1
|
Kobayashi A, Autsavapromporn N, Ahmad TAFT, Oikawa M, Homma-Takeda S, Furusawa Y, Wang J, Konishi T. BYSTANDER WI-38 CELLS MODULATE DNA DOUBLE-STRAND BREAK REPAIR IN MICROBEAM-TARGETED A549 CELLS THROUGH GAP JUNCTION INTERCELLULAR COMMUNICATION. RADIATION PROTECTION DOSIMETRY 2019; 183:142-146. [PMID: 30535060 DOI: 10.1093/rpd/ncy249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bi-directional signaling involved in radiation-induced bystander effect (RIBE) between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to radiation cancer therapy. Using the SPICE-NIRS microbeam, we delivered 500 protons to A549-GFP lung carcinoma cells, stably expressing H2B-GFP, which were co-cultured with normal WI-38 cells. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured up to 24-h post-irradiation in both targeted and bystander cells. As a result, inhibition of gap junction intercellular communication (GJIC) attenuated DSB repair in targeted A549-GFP cells, and suppressed RIBE in bystander WI-38 cells but not in distant A549-GFP cells. This suggests that GJIC plays a two-way role through propagating DNA damage effect between carcinoma to normal cells and reversing the bystander signaling, also called 'rescue effect' from bystander cells to irradiated cells, to enhance the DSB repair in targeted cells.
Collapse
Affiliation(s)
- A Kobayashi
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - N Autsavapromporn
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
- Division of Therapeutic Radiology and Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - T A F Tengku Ahmad
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
- Division of Agrotechnology and Biosciences, Malaysian Nuclear Agency, Bangi, Kajang, Malaysia
| | - M Oikawa
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - S Homma-Takeda
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Y Furusawa
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - J Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei, PR China
| | - T Konishi
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| |
Collapse
|
2
|
Kim YJ, Kim J, Tian C, Lim HJ, Kim YS, Chung JH, Choung YH. Prevention of cisplatin-induced ototoxicity by the inhibition of gap junctional intercellular communication in auditory cells. Cell Mol Life Sci 2014; 71:3859-71. [PMID: 24623558 PMCID: PMC11113131 DOI: 10.1007/s00018-014-1594-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/02/2014] [Accepted: 02/21/2014] [Indexed: 12/14/2022]
Abstract
Cis-diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic drug for cancer therapy. However, most patients treated with cisplatin are at a high risk of ototoxicity, which causes severe hearing loss. Inspired by the "Good Samaritan effect" or "bystander effect" from gap junction coupling, we investigated the role of gap junctions in cisplatin-induced ototoxicity as a potential therapeutic method. We showed that connexin 43 (Cx43) was highly expressed in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, mediating cell-cell communication. The viability of HEI-OC1 cells was greatly decreased by cisplatin treatment, and cisplatin-treated HEI-OC1 cells showed lower Cx43 expression compared to that of untreated HEI-OC1 cells. In particular, high accumulation of Cx43 was observed around the nucleus of cisplatin-treated cells, whereas scattered punctuate expression of Cx43 was observed in the cytoplasm and membrane in normal cells, suggesting that cisplatin may interrupt the normal gap junction communication by inhibiting the trafficking of Cx43 to cell membranes in HEI-OC1 cells. Interestingly, we found that the inhibition of gap junction activity reduced cisplatin-induced apoptosis of auditory hair cells. Cx43 siRNA- or 18α-GA-treated HEI-OC1 cells showed higher cell viability compared to control HEI-OC1 cells during cisplatin treatment; this was also supported by fluorescence recovery after photobleaching studies. Inhibition of gap junction activity reduced recovery of calcein acetoxymethyl ester fluorescence compared to control cells. Additionally, analysis of the mechanisms involved demonstrated that highly activate extracellular signal-regulated kinase and protein kinase B, combined with inhibition of gap junctions may promote cell viability during cisplatin treatment.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721 Republic of Korea
| | - Jangho Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Chunjie Tian
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721 Republic of Korea
| | - Hye Jin Lim
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721 Republic of Korea
| | - Young Sun Kim
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721 Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721 Republic of Korea
| |
Collapse
|
3
|
Garcia-Rodríguez L, Pérez-Torras S, Carrió M, Cascante A, García-Ribas I, Mazo A, Fillat C. Connexin-26 is a key factor mediating gemcitabine bystander effect. Mol Cancer Ther 2011; 10:505-17. [PMID: 21388975 DOI: 10.1158/1535-7163.mct-10-0693] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gemcitabine is a nucleoside analogue with anticancer activity. Inside the cell, it is sequentially phosphorylated to generate the active drug. Phosphorylated nucleoside analogues have been shown to traffic through gap junctions. We investigated the participation of gap junctional intercellular communication (GJIC) as a possible mechanism spreading gemcitabine cytotoxicity in pancreatic tumors. Immunohistochemical analysis of pancreatic cancer biopsies revealed increased connexin 26 (Cx26) content but loss of connexins 32 (Cx32) and 43 (Cx43) expression. Cx26 abundance in neoplastic areas was confirmed by Cx26 mRNA in situ hybridization. Heterogeneity on the expression levels and the localization of Cx26, Cx32, and Cx43 were identified in pancreatic cancer cells and found to be associated with the extent of GJIC, and correlated with gemcitabine bystander cytotoxic effect. The abundance of Cx26 at the contact points in tumoral regions prompted us to study the involvement of Cx26 in the GJIC of gemcitabine toxic metabolites and their influence on the antitumoral effects of gemcitabine. Knockdown of Cx26 led to decreased GJIC and reduced gemcitabine bystander killing whereas overexpression of Cx26 triggered increased GJIC and enhanced the gemcitabine cytotoxic bystander effect. Gemcitabine treatment of mice bearing tumors, with a high GJIC capacity, resulted in a significant delay in tumor progression. Interestingly, gemcitabine administration in mice bearing tumors that overexpress Cx26 triggered a dramatic tumor regression of 50% from the initial volume. This study shows that Cx26 participates in the gap junction-mediated bystander cytoxic effect of gemcitabine and provides evidence that upregulation of Cx26 improves gemcitabine anticancer efficacy.
Collapse
Affiliation(s)
- Laura Garcia-Rodríguez
- Programa Gens i Malaltia, Centre de Regulació Genòmica. Dr. Aiguader, 88. 08003-Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
4
|
Garcia-Rodríguez L, Abate-Daga D, Rojas A, González JR, Fillat C. E-cadherin contributes to the bystander effect of TK/GCV suicide therapy and enhances its antitumoral activity in pancreatic cancer models. Gene Ther 2011; 18:73-81. [PMID: 20720574 DOI: 10.1038/gt.2010.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 06/03/2010] [Accepted: 06/22/2010] [Indexed: 11/09/2022]
Abstract
The thymidine kinase/ganciclovir (TK/GCV) cancer gene therapy approach is based on inducing GCV metabolite cytotoxicity in tumor cells expressing the herpes simplex virus TK gene and exposed to GCV. A bystander effect, mediated by gap junctions, accounts for the transfer of toxic metabolites from TK-expressing cells to neighboring cells. It has been proposed that E-cadherin participates in the formation and function of such gap junctions. In this study we investigate the influence of E-cadherin on TK/GCV suicide therapy with a panel of cellular and in vivo models of pancreatic ductal adenocarcinoma. We observed a strong correlation of E-cadherin expression and the TK/GCV bystander effect, associated with the modulation of gap junction communication and connexin expression or localization. Importantly, the co-expression of TK and E-cadherin genes in the adenoviral vector AdTat8TKIE improved TK/GCV cytotoxicity and triggered a potent antitumoral effect, superior to standard AdTat8TK/GCV in MIAPaCa-2 xenografts. The increased expression of E-cadherin resulted in the reduction of the bcl-2 content. Interestingly, the knockdown of bcl-2 sensitized cells to TK/GCV. Thus, we propose that by restoring E-cadherin in pancreatic tumor cells we will improve TK/GCV therapy, both by enhancing the bystander effect and by facilitating the induction of apoptosis.
Collapse
Affiliation(s)
- L Garcia-Rodríguez
- Programa Gens i Malaltia, Centre de Regulació Genòmica, Parc de Recerca Biomèdica de Barcelona, UPF, Barcelona, Spain
| | | | | | | | | |
Collapse
|
5
|
Toschi E, Sgadari C, Malavasi L, Bacigalupo I, Chiozzini C, Carlei D, Compagnoni D, Bellino S, Bugarini R, Falchi M, Palladino C, Leone P, Barillari G, Monini P, Ensoli B. Human immunodeficiency virus protease inhibitors reduce the growth of human tumors via a proteasome-independent block of angiogenesis and matrix metalloproteinases. Int J Cancer 2010; 128:82-93. [DOI: 10.1002/ijc.25550] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Baltina LA, Kondratenko RM, Baltina LA, Plyasunova OA, Pokrovskii AG, Tolstikov GA. Prospects for the creation of new antiviral drugs based on glycyrrhizic acid and its derivatives (a review). Pharm Chem J 2010; 43:539-548. [PMID: 32214533 PMCID: PMC7089237 DOI: 10.1007/s11094-010-0348-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Indexed: 11/23/2022]
Abstract
The review is devoted to the problem of creating new antiviral drugs based on glycyrrhizic acid (GA), the major triterpene glycoside extracted from roots of common and Ural licorice (Glycyrrhiza glabra L. and G. uralensis Fisher, respectively). Published data on the natural GA sources, antiviral activity of GA and its derivatives, clinical applications of GA-based drugs, and the properties of GA-containing biologically active nutrient additives are summarized. Possible mechanisms of the antiviral activity of GA and its derivatives are examined. It is shown that chemical modification of GA is a promising way of designing new highly active antiviral drugs for the prophylaxis and treatment of HIV, hepatitis B and C, corona-virus, and herpes simplex virus infections.
Collapse
Affiliation(s)
- L. A. Baltina
- Institute of Organic Chemistry, UfaScientific Center, Russian Academy of Sciences, Ufa, Bashkortostan Russia
| | | | - L. A. Baltina
- Institute of Organic Chemistry, UfaScientific Center, Russian Academy of Sciences, Ufa, Bashkortostan Russia
| | - O. A. Plyasunova
- State Research Center of Virology and Biotechnology Vector, Kol’tsovo, Novosibirsk Oblast Russia
| | - A. G. Pokrovskii
- State Research Center of Virology and Biotechnology Vector, Kol’tsovo, Novosibirsk Oblast Russia
| | - G. A. Tolstikov
- Institute of Organic Chemistry, UfaScientific Center, Russian Academy of Sciences, Ufa, Bashkortostan Russia
| |
Collapse
|
7
|
Martinez-Quintanilla J, Cascallo M, Fillat C, Alemany R. Antitumor therapy based on cellular competition. Hum Gene Ther 2009; 20:728-38. [PMID: 19281300 DOI: 10.1089/hum.2008.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major obstacle for the efficacy of cancer gene therapy is the need to transduce a high proportion of tumor cells with genes that directly or indirectly cause their death. During the formation of certain organs, cells compete among themselves to colonize the whole tissue. We reasoned that cell competition could be used to increase the proportion of cells that become transfected in a tumor. For this, a transgene that provides a selective advantage to the transfected cells should be used. If the same gene conferred a suicide mechanism the tumor could be eradicated after a period of selection. Bystander effect of transfected cells over neighboring nonmodified cells may eliminate tumors even with incomplete replacement of tumor cells. To test this strategy a competitive advantage was provided to colon cancer cells, using a gene encoding a fusion protein of dihydrofolate reductase (DHFR) and thymidine kinase (TK). DHFR confers resistance to methotrexate (MTX) and TK confers sensitivity to ganciclovir (GCV). Modified cells were also transduced with green fluorescent protein and parental cells with red fluorescent protein. In vitro and in vivo experiments were performed, using various proportions of modified cells and applying positive selection with MTX followed by negative selection with GCV. In vitro, cell competition was evident. Under MTX treatment, tumor cells transfected with the DHFR-TK fusion gene efficiently replaced the parental cells (from 0.1 to 90% in 35 days). After this positive selection period, negative selection with GCV eliminated the transfected cells. In vivo, positive selection was also achieved and resulted in a statistically significant therapeutic effect.
Collapse
Affiliation(s)
- Jordi Martinez-Quintanilla
- Gene and Viral Therapy Group, IDIBELL-Catalan Institute of Oncology (ICO) , L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | | | | | |
Collapse
|
8
|
Finocchiaro LME, Glikin GC. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Ther 2007; 15:267-76. [DOI: 10.1038/sj.gt.3303072] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Cascante A, Abate-Daga D, Garcia-Rodríguez L, González JR, Alemany R, Fillat C. GCV modulates the antitumoural efficacy of a replicative adenovirus expressing the Tat8-TK as a late gene in a pancreatic tumour model. Gene Ther 2007; 14:1471-80. [PMID: 17713568 DOI: 10.1038/sj.gt.3303008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Replication-competent adenoviruses carrying the herpes simplex thymidine kinase (TK) gene have shown contradictory evidence with regard to their antitumoural efficacy in combination with ganciclovir (GCV) treatment. We generated a replication-competent adenovirus carrying Tat8-TK, a modified form of the TK gene, under the control of the adenoviral major late promoter (AdRGDTat8-TK-L). Pancreatic cancer cell lines with different sensitivity to the TK/GCV system were infected with AdRGDTat8-TK-L, both in the presence and absence of GCV, and tested for treatment efficacy. We observed that, although the presence of GCV reduced viral replication in all infected cell lines, in three out of four GCV significantly enhanced the efficacy of the virotherapy. Interestingly, the cytotoxicity of the AdRGD-Tat8-TK-L/GCV was found more potent than that of a first generation AdTK/GCV system. In tumour xenografts from BxPC-3 and NP-18 pancreatic cells, both AdRGDTat8-TK-L and AdRGDTat8-TK-L/GCV treatment showed antitumoural activity. In BxPC-3 tumours scheduling of virus and prodrug was a key factor to determine the outcome of the therapy. Importantly, the addition of GCV enhanced the antitumoural effect of AdRGDTat8-TK-L only when applied in two rounds of virus+GCV. Interestingly, in spite of interfering with viral replication in vitro, GCV treatment of NP-18 tumours did not compromise the antitumoural efficacy of the AdRGDTat8-TK-L adenovirus. Thus, our results show that the combination therapy of a replicative adenovirus and the Tat8-TK/GCV suicide system can prove beneficial, when the appropriate regimen of virus and GCV is applied.
Collapse
Affiliation(s)
- A Cascante
- Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomèdica de Barcelona-PRBB, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy. Mol Aspects Med 2007; 28:4-41. [PMID: 17306358 DOI: 10.1016/j.mam.2006.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/31/2022]
Abstract
The principle of using suicide genes for gene directed enzyme prodrug therapy (GDEPT) of cancer has gained increasing significance during the 20 years since its inception. The astute application of suitable GDEPT systems should permit tumour ablation in the absence of off-target toxicity commonly associated with classical chemotherapy, a hypothesis which is supported by encouraging results in a multitude of pre-clinical animal models. This review provides a clear explanation of the rationale behind the GDEPT principle, outlining the advantages and limitations of different GDEPT strategies with respect to the roles of the bystander effect, the immune system and the selectivity of the activated prodrug in contributing to their therapeutic efficacy. An in-depth analysis of the most widely used suicide gene/prodrug combinations is presented, including details of the latest advances in enzyme and prodrug optimisation and results from the most recent clinical trials.
Collapse
Affiliation(s)
- Daniel Portsmouth
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
11
|
Neves SS, Sarmento-Ribeiro AB, Simões SP, Pedroso de Lima MC. Transfection of oral cancer cells mediated by transferrin-associated lipoplexes: Mechanisms of cell death induced by herpes simplex virus thymidine kinase/ganciclovir therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1703-12. [PMID: 17049485 DOI: 10.1016/j.bbamem.2006.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 07/21/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
The Herpes Simplex Virus thymidine kinase (HSV-tk) suicide gene/ganciclovir (GCV) approach has been used for the treatment of a variety of cancers. The purpose of the present study was to evaluate the cytotoxic effect of ganciclovir in oral squamous cancer cells, previously transfected with HSV-tk gene delivered by transferrin-associated complexes (Tf-lipoplexes), as well as to investigate the mechanisms involved in the bystander effect and in the process of cell death. The delivery of HSV-tk gene to the oral cancer cells, HSC-3 and SCC-7, mediated by Tf-lipoplexes followed by ganciclovir treatment resulted in essentially 100% cytotoxicity, the observed toxic effect being dependent both on GCV dose and incubation time. Cell death was shown to occur mainly by an apoptotic process. Different experimental approaches demonstrated that the observed cytotoxicity was mainly due to diffusion of the toxic agent into neighbouring, non-transfected cells, via gap junctions. Preliminary in vivo studies in a murine model for oral squamous cell carcinoma have shown a significant inhibition of tumor growth upon injection of Tf-lipoplexes carrying HSV-tk followed by intraperitonal injection of GCV, as compared to controls.
Collapse
Affiliation(s)
- Sílvia S Neves
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | | | | | | |
Collapse
|
12
|
Vernejoul F, Ghénassia L, Souque A, Lulka H, Drocourt D, Cordelier P, Pradayrol L, Pyronnet S, Buscail L, Tiraby G. Gene therapy based on gemcitabine chemosensitization suppresses pancreatic tumor growth. Mol Ther 2006; 14:758-67. [PMID: 17000136 DOI: 10.1016/j.ymthe.2006.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 07/07/2006] [Accepted: 07/17/2006] [Indexed: 11/16/2022] Open
Abstract
Excepting surgical resection, there is no efficient treatment against pancreatic cancer. The chemotherapeutic agent gemcitabine improves the patient's clinical status but survival is not prolonged. The aim of this study was to design a new strategy to render gemcitabine more efficient in the treatment of pancreatic cancer using gene therapy. We have generated a fusion gene (DCK::UMK) combining deoxycytidine kinase (DCK) and uridine monophosphate kinase (UMK), which converts gemcitabine into its toxic phosphorylated metabolite. Antitumor effects of DCK::UMK gene expression were tested in vitro and in vivo in an orthotopic transplantable model of pancreatic cancer established in hamsters. DCK::UMK sensitizes pancreatic cancer cells to gemcitabine by reducing dramatically both in vitro cell viability and in vivo tumor volume. We found that in vivo expression of DCK::UMK resulted in an antitumor bystander effect due to apoptosis of untransduced cells. In vivo intratumoral gene transfer of DCK::UMK using the synthetic carrier PEI induced a potent tumor regression. Taken together, the results show that the fusion gene DCK::UMK sensitizes pancreatic cancer cells to gemcitabine treatment to induce cell death by apoptosis and tumor regression. Intratumoral delivery of the DCK::UMK gene in combination with gemcitabine might be of high interest for pancreatic cancer management.
Collapse
Affiliation(s)
- Fabienne Vernejoul
- INSERM U531, Institut Louis Bugnard IFR31, Centre Hospitalier Universitaire Rangueil, 31403 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cascante A, Huch M, Rodríguez LG, González JR, Costantini L, Fillat C. Tat8-TK/GCV suicide gene therapy induces pancreatic tumor regression in vivo. Hum Gene Ther 2006; 16:1377-88. [PMID: 16390269 DOI: 10.1089/hum.2005.16.1377] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Suicide gene therapy using the herpes simplex virus thymidine kinase (TK) gene in combination with ganciclovir (GCV) has been shown to produce therapeutic, but limited, efficacy because of poor gene transfer efficiency and reduced bystander effect. Here we report that fusion of TK to an eight-amino acid peptide from the basic domain of the human immunodeficiency virus (HIV) Tat protein significantly increases the cytotoxic efficacy of the TK/GCV system in pancreatic cancer cells. We demonstrate that Tat8-TK protein is released from the intracellular compartment of Tat8-TK-expressing cells to the extracellular medium after GCV treatment. Interestingly, we show that this conditioned medium is then able to mediate cytotoxicity of wildtype cultures, suggesting the internalization of the Tat8-TK protein. Moreover, a strong antitumoral effect of Tat8-TK/GCV treatment could be achieved by two different in vivo approaches. Tumors injected with NIH 3T3/Tat8-TK cells attached to microcarriers (MC+Tat8-TK) and treated with GCV led to a 35.6% reduction in the initial tumor volume and to 50% tumor eradication. Furthermore, electrogene transfer of TK or Tat8-TK followed by administration of high doses of GCV led to an overall statistically significant reduction in tumor growth. However, the reduction in initial tumor volume was statistically significant only for the Tat8-TK group (59.5% reduction). Moreover, in this group 50% complete tumor eradication was achieved. When moderate doses of GCV were administered, the overall reduction in tumor growth was statistically significant only in the Tat8-TK group. Therefore, our results suggest that fusion of TK to the Tat8 peptide enhances TK/GCV suicide gene therapy.
Collapse
Affiliation(s)
- Anna Cascante
- Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG-UPF, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Jimenez T, Fox WP, Naus CCG, Galipeau J, Belliveau DJ. Connexin over-expression differentially suppresses glioma growth and contributes to the bystander effect following HSV-thymidine kinase gene therapy. CELL COMMUNICATION & ADHESION 2006; 13:79-92. [PMID: 16613782 DOI: 10.1080/15419060600631771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neoplastic transformation is frequently associated with a loss of gap junctional intercellular communication and reduced expression of connexins. The introduction of connexin genes into tumor cells reverses the proliferative characteristics of such cells. However, there is very little comparative information on the effects of different connexins on cancer cell growth. We hypothesized that Cx26, Cx32, or Cx43 would display differential growth suppression of C6 glioma cells and uniquely modulate the bystander effect following transduction of C6 cells with HSVtk followed by suicide gene therapy. The bystander phenomenon is the death of a greater number of tumor cells than are expressing the HSVtk gene, presumably due to the passage of toxic molecules through gap junction channels. To test this hypothesis, we used retroviral vectors to infect C6 glioma cells producing connexin-expressing and HSVtk-expressing cell lines. All three connexin-expressing cell lines grew significantly slower than GFP-infected or native C6 cells. Cx32 and Cx26 were significantly more effective at mediating the bystander effect in cocultures of C6-connexin cells with C6-HSVtk cells. These studies indicate that connexins have unique properties that contribute to their tumor suppressive function.
Collapse
Affiliation(s)
- Tomas Jimenez
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Cascante A, Huch M, Rodriguez LG, Gonzalez JR, Costantini L, Fillat C. Tat8-TK/GCV Suicide Gene Therapy Induces Pancreatic Tumor Regression In Vivo. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Roy V, Qiao J, de Campos-Lima P, Caruso M. Direct evidence for the absence of intercellular trafficking of VP22 fused to GFP or to the herpes simplex virus thymidine kinase. Gene Ther 2005; 12:169-76. [PMID: 15483667 DOI: 10.1038/sj.gt.3302394] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The treatment of solid tumors by retroviral delivery of the herpes simplex virus thymidine kinase (TK) followed by ganciclovir (GCV) treatment has so far shown only limited success in patients. One major drawback in this approach is the lack of efficient in vivo gene delivery to cancer cells. Although, the transduction of every single tumor cell is not a requirement since the bystander effect (BE) mediated by gap junctions allows the diffusion of the toxic GCV metabolites from TK-expressing cells toward untransduced cells. To render the TK/GCV approach more potent, and independent of the level of gap junctions, we have tested the efficiency of a TK mutant (TK30) fused to VP22, a herpes simplex protein that seems to be capable of intercellular trafficking. We failed to detect an increase in the BE with cells expressing VP22 fused to TK30 versus cells containing TK30 alone, and this result forced us to reinvestigate the trafficking properties of VP22. Using very sensitive Western blot and fluorescence assays, we were not able to detect the spread of VP22 fused either to TK30 or GFP. These results indicate that VP22 cannot be used as a cargo to translocate TK30 or GFP.
Collapse
Affiliation(s)
- V Roy
- Le Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | | | |
Collapse
|
17
|
Prasmickaite L, Høgset A, Olsen VM, Kaalhus O, Mikalsen SO, Berg K. Photochemically enhanced gene transfection increases the cytotoxicity of the herpes simplex virus thymidine kinase gene combined with ganciclovir. Cancer Gene Ther 2005; 11:514-23. [PMID: 15118758 DOI: 10.1038/sj.cgt.7700720] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor targeting is an important issue in cancer gene therapy. We have developed a gene transfection method, based on light-inducible photochemical internalization (PCI) of a transgene, to improve gene delivery and expression selectively in illuminated areas, for example, in tumors. In the present work, we demonstrate that PCI improved the nonviral vector polyethylenimine (PEI)-mediated transfection of a therapeutic gene, the 'suicide' gene encoding herpes simplex virus thymidine kinase (HSVtk). In U87MG glioblastoma cells in vitro, the photochemical treatment stimulated expression of the HSVtk transgene, and, consequently, enhanced cell killing by the subsequent treatment with the prodrug ganciclovir (GCV). When relatively low doses of DNA (1 microg/ml) and the PEI vector (N/P 4) were used, HSVtk gene transfection followed by the GCV treatment did not have an effect on cell survival unless the photochemical treatment was performed, which potentiated the cytotoxicity to 90%. These findings indicate that photochemical transfection allows: (i) selective enhancement in gene expression and gene-mediated biological effects (cell killing by the Hsvtk/GCV approach) in response to illumination; (ii) the use of low, suboptimal for the nonviral transfection methods without PCI, doses of both DNA and the vector, which may be relevant and advantageous for therapeutic gene transfer in vivo.
Collapse
Affiliation(s)
- Lina Prasmickaite
- Department of Biophysics, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
18
|
Veldwijk MR, Berlinghoff S, Laufs S, Hengge UR, Zeller WJ, Wenz F, Fruehauf S. Suicide gene therapy of sarcoma cell lines using recombinant adeno-associated virus 2 vectors. Cancer Gene Ther 2005; 11:577-84. [PMID: 15280909 DOI: 10.1038/sj.cgt.7700718] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Soft-tissue sarcomas are mesenchymal tumors that respond poorly to systemic chemotherapy. Suicide gene therapy may be an alternative treatment strategy. Here we show a high susceptibility of human sarcoma cell lines for recombinant adeno-associated virus 2 (rAAV-2) suicide vectors: connective tissue sarcoma (HS-1), fibrosarcoma (HT-1080), Ewing sarcoma (RD-ES), Askin tumor (SK-N-MC), rhabdomyosarcoma (A-204) and soft-tissue sarcoma (WSKL-1). Several vectors containing the thymidine kinase (TK) gene under the control of either the cytomegalovirus promoter or the elongation-factor 1 alpha (EF1alpha) promoter were cloned and tested. Higher expression levels of the transgene were observed in the sarcoma lines when using the EF1alpha-suicide gene-containing vectors. A complete eradication of rAAV-2-EF1alpha-TK/eGFP (TK/enhanced green fluorescent protein fusion gene)-transduced tumor cells was shown following exposure to ganciclovir (2.5 microg/ml) in vitro, while at this dose level > 90% of mock-transduced tumor cells survived. Xenotransplantation tumor models (intraperitoneal, subcutaneous) for the human sarcoma cell line HS-1 were established in nonobese diabetic/severe-combined immunodeficient mice. Mice transplanted with rAAV-2-EF1alpha-TK/eGFP-transduced and ganciclovir-exposed tumor cells survived > 5 months while in the nontransduced group all mice had died approximately 1 month after inoculation. These data hold promise for further development of rAAV-2-based suicide gene therapy of sarcomas.
Collapse
Affiliation(s)
- Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsklinikum Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68135, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Pfeffer F, Koczan D, Adam U, Benz S, von Dobschuetz E, Prall F, Nizze H, Thiesen HJ, Hopt UT, Löbler M. Expression of connexin26 in islets of Langerhans is associated with impaired glucose tolerance in patients with pancreatic adenocarcinoma. Pancreas 2004; 29:284-90. [PMID: 15502644 DOI: 10.1097/00006676-200411000-00007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Impairment of glucose tolerance is one of the leading clinical presentations in patients with pancreatic carcinoma. The mechanism of disturbed glucose metabolism, however, is still under debate. Using microarray technology, key mechanisms of deregulated molecular functions of cancer cell-specific mRNAs and tumor-induced mRNAs in peritumorous tissue should be identified in pancreatic ductal adenocarcinoma (PDAC) by comparison to chronic pancreatitis and normal pancreas. METHODS Forty-three mRNAs were abundant in tissue specimens of patients operated due to pancreatic carcinoma but absent or of low abundance in chronic pancreatitis and normal pancreas. One of these mRNAs encodes the gap junction protein connexin26, known as a tumor suppressor, which was 10.8- and 6.9-fold more abundant in pancreatic carcinoma than in normal pancreas and chronic pancreatitis, respectively. Quantitative RT-PCR was performed for connexin26, with mRNA being expressed 26.7- and 2.9-fold more than in normal pancreas (n = 6), in pancreatic carcinoma (n = 7), and chronic pancreatitis (n = 8), respectively. RESULTS By immunohistochemistry, connexin26 was predominantly localized to the islets in the vicinity of the pancreatic carcinoma tissue. Control sections of tissue with chronic pancreatitis and normal pancreas show connexin26 expression in the islets as well. Interestingly, the level of mRNA abundance (fold over normal pancreas) in RT-PCR correlates (r = 0.62) with the 2h value of the pre-operative oral glucose tolerance test of these patients. CONCLUSION Whether overexpressed connexin26 in pancreatic cancer is a cause of impaired glucose tolerance remains to be elucidated in further experimental studies.
Collapse
Affiliation(s)
- Frank Pfeffer
- Department of General and Visceral Surgery, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vassaux G, Martin-Duque P. Use of suicide genes for cancer gene therapy: study of the different approaches. Expert Opin Biol Ther 2004; 4:519-30. [PMID: 15102601 DOI: 10.1517/14712598.4.4.519] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a disease of high incidence for which conventional treatments are not necessarily effective. There is a need for the development of new alternative strategies. Among them, suicide gene therapy has been developed. In this approach, a gene encoding for a protein toxic under particular conditions is delivered to the target cells, resulting in their death. Although this approach has been in development for a long time, new combinations with other gene therapy areas, such as selective replicative viruses, tumour targeting, or conventional treatments such as chemo- or radiotherapy, are currently being tested. This review will summarise some of these approaches.
Collapse
Affiliation(s)
- G Vassaux
- Universidade Francisco de Vitoria, Ctra, Pazuelo de Alarcon, Madrid, Spain.
| | | |
Collapse
|
21
|
Fogar P, Greco E, Basso D, Habeler W, Navaglia F, Zambon CF, Tormen D, Gallo N, Cecchetto A, Plebani M, Pedrazzoli S. Suicide gene therapy with HSV-TK in pancreatic cancer has no effect in vivo in a mouse model. Eur J Surg Oncol 2004; 29:721-30. [PMID: 14602490 DOI: 10.1016/j.ejso.2003.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM To study in vivo whether pancreatic cancer tumour growth and metastasis can be modified by a gene construct with HSV-TK suicide gene and IL2 co-expression. METHODS Seventy-eight female SCID mice were i.p. inoculated with retrovirally transduced or control MIA PaCa 2, CAPAN-1 and PANC-1 cell lines. The animals were then randomly selected for saline or ganciclovir (GCV) treatment from the second week, for a total of two weeks. RESULTS Most inoculated mice developed tumour nodules and spleen metastases. The liver was colonized by control CAPAN-1 and MIA PaCa 2, but not by PANC-1. Tumours in transduced MIA PaCa 2 cell injected mice were smaller, and in transduced CAPAN-1 injected mice larger, than in control-inoculated mice. There were increased pancreatic and decreased spleen metastases from transduced CAPAN-1, and diminished liver involvement from transduced MIA PaCa 2. No differences were found between mice inoculated with transduced and control PANC-1 cell lines. GCV treatment had no effect on tumour's size or metastases. CONCLUSIONS The HSV-TK suicide gene does not confer GCV sensitivity to pancreatic cancer in this in vivo model. Different pancreatic cancer cell lines cause different growth and metastasis patterns after inoculation in SCID mice, possibly because of variations in their inherent characteristics. The different effects of our vector on cell growth and metastasis may be attributable to the effects of the immunostimulatory cytokine IL2.
Collapse
Affiliation(s)
- P Fogar
- Department of Medical and Surgical Sciences, University of Padua, Clinica Chirurgica IV, Via Giustiniani 2, 35128 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Fruehauf S, Veldwijk MR, Berlinghoff S, Basara N, Baum C, Flasshove M, Hegewisch-Becker S, Kröger N, Licht T, Moritz T, Hengge UR, Zeller WJ, Laufs S. Gene therapy for sarcoma. Cells Tissues Organs 2003; 172:133-44. [PMID: 12426490 DOI: 10.1159/000065614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Soft tissue sarcomas are mesenchymal tumors which respond poorly to systemic therapy. Recent studies suggest a higher response rate with an increased doxorubicin dosage. However, this was parallel with a profound hematotoxicity in 75% of patients. Transfer of the human multidrug resistance 1 (MDR1) gene to normal hematopoietic stem cells and transplantation may significantly reduce the hematotoxicity of anthracyclin-based chemotherapy. To test this concept of supportive gene therapy in advance of a clinical study, we transduced mobilized peripheral blood progenitor cells (PBPC) with the retroviral vector SF91m3 containing the human MDR1 gene, transplanted these cells to immune-deficient mice, allowed 6 weeks for engraftment to occur and treated the animals with MDR1-based chemotherapy. In the MDR1-transduced group the human leukocytes were significantly protected from the toxicity of chemotherapy (p < 0.05). While the gene transfer rate was in the range of 10% and thus comparable to recent clinical trials, the gene expression was 59% of transduced cells and thus significantly higher than previously reported for less-advanced vectors. On the other hand, ifosfamide, a drug which has been used successfully for stem cell mobilization, is active in soft tissue sarcoma. Due to these favorable characteristics sarcoma is an attractive target to test the efficacy of MDR1 gene therapy in a clinical setting. Gene therapeutic strategies may also be used to directly target sarcoma cells, e.g. by transfer of suicide genes. We found that adenoassociated virus 2 (AAV-2) vectors efficiently transduce human HS-1 and HT1080 sarcoma cells (>90%) while other tumor cell lines and primary human PBPC were less susceptible. The thymidine kinase (TK) suicide gene was cloned into an AAV-2 vector and a complete kill of TK-transduced HS-1 and HT1080 cells was observed following exposure to aciclovir or ganciclovir (GCV), while >90% of mock-transduced HS-1 cells survived at these dosages. Transplantation of those sarcoma cells to nonobese diabetic (NOD)/LtSz-severe-combined immunodeficient (scid)/scid (NOD/SCID) mice resulted in a survival of >5 months in the AAV-TK-transduced/GCV-treated group, while the mice in the mock-transduced/GCV-treated group had died after 3 weeks. These data show that soft tissue sarcomas are a particularly suitable model system for the development and clinical testing of new gene therapeutic concepts.
Collapse
Affiliation(s)
- S Fruehauf
- Department of Internal Medicine V, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Parada C, Hernández Losa J, Guinea J, Sánchez-Arévalo V, Fernández Soria V, Alvarez-Vallina L, Sánchez-Prieto R, Ramón y Cajal S. Adenovirus E1a protein enhances the cytotoxic effects of the herpes thymidine kinase-ganciclovir system. Cancer Gene Ther 2003; 10:152-60. [PMID: 12536204 DOI: 10.1038/sj.cgt.7700550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Indexed: 11/09/2022]
Abstract
Cancer gene therapy based on the use of suicide genes, such as the thymidine kinase gene, is not producing satisfactory results. Several approaches have been delineated to enhance the therapeutic responses, including augmentation of the bystander effect, the combination of the herpes simplex virus thymidine kinase-ganciclovir (HSVTK-GCV) system into replication competent adenoviruses and others. Moreover, because usually less than 20% of human malignant cells are in S-phase, the HSVTK-GCV system is not as efficient as expected. To increase the cytotoxic effects of the HSVTK-GCV system, we hypothesized that concomitant expression of E1a protein, which drives cells to proliferation and S-phase, could increase the effects of the HSVTK-GCV system. Several retroviruses were constructed carrying bicistronic sequences of TK and E1a 12S genes under the control of the CMV promoter. The constructions were tested in murine (NIH-3T3, MSC11A5) and human cells (IMR90, HeLa, MDA-MB435). A clear increase of the HSVTK-GCV system killing effect in nonconfluent cells was observed in the cells studied, especially in NIH-3T3, MSC11A5, IMR90, and MDA-MB435 expressing cells. In confluence, the NIH3T3 and IMR90 E1a-TK-expressing cells were also very sensitive and most malignant E1a-TK-expressing cells showed an irreversible G2-M cell cycle arrest. Moreover, the concomitant expression of adenovirus E1a and the HSVTK-GCV system increased the sensitivity to anticancer agents such as cisplatin. These results show that adenovirus E1a protein expression clearly enhances the cytotoxic effects of the HSVTK-GCV system and the response to treatment with cisplatin.
Collapse
Affiliation(s)
- Carlos Parada
- Department of Pathology, Clínica Puerta de Hierro, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Greco E, Fogar P, Basso D, Stefani AL, Navaglia F, Zambon CF, Mazza S, Gallo N, Piva MG, Scarpa A, Pedrazzoli S, Plebani M. Retrovirus-mediated herpes simplex virus thymidine kinase gene transfer in pancreatic cancer cell lines: an incomplete antitumor effect. Pancreas 2002; 25:e21-9. [PMID: 12142751 DOI: 10.1097/00006676-200208000-00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The transfer of drug-susceptible (suicide) genes to tumor cells by retroviral or adenoviral vectors is a novel approach to the treatment of human tumors. AIMS To ascertain the antitumor effect of retroviral transduction of the pancreatic cancer cell lines MIA PaCa 2, CAPAN-1, PANC1, and PSN1 with the herpes simplex virus thymidine kinase (HSV-TK) gene. METHODOLOGY The vector carried a neoselectable marker gene, the human interleukin-2 gene, an internal ribosome entry coding site, and the region coding HSV-TK. RESULTS Twenty micromoles or less of ganciclovir did not modify nontransduced TK- cell growth, whereas > or =100 micromol completely inhibited TK- cell growth, indicating that this dosage is cytotoxic per se. The 4 TK- and the 4 transduced cell lines were treated daily with 0.001, 0.01, 0.1, 1, 10, and 20 micromol of ganciclovir for 13 days. CAPAN-1 cell growth was completely inhibited by 0.1 micromol of ganciclovir; higher doses were required to kill PANC1 (10 micromol) and PSN1 (20 micromol). MIA PaCa 2 cell growth decreased following a 20-micromol ganciclovir dosing. The bystander effect was great in the CAPAN-1 cell line and moderate in PANC1; no bystander effect was recorded in MIA PaCa 2 and PSN1 cell lines. CONCLUSION Gene therapy with HSV-TK for pancreatic cancer seems effective in only a limited number of tumor-derived cell lines, and this limits its application in vivo.
Collapse
Affiliation(s)
- Eliana Greco
- Department of Laboratory Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1239-49. [PMID: 11943709 PMCID: PMC1867224 DOI: 10.1016/s0002-9440(10)62551-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite several advances in our basic understanding and in the clinical management of pancreatic cancer, virtually all patients who will be diagnosed with pancreatic cancer will die from this disease. The high mortality of pancreatic cancer is predominantly because of diagnosis at an advanced stage of disease and a lack of effective treatments. We used the Gene Logic Inc. BioExpress platform and Affymetrix GeneChip arrays to identify genes differentially expressed in pancreatic cancer. cDNA was prepared from samples of normal pancreas (n = 11), normal gastrointestinal mucosa (n = 22), resected pancreas cancer tissues (n = 14), and pancreas cancer cell lines (n = 8), and was hybridized to the complete Affymetrix Human Genome U95 GeneChip set (arrays U95 A, B, C, D, and E) for simultaneous analysis of 60,000 cDNA fragments, with 12,000 fragments covering full-length genes and 48,000 fragments covering expressed sequence tags (ESTs). Genes expressed at levels at least fivefold greater in the pancreatic cancers ascompared to normal tissues were identified. Serial analysis of gene expression (SAGE) libraries (http://www.ncbi.nlm.nih.gov/SAGE/) of two normal pancreatic ductal cell cultures (HX and H126) were used to exclude genes expressed in the normal ducts (more than five tags per library). Differential expression of selected candidate genes was validated by immunohistochemical analysis (n = 3), by in situ hybridization (n = 1), and by reverse transcriptase-polymerase chain reaction (n = 8). One hundred eighty fragments were identified as having fivefold or greater expression levels in pancreas cancer specimens as compared to normal tissue, of which 124 corresponded to known genes and 56 to ESTs. Of these 124 fragments, 10 genes were represented by two or more fragments, resulting in 107 known genes identified as differentially expressed in pancreatic cancer. An additional 10 genes were expressed in the SAGE libraries of normal pancreatic duct epithelium, and were excluded from further analysis. A literature search indicated that 28 of the remaining 97 genes have been reported in association with pancreatic cancer, validating this approach. The remaining 69 genes have not been implicated in pancreatic cancer before, and have immediate potential as novel therapeutic targets and tumor markers of pancreatic cancer.
Collapse
|
27
|
Carrió M, Visa J, Cascante A, Estivill X, Fillat C. Intratumoral activation of cyclophosphamide by retroviral transfer of the cytochrome P450 2B1 in a pancreatic tumor model. Combination with the HSVtk/GCV system. J Gene Med 2002; 4:141-9. [PMID: 11933215 DOI: 10.1002/jgm.247] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive human tumors and the development of new therapeutic approaches is particularly urgent since current therapies are not effective. The use of pro-drug-activating genes is a possible approach for cancer gene therapy. METHODS The present study evaluated the efficiency of the cytochrome P4502B1 (CYP2B1) suicide gene that encodes the enzyme responsible for activating the pro-drug cyclophosphamide (CPA), in pancreatic tumor cells invitro and in vivo. The effects on tumor growth of the combination of two suicide systems, CYP2B1/CPA and herpes simplex virus thymidine kinase gene/ganciclovir (HSVtk/GCV), were also studied. RESULTS Retroviral CYP2B1 transfer followed by CPA treatment highly sensitized pancreatic tumor cells NP-9, NP-18, and NP-31, and led to stabilization of tumor growth in a pancreatic tumor model. Differences in tumor volume at the end of the treatment were statistically significant when compared with animals injected with CPA alone. The combination of both suicide systems CYP2B1/CPA and HSVtk/GCV in vitro resulted in a potentiation of the killing effect. However, no potentiation was achieved in vivo, although retardation in tumor growth was evident. CONCLUSIONS The results show that in situ transduction of pancreatic tumor cells with the CYP2B1 gene by retroviral vectors clearly increases the sensitivity to CPA. Moreover, they suggest that in order to achieve a potentiation on cell killing when the two suicide systems HSVtk/GCV and CYP2B1/CPA are combined, co-expression of both genes in the same tumor cell would be necessary.
Collapse
Affiliation(s)
- Meritxell Carrió
- Centre de Genètica Mèdica i Molecular, Institut de Recerca Oncològica (IRO), Barcelona, Spain
| | | | | | | | | |
Collapse
|
28
|
Wysocki PJ, Mackiewicz-Wysocka M, Mackiewicz A. Cancer gene therapy – state-of-the-art. Rep Pract Oncol Radiother 2002. [DOI: 10.1016/s1507-1367(02)70989-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|