed from blood taken before and after a 20 min acute stressor, as well as following a 25 min recovery from the stressor. We found that, regardless of yolk treatment, during both stress and recovery all individuals were in a state of oxidative stress, with elevated levels of oxidative damage markers accompanied by a reduced total antioxidant capacity. In addition, testosterone-exposed individuals exhibited poorer DNA damage repair efficiencies in comparison with control individuals. Our work suggests that while yolk androgens do not alter oxidative stress directly, they may impair mechanisms of oxidative damage repair.
Collapse
Affiliation(s)
- L A Treidel
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | | | | | |
Collapse
|
12
|
Actions of 17β-estradiol and testosterone in the mitochondria and their implications in aging. Ageing Res Rev 2013; 12:907-17. [PMID: 24041489 DOI: 10.1016/j.arr.2013.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 02/02/2023]
Abstract
A decline in the mitochondrial functions and aging are two closely related processes. The presence of estrogen and androgen receptors and hormone-responsive elements in the mitochondria represents the starting point for the investigation of the effects of 17β-estradiol and testosterone on the mitochondrial functions and their relationships with aging. Both steroids trigger a complex molecular mechanism that involves crosstalk between the mitochondria, nucleus, and plasma membrane, and the cytoskeleton plays a key role in these interactions. The result of this signaling is mitochondrial protection. Therefore, the molecular components of the pathways activated by the sexual steroids could represent targets for anti-aging therapies. In this review, we discuss previous studies that describe the estrogen- and testosterone-dependent actions on the mitochondrial processes implicated in aging.
Collapse
|
13
|
Gemfibrozil Pretreatment Resulted in a Sexually Dimorphic Outcome in the Rat Models of Global Cerebral Ischemia–Reperfusion via Modulation of Mitochondrial Pro-survival and Apoptotic Cell Death Factors as well as MAPKs. J Mol Neurosci 2013; 50:379-93. [DOI: 10.1007/s12031-012-9932-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/26/2012] [Indexed: 01/19/2023]
|
14
|
Grunewald TGP, Bach H, Cossarizza A, Matsumoto I. The STEAP protein family: versatile oxidoreductases and targets for cancer immunotherapy with overlapping and distinct cellular functions. Biol Cell 2012; 104:641-57. [PMID: 22804687 DOI: 10.1111/boc.201200027] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/08/2012] [Indexed: 12/26/2022]
Abstract
The human six-transmembrane epithelial antigen of the prostate (STEAP) protein family contains at least five homologous members. The necessity of multiple homologous STEAP proteins is still unclear, but their peculiar and tissue-specific expression suggests that they are assigned to distinct functional tasks. This concept is supported by the fact that especially STEAP1, and to a lesser extent STEAP2 and -4, are highly over-expressed in many different cancer entities, while being only minimally expressed in a few normal tissues. Despite their very similar domain organisation, STEAP3 seems to act as a potent metalloreductase essential for physiological iron uptake and turnover, while in particular STEAP4 appears to be rather involved in responses to nutrients and inflammatory stress, fatty acid and glucose metabolism. Moreover, individual STEAP proteins possess overlapping functions important for growth and survival of cancer cells. Due to their membrane-bound localisation and their high expression in many different cancers such as prostate, breast and bladder carcinoma as well as Ewing's sarcoma, STEAP proteins have been recognised and utilised as promising targets for cell- and antibody-based immunotherapy. This review summarises our present knowledge of the individual members of the human STEAP family and highlights the functional differences between them.
Collapse
Affiliation(s)
- Thomas G P Grunewald
- INSERM Unit 830 'Genetics and Biology of Cancer', Institut Curie Research Center, Paris, France.
| | | | | | | |
Collapse
|
15
|
Jenq RR, Curran MA, Goldberg GL, Liu C, Allison JP, van den Brink MRM. Repertoire enhancement with adoptively transferred female lymphocytes controls the growth of pre-implanted murine prostate cancer. PLoS One 2012; 7:e35222. [PMID: 22493742 PMCID: PMC3320876 DOI: 10.1371/journal.pone.0035222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/13/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In prostate cancer, genes encoding androgen-regulated, Y-chromosome-encoded, and tissue-specific antigens may all be overexpressed. In the adult male host, however, most high affinity T cells targeting these potential tumor rejection antigens will be removed during negative selection. In contrast, the female mature T-cell repertoire should contain abundant precursors capable of recognizing these classes of prostate cancer antigens and mediating effective anti-tumor immune responses. METHODOLOGY/PRINCIPAL FINDINGS We find that syngeneic TRAMP-C2 prostatic adenocarcinoma cells are spontaneously rejected in female hosts. Adoptive transfer of naïve female lymphocytes to irradiated male hosts bearing pre-implanted TRAMP-C2 tumor cells slows tumor growth and mediates tumor rejection in some animals. The success of this adoptive transfer was dependent on the transfer of female CD4 T cells and independent of the presence of CD25-expressing regulatory T cells in the transferred lymphocytes. We identify in female CD4 T cells stimulated with TRAMP-C2 a dominant MHC II-restricted response to the Y-chromosome antigen DBY. Furthermore, CD8 T cell responses in female lymphocytes to the immunodominant MHC I-restricted antigen SPAS-1 are markedly increased compared to male mice. Finally, we find no exacerbation of graft-versus-host disease in either syngeneic or minor-antigen mismatched allogeneic lymphocyte adoptive transfer models by using female into male versus male into male cells. CONCLUSIONS/SIGNIFICANCE This study shows that adoptively transferred female lymphocytes, particularly CD4 T cells, can control the outgrowth of pre-implanted prostatic adenocarcinoma cells. This approach does not significantly worsen graft-versus-host responses suggesting it may be viable in the clinic. Further, enhancing the available immune repertoire with female-derived T cells may provide an excellent pool of prostate cancer reactive T cells for further augmentation by combination with either vaccination or immune regulatory blockade strategies.
Collapse
Affiliation(s)
- Robert R. Jenq
- Department of Immunology and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Weill Cornell Medical College, New York, New York, United States of America
| | - Michael A. Curran
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Gabrielle L. Goldberg
- Department of Immunology and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - James P. Allison
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Marcel R. M. van den Brink
- Department of Immunology and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Rajan P, Dalgliesh C, Carling PJ, Buist T, Zhang C, Grellscheid SN, Armstrong K, Stockley J, Simillion C, Gaughan L, Kalna G, Zhang MQ, Robson CN, Leung HY, Elliott DJ. Identification of novel androgen-regulated pathways and mRNA isoforms through genome-wide exon-specific profiling of the LNCaP transcriptome. PLoS One 2011; 6:e29088. [PMID: 22194994 PMCID: PMC3237596 DOI: 10.1371/journal.pone.0029088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 11/21/2011] [Indexed: 11/19/2022] Open
Abstract
Androgens drive the onset and progression of prostate cancer (PCa) by modulating androgen receptor (AR) transcriptional activity. Although several microarray-based studies have identified androgen-regulated genes, here we identify in-parallel global androgen-dependent changes in both gene and alternative mRNA isoform expression by exon-level analyses of the LNCaP transcriptome. While genome-wide gene expression changes correlated well with previously-published studies, we additionally uncovered a subset of 226 novel androgen-regulated genes. Gene expression pathway analysis of this subset revealed gene clusters associated with, and including the tyrosine kinase LYN, as well as components of the mTOR (mammalian target of rapamycin) pathway, which is commonly dysregulated in cancer. We also identified 1279 putative androgen-regulated alternative events, of which 325 (∼25%) mapped to known alternative splicing events or alternative first/last exons. We selected 30 androgen-dependent alternative events for RT-PCR validation, including mRNAs derived from genes encoding tumour suppressors and cell cycle regulators. Of seven positively-validating events (∼23%), five events involved transcripts derived from alternative promoters of known AR gene targets. In particular, we found a novel androgen-dependent mRNA isoform derived from an alternative internal promoter within the TSC2 tumour suppressor gene, which is predicted to encode a protein lacking an interaction domain required for mTOR inhibition. We confirmed that expression of this alternative TSC2 mRNA isoform was directly regulated by androgens, and chromatin immunoprecipitation indicated recruitment of AR to the alternative promoter region at early timepoints following androgen stimulation, which correlated with expression of alternative transcripts. Together, our data suggest that alternative mRNA isoform expression might mediate the cellular response to androgens, and may have roles in clinical PCa.
Collapse
Affiliation(s)
- Prabhakar Rajan
- Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Dalgliesh
- Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Phillippa J. Carling
- Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Thomas Buist
- Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Chaolin Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sushma N. Grellscheid
- Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Kelly Armstrong
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jacqueline Stockley
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Cedric Simillion
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Luke Gaughan
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Gabriela Kalna
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Michael Q. Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Craig N. Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Hing Y. Leung
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J. Elliott
- Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Zhang Y, Castaneda S, Dumble M, Wang M, Mileski M, Qu Z, Kim S, Shi V, Kraft P, Gao Y, Pak J, Sapra P, Bandaru R, Zhao H, Vessella RL, Horak ID, Greenberger LM. Reduced expression of the androgen receptor by third generation of antisense shows antitumor activity in models of prostate cancer. Mol Cancer Ther 2011; 10:2309-19. [PMID: 22027692 DOI: 10.1158/1535-7163.mct-11-0329] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is a member of a unique class of transcription factors because it contains a ligand-binding domain that, when activated, results in nuclear translocation and the transcriptional activation of genes associated with prostate cancer development. Although androgen deprivation therapies are effective initially for the treatment of prostate cancer, the disease eventually relapses and progresses to castration-resistant prostate cancer (CRPC). Nonetheless, the AR still plays a critical role because late-stage investigational agents that deplete testosterone (abiraterone) or block ligand binding (MDV3100) can still control tumor growth in patients with CRPC. These findings indicate that downmodulation of AR expression may provide a complementary strategy for treating CRPC. In this article, we describe a novel, locked, nucleic acid-based antisense oligonucleotide, designated EZN-4176. When administered as a single agent, EZN-4176 specifically downmodulated AR mRNA and protein, and this was coordinated with inhibition of the growth of both androgen-sensitive and CRPC tumors in vitro as well as in animal models. The effect was specific because no effect on growth was observed with a control antisense oligonucleotide that does not recognize AR mRNA, nor on tumors derived from the PC3, AR-negative, tumor cell line. In addition, EZN-4176 reduced AR luciferase reporter activity in a CRPC model derived from C4-2b cells that were implanted intratibially, indicating that the molecule may control prostate cancer that has metastasized to the bone. These data, together with the continued dependency of CRPC on the AR signaling pathway, justify the ongoing phase I evaluation of EZN-4176 in patients with CRPC.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Pharmacology, Enzon Pharmaceuticals, Inc., 20 Kingsbridge Road, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinog 2011; 10:20. [PMID: 21886458 PMCID: PMC3162670 DOI: 10.4103/1477-3163.83937] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/12/2011] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) signaling axis plays a critical role in the development, function and homeostasis of the prostate. The classical action of AR is to regulate gene transcriptional processes via AR nuclear translocation, binding to androgen response elements on target genes and recruitment of, or crosstalk with, transcription factors. Prostate cancer initiation and progression is also uniquely dependent on AR. Androgen deprivation therapy remains the standard of care for treatment of advanced prostate cancer. Despite an initial favorable response, almost all patients invariably progress to a more aggressive, castrate-resistant phenotype. Considerable evidence now supports the concept that development of castrate-resistant prostate cancer (CRPC) is causally related to continued transactivation of AR. Understanding the critical events and complexities of AR signaling in the progression to CRPC is essential in developing successful future therapies. This review provides a synopsis of AR structure and signaling in prostate cancer progression, with a special focus on recent findings on the role of AR in CRPC. Clinical implications of these findings and potential directions for future research are also outlined.
Collapse
Affiliation(s)
- Peter E Lonergan
- Department of Urology, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | |
Collapse
|
19
|
Kulahin N, Kristensen O, Rasmussen KK, Olsen L, Rydberg P, Vestergaard B, Kastrup JS, Berezin V, Bock E, Walmod PS, Gajhede M. Structural model and trans-interaction of the entire ectodomain of the olfactory cell adhesion molecule. Structure 2011; 19:203-11. [PMID: 21300289 DOI: 10.1016/j.str.2010.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/10/2010] [Accepted: 12/12/2010] [Indexed: 01/12/2023]
Abstract
The ectodomain of olfactory cell adhesion molecule (OCAM/NCAM2/RNCAM) consists of five immunoglobulin (Ig) domains (IgI-V), followed by two fibronectin-type 3 (Fn3) domains (Fn3I-II). A complete structural model of the entire ectodomain of human OCAM has been assembled from crystal structures of six recombinant proteins corresponding to different regions of the ectodomain. The model is the longest experimentally based composite structural model of an entire IgCAM ectodomain. It displays an essentially linear arrangement of IgI-V, followed by bends between IgV and Fn3I and between Fn3I and Fn3II. Proteins containing IgI-IgII domains formed stable homodimers in solution and in crystals. Dimerization could be disrupted in vitro by mutations in the dimer interface region. In conjunction with the bent ectodomain conformation, which can position IgI-V parallel with the cell surface, the IgI-IgII dimerization enables OCAM-mediated trans-interactions with an intercellular distance of about 20 nm, which is consistent with that observed in synapses.
Collapse
Affiliation(s)
- Nikolaj Kulahin
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tanner MJ, Welliver RC, Chen M, Shtutman M, Godoy A, Smith G, Mian BM, Buttyan R. Effects of androgen receptor and androgen on gene expression in prostate stromal fibroblasts and paracrine signaling to prostate cancer cells. PLoS One 2011; 6:e16027. [PMID: 21267466 PMCID: PMC3022749 DOI: 10.1371/journal.pone.0016027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.
Collapse
Affiliation(s)
- Matthew J. Tanner
- Ordway Research Institute, Albany, New York, United States of America
| | - R. Charles Welliver
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, United States of America
- Stratton Veterans Affairs Medical Center, Albany, New York, United States of America
| | - Mengqian Chen
- Ordway Research Institute, Albany, New York, United States of America
| | - Michael Shtutman
- Ordway Research Institute, Albany, New York, United States of America
| | - Alejandro Godoy
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Gary Smith
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Badar M. Mian
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, United States of America
- Stratton Veterans Affairs Medical Center, Albany, New York, United States of America
| | - Ralph Buttyan
- Ordway Research Institute, Albany, New York, United States of America
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Romanuik TL, Wang G, Morozova O, Delaney A, Marra MA, Sadar MD. LNCaP Atlas: gene expression associated with in vivo progression to castration-recurrent prostate cancer. BMC Med Genomics 2010; 3:43. [PMID: 20868494 PMCID: PMC2956710 DOI: 10.1186/1755-8794-3-43] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/24/2010] [Indexed: 01/02/2023] Open
Abstract
Background There is no cure for castration-recurrent prostate cancer (CRPC) and the mechanisms underlying this stage of the disease are unknown. Methods We analyzed the transcriptome of human LNCaP prostate cancer cells as they progress to CRPC in vivo using replicate LongSAGE libraries. We refer to these libraries as the LNCaP atlas and compared these gene expression profiles with current suggested models of CRPC. Results Three million tags were sequenced using in vivo samples at various stages of hormonal progression to reveal 96 novel genes differentially expressed in CRPC. Thirty-one genes encode proteins that are either secreted or are located at the plasma membrane, 21 genes changed levels of expression in response to androgen, and 8 genes have enriched expression in the prostate. Expression of 26, 6, 12, and 15 genes have previously been linked to prostate cancer, Gleason grade, progression, and metastasis, respectively. Expression profiles of genes in CRPC support a role for the transcriptional activity of the androgen receptor (CCNH, CUEDC2, FLNA, PSMA7), steroid synthesis and metabolism (DHCR24, DHRS7, ELOVL5, HSD17B4, OPRK1), neuroendocrine (ENO2, MAOA, OPRK1, S100A10, TRPM8), and proliferation (GAS5, GNB2L1, MT-ND3, NKX3-1, PCGEM1, PTGFR, STEAP1, TMEM30A), but neither supported nor discounted a role for cell survival genes. Conclusions The in vivo gene expression atlas for LNCaP was sequenced and support a role for the androgen receptor in CRPC.
Collapse
Affiliation(s)
- Tammy L Romanuik
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Many cellular signaling pathways ultimately control specific patterns of gene expression in the nucleus through a variety of signal-regulated transcription factors (TFs), including nuclear hormone receptors (NRs). The advent of genomic technologies for examining signal-regulated transcriptional responses and TF binding on a genomic scale has dramatically increased our understanding of the cellular programs that control hormonal signaling and gene regulation. Studies of TFs, especially NRs, using genomic approaches have revealed novel and unexpected features of hormone-regulated transcription, and a global view is beginning to emerge. In this review, we discuss the genomic methodologies that have been applied to the study of hormone-regulated gene expression, the results that have been obtained from using them, and the future prospects for these approaches. Given the wealth of information about hormone-dependent gene regulation by NRs, we have focused this review on the knowledge gained from genomic studies of their function.
Collapse
Affiliation(s)
- Edwin Cheung
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.
| | | |
Collapse
|
23
|
Kulahin N, Walmod PS. The neural cell adhesion molecule NCAM2/OCAM/RNCAM, a close relative to NCAM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:403-20. [PMID: 20017036 DOI: 10.1007/978-1-4419-1170-4_25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
A FOXA1-binding enhancer regulates Hoxb13 expression in the prostate gland. Proc Natl Acad Sci U S A 2009; 107:98-103. [PMID: 20018680 DOI: 10.1073/pnas.0902001107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hoxb13 is robustly transcribed in derivatives of posterior endoderm including the colon, rectum, and the prostate gland. Transcriptional activity in the prostate persists unabated under conditions of androgen deprivation and throughout the course of disease progression in a mouse prostate cancer model. To elucidate the molecular basis of prostate-restricted transcriptional activation of Hoxb13, a bacterial artificial chromosome (BAC)-based reporter gene deletion analysis was performed in transgenic mice. Two regions downstream of the Hoxb13 coding region were found to be required to support transcriptional activity in the prostate but were completely dispensable for expression in the colon and rectum. Bioinformatic analyses of one region identified a 37-bp element conserved in mammals. This element, which bears two potential binding sites for Forkhead class transcription factors, is occupied by FOXA1 in a human prostate cancer cell line. Precise replacement of this enhancer with an extended LoxP site in the context of a 218,555-bp BAC reporter nearly extinguished Hoxb13-mediated transcriptional activity in the mouse prostate. These data demonstrate that FOXA1 directly regulates HOXB13 in human prostate epithelial cells, and show that this prostate-specific regulatory mechanism is conserved in mice.
Collapse
|
25
|
Romanuik TL, Wang G, Holt RA, Jones SJM, Marra MA, Sadar MD. Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics 2009; 10:476. [PMID: 19832994 PMCID: PMC2766392 DOI: 10.1186/1471-2164-10-476] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 10/15/2009] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The development and maintenance of the prostate is dependent on androgens and the androgen receptor. The androgen pathway continues to be important in prostate cancer. Here, we evaluated the transcriptome of prostate cancer cells in response to androgen using long serial analysis of gene expression (LongSAGE) libraries. RESULTS There were 131 tags (87 genes) that displayed statistically significant (p CONCLUSION These processes may represent the molecular mechanisms of androgen-dependency of the prostate. Genes that participate in these pathways may be targets for therapies or biomarkers of prostate cancer.
Collapse
Affiliation(s)
- Tammy L Romanuik
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Gang Wang
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Robert A Holt
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven JM Jones
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marianne D Sadar
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Mackinnon AC, Yan BC, Joseph LJ, Al-Ahmadie HA. Molecular biology underlying the clinical heterogeneity of prostate cancer: an update. Arch Pathol Lab Med 2009; 133:1033-40. [PMID: 19642730 DOI: 10.5858/133.7.1033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2009] [Indexed: 11/06/2022]
Abstract
CONTEXT Recent studies have uncovered a number of possible mechanisms by which prostate cancers can become resistant to systemic androgen deprivation, most involving androgen-independent reactivation of the androgen receptor. Genome-wide expression analysis with microarrays has identified a wide array of genes that are differentially expressed in metastatic prostate cancers compared to primary nonrecurrent tumors. Recently, recurrent gene fusions between TMPRSS2 and ETS family genes have been identified and extensively studied for their role in prostatic carcinoma. OBJECTIVE To review the recent developments in the molecular biology of prostate cancer, including those pertaining to the androgen receptor and the newly identified TMPRSS2-related translocations. DATA SOURCES Literature review and personal experience. CONCLUSIONS Prostatic adenocarcinoma is a heterogeneous group of neoplasms with a broad spectrum of pathologic and molecular characteristics and clinical behaviors. Numerous mechanisms contribute to the development of resistance to androgen ablation therapy, resulting in ligand-independent reactivation of the androgen receptor, including amplification, mutation, phosphorylation, and activation of coreceptors. Multiple translocations of members of the ETS oncogene family are present in approximately half of clinically localized prostate cancers. TMPRSS2:ERG gene rearrangement appears to be an early event in prostate cancer and is not observed in benign or hyperplastic prostatic epithelium. Duplication of TMPRSS2:ERG appears to predict a worse prognosis. The relationship between TMPRSS2:ERG gene rearrangement and other morphologic and prognostic parameters of prostate cancer is still unclear.
Collapse
Affiliation(s)
- A Craig Mackinnon
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
27
|
Ma C, Yoshioka M, Boivin A, Gan L, Takase Y, Labrie F, St-Amand J. Atlas of dihydrotestosterone actions on the transcriptome of prostate in vivo. Prostate 2009; 69:293-316. [PMID: 19023869 DOI: 10.1002/pros.20883] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Using serial analysis of gene expression (SAGE), we studied the transcriptomic changes in vivo by dihydrotestosterone (DHT) treatment in mice to better understand androgen effects in the prostate. METHODS Approximately 872,000 SAGE tags were isolated from intact and castrated (GDX) mice with and without DHT injection. RESULTS GDX significantly altered 431 transcripts, including 110 transcripts restored by DHT, and 146 potentially new transcripts. Totally, 187 transcripts were significantly affected by DHT treatment, of which 124 were induced and 63 were repressed. Interestingly and consistent with the prostate's secretory role, DHT up-regulated the expression of many genes involved in various steps of protein metabolism such as synthesis, folding, and secretion. GDX modulated the expression of genes which induce cell apoptosis and inhibit cell proliferation through polyamine biosynthesis, retinoid X receptor actions as well as several signaling pathways and some related factors. These results clarify DHT effects on prostate transcriptome in the areas of protein metabolism, cell proliferation and apoptosis. In addition, we detected gene expression changes in metabolic pathways, cytoskeleton, immunity and endoplasmic reticulum stress. Furthermore, knockdown of S-adenosylmethionine decarboxylase 1 in LNCaP cells confirmed the importance of androgen-regulated genes (ARGs) in prostate cancer cell growth. CONCLUSION Our data support the idea that ARGs are essential for the normal development of the prostate and can also be responsible for the pathogenesis of the prostate cancer.
Collapse
Affiliation(s)
- Ci Ma
- Department of Anatomy and Physiology, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center, Laval University, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc Natl Acad Sci U S A 2008; 105:20179-84. [PMID: 19088194 DOI: 10.1073/pnas.0807121105] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing has rapidly gained popularity for transcriptome analysis in mammalian cells because of its ability to generate digital and quantitative information on annotated genes and to detect transcripts and mRNA isoforms. Here, we described a double-random priming method for deep sequencing to profile double poly(A)-selected RNA from LNCaP cells before and after androgen stimulation. From approximately 20 million sequence tags, we uncovered 71% of annotated genes and identified hormone-regulated gene expression events that are highly correlated with quantitative real time PCR measurement. A fraction of the sequence tags were mapped to constitutive and alternative splicing events to detect known and new mRNA isoforms expressed in the cell. Finally, curve fitting was used to estimate the number of tags necessary to reach a "saturating" discovery rate among individual applications. This study provides a general guide for analysis of gene expression and alternative splicing by deep sequencing.
Collapse
|
29
|
Rasmussen KK, Kulahin N, Kristensen O, Poulsen JCN, Sigurskjold BW, Kastrup JS, Berezin V, Bock E, Walmod PS, Gajhede M. Crystal structure of the Ig1 domain of the neural cell adhesion molecule NCAM2 displays domain swapping. J Mol Biol 2008; 382:1113-20. [PMID: 18706912 DOI: 10.1016/j.jmb.2008.07.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/29/2022]
Abstract
The crystal structure of the first immunoglobulin (Ig1) domain of neural cell adhesion molecule 2 (NCAM2/OCAM/RNCAM) is presented at a resolution of 2.7 A. NCAM2 is a member of the immunoglobulin superfamily of cell adhesion molecules (IgCAMs). In the structure, two Ig domains interact by domain swapping, as the two N-terminal beta-strands are interchanged. beta-Strand swapping at the terminal domain is the accepted mechanism of homophilic interactions amongst the cadherins, another class of CAMs, but it has not been observed within the IgCAM superfamily. Gel-filtration chromatography demonstrated the ability of NCAM2 Ig1 to form dimers in solution. Taken together, these observations suggest that beta-strand swapping could have a role in the molecular mechanism of homophilic binding for NCAM2.
Collapse
Affiliation(s)
- Kim K Rasmussen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang H, Sun D, Ji P, Mohler J, Zhu L. An AR-Skp2 pathway for proliferation of androgen-dependent prostate-cancer cells. J Cell Sci 2008; 121:2578-87. [PMID: 18628304 DOI: 10.1242/jcs.030742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Androgen-androgen-receptor (androgen-AR) signaling in normal prostate epithelium promotes terminal luminal epithelial cell differentiation. In androgen-dependent prostate-cancer cells, androgen-AR signaling gains the ability to promote both differentiation and proliferation. How this signaling promotes proliferation of androgen-dependent prostate-cancer cells and its relationship with the differentiation-promoting functions of the AR are important issues regarding the biology of androgen-dependent prostate-cancer cells. Herein, we report the identification of an AR-Skp2 pathway in prostate-cancer cells that depend on the AR for proliferation; in this pathway, AR is a robust upstream regulator of Skp2 through blocking the D-box-dependent degradation of this protein, and Skp2, in turn, serves as an essential downstream effector of AR in promoting proliferation independently of the differentiation-promoting function of AR. These results provide new knowledge on how AR functions in androgen-dependent prostate-cancer cells and identify strategies to specifically target the proliferation-promoting function of AR without compromising cancer-cell differentiation.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Developmental and Molecular Biology, The Albert Einstein Comprehensive Cancer Center and Liver Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
31
|
Sterbis JR, Gao C, Furusato B, Chen Y, Shaheduzzaman S, Ravindranath L, Osborn DJ, Rosner IL, Dobi A, McLeod DG, Sesterhenn IA, Srivastava S, Cullen J, Petrovics G. Higher expression of the androgen-regulated gene PSA/HK3 mRNA in prostate cancer tissues predicts biochemical recurrence-free survival. Clin Cancer Res 2008; 14:758-63. [PMID: 18245536 DOI: 10.1158/1078-0432.ccr-07-1356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Alterations of the androgen receptor (AR)-mediated signaling through numerous mechanisms are increasingly recognized in prostate cancer (CaP) progression. We hypothesized that the assessment of well-defined AR transcriptional targets (e.g., PSA/HK3 mRNA) in CaP tissues will provide in vivo readout of AR dysfunctions. Moreover, quantitative expression features of PSA/HK3 mRNA in prostate tumor cells may serve as a prognostic indicator of disease progression. EXPERIMENTAL DESIGN Paired benign and malignant epithelial cells (242 specimens) were obtained from laser capture microdissection of frozen OCT-embedded tissue sections prepared from radical prostatectomy specimens of 121 patients. Quantitative expression of PSA/HK3 mRNA in the matched malignant and benign cells was analyzed by real-time reverse transcription-PCR. RESULTS CaP cells express significantly lower PSA/HK3 mRNA levels than matched benign cells (P = 0.0133). Moreover, low PSA/HK3 mRNA expression in malignant cells was associated with increased risk of biochemical recurrence (P = 0.0217), as well as with time to recurrence (P = 0.0371), in patients with intermediate preoperative serum prostate-specific antigen levels (2-10 ng/mL). The expression of androgen-dependent genes in clinical samples correlates with each other in patients with higher expression of PSA/HK3 mRNA but not in patients with lower expression of PSA/HK3 mRNA reflecting AR pathway dysfunction. CONCLUSIONS Our study has unraveled a novel prognostic utility of quantitative measurements of PSA/HK3 mRNA reflecting AR transcriptional activity in CaP cells, which is independent of serum prostate-specific antigen. It also has potential in stratifying subsets of patients exhibiting progressive disease associated with dampened AR transcriptional functions who may be targeted by tailored therapeutic strategies.
Collapse
Affiliation(s)
- Joseph R Sterbis
- Urology Service, Department of Surgery, Walter Reed Army Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kulahin N, Walmod PS. WITHDRAWN: The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM. Neurochem Res 2008. [PMID: 18368488 DOI: 10.1007/s11064-008-9614-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 01/28/2008] [Indexed: 09/29/2022]
Abstract
Cell adhesion molecules (CAMs) constitute a large class of plasma membrane-anchored proteins that mediate attachment between neighboring cells and between cells and the surrounding extracellular matrix (ECM). However, CAMs are more than simple mediators of cell adhesion. The neural cell adhesion molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology between the two proteins suggests that they are transcribed from paralogous genes. However, very little is known about the function of NCAM2, although it originally was described more than 20 years ago. In this review we summarize the known properties and functions of NCAM2 and describe some of the differences and similarities between NCAM and NCAM2.
Collapse
|
33
|
Ma C, Yoshioka M, Boivin A, Belleau P, Gan L, Takase Y, Labrie F, St-Amand J. Prostate-specific genes and their regulation by dihydrotestosterone. Prostate 2008; 68:241-54. [PMID: 18095270 DOI: 10.1002/pros.20712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostate is a well-known androgen-dependent tissue. METHODS By sequencing 4,294,186 serial analysis of gene expression (SAGE) tags, we have investigated the transcriptomes of normal mouse prostate, liver, testis, lung, brain, femur, skin, adipose tissue, skeletal muscle, vagina, ovary, mammary gland, and uterus in order to identify the most abundant and tissue-specific transcripts in the prostate, as well as to target the androgen responsive transcripts specifically regulated in the prostate. Small interference RNA (siRNA) in LNCaP cells was applied to validate the roles of prostate-specific/enriched ARGs in the growth of human prostate cancer cells. RESULTS The most abundant transcripts were involved in prostatic secretion, energy metabolism and immunity. Previously well-known prostate-specific transcripts, including many transcripts involved in prostatic secretion, polyamine biosynthesis and transport, and immunity were specific/enriched in the prostate. Only 22 transcripts among 114 androgen-regulated genes (ARGs) in the mouse prostate were modulated by dihydrotestosterone (DHT) in two or more tissues. The siRNA results showed that inhibition of HSPA5 and MAT2A gene expression repressed growth of human cancer LNCaP cells. CONCLUSIONS The current study globally assessed the transcriptome of the prostate and revealed the most abundant and tissue-specific transcripts which are responsible for the unique functions of this organ. These prostate-specific ARGs might be used as targets to develop safe and effective gene-based therapy for the prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
- Ci Ma
- Molecular Endocrinology and Oncology Research Center, Laval University Medical Center, Department of Anatomy and Physiology, Laval University, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Prescott J, Jariwala U, Jia L, Cogan JP, Barski A, Pregizer S, Shen HC, Arasheben A, Neilson JJ, Frenkel B, Coetzee GA. Androgen receptor-mediated repression of novel target genes. Prostate 2007; 67:1371-83. [PMID: 17624924 DOI: 10.1002/pros.20623] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The androgen receptor (AR) plays a pivotal role in prostate cancer (PCa) initiation and progression. To date, studies have focused disproportionately on androgen-stimulated genes such as prostate-specific antigen (PSA), while repressed genes have gained little attention, even though they too may be involved in regulating cell growth, differentiation, and apoptosis. METHODS ChIP Display was used to identify putative AR target genes in the ablation-resistant human PCa cell line, C4-2B. Quantitative real-time reverse transcription-PCR analysis was used to measure gene expression in cells subjected to dihydrotestosterone (DHT) timecourse and dose-response, as well as AR knock-down and bicalutamide-treatments. RESULTS We report on three genes, KIAA1217, CHRM1, and WBSCR28, which were newly identified in a screen for AR-occupied regions in C4-2B PCa cells, and which were repressed by treatment with DHT. AR knock-down resulted in increased KIAA1217, CHRM1, and WBSCR28 mRNA, indicating that, like PSA stimulation, AR represses these three genes even in the absence of added ligand. DHT decreased KIAA1217 and CHRM1 pre-mRNA levels, suggesting AR-mediated transcriptional inhibition. Cycloheximide attenuated DHT-mediated repression of CHRM1, suggesting the requirement of new protein synthesis. Furthermore, bicalutamide treatment did not mimic, but rather antagonized DHT-mediated KIAA1217 repression. Unlike the handful of androgen-repressed genes studied thus far, AR occupancy at KIAA1217, CHRM1, and WBSCR28 was mapped outside their respective 5'-promoter regions. CONCLUSIONS Many more genes likely share AR-mediated gene repression through distal regulatory elements. Further study of such targets and their transcriptional regulation may help explain the receptor's tumorigenicity in PCa.
Collapse
MESH Headings
- Androgen Antagonists/pharmacology
- Anilides/pharmacology
- Cell Line, Tumor
- Cycloheximide/pharmacology
- Dihydrotestosterone/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Nitriles/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Receptor, Muscarinic M1
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Androgen/physiology
- Receptors, Muscarinic/biosynthesis
- Receptors, Muscarinic/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tosyl Compounds/pharmacology
- Transfection
Collapse
Affiliation(s)
- Jennifer Prescott
- Department of Preventive Medicine, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gross M, Top I, Laux I, Katz J, Curran J, Tindell C, Agus D. Beta-2-microglobulin is an androgen-regulated secreted protein elevated in serum of patients with advanced prostate cancer. Clin Cancer Res 2007; 13:1979-86. [PMID: 17404077 DOI: 10.1158/1078-0432.ccr-06-1156] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A better understanding of secreted proteins may lead to the discovery of new biomarkers, which, along with prostate-specific antigen (PSA), may be useful in the diagnosis and treatment of prostate cancer patients. EXPERIMENTAL DESIGN Conditioned medium was collected from LNCaP cells following stimulation with methyltrienolone (R1881), 17beta-estradiol (estradiol), or interleukin-6 and analyzed for differential protein expression with surface-enhanced laser desorption/ionization-time of flight mass spectrometry. Quantitative reverse transcription-PCR, immunoblots, and ELISA were used to measure beta-2-microglobulin (B2M) message and protein levels in cells, conditioned medium, and serum. RESULTS Surface-enhanced laser desorption/ionization-time of flight revealed that many peaks were induced or repressed following stimulation with R1881 or estradiol. A peak of interest centered at 11.8 kDa was chosen for additional analysis. Immunodepletion identified the peak of interest as B2M. Reverse transcription-PCR and immunoblots confirmed that PSA and B2M were induced by R1881. However, unlike PSA, B2M was not increased on stimulation with estradiol or interleukin-6. Human B2M is identified in the serum of mice bearing human prostate cancer xenograft. B2M is expressed in human prostate cancer cell lines and tissues. Serum B2M levels are elevated in patients with metastatic, androgen-independent prostate cancer. CONCLUSIONS B2M is a secreted protein expressed in prostate cancer, which is more specific for androgen stimulation than PSA under the conditions tested. Additional studies are warranted to explore if B2M is as useful marker for prostate cancer. Identification of proteins secreted from cancer cells in preclinical models may be a useful strategy for biomarker discovery.
Collapse
Affiliation(s)
- Mitchell Gross
- Louis Warschaw Prostate Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Jariwala U, Prescott J, Jia L, Barski A, Pregizer S, Cogan JP, Arasheben A, Tilley WD, Scher HI, Gerald WL, Buchanan G, Coetzee GA, Frenkel B. Identification of novel androgen receptor target genes in prostate cancer. Mol Cancer 2007; 6:39. [PMID: 17553165 PMCID: PMC1904239 DOI: 10.1186/1476-4598-6-39] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/06/2007] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The androgen receptor (AR) plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa). However, little is known about AR target genes that mediate the receptor's roles in disease progression. RESULTS Using Chromatin Immunoprecipitation (ChIP) Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant) and LNCaP (androgen-dependent) PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells--D-dopachrome tautomerase (DDT), Protein kinase C delta (PRKCD), Glutathione S- transferase theta 2 (GSTT2), Transient receptor potential cation channel subfamily V member 3 (TRPV3), and Pyrroline-5-carboxylate reductase 1 (PYCR1)--most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT), was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. CONCLUSION AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are repressed. In general, response is stronger in C4-2B compared to LNCaP cells. Some of the genes near AR-occupied regions appear to be regulated by the AR in vivo as evidenced by their expression levels in prostate cancer tumors of various stages. Several AR target genes discovered in the present study, for example PRKCD and PYCR1, may open avenues in PCa research and aid the development of new approaches for disease management.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Androgens
- Binding Sites
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Chromosomes, Human/drug effects
- Chromosomes, Human/metabolism
- Dihydrotestosterone/pharmacology
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Glutathione Transferase/biosynthesis
- Glutathione Transferase/genetics
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Male
- Mucin-6
- Mucins/biosynthesis
- Mucins/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Oligonucleotide Array Sequence Analysis
- Ornithine-Oxo-Acid Transaminase/biosynthesis
- Ornithine-Oxo-Acid Transaminase/genetics
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Protein Kinase C-delta/biosynthesis
- Protein Kinase C-delta/genetics
- Pyrroline Carboxylate Reductases/biosynthesis
- Pyrroline Carboxylate Reductases/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
- TRPV Cation Channels/biosynthesis
- TRPV Cation Channels/genetics
- Transcription, Genetic
- delta-1-Pyrroline-5-Carboxylate Reductase
Collapse
Affiliation(s)
- Unnati Jariwala
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Jennifer Prescott
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Li Jia
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Artem Barski
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Steve Pregizer
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Jon P Cogan
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Armin Arasheben
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide/Hanson Institute, Adelaide, Australia
| | - Howard I Scher
- Genitourinary Oncology Service, Division of Solid Tumor Oncology, Memorial Sloan-Kettering Cancer Center, Department of Medicine, Joan and Sanford I. Weill College of Medicine, New York, NY, USA
| | - William L Gerald
- Genitourinary Oncology Service, Division of Solid Tumor Oncology, Memorial Sloan-Kettering Cancer Center, Department of Medicine, Joan and Sanford I. Weill College of Medicine, New York, NY, USA
| | - Grant Buchanan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide/Hanson Institute, Adelaide, Australia
| | - Gerhard A Coetzee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
37
|
Rice L, Handayani R, Cui Y, Medrano T, Samedi V, Baker H, Szabo NJ, Rosser CJ, Goodison S, Shiverick KT. Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr 2007; 137:964-72. [PMID: 17374662 PMCID: PMC1975677 DOI: 10.1093/jn/137.4.964] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The high consumption of soy isoflavones in Asian diets has been correlated to a lower incidence of clinically important cases of prostate cancer. This study characterized the effects of a soy-derived isoflavone concentrate (ISF) on growth and gene expression profiles in the LNCaP, an androgen-sensitive human prostate cancer cell line. ISF caused a dose-dependent decrease in viability (P < 0.05) and DNA synthesis (P < 0.01), as well as an accumulation of cells in G(2)/M, and G(0)/G(1) phases of the cell cycle compared with controls. Using Affymetrix oligonucleotide DNA microarrays (U133A), we determined that ISF upregulated 80 genes and downregulated 33 genes (P < 0.05) involving androgen-regulated genes and pathways controlling cell cycle, metabolism, and intracellular trafficking. Changes in the expression of the genes of interest, identified by microarrays, were validated by Western immunoblot, Northern blot, and luciferase reporter assays. Prostate-specific antigen, homeobox protein NKX3, and cyclin B mRNA were significantly reduced, whereas mRNA was significantly upregulated for p21(CIP1), a major cell cycle inhibitory protein, and fatty acid and cholesterol synthesis pathway genes. ISF also significantly increased cyclin-dependent kinase inhibitor p27(KIP1) and FOXO3A/FKHRL1, a forkhead transcription factor. A differential pattern of androgen-regulated genes was apparent with genes involved in prostate cancer progression being downregulated by ISF, whereas metabolism genes were upregulated. In summary, we found that ISF inhibits the growth of LNCaP cells through the modulation of cell cycle progression and the differential expression of androgen-regulated genes. Thus, ISF treatment serves to identify new therapeutic targets designed to prevent proliferation of malignant prostate cells.
Collapse
Affiliation(s)
- Lori Rice
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Since the original observations of Huggins and Hodges that prostate cancers are androgen dependent, androgen ablation therapy has been the gold standard for the treatment of advanced prostate cancer (CaP). Androgen receptor (AR) is believed to play critical roles in the development and progression of CaP. Treatment for neoadjuvant, adjuvant and recurrent disease all center on the regulation and manipulation of the androgen pathway, in which AR plays an integral role. Recent discoveries that frequent overexpression of ETS-related proto-oncogenes may be driven by AR as a consequence of common genomic rearrangements can hold the key towards the understanding of early phases of prostate cancer. Furthermore, AR function evolves as the cell changes towards a clinically androgen depletion independent state. Comprehension of AR function, regulation and abnormalities are increasingly refined towards the understanding of the role of AR in CaP, and in therapeutic applications. Development of future therapy for CaP will be aided by improving the knowledge of dysfunctions of AR and its network in prostate cancer. This review focuses salient features of AR and on the recent advances addressing AR dysfunctions in prostate cancer.
Collapse
Affiliation(s)
- E Richter
- Center for Prostate Disease Research, Department of Surgery, US Military Cancer Institute, Uniformed Services University, Rockville, MD 20852, USA
| | | | | |
Collapse
|
39
|
Louro R, Nakaya HI, Amaral PP, Festa F, Sogayar MC, da Silva AM, Verjovski-Almeida S, Reis EM. Androgen responsive intronic non-coding RNAs. BMC Biol 2007; 5:4. [PMID: 17263875 PMCID: PMC1800835 DOI: 10.1186/1741-7007-5-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 01/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription of large numbers of non-coding RNAs originating from intronic regions of human genes has been recently reported, but mechanisms governing their biosynthesis and biological functions are largely unknown. In this work, we evaluated the existence of a common mechanism of transcription regulation shared by protein-coding mRNAs and intronic RNAs by measuring the effect of androgen on the transcriptional profile of a prostate cancer cell line. RESULTS Using a custom-built cDNA microarray enriched in intronic transcribed sequences, we found 39 intronic non-coding RNAs for which levels were significantly regulated by androgen exposure. Orientation-specific reverse transcription-PCR indicated that 10 of the 13 were transcribed in the antisense direction. These transcripts are long (0.5-5 kb), unspliced and apparently do not code for proteins. Interestingly, we found that the relative levels of androgen-regulated intronic transcripts could be correlated with the levels of the corresponding protein-coding gene (asGAS6 and asDNAJC3) or with the alternative usage of exons (asKDELR2 and asITGA6) in the corresponding protein-coding transcripts. Binding of the androgen receptor to a putative regulatory region upstream from asMYO5A, an androgen-regulated antisense intronic transcript, was confirmed by chromatin immunoprecipitation. CONCLUSION Altogether, these results indicate that at least a fraction of naturally transcribed intronic non-coding RNAs may be regulated by common physiological signals such as hormones, and further corroborate the notion that the intronic complement of the transcriptome play functional roles in the human gene-expression program.
Collapse
Affiliation(s)
- Rodrigo Louro
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | - Helder I Nakaya
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | - Paulo P Amaral
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | - Fernanda Festa
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | - Mari C Sogayar
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | - Aline M da Silva
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | - Eduardo M Reis
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| |
Collapse
|
40
|
Abstract
Androgens are critical regulators of prostate differentiation and function, as well as prostate cancer growth and survival. Therefore, androgen ablation is the preferred systemic treatment for disseminated prostate cancer. Androgen action is exerted in target tissues via binding the androgen receptor (AR), a nuclear receptor transcription factor. Historically, the gene expression program mediated by the AR has been poorly understood. However, recent gene expression profiling and more traditional single-gene characterization studies have revealed many androgen-regulated genes that are important mediators of androgen action in both normal and malignant prostate tissue. This review will focus on the androgen-regulated gene expression program, and examine how recently identified androgen-regulated genes are likely to contribute to the development and progression of prostate cancer. We will also summarize several recent studies that have attempted to unravel how these genes are deregulated in androgen depletion independent prostate cancer.
Collapse
Affiliation(s)
- Scott M Dehm
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
41
|
Kim KH, Dobi A, Shaheduzzaman S, Gao CL, Masuda K, Li H, Drukier A, Gu Y, Srikantan V, Rhim JS, Srivastava S. Characterization of the androgen receptor in a benign prostate tissue-derived human prostate epithelial cell line: RC-165N/human telomerase reverse transcriptase. Prostate Cancer Prostatic Dis 2006; 10:30-8. [PMID: 17075604 DOI: 10.1038/sj.pcan.4500915] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The majority of prostate epithelial cell lines stably expressing wild-type (wt) or mutant (mt) androgen receptor (AR) are derived from metastatic prostate cancers. Therefore, the wt AR-expressing RC-165N/human telomerase reverse transcriptase (hTERT) cell line derived from the benign prostate tissue of an African-American patient provides a unique opportunity to assess the functional status of AR in a cellular context not studied before. Although androgen-induced expression of known androgen responsive genes such as PMEPA1, and NDRG1 was observed in RC-165N/hTERT, this cell line expresses prostate-specific antigen (PSA) at significantly lower levels. Chromatin immunoprecipitation assay revealed androgen-dependent binding of AR to androgen response elements of PSA, PMEPA1 and NDRG1 genes. Similarities, as well as differences were noted in the expression of androgen responsive genes between RC-165N/hTERT and LNCaP cells. Comprehensive evaluations of AR functions in RC-165N/hTERT cells suggest that whereas some features of known AR functions are maintained in this benign prostatic tissue-derived cell line, other AR functions are not retained. Objective evaluations of similar cell lines will lead to the understanding of AR functions in prostate growth and differentiation.
Collapse
Affiliation(s)
- K-H Kim
- Department of Surgery, Center for Prostate Disease Research, Uniformed Services University, Bethesda, MD 20852, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tate A, Isotani S, Bradley MJ, Sikes RA, Davis R, Chung LWK, Edlund M. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells. BMC Cancer 2006; 6:197. [PMID: 16869958 PMCID: PMC1559714 DOI: 10.1186/1471-2407-6-197] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 07/25/2006] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. METHODS We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. RESULTS We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to expression of the known HGF receptor Met, as neither LNCaP nor clonally-derived C4-2 sub-line contain any detectable Met protein. Even in the absence of Met, small GTPases are activated, linking HGF stimulation to membrane protrusion and integrin activation. Membrane-localized nucelolin levels increase during cancer progression, as modeled by both the PC3 and LNCaP prostate cancer progression cell lines. CONCLUSION We propose that cell surface localized nucleolin protein may function in these cells as a novel HGF receptor. Membrane localized nucleolin binds heparin-bound growth factors (including HGF) and appears upregulated during prostate cancer progression. Antibodies against nucleolin are able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. HGF-nucleolin interactions could be partially responsible for the complexity of HGF responses and met expression reported in the literature.
Collapse
Affiliation(s)
- Amanda Tate
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Shuji Isotani
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael J Bradley
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Robert A Sikes
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Rodney Davis
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Leland WK Chung
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Magnus Edlund
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
43
|
Wang G, Jones SJM, Marra MA, Sadar MD. Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene 2006; 25:7311-23. [PMID: 16751804 DOI: 10.1038/sj.onc.1209715] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progression of prostate cancer to androgen independence is suspected to involve the androgen and protein kinase A (PKA) signaling pathways. Here for the first time, the transcriptomes associated with each pathway and common transcriptional targets in response to stimulation of both pathways were identified in human prostate cancer cells using Affymetrix GeneChip technology (Human Genome U133 plus2). Statistically significant changes in the levels of 858 genes in response to androgen and 303 genes in response to activation of the PKA pathway were determined using GeneSpring software. Expression of a subset of these genes (22) that were transcriptional targets for the androgen and/or PKA pathways were validated by reverse transcriptase-polymerase chain reaction and Western blot analyses. Application of small interfering RNAs to the androgen receptor (AR) revealed that in addition to KLK3, levels of expression of KLK2 and SESN1 were regulated by AR activated by both the androgen and PKA signaling pathways. SESN1 was identified as a gene repressed by activated AR. These results provide a broad view of the effects of the androgen and PKA signaling pathways on the transcriptional program of prostate cancer cells and indicate that only a limited number of genes are targeted by cross-talk between AR and PKA pathways.
Collapse
Affiliation(s)
- G Wang
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
44
|
Coutinho-Camillo CM, Salaorni S, Sarkis AS, Nagai MA. Differentially expressed genes in the prostate cancer cell line LNCaP after exposure to androgen and anti-androgen. ACTA ACUST UNITED AC 2006; 166:130-8. [PMID: 16631469 DOI: 10.1016/j.cancergencyto.2005.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/16/2005] [Accepted: 11/29/2005] [Indexed: 10/24/2022]
Abstract
Androgens play an important role in growth and maintenance of prostate cells. The actions of androgens are mediated by the androgen receptor (AR), a transcription factor member of the super-family of nuclear hormone receptors. Androgen regulated genes (ARGs) are potential markers for early diagnosis and treatment of prostate cancer patients. In the present study, we used DDRT-PCR (differential display reverse transcriptase polymerase chain reaction) technique in order to investigate differentially expressed genes in the prostate cancer cell line LNCaP after treatment with dihydrotestosterone and bicalutamide for 6, 24, and 48 hours. Fifty-five differentially expressed fragments were isolated, cloned, and sequenced. Sequencing analysis of these fragments revealed 56 different transcripts that showed homology to transcription factors, cell cycle regulators, metabolic enzymes, and hypothetical proteins. Among the differentially expressed genes, SPA17 and DDEF2 were further validated using quantitative real time RT-PCR (qPCR) in a series of 25 prostate tumor samples. The DDEF2 gene is involved in adhesion and cell migration of monocytes, and the SPA17 gene might be involved in cellular signal transduction. The transcripts of both, SPA17 and DDEF2 genes, showed altered pattern of expression in the group of prostate tumors analyzed by qPCR. The differentially expressed genes identified in this study might provide new insights into the androgen signaling pathways in prostate cells.
Collapse
Affiliation(s)
- Cláudia M Coutinho-Camillo
- Laboratório de Genética Molecular do Câncer, Disciplina de Oncologia, Departamento de Radiologia, FMUSP, São Paulo, Brazil
| | | | | | | |
Collapse
|
45
|
Abstract
Prostate cancer is a significant cause of morbidity and mortality worldwide. Normal prostate tissue is regulated by androgens, which activate the androgen receptor, a nuclear receptor transcription factor. Most prostate tumors retain androgen dependence, therefore, current therapies for advanced prostate cancer either reduce androgen levels or prevent binding to the androgen receptor. Despite this regimen, prostate cancer invariably progresses to a fatal, androgen-refractory state. Although these relapsed tumors are androgen independent, they are still dependent on the androgen receptor for their growth and survival. The focus of this review will be to highlight our current understanding of the mechanisms of androgen receptor activation in androgen-refractory prostate cancer. How these mechanisms of androgen receptor activation could be targeted in this advanced stage of the disease is also discussed.
Collapse
Affiliation(s)
- Scott M Dehm
- Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
46
|
Toffolatti L, Rosa Gastaldo L, Patarnello T, Romualdi C, Merlanti R, Montesissa C, Poppi L, Castagnaro M, Bargelloni L. Expression analysis of androgen-responsive genes in the prostate of veal calves treated with anabolic hormones. Domest Anim Endocrinol 2006; 30:38-55. [PMID: 16023321 DOI: 10.1016/j.domaniend.2005.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/31/2005] [Accepted: 05/31/2005] [Indexed: 11/21/2022]
Abstract
In order to identify indirect molecular biomarkers of anabolic treatments in veal calves, an animal experiment was performed using two combinations of growth promoters (consisting of boldenone undecylenate and estradiol benzoate, and of testosterone enantate and estradiol benzoate). We selected a set of 12 genes that are known to be androgen responsive in other mammalian species. The expression profile of this set of genes was analysed on prostate samples of veal calves using a real-time RT-PCR approach. For each selected gene the corresponding bovine sequence was obtained and a gene specific real-time assay was optimised and validated. The amplification was shown to be highly specific, linear and efficient. High reproducibility (<1%) and low-test variability (<2.5%) were also been achieved. Messenger RNA levels were quantified in prostate samples, non-parametric analysis of variance showed significant up-regulation of three genes (MAF, ESR1 and AR) and significant down-regulation of four genes (HMGCS1, HPGD, DBI, and LIM) in treated samples when compared with untreated controls. To assess the possibility of identifying hormone-treated animals by molecular means we performed a discriminant analysis that was effective in classifying treated and non-treated samples with an accuracy of 93%. Our results indicate that identification of treatment with steroid hormones in veal calves by means of gene expression analysis is a feasible approach and could be improved increasing both the number of genes and the number of controls analysed.
Collapse
Affiliation(s)
- L Toffolatti
- Dipartimento di Sanità Pubblica Patologia Comparata ed Igiene Veterinaria, Università di Padova,Viale dell'università 16, 35020 Legnaro, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Asirvatham AJ, Schmidt M, Gao B, Chaudhary J. Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinology 2006; 147:257-71. [PMID: 16195407 DOI: 10.1210/en.2005-0942] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A major hurdle in understanding the role of androgens is the heterogeneity of androgen receptor (AR) expression in the prostate. Because the majority of prostate cancer arises from the AR-positive secretory luminal epithelial cells, identifying the androgen-mediated pathways in the prostate epithelium is of great significance to understanding their role in prostate pathogenesis. To meet this objective, the current study was designed to identify immediate-early genes expressed in response to the synthetic androgen R1881 in cultured rat ventral prostate epithelial cells. Rat ventral prostate epithelial cells, purified from 20-d-old rats, were cultured, and the presence of AR and the response to androgen were established. The cells were then treated with R1881 for 2 and 12 h to capture immediate-early genes in an Affymetrix-based gene chip platform. A total of 66 nonredundant genes were identified that were responsive to R1881. The functional androgen response elements were identified in the proximal promoter to determine possible molecular mechanism. Cluster analysis identified five distinct signatures of R1881-induced genes. Pathway analysis suggested that R1881 primarily influences cell proliferation/differentiation and inflammatory/immune response pathways. Androgens appear to regulate cell renewal by regulating differentiation, cell proliferation, and apoptosis. Two mutually exclusive inflammatory response pathways were observed. The interferon pathway was up-regulated, and the ILs were down-regulated. The data identified novel androgen-regulated genes (e.g. Id1, Id3, IL-6, IGF-binding protein-2 and -3, and JunB). The loss of androgen regulation of these genes can have important consequences for cellular transformation and transition to androgen-independent growth and survival.
Collapse
Affiliation(s)
- A J Asirvatham
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
48
|
Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB, Chandran U, Monzon FA, Becich MJ, Wei JT, Pienta KJ, Ghosh D, Rubin MA, Chinnaiyan AM. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005; 8:393-406. [PMID: 16286247 DOI: 10.1016/j.ccr.2005.10.001] [Citation(s) in RCA: 608] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 07/25/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Molecular profiling of cancer at the transcript level has become routine. Large-scale analysis of proteomic alterations during cancer progression has been a more daunting task. Here, we employed high-throughput immunoblotting in order to interrogate tissue extracts derived from prostate cancer. We identified 64 proteins that were altered in prostate cancer relative to benign prostate and 156 additional proteins that were altered in metastatic disease. An integrative analysis of this compendium of proteomic alterations and transcriptomic data was performed, revealing only 48%-64% concordance between protein and transcript levels. Importantly, differential proteomic alterations between metastatic and clinically localized prostate cancer that mapped concordantly to gene transcripts served as predictors of clinical outcome in prostate cancer as well as other solid tumors.
Collapse
|
49
|
Abstract
O câncer de próstata (CP) é uma das principais causas de doença e morte, representando no Brasil a segunda causa de óbitos por câncer em homens. A hiperplasia prostática benigna (HPB) é uma doença progressiva de alta prevalência, com evidências histológicas em 50% dos homens aos 50 anos e 90% aos 80 anos de idade. A patogênese das neoplasias prostáticas tem sido associada à ação dos androgênios e a seu receptor nuclear específico, embora os mecanismos moleculares que envolvem os processos de proliferação, diferenciação e apoptose não estejam bem estabelecidos, assim como os mecanismos de transformação neoplásica e carcinogênese. Co-ativadores e co-repressores podem também contribuir para a carcinogênese prostática, ligando-se diretamente aos receptores nucleares, recrutando proteínas adicionais e interagindo com a maquinaria transcricional para aumentar a transcrição de genes-alvo. Polimorfismos do receptor de androgênios e da 5alfa redutase tipo 2 foram identificados e poderiam estar associados com risco para CP. Genes reguladores do ciclo celular e da apoptose, bem como fatores de crescimento, também participam de processos relacionados com a tumorigênese prostática. Assim, alterações no padrão da expressão gênica do tecido normal podem levar ao desenvolvimento do fenótipo maligno e potencialmente estes genes podem servir como marcadores de prognóstico. Com o advento de novas tecnologias moleculares, o número de genes marcadores potenciais para o CP cresce dia a dia, mas os dados atuais requerem ainda validação com maior número de amostras e correlação com o processo da doença. Trazê-los do ambiente de laboratório para o uso clínico requer uma análise rigorosa e há, portanto, um longo caminho ainda a percorrer.
Collapse
Affiliation(s)
- Ilma Simoni Brum
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul
| | | | | |
Collapse
|
50
|
Masuda K, Werner T, Maheshwari S, Frisch M, Oh S, Petrovics G, May K, Srikantan V, Srivastava S, Dobi A. Androgen receptor binding sites identified by a GREF_GATA model. J Mol Biol 2005; 353:763-71. [PMID: 16213525 DOI: 10.1016/j.jmb.2005.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/31/2005] [Accepted: 09/07/2005] [Indexed: 01/01/2023]
Abstract
Changes in transcriptional regulation can be permissive for tumor progression by allowing for selective growth advantage of tumor cells. Tumor suppressors can effectively inhibit this process. The PMEPA1 gene, a potent inhibitor of prostate cancer cell growth is an androgen-regulated gene. We addressed the question of whether or not androgen receptor can directly bind to specific PMEPA1 promoter upstream sequences. To test this hypothesis we extended in silico prediction of androgen receptor binding sites by a modeling approach and verified the actual binding by in vivo chromatin immunoprecipitation assay. Promoter upstream sequences of highly androgen-inducible genes were examined from microarray data of prostate cancer cells for transcription factor binding sites (TFBSs). Results were analyzed to formulate a model for the description of specific androgen receptor binding site context in these sequences. In silico analysis and subsequent experimental verification of the selected sequences suggested that a model that combined a GREF and a GATA TFBS was sufficient for predicting a class of functional androgen receptor binding sites. The GREF matrix family represents androgen receptor, glucocorticoid receptor and progesterone receptor binding sites and the GATA matrix family represents GATA binding protein 1-6 binding sites. We assessed the regulatory sequences of the PMEPA1 gene by comparing our model-based GREF_GATA predictions to weight matrix-based predictions. Androgen receptor binding to predicted promoter upstream sequences of the PMEPA1 gene was confirmed by chromatin immunoprecipitation assay. Our results suggested that androgen receptor binding to cognate elements was consistent with the GREF_GATA model. In contrast, using only single GREF weight matrices resulted in additional matches, apparently false positives. Our findings indicate that complex models based on datasets selected by biological function can be superior predictors as they recognize TFBSs in their functional context.
Collapse
Affiliation(s)
- Katsuaki Masuda
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|