1
|
Caerts D, Garmyn M, Güvenç C. A Narrative Review of the Role of Estrogen (Receptors) in Melanoma. Int J Mol Sci 2024; 25:6251. [PMID: 38892441 PMCID: PMC11173079 DOI: 10.3390/ijms25116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
In this narrative review, we attempt to provide an overview of the evidence regarding the role of estrogen (receptors) in cutaneous melanoma (CM). We reviewed 68 studies and 4 systematic reviews and meta-analyses published from 2002 up to and including 2022. The prevailing presence of estrogen receptor β (ERβ) instead of estrogen receptor α (ERα) in CM is notable, with ERβ potentially playing a protective role and being less frequently detected in progressive cases. While men with CM generally experience a less favorable prognosis, this distinction may become negligible with advancing age. The role of oral contraceptives (OC) and hormone replacement therapy (HRT) in CM remains controversial. However, recent studies tend to associate the use of these exogenous hormones with a heightened risk of CM, mostly only when using estrogen therapy and not in combination with progesterone. On the contrary, the majority of studies find no substantial influence of in vitro fertilization (IVF) treatment on CM risk. Reproductive factors, including younger age at first childbirth, higher parity, and shorter reproductive life, show conflicting evidence, with some studies suggesting a lower CM risk. We suggest an important role for estrogens in CM. More research is needed, but the integration of estrogens and targeting the estrogen receptors in melanoma therapy holds promise for future developments in the field.
Collapse
Affiliation(s)
| | | | - Canan Güvenç
- Department of Dermatology, University Hospitals Leuven, 3000 Leuven, Belgium; (D.C.); (M.G.)
| |
Collapse
|
2
|
Cosci I, Grande G, Di Nisio A, Rocca MS, Del Fiore P, Benna C, Mocellin S, Ferlin A. Cutaneous Melanoma and Hormones: Focus on Sex Differences and the Testis. Int J Mol Sci 2022; 24:ijms24010599. [PMID: 36614041 PMCID: PMC9820190 DOI: 10.3390/ijms24010599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Cutaneous melanoma, the most aggressive type of skin cancer, remains one the most represented forms of cancer in the United States and European countries, representing, in Australia, the primary cause of cancer-related deaths. Recently, many studies have shown that sex disparities previously observed in most cancers are particularly accentuated in melanoma, where male sex is consistently associated with an increased risk of disease progression and a higher mortality rate. The causes of these sex differences rely on biological mechanisms related to sex hormones, immune homeostasis and oxidative processes. The development of newer therapies, such as immune checkpoint inhibitors (ICIs) (i.e., anti-PD-1 and anti-CTLA-4 monoclonal antibodies) has dramatically changed the treatment landscape of metastatic melanoma patients, though ICIs can interfere with the immune response and lead to inflammatory immune-related adverse events (irAEs). Recently, some studies have shown a potential adverse influence of this immunotherapy treatment also on male fertility and testicular function. However, while many anticancer drugs are known to cause defects in spermatogenesis, the effects of ICIs therapy remain largely unknown. Notwithstanding the scarce and conflicting information available on this topic, the American Society of Clinical Oncology guidelines recommend sperm cryopreservation in males undergoing ICIs. As investigations regarding the long-term outcomes of anticancer immunotherapy on the male reproductive system are still in their infancy, this review aims to support and spur future research in order to understand a potential gonadotoxic effect of ICIs on testicular function, spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Ilaria Cosci
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Andrea Di Nisio
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Clara Benna
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-8212723
| |
Collapse
|
3
|
Bhari N, Schwaertz RA, Apalla Z, Salerni G, Akay BN, Patil A, Grabbe S, Goldust M. Effect of estrogen in malignant melanoma. J Cosmet Dermatol 2022; 21:1905-1912. [PMID: 34416066 DOI: 10.1111/jocd.14391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Melanoma is associated with poor prognosis in its advanced stages. Potential influence of estrogen and its metabolites on melanoma growth has been suggested. AIMS The objective of this review was to provide an overview on the evidence related to estrogen in malignant melanoma. MATERIALS AND METHODS Literature search using PubMed, Google Scholar and relevant cross-references of the retrieved articles was performed to review relevant published articles related to estrogen and its effects in malignant melanoma. RESULTS Effect of estrogen signaling on a tissue largely depends on the relative expression of estrogen receptors (ER) α and β. Gender differences in melanoma may be explained by the difference in expression of these receptors. ERβ is the principal ER in melanoma. DISCUSSION Although there is uncertainty about role of estrogen in pathogenensis and progression of melanoma, evidence suggests that its growth and metastasis are influenced by estrogen stimulation. Role ER on the proliferation of melanoma cells is well described. CONCLUSION There is a need of safe and effective therapy for melanoma, especially for advanced cases. After the establishment of specific role of estrogen and its receptor, analysis of specific genetic mutation can be performed for proper utilization of targeted therapies.
Collapse
Affiliation(s)
- Neetu Bhari
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Robert A Schwaertz
- Department of Dermatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Zoe Apalla
- Second Dermatology Department, Aristotle University of Thessaloniki, Greece
| | - Gabriel Salerni
- Department of Dermatology, Hospital Provincial del Centenario de Rosario-Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Anant Patil
- Department of Pharmacology, Dr. DY Patil Medical College, Navi Mumbai, India
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
4
|
Lusardi M, Rotolo C, Ponassi M, Iervasi E, Rosano C, Spallarossa A. One-pot synthesis and antiproliferative activity of highly functionalized pyrazole derivatives. ChemMedChem 2022; 17:e202100670. [PMID: 34994095 DOI: 10.1002/cmdc.202100670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Indexed: 11/09/2022]
Abstract
A series of highly functionalized pyrazole derivatives has been prepared by a one-pot, versatile and regioselective procedure. Pyrazoles 1-29 were tested in cell-based assay to assess their antiproliferative activity against a panel of tumour cells. Additionally, the cytotoxicity of prepared compounds was evaluated against normal human fibroblasts. The antiproliferative activity of the synthesized molecules emerged to be affected by the nature of the substituents of the pyrazole scaffold and derivatives 21-23 proved to inhibit the growth of melanoma and cervical cancer cells. Compound 23 was identified as the most active derivative and docking simulations predicted its ability to interact with estrogen receptors.
Collapse
Affiliation(s)
- Matteo Lusardi
- Università degli Studi di Genova Facoltà di Farmacia: Universita degli Studi di Genova Dipartimento di Farmacia, Farmacia, ITALY
| | - Chiara Rotolo
- Universita degli Studi di Genova Dipartimento di Farmacia, Farmacia, ITALY
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and mass spectrometry unit, ITALY
| | - Erika Iervasi
- IRCCS AOU San Martino: Ospedale Policlinico San Martino, Proteomics and mass spectrometry unit, ITALY
| | - Camillo Rosano
- IRCCS AOU San Martino: Ospedale Policlinico San Martino, Proteomics and mass spectrometry unit, ITALY
| | - Andrea Spallarossa
- Università degli Studi di Genova Scuola di Scienze Mediche e Farmaceutiche: Universita degli Studi di Genova Scuola di Scienze Mediche e Farmaceutiche, Farmacia, viale Benedetto Xv, 3, 16132, Genova, ITALY
| |
Collapse
|
5
|
Hrgovic I, Kleemann J, Doll M, Loquai C, Weid F, Louwen F, Zoeller N, Kippenberger S, Kaufmann R, Meissner M. Evaluation of 2-methoxyestradiol serum levels as a potential prognostic marker in malignant melanoma. Mol Clin Oncol 2021; 15:141. [PMID: 34094539 DOI: 10.3892/mco.2021.2303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/01/2021] [Indexed: 11/06/2022] Open
Abstract
Experimental findings indicated that 2-methoxyestradiol (2-ME), an endogenous metabolite of 17β-estradiol, may exhibit anti-tumorigenic properties in various types of tumour, such as melanoma and endometrial carcinoma. In patients with endometrial cancer, the serum levels of 2-ME are decreased compared with those in healthy controls, and this finding has been associated with a poor outcome. The aim of the present study was to examine whether the serum levels of 2-ME are decreased in patients with melanoma, and whether this decrease may be correlated with disease stage and, therefore, serve as a prognostic indicator. ELISA was used to detect serum levels of 2-ME in patients with stage I-IV malignant melanoma (MM). A cohort of 78 patients with MM was analysed, along with 25 healthy controls, among whom 15 were women in the second trimester of pregnancy (positive control). As expected, significantly elevated levels of serum 2-ME were observed in pregnant control patients compared with those in patients with MM and healthy controls. There was no observed correlation between 2-ME serum levels in patients with MM and disease stage, tumour thickness, lactate dehydrogenase or S100 calcium-binding protein B levels. In addition, the 2-ME levels of patients with MM did not differ significantly from those of normal healthy controls. Overall, the findings of the present study indicated that the 2-ME serum levels in patients with MM were not decreased, and there was no correlation with early- or advanced-stage disease. Therefore, in contrast to published results on endometrial cancer, endogenous serum 2-ME levels in MM were not found to be correlated with tumour stage and did not appear to be a suitable prognostic factor in MM.
Collapse
Affiliation(s)
- Igor Hrgovic
- Department of Dermatology, Venereology and Allergology, Goethe University, D-60590 Frankfurt, Germany.,Department of Dermatology and Allergology, University Medical Centre Giessen, Justus Liebig University, D-35385 Giessen, Germany
| | - Johannes Kleemann
- Department of Dermatology, Venereology and Allergology, Goethe University, D-60590 Frankfurt, Germany
| | - Monika Doll
- Department of Dermatology, Venereology and Allergology, Goethe University, D-60590 Frankfurt, Germany
| | - Carmen Loquai
- Department of Dermatology, University Medical Centre Mainz, D-55131 Mainz, Germany
| | - Florian Weid
- Department of Dermatology, University Medical Centre Mainz, D-55131 Mainz, Germany
| | - Frank Louwen
- Department of Gynaecology and Obstetrics, Goethe University, D-60590 Frankfurt, Germany
| | - Nadja Zoeller
- Department of Dermatology, Venereology and Allergology, Goethe University, D-60590 Frankfurt, Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology and Allergology, Goethe University, D-60590 Frankfurt, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Goethe University, D-60590 Frankfurt, Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Goethe University, D-60590 Frankfurt, Germany
| |
Collapse
|
6
|
Borahay MA, Vincent KL, Motamedi M, Tekedereli I, Salama SA, Ozpolat B, Kilic GS. Liposomal 2-Methoxyestradiol Nanoparticles for Treatment of Uterine Leiomyoma in a Patient-Derived Xenograft Mouse Model. Reprod Sci 2021; 28:271-277. [PMID: 32632769 PMCID: PMC7785630 DOI: 10.1007/s43032-020-00248-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Uterine leiomyomas represent a challenging problem with limited medical treatment options. The anti-tumor agent 2-methoxyestradiol (2-ME) shows promising results but its efficacy is limited by inadequate pharmacokinetics. We previously demonstrated that 2-ME nanoparticles can be successfully formulated and that they show improved in vitro anti-leiomyoma cell activity. Here, we examined the effects of the in vivo delivery of 2-ME nanoparticles in a patient-derived xenograft (PDX) leiomyoma mouse model. Patient-derived leiomyoma tumor tissues were xenografted subcutaneously in estrogen/progesterone pretreated immunodeficient NOG mice. Animals (n = 12) were treated with liposomal 2-ME nanoparticles by intra-peritoneal (IP) injection (50 mg/kg/dose, three times weekly) or control for 28 days. Tumor volume was measured weekly by calipers and prior to sacrifice by ultrasound. In addition, the expression of the cell proliferation marker Ki67 and the apoptosis marker cleaved caspase-3 in tumor tissues after treatment were measured by immunohistochemistry. Liposomal 2-ME treatment was associated with a significant tumor growth inhibition (30.5% less than controls as early as 2 weeks, p = 0.025). In addition, injections of liposomal 2-ME inhibited the expression of the proliferation marker Ki67 (55.8% reduction, p < 0.001). Furthermore, liposomal 2-ME treatment was associated with a 67.5% increase of cleaved caspase-3 expression of increase (p = 0.048). Our findings suggest that liposomal nanoparticle formulation can successfully deliver 2-ME and can be a promising therapeutic strategy for uterine leiomyoma. Further characterization of the liposomal-2ME, including pharmacokinetics, maximal tolerated dose, and safety, is needed in preclinical models prior to clinical trials.
Collapse
Affiliation(s)
- Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University, 4940 Eastern Ave, Baltimore, MD, 21224-2780, USA.
| | - Kathleen L Vincent
- Department of Obstetrics and Gynecology, and Biomedical Engineering Center, University of Texas Medical Branch, Galveston, TX, USA
| | - Massoud Motamedi
- Biomedical Engineering Center, University of Texas Medical Branch, Galveston, TX, USA
| | - Ibrahim Tekedereli
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Salama A Salama
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Gokhan S Kilic
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Pal P, Hales K, Hales DB. The pro-apoptotic actions of 2-methoxyestradiol against ovarian cancer involve catalytic activation of PKCδ signaling. Oncotarget 2020; 11:3646-3659. [PMID: 33088425 PMCID: PMC7546757 DOI: 10.18632/oncotarget.27760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023] Open
Abstract
Background: 2-methoxyestradiol (2MeOE2) is a natural metabolite of estradiol, which is generated by the action of CYP1A1 enzyme in the liver. We have previously shown that a flaxseed-supplemented diet decreases both the incidence and severity of ovarian cancer in laying hens, also induces CYP1A1 expression in liver. Recently, we have shown that as a biologically derived active component of flax diet, 2MeOE2 induces apoptosis in ovarian cancer cells which is partially dependent on p38 MAPK. The objective of this study was to elucidate the molecular mechanism of actions of 2MeOE2, a known microtubule disrupting agent, in inducing apoptosis in ovarian tumors. Results: 2MeOE2 induces γH2Ax expression and apoptotic histone modifications in ovarian cancer cells, which are predicted downstream targets of protein kinase Cδ (PKCδ) during apoptosis. Overexpressing full length PKCδ alone does not induce apoptosis but potentiates 2MeOE2-mediated apoptosis. C3-domain mutated dominant-negative PKCδ (PKCδDN) significantly reduces 2MeOE2-induced caspase-3 cleavage and apoptotic histone modification. Silencing PKCδ diminishes 2MeOE2-mediated apoptosis. The catalytic fragment of PKCδ (PKCδCAT) evokes pro-apoptotic effects which are principally dependent on p38 MAPK phosphorylation. Conclusions: The pro-apoptotic actions of 2MeOE2 are in part dependent on catalytic activation of PKCδ. Catalytic activation of PKCδ accelerates the 2MeOE2-induced apoptotic cascade. This study describes a novel molecular action of flaxseed diet in ovarian cancer.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Karen Hales
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA.,Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
8
|
Bellenghi M, Puglisi R, Pontecorvi G, De Feo A, Carè A, Mattia G. Sex and Gender Disparities in Melanoma. Cancers (Basel) 2020; 12:E1819. [PMID: 32645881 PMCID: PMC7408637 DOI: 10.3390/cancers12071819] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Worldwide, the total incidence of cutaneous melanoma is higher in men than in women, with some differences related to ethnicity and age and, above all, sex and gender. Differences exist in respect to the anatomic localization of melanoma, in that it is more frequent on the trunk in men and on the lower limbs in women. A debated issue is if-and to what extent-melanoma development can be attributed to gender-specific behaviors or to biologically intrinsic differences. In the search for factors responsible for the divergences, a pivotal role of sex hormones has been observed, although conflicting results indicate the involvement of other mechanisms. The presence on the X chromosome of numerous miRNAs and coding genes playing immunological roles represents another important factor, whose relevance can be even increased by the incomplete X chromosome random inactivation. Considering the known advantages of the female immune system, a different cancer immune surveillance efficacy was suggested to explain some sex disparities. Indeed, the complexity of this picture emerged when the recently developed immunotherapies unexpectedly showed better improvements in men than in women. Altogether, these data support the necessity of further studies, which consider enrolling a balanced number of men and women in clinical trials to better understand the differences and obtain actual gender-equitable healthcare.
Collapse
Affiliation(s)
- Maria Bellenghi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Rossella Puglisi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Giada Pontecorvi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Carè
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Gianfranco Mattia
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| |
Collapse
|
9
|
Kamm A, Przychodzeń P, Kuban–Jankowska A, Marino Gammazza A, Cappello F, Daca A, Żmijewski MA, Woźniak M, Górska–Ponikowska M. 2-Methoxyestradiol and Its Combination with a Natural Compound, Ferulic Acid, Induces Melanoma Cell Death via Downregulation of Hsp60 and Hsp90. JOURNAL OF ONCOLOGY 2019; 2019:9293416. [PMID: 32082378 PMCID: PMC7012217 DOI: 10.1155/2019/9293416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Melanoma is an aggressive type of skin cancer with one of the highest mortality rates. Notably, its incidence in the last few decades has increased faster than any other cancer. Therefore, searching for novel anticancer therapies is of great clinical importance. In the present study, we investigated the anticancer potential of 2-methoxyestradiol, potent chemotherapeutic, in the A375 melanoma cellular model. In order to furthermore evaluate the anticancer efficacy of 2-methoxyestradiol, we have additionally combined the treatment with a naturally occurring polyphenol, ferulic acid. The results were obtained using the melanoma A375 cellular model. In the study, we used MTT assay, flow cytometry, and western blot techniques. Herein, we have evidenced that the molecular mechanism of action of 2-methoxyestradiol and ferulic acid is partly related to the reduction of Hsp60 and Hsp90 levels and the induction of nitric oxide in the A375 melanoma cell model, while no changes were observed in Hsp70 expression after 2-methoxyestradiol and ferulic acid treatment separately or in combination. This is especially important in case of chemoresistance mechanisms because the accumulation of Hsp70 reduces induction of cancer cell death, thus decreasing antitumour efficacy.
Collapse
Affiliation(s)
- Anna Kamm
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Paulina Przychodzeń
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | | | - Antonella Marino Gammazza
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Agnieszka Daca
- Department of Pathology and Rheumatology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał A. Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał Woźniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Magdalena Górska–Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Wang Y, Shen JZ, Chan YW, Ho WS. Identification and Growth Inhibitory Activity of the Chemical Constituents from Imperata Cylindrica Aerial Part Ethyl Acetate Extract. Molecules 2018; 23:molecules23071807. [PMID: 30037062 PMCID: PMC6100103 DOI: 10.3390/molecules23071807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 11/18/2022] Open
Abstract
Imperata cylindrica (L.) Raeusch. (IMP) aerial part ethyl acetate extract has anti-proliferative, pro-apoptotic, and pro-oxidative effects towards colorectal cancer in vitro. The chemical constituents of IMP aerial part ethyl acetate extract were isolated using high-performance liquid chromatography (HPLC) and identified with tandem mass spectrometry (ESI-MS/MS) in combination with ultraviolet-visible spectrophotometry and 400 MHz NMR. The growth inhibitory effects of each identified component on BT-549 (breast) and HT-29 (colon) cancer cell lines were evaluated after 48/72 h treatment by MTT assay. Four isolated compounds were identified as trans-p-Coumaric acid (1); 2-Methoxyestrone (2); 11, 16-Dihydroxypregn-4-ene-3, 20-dione (3); and Tricin (4). Compounds (2), (3), and (4) exhibited considerable growth inhibitory activities against BT-549 and HT-29 cancer cell lines. Compounds (2), (3), and (4) are potential candidates for novel anti-cancer agents against breast and colorectal cancers.
Collapse
Affiliation(s)
- Yan Wang
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - James Zheng Shen
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Yuk Wah Chan
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wing Shing Ho
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
11
|
Nel M, Joubert AM, Dohle W, Potter BV, Theron AE. Modes of cell death induced by tetrahydroisoquinoline-based analogs in MDA-MB-231 breast and A549 lung cancer cell lines. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1881-1904. [PMID: 29983544 PMCID: PMC6025772 DOI: 10.2147/dddt.s152718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background A and B rings of the steroidal microtubule disruptor, 2-methoxyestradiol, and its analogs can be mimicked with a tetrahydroisoquinoline (THIQ) core. THIQs are cytotoxic agents with potential anticancer activities. The aim of this in vitro study was to investigate the modes of cell death induced by four nonsteroidal THIQ-based analogs, such as STX 2895, STX 3329, STX 3451 and STX 3450, on MDA-MB-231 metastatic breast and A549 epithelial lung carcinoma cells. Materials and methods Cytotoxicity studies determined the half-maximal growth inhibitory concentration of the analogs to be at nanomolar concentrations without the induction of necrosis. Light and fluorescent microscopy determined that compounds caused microtubule depolymerization and displayed morphological hallmarks of apoptosis. Results Flow cytometric analyses confirmed apoptosis induction as well as an increased G2/M phase on cell cycle analysis. Furthermore, intrinsic pathway signaling was implicated due to increased cytochrome c release and a decrease in mitochondrial transmembrane potential. Potential involvement of autophagy was observed due to increased acidic vacuole formation and increased aggresome activation factor. Conclusion Thus, it can be concluded that these four THIQ-based analogs exert anti-proliferative and antimitotic effects, induce apoptosis and involve autophagic processes. Further investigation into the efficacy of these potential anticancer drugs will be conducted in vitro and in vivo.
Collapse
Affiliation(s)
- Marcel Nel
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa,
| | - Anna M Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa,
| | - Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Vl Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Anne E Theron
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa,
| |
Collapse
|
12
|
Repsold L, Pool R, Karodia M, Tintinger G, Joubert AM. An overview of the role of platelets in angiogenesis, apoptosis and autophagy in chronic myeloid leukaemia. Cancer Cell Int 2017; 17:89. [PMID: 29118670 PMCID: PMC5664592 DOI: 10.1186/s12935-017-0460-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/29/2017] [Indexed: 12/31/2022] Open
Abstract
Amongst males, leukaemia is the most common cause of cancer-related death in individuals younger than 40 years of age whereas in female children and adolescents, leukaemia is the most common cause of cancer-related death. Chronic myeloid leukaemia (CML) is a chronic leukaemia of the haematopoietic stem cells affecting mostly adults. The disease results from a translocation of the Philadelphia chromosome in stem cells of the bone marrow. CML patients usually present with mild to moderate anaemia and with decreased, normal, or increased platelet counts. CML represents 0.5% of all new cancer cases in the United States (2016). In 2016, an estimated 1070 people would die of this disease in the United States. Platelets serve as a means for tumours to increase growth and to provide physical- and mechanical support to elude the immune system and to metastasize. Currently there is no literature available on the role that platelets play in CML progression, despite literature reporting the fact that platelet count and size are affected. Resistance to CML treatment with tyrosine kinase inhibitors can be as a result of acquired resistance ensuing from mutations in the tyrosine kinase domains, loss of response or poor tolerance. In CML this resistance has recently become linked to bone marrow (BM) angiogenesis which aids in the growth and survival of leukaemia cells. The discovery of the lungs as a site of haematopoietic progenitors, suggests that CML resistance is not localized to the bone marrow and that the mutations leading to the disease and resistance to treatment may also occur in the haematopoietic progenitors in the lungs. In conclusion, platelets are significantly affected during CML progression and treatment. Investigation into the role that platelets play in CML progression is vital including how treatment affects the cell death mechanisms of platelets.
Collapse
Affiliation(s)
- Lisa Repsold
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng South Africa
| | - Roger Pool
- Department of Haematology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng South Africa
| | - Mohammed Karodia
- Department of Haematology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng South Africa
| | - Gregory Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng South Africa
| | - Annie Margaretha Joubert
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng South Africa
| |
Collapse
|
13
|
Massaro RR, Faião-Flores F, Rebecca VW, Sandri S, Alves-Fernandes DK, Pennacchi PC, Smalley KSM, Maria-Engler SS. Inhibition of proliferation and invasion in 2D and 3D models by 2-methoxyestradiol in human melanoma cells. Pharmacol Res 2017; 119:242-250. [PMID: 28212889 DOI: 10.1016/j.phrs.2017.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
Despite the recent advances in the clinical management of melanoma, there remains a need for new pharmacological approaches to treat this cancer. 2-methoxyestradiol (2ME) is a metabolite of estrogen that has shown anti-tumor effects in many cancer types. In this study we show that 2ME treatment leads to growth inhibition in melanoma cells, an effect associated with entry into senescence, decreased pRb and Cyclin B1 expression, increased p21/Cip1 expression and G2/M cell cycle arrest. 2ME treatment also inhibits melanoma cell growth in colony formation assay, including cell lines with acquired resistance to BRAF and BRAF+MEK inhibitors. We further show that 2ME is effective against melanoma with different BRAF and NRAS mutational status. Moreover, 2ME induced the retraction of cytoplasmic projections in a 3D spheroid model and significantly decreased cell proliferation in a 3D skin reconstruct model. Together our studies bring new insights into the mechanism of action of 2ME allowing melanoma targeted therapy to be further refined. Continued progress in this area is expected to lead to improved anti-cancer treatments and the development of new and more effective clinical analogues.
Collapse
Affiliation(s)
- R R Massaro
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - F Faião-Flores
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - V W Rebecca
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, USA
| | - S Sandri
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - D K Alves-Fernandes
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - P C Pennacchi
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - K S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, USA
| | - S S Maria-Engler
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Kumar BS, Raghuvanshi DS, Hasanain M, Alam S, Sarkar J, Mitra K, Khan F, Negi AS. Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug. Steroids 2016; 110:9-34. [PMID: 27020471 DOI: 10.1016/j.steroids.2016.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/13/2016] [Accepted: 03/22/2016] [Indexed: 01/29/2023]
Abstract
2-Methoxyestradiol (2ME2), an estrogen hormone metabolite is a potential cancer chemotherapeutic agent. Presently, it is an investigational drug under various phases of clinical trials alone or in combination therapy. Its anticancer activity has been attributed to its antitubulin, antiangiogenic, pro-apoptotic and ROS induction properties. This anticancer drug candidate has been explored extensively in last twenty years for its detailed chemistry and pharmacology. Present review is an update of its chemistry and biological activity. It also extends an assessment of potential of 2ME2 and its analogues as possible anticancer drug in future.
Collapse
Affiliation(s)
- B Sathish Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Dushyant Singh Raghuvanshi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Mohammad Hasanain
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sarfaraz Alam
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Jayanta Sarkar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
15
|
Marzagalli M, Montagnani Marelli M, Casati L, Fontana F, Moretti RM, Limonta P. Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility. Front Endocrinol (Lausanne) 2016; 7:140. [PMID: 27833586 PMCID: PMC5080294 DOI: 10.3389/fendo.2016.00140] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase fast in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies. Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females, and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect cancer growth in an opposite way: ERα is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention. Natural compounds that specifically bind to ERβ have been identified. These phytoestrogens decrease the proliferation of melanoma cells. Importantly, these effects are unrelated to the oncogenic mutations of melanomas, suggesting that, in addition to their ERβ activating function, these compounds might impair melanoma development through additional mechanisms. A better identification of the role of ERβ in melanoma development will help increase the therapeutic options for this aggressive pathology.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
- *Correspondence: Patrizia Limonta,
| |
Collapse
|
16
|
Sex disparities in melanoma outcomes: The role of biology. Arch Biochem Biophys 2014; 563:42-50. [DOI: 10.1016/j.abb.2014.06.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 02/06/2023]
|
17
|
Is oestrogen an important player in melanoma progression? Contemp Oncol (Pozn) 2014; 18:302-6. [PMID: 25477750 PMCID: PMC4248054 DOI: 10.5114/wo.2014.43938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/20/2013] [Accepted: 10/16/2013] [Indexed: 02/03/2023] Open
Abstract
The oestrogen-dependent regulation of cell behaviour is realised by stimulation of specific oestrogen receptors. The classical oestrogen receptors ERα and ERβ are transcription factors, and they modulate expression of hormonally regulated genes, while the third one, GPER, is thought to be responsible for the observed rapid, non-genomic cellular response. Oestrogen dependency is attributed to a number of cancers, including breast, ovarian and endometrial cancer; however, there is still growing evidence that melanoma should also be cited as a hormonally dependent tumour. This comes from the observations of gender-related differences in melanoma progression and reports concerning the history of the malignant course of melanomas during pregnancy. Although, the observations of oestrogen regulation of melanoma progression are controversial, the effect of oestrogen should not be neglected, as the skin possesses its own hormonal microenvironment. This aspect of melanoma progression should be taken under careful consideration as it may offer new therapeutic possibilities.
Collapse
|
18
|
Repsold L, Pretorius E, Joubert AM. An estrogen analogue and promising anticancer agent refrains from inducing morphological damage and reactive oxygen species generation in erythrocytes, fibrin and platelets: a pilot study. Cancer Cell Int 2014; 14:48. [PMID: 24932135 PMCID: PMC4057810 DOI: 10.1186/1475-2867-14-48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022] Open
Abstract
Background 2-Methoxyestradiol is known to have antitumour and antiproliferative action in vitro and in vivo. However, when 2-methoxyestradiol is orally administered, it is rapidly oxidized by the enzyme 17β-hydroxysteriod dehydrogenase in the gastrointestinal tract. Therefore, 2-methoxyestradiol never reaches high enough concentrations in the tissue to be able to exert these antitumour properties. This resulted in the in silico-design of 2-methoxyestradiol analogues in collaboration with the Bioinformatics and Computational Biology Unit (UP) and subsequent synthesis by iThemba Pharmaceuticals (Pty) Ltd (Modderfontein, Midrand, South Africa). One such a novelty-designed analogue is 2-ethyl-3-O-sulphamoyl-estra-1, 3, 5(10)16-tetraene (ESE-16). Methods This pilot study aimed to determine the morphological effect and possible generation of reactive oxygen species by ESE-16 on erythrocytes and platelet samples (with and without added thrombin) by means of scanning electron microscopy, transmission electron microscopy and flow cytometry. Results Erythrocytes and platelets were exposed to ESE-16 at a concentration of 180nM for 24 hours. Scanning- and transmission electron microscopy indicated that ESE-16 did not cause changes to erythrocytes, platelets or fibrin networks. Flow cytometry measurements of hydrogen peroxide and superoxide indicated that ESE-16 does not cause an increase in the generation of reactive oxygen species in these blood samples. Conclusion Further in vivo research is warranted to determine whether this novel in silico-designed analogue may impact on development of future chemotherapeutic agents and whether it could be considered as an antitumour agent.
Collapse
Affiliation(s)
- Lisa Repsold
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Etheresia Pretorius
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Annie Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Dobos J, Mohos A, Tóvári J, Rásó E, Lőrincz T, Zádori G, Tímár J, Ladányi A. Sex-dependent liver colonization of human melanoma in SCID mice--role of host defense mechanisms. Clin Exp Metastasis 2012. [PMID: 23203681 DOI: 10.1007/s10585-012-9554-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possibility that endocrine factors may influence the clinical course of malignant melanoma is suggested by the superior survival data of women. In preclinical models we observed a higher rate of colony formation by human melanoma cells in male compared to female SCID mice, but only in the case of the liver and not in other organs. The gender difference could be seen at an early phase of colony formation. On the other hand, in our human melanoma cell lines we failed to detect steroid receptor protein expression, and treatment with sex hormones did not considerably influence their in vitro behavior. Investigating the possible contribution of host cells to the observed gender difference, we performed in vivo blocking experiments applying pretreatment of the animals with Kupffer cell inhibitor gadolinium chloride and the NK cell inhibitor anti-asialo GM1 antibody. While Kupffer cell blockade enhanced melanoma liver colonization equally in the two sexes, a more prominent increase was observed in female than in male mice in the case of NK cell inhibition. Further supporting the importance of NK cells in the lower liver colonization efficiency of melanoma cells in females, gender difference in colony formation was lost in NSG mice lacking NK activity. Although in humans no organ selectivity of gender difference in melanoma progression has been observed according to data in the literature, our results possibly indicate a contribution of natural host defense mechanisms to gender difference in survival of patients with melanoma or other tumor types as well.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Adhesion
- Cell Proliferation
- Cytotoxicity, Immunologic/immunology
- Female
- Flow Cytometry
- G(M1) Ganglioside/pharmacology
- Gonadal Steroid Hormones/metabolism
- Humans
- Immunoenzyme Techniques
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Kupffer Cells/drug effects
- Kupffer Cells/immunology
- Kupffer Cells/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/secondary
- Male
- Melanoma/drug therapy
- Melanoma/immunology
- Melanoma/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Steroid/metabolism
- Sex Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Judit Dobos
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 7-9. Ráth György u, Budapest 1122, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shen G, Wang Q, Zhang Q, Sun H, Zhao Y, Zhang Z, Du B. Tissue distribution of 2-methoxyestradiol nanosuspension in rats and its antitumor activity in C57BL/6 mice bearing lewis lung carcinoma. Drug Deliv 2012; 19:327-33. [DOI: 10.3109/10717544.2012.721142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Abstract
The objective of this study was to prepare 2-methoxyestradiol (2-ME)-loaded solid lipid nanoparticles (SLN) by hot homogenization-ultrasonication and evaluate their cytotoxicity on three cell lines, breast cancer [Michigan Cancer Foundation-7 (MCF-7)], prostatic carcinoma (PC-3), and glioma (SK-N-SH), by the sulforhodamineB method. The particle sizes and zeta potentials of the prepared SLN were around 120 nm and -40 mV, respectively. Differential scanning calorimetry (DSC) measurements revealed that the monostearin and 2-ME existed in solid and amorphous states in the SLN prepared, respectively. The high drug entrapment efficiency (>85%) indicated that most 2-ME was incorporated in the SLN. An in-vitro drug release study showed that 2-ME was released from the SLN in a slow but time-dependent manner. The cytotoxicity of 2-ME in SLN on each cell line was significantly enhanced compared with the solution. 2-ME SLN composed of Tween80 was approximately 17-fold more effective on PC-3 cells and 6.7-fold more effective on SK-N-SH cells than in the solution, whereas a lower sensitivity was achieved on MCF-7 cells. In each cell line, the cellular uptake percentages of 2-ME in SLN were much higher than the solution, respectively. In addition, surfactants may exert different effects on the cytotoxicity of 2-ME SLN depending on the cell line. The above assay demonstrated that SLN could significantly enhance the cytotoxicity of 2-ME compared with the free drug because of the increased cellular internalization and concentration of 2-ME. The results suggested that SLN could be an excellent carrier candidate to entrap 2-ME for improving the effectiveness of tumor chemotherapy.
Collapse
|
22
|
de Giorgi V, Gori A, Grazzini M, Rossari S, Scarfì F, Corciova S, Verdelli A, Lotti T, Massi D. Estrogens, estrogen receptors and melanoma. Expert Rev Anticancer Ther 2011; 11:739-47. [PMID: 21554049 DOI: 10.1586/era.11.42] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The skin is the largest nonreproductive target tissue on which estrogen plays many beneficial and protective roles. Although neither exogenous hormones nor pregnancy represent significant risk factors for melanoma, epidemiological data suggest a higher survival rate in women with metastatic disease versus men and in premenopausal versus postmenopausal patients. Despite the fact that hyperestrogenic signaling has long been implicated in the initiation and progression of several tumors, the role of estrogens in malignant melanoma is still unclear. The cellular effects of estrogens are mediated by two subtypes of estrogen receptors (ERs). Estrogen receptor β (ERβ), the predominant ER in the skin, antagonizes the proliferative action mediated by estrogen receptor α. According to recent immunohistochemical studies, ERβ protein expression decreases progressively with increased Breslow thickness and results in more invasive melanomas; thus, ERβ immunophenotype may distinguish melanomas linked to poor prognosis from those with a favorable course and lead to melanoma unresponsiveness to both estrogen and anti-estrogen treatment. Therefore, if future large-scale immunohistochemical and molecular studies point towards ERβ as an important factor in malignant melanoma progression, they will open up novel and targeted prognostic and therapeutic perspectives.
Collapse
Affiliation(s)
- Vincenzo de Giorgi
- Department of Dermatology, University of Florence, Piazza Indipendenza 11, Firenze 50100, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Inhibition of TASK-3 (KCNK9) channel biosynthesis changes cell morphology and decreases both DNA content and mitochondrial function of melanoma cells maintained in cell culture. Melanoma Res 2011; 21:308-22. [DOI: 10.1097/cmr.0b013e3283462713] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Sarkanen JR, Mannerström M, Vuorenpää H, Uotila J, Ylikomi T, Heinonen T. Intra-Laboratory Pre-Validation of a Human Cell Based in vitro Angiogenesis Assay for Testing Angiogenesis Modulators. Front Pharmacol 2011; 1:147. [PMID: 21779245 PMCID: PMC3134867 DOI: 10.3389/fphar.2010.00147] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/31/2010] [Indexed: 11/13/2022] Open
Abstract
The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory pre-validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis, e.g., pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using six reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory pre-validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation), batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability) were tested. The pre-set acceptance criteria for the intra-laboratory pre-validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.
Collapse
Affiliation(s)
- Jertta-Riina Sarkanen
- Finnish Center for Alternative Methods, Medical School, University of Tampere Tampere, Finland
| | | | | | | | | | | |
Collapse
|
25
|
Combating melanoma: the use of photodynamic therapy as a novel, adjuvant therapeutic tool. Cancer Treat Rev 2010; 37:465-75. [PMID: 21168280 DOI: 10.1016/j.ctrv.2010.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 11/21/2022]
Abstract
Metastatic malignant melanoma remains one of the most dreaded skin cancers worldwide. Numerous factors contribute to its resistance to hosts of treatment regimes and despite significant scientific advances over the last decade in the field of chemotherapeutics and melanocytic targets, there still remains the need for improved therapeutic modalities. Photodynamic therapy, a minimally invasive therapeutic modality has been shown to be effective in a number of oncologic and non-oncologic conditions. Using second-generation stable, lipophilic photosensitizers with optimised wavelengths, PDT may be a promising tool for adjuvant therapy in combating melanoma. Potential targets for PDT in melanoma eradication include cell proliferation inhibition, activation of cell death and reduction in pro-survival autophagy and a decrease in the cellular melanocytic antioxidant system. This review highlights the current knowledge with respect to these characteristics and suggests that PDT be considered as a good candidate for adjuvant treatment in post-resected malignant metastatic melanoma. Furthermore, it suggests that primary consideration must be given to organelle-specific destruction in melanoma specifically targeting the melanosomes - the one organelle that is specific to cells of the melanocytic lineage that houses the toxic compound, melanin. We believe that using this combined knowledge may eventually lead to an effective therapeutic tool to combat this highly intractable disease.
Collapse
|
26
|
[Melanoma: A protective role of pregnancy? A case report and review of literature]. ANN CHIR PLAST ESTH 2010; 56:43-8. [PMID: 21106287 DOI: 10.1016/j.anplas.2010.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 10/12/2010] [Indexed: 11/24/2022]
Abstract
Melanoma is actually one of the most common malignancies to be diagnosed during pregnancy. Nevertheless, the role of the pregnancy hormones on the melanoma course is not yet completely clear. We present the case of melanoma in a pregnant woman, with a particularly fulminant postpartum development. This raised the question of a possible protection by the pregnancy hormones against melanoma.
Collapse
|
27
|
Benedikt MB, Mahlum EW, Shogren KL, Subramaniam M, Spelsberg TC, Yaszemski MJ, Maran A. 2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegerin expression in osteosarcoma cells. J Cell Biochem 2010; 109:950-6. [PMID: 20082321 DOI: 10.1002/jcb.22473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17beta-estradiol and a tumorigenic estrogen metabolite, 16alpha-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment.
Collapse
Affiliation(s)
- Michaela B Benedikt
- Department of Orthopedics, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Suba Z. Common soil of smoking-associated and hormone-related cancers: estrogen deficiency. Oncol Rev 2010. [DOI: 10.1007/s12156-010-0036-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
29
|
Du B, Li Y, Li X, A Y, Chen C, Zhang Z. Preparation, characterization and in vivo evaluation of 2-methoxyestradiol-loaded liposomes. Int J Pharm 2010; 384:140-7. [DOI: 10.1016/j.ijpharm.2009.09.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 09/06/2009] [Accepted: 09/11/2009] [Indexed: 12/16/2022]
|
30
|
Does use of estrogens decrease the Breslow thickness of melanoma of the skin? Oral contraceptives and hormonal replacement therapy. Melanoma Res 2009; 19:327-32. [DOI: 10.1097/cmr.0b013e32832f159c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Abstract
According to recent findings that beside cancers traditionally considered as hormone-dependent, several other tumor types show different behavior in the two sexes, indicating the possible role of endocrine factors in the course of these diseases. The possibility that endocrine factors may influence the clinical course of human malignant melanoma is suggested by the higher survival rate in premenopausal vs. postmenopausal women or men of any ages. However, investigations on the sex hormone receptor status of human cutaneous melanomas and experiments attempting to support the epidemiological results yielded conflicting results. In our human melanoma cell lines we failed to detect steroid receptors at protein level, while quantitative PCR demonstrated that their mRNA expression level was orders of magnitude lower compared to the positive control cell lines. Sex hormones did not influence the in vitro features of the human melanoma cells considerably. On the other hand, glucocorticoid receptor was present both at mRNA and protein level, although dexamethasone was effective in vitro only at high doses. Our previous experiments showed that intrasplenic injection of human melanoma cells resulted in a significantly higher number of liver colonies in male than in female SCID mice. We now show that this difference evolves during the first day. After injection into the tail vein we did not observe gender-dependent difference in the efficiency of pulmonary colonization. Examining the pattern of metastasis formation after intracardiac injection, we have found differences between the two sexes in the incidence or number of colonies only in the case of the liver but not in other organs. We concluded that the observed phenomenon is specific to the liver; therefore we investigated the effects of 2-methoxyestradiol, an endogenous metabolite of estradiol produced mainly in the liver, with an estrogen receptor-independent antitumor activity. 2ME2 effectively inhibited melanoma cell proliferation by inducing apoptosis and an arrest in the G2/M phase. The mechanism of action involved microtubules, mitochondrial damage and caspase activation as well. In SCID mice, 2ME2 was effective in reducing primary tumor weight and the number of liver colonies after intrasplenic injection of human melanoma cells, and causing significantly higher rate of apoptotic cells in the colonies.
Collapse
Affiliation(s)
- Judit Dobos
- Semmelweis Egyetem Patológiai Tudományok Doktori Iskola Budapest Országos Onkológiai Intézet 1122 Budapest Ráth György u. 7-9, Hungary.
| |
Collapse
|
32
|
Koomen E, Joosse A, Herings R, Casparie M, Guchelaar H, Nijsten T. Estrogens, oral contraceptives and hormonal replacement therapy increase the incidence of cutaneous melanoma: a population-based case–control study. Ann Oncol 2009; 20:358-64. [DOI: 10.1093/annonc/mdn589] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
33
|
Desai KGH, Mallery SR, Schwendeman SP. Effect of formulation parameters on 2-methoxyestradiol release from injectable cylindrical poly(DL-lactide-co-glycolide) implants. Eur J Pharm Biopharm 2008; 70:187-98. [PMID: 18472254 DOI: 10.1016/j.ejpb.2008.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
The objective of this study was to investigate the potential of various formulation strategies to achieve 1-month continuous (improved) release of the novel anti-cancer drug, 2-methoxyestradiol (2-ME), from injectable cylindrical poly(DL-lactide-co-glycolide) (PLGA) implants. PLGA implants were prepared by a solvent extrusion method. PLGA 50:50 (M(w)=51 kDa, end group=lauryl ester) (PLGA-lauryl ester) implants loaded with 3-30 wt% 2-ME exhibited a pronounced lag phase (i.e., corresponding to induction time to polymer mass loss) and triphasic release profile. Incorporation of 5 wt% hydroxypropyl-beta-cyclodextrin (HP-beta-CD) (approximately 57% release after 28 days) or Pluronic F127 (approximately 42% release after 28 days) in PLGA-lauryl ester implants reduced the lag-phase and improved the drug release moderately over a period of 28 days. The formation and the incorporation of a 2-ME/polyethylene glycol (PEG) 8000 solid dispersion in PLGA-lauryl ester implants further increased drug release (approximately 21% and 73% release after 1 and 28 days, respectively), attributable to improved drug solubility/dissolution, higher matrix porosity, and accelerated polymer degradation. Blending of PLGA 50:50 (M(w)=24 kDa, end group=COOH) (PLGA-COOH) with the PLGA-lauryl ester also provided moderate enhancement of 2-ME release over a period of 28 days. PLGA-COOH (M(w)=24 kDa) implants with 3-5% w/w pore-forming MgCO(3) exhibited the most desirable drug release among all the formulations tested, and, demonstrated 1-month slow and continuous in vitro release of approximately 80% 2-ME after a minimal initial burst. Hence, these formulation approaches provide several possible avenues to improve release rates of the hydrophobic drug, 2-ME, from PLGA for future application in regional anti-cancer therapy.
Collapse
Affiliation(s)
- Kashappa Goud H Desai
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
34
|
2-Methoxyestradiol reverses doxorubicin resistance in human breast tumor xenograft. Cancer Chemother Pharmacol 2008; 62:893-902. [PMID: 18253735 DOI: 10.1007/s00280-008-0679-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 01/07/2008] [Indexed: 12/16/2022]
|
35
|
|
36
|
Lin HL, Yang MH, Wu CW, Chen PM, Yang YP, Chu YR, Kao CL, Ku HH, Lo JF, Liou JP, Chi CW, Chiou SH. 2-Methoxyestradiol attenuates phosphatidylinositol 3-kinase/Akt pathway-mediated metastasis of gastric cancer. Int J Cancer 2007; 121:2547-55. [PMID: 17680560 DOI: 10.1002/ijc.22963] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The major obstacle for the treatment of gastric cancer is recurrence and metastasis; yet, its molecular mechanism is largely unknown. 2-methoxyestradiol (2-ME), a metabolite of the estradiol-17beta, has recently been demonstrated to have multifactorial effects against tumor proliferation and angiogenesis; how these effects are interrelated and act cooperatively is the key question to be elucidated. Akt activation was shown to promote cancer cell invasiveness, and inhibition of Akt phosphorylation by 2-ME was also noted. We herein investigated the significance of PI3K/Akt activation in gastric cancer metastasis and the anti-metastatic effect of 2-ME through attenuation of Akt activity. Immunohistochemistry of PI3K, phosphorylated Akt (p-Akt) and phosphorylated Erk (p-Erk) was performed in tumors from 56 gastric cancer patients, and a significant correlation between PI3K/p-Akt and tumor stage/prognosis was demonstrated (p < 0.05). An in vitro study of 7 gastric cancer cell lines showed a remarkable correlation between PI3K and p-Akt. PI3K/p-Akt overexpression was associated with invasiveness/migration; in contrast, phosphorylation of Erk was not shown to be correlated with invasiveness. In addition, metastatic gastric cancer clones expressed a higher level of PI3K/p-Akt. The anti-metastatic effect of a low dose of 2-ME and inactivation of Akt was demonstrated. 2-ME also exhibited an ability to inhibit gastric cancer cell proliferation and induce G2/M cell cycle arrest at a higher concentration than that required for inhibition of migration. We conclude that the activation of PI3K/Akt pathway is involved in the late-stage progression and metastasis of gastric cancer, and attenuation of p-Akt by 2-ME suppresses metastasis.
Collapse
Affiliation(s)
- Heng-Liang Lin
- Department of Medical Research and Education, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fong YC, Yang WH, Hsu SF, Hsu HC, Tseng KF, Hsu CJ, Lee CY, Scully SP. 2-methoxyestradiol induces apoptosis and cell cycle arrest in human chondrosarcoma cells. J Orthop Res 2007; 25:1106-14. [PMID: 17415781 DOI: 10.1002/jor.20364] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
2-Methoxyestradiol (2ME) is an endogenous metabolite with estrogen receptor-independent anti-tumor activity. The current study seeks to determine the mechanism of anti-tumor activity of 2ME on human chondrosarcoma. 2ME caused a time- and dose-dependent cytotoxity in chondrosarcoma cells, while primary chondrocytes were minimally affected. Cells accumulated in G0/G1 phase in response to 2ME and DAPI stain indicated an induction of apoptosis. Bax, Cytochrome C, and Caspase-3 protein expression were increased, while p53 expression was decreased. A higher Bax/Bcl-2 ratio followed 2ME treatment. 2ME has a potentially promising role as a systemic therapy of chondrosarcoma when the mechanism of action is better delineated.
Collapse
Affiliation(s)
- Yi-Chin Fong
- China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wondrak GT. NQO1-activated phenothiazinium redox cyclers for the targeted bioreductive induction of cancer cell apoptosis. Free Radic Biol Med 2007; 43:178-90. [PMID: 17603928 PMCID: PMC2705808 DOI: 10.1016/j.freeradbiomed.2007.03.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/21/2007] [Accepted: 03/30/2007] [Indexed: 11/24/2022]
Abstract
Altered redox signaling and regulation in cancer cells represent a chemical vulnerability that can be targeted by selective chemotherapeutic intervention. Here, we demonstrate that 3,7-diaminophenothiazinium-based redox cyclers (PRC) induce selective cancer cell apoptosis by NAD(P)H:quinone oxidoreductase (NQO1)-dependent bioreductive generation of cellular oxidative stress. Using PRC lead compounds including toluidine blue against human metastatic G361 melanoma cells, apoptosis occurred with phosphatidylserine externalization, loss of mitochondrial transmembrane potential, cytochrome c release, caspase-3 activation, and massive ROS production. Consistent with reductive activation and subsequent redox cycling as the mechanism of PRC cytotoxicity, coincubation with catalase achieved cell protection, whereas reductive antioxidants enhanced PRC cytotoxicity. Unexpectedly, human A375 melanoma cells were resistant to PRC-induced apoptosis, and PRC-sensitive G361 cells were protected by preincubation with the NQO1 inhibitor dicoumarol. Indeed, NQO1 specific enzymatic activity was 9-fold higher in G361 than in A375 cells. The critical role of NQO1 in PRC bioactivation and cytotoxicity was confirmed, when NQO1-transfected breast cancer cells (MCF7-DT15) stably overexpressing active NQO1 displayed strongly enhanced PRC sensitivity as compared to vector control-transfected cells with baseline NQO1 activity. Based on the known overexpression of NQO1 in various tumors these findings suggest the feasibility of developing PRC lead compounds into tumor-selective bioreductive chemotherapeutics.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| |
Collapse
|
39
|
Deli T, Varga N, Adám A, Kenessey I, Rásó E, Puskás LG, Tóvári J, Fodor J, Fehér M, Szigeti GP, Csernoch L, Tímár J. Functional genomics of calcium channels in human melanoma cells. Int J Cancer 2007; 121:55-65. [PMID: 17330843 DOI: 10.1002/ijc.22621] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ca(2+)-signaling of human melanoma is in the focus of intensive research since the identification of the role of WNT-signaling in melanomagenesis. Genomic and functional studies pointed to the important role of various Ca(2+) channels in melanoma, but these data were contradictory. In the present study we clearly demonstrate, in a number of different ways including microarray analysis, DNA sequencing and immunocytochemistry, that various human melanoma cell lines and melanoma tissues overexpress ryanodine receptor type 2 (RyR2) and express P2X(7) channel proteins as compared to melanocytes. These channels, although retain some of their usual characteristics and pharmacological properties, display unique features in melanoma cells, including a functional interaction between the two molecules. Unlike P2X(7), RyR2 does not function as a calcium channel. On the other hand, the P2X(7) receptor has an antiapoptotic function in melanoma cells, since ATP-activation suppresses induced apoptosis, while knock down of the gene expression significantly enhances that.
Collapse
Affiliation(s)
- Tamás Deli
- Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kiss J, Tímár J, Somlai B, Gilde K, Fejôs Z, Gaudi I, Ladányi A. Association of microvessel density with infiltrating cells in human cutaneous malignant melanoma. Pathol Oncol Res 2007; 13:21-31. [PMID: 17387385 DOI: 10.1007/bf02893437] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/12/2007] [Indexed: 02/06/2023]
Abstract
Vascularization and host response to malignant tumors may have common molecular regulators, therefore, we analyzed the relationship between microvessel density (MVD) and tumor infiltrating cells in cutaneous malignant melanoma. Density of lymphocyte subpopulations, macrophages, dendritic cells and CD34(+) microvessels was determined by immunohistochemistry in primary tumor samples from fifty-two patients with melanoma thicker than 1 mm. Intratumoral MVD did not show significant association with infiltration for any of these cell types. In the case of peritumoral reactive cell densities analyzed in the whole patient population, a positive correlation of MVD was found with CD3(+) T cell density. This association was stronger in melanomas >4.0 mm and in visceral metastatic tumors. In these subgroups similar phenomenon was observed for CD8(+) cells. We found significant correlation of MVD with CD68(+) macrophage density only in the highest thickness category, and weak associations with B-cell and dendritic cell infiltration in visceral metastatic cases. MVD did not vary significantly in tumors categorized according to thickness, localization, ulceration or histological type. However, both intratumoral MVD and macrophage infiltration were significantly higher in male patients compared to females. The correlation of immune cell density with tumor vascularization and gender differences in vascularity and macrophage infiltration of melanoma deserve further attention.
Collapse
Affiliation(s)
- Judit Kiss
- Department of Tumor Progression, National Institute of Oncology, Budapest, H-1122, Hungary
| | | | | | | | | | | | | |
Collapse
|
41
|
Zou H, Adachi M, Imai K, Hareyama M, Yoshioka K, Zhao S, Shinomura Y. 2-Methoxyestradiol, an Endogenous Mammalian Metabolite, Radiosensitizes Colon Carcinoma Cells through c-Jun NH2-Terminal Kinase Activation. Clin Cancer Res 2006; 12:6532-9. [PMID: 17085668 DOI: 10.1158/1078-0432.ccr-06-0678] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE 2-Methoxyestradiol (2ME), an estrogen metabolite, induces apoptosis in various cell types. We investigated whether 2ME pretreatment can radiosensitize colon adenocarcinoma cells. EXPERIMENTAL DESIGN Radiosensitizing effects of 2ME were evaluated by cell death, clonogenic assay, nuclear fragmentation, and tumor progression of xenografts. Ionizing radiation-induced DNA damage was evaluated by histone H2AX phosphorylation and its foci. The c-Jun NH2-terminal kinase (JNK) activation was evaluated by anti-phosphorylated JNK antibody and inhibited by the JNK-specific inhibitor SP600125 or dominant-negative SEK1 expression. RESULTS Clonogenic assays revealed that 2ME, but not estradiol, radiosensitized three colon carcinoma cells, DLD-1, HCT-8, and HCT-15, and strongly suppressed tumor progression of DLD-1 xenografts. Gene transfer-mediated Bcl-xL overexpression largely abolished both augmented apoptosis and reduced survival fractions. Pretreatment with 2ME enhanced H2AX phosphorylation, its foci, and phosphorylation of ATM kinase and delayed re-entry of cell cycle progression after ionizing radiation. Augmentation of both radiosensitivity and H2AX phosphorylation was substantially reduced by SP600125 or overexpression of a dominant-negative mutant SEK1. CONCLUSION 2ME radiosensitized colon carcinoma cells through enhanced DNA damage via JNK activation, thereby representing a novel radiosensitizing therapy against colon cancer.
Collapse
Affiliation(s)
- HuiChao Zou
- Division of Molecular Oncology and Molecular Diagnosis, Graduate School of Medicine, First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Roswall P, Bu S, Rubin K, Landström M, Heldin NE. 2-methoxyestradiol induces apoptosis in cultured human anaplastic thyroid carcinoma cells. Thyroid 2006; 16:143-50. [PMID: 16676399 DOI: 10.1089/thy.2006.16.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most malignant tumors in humans, and currently there is no effective treatment. In the present study we investigated the effect of an endogenous estrogen metabolite, 2-methoxyestradiol (2-ME), on the growth of human ATC cells. 2-ME treatment had a strong growth inhibitory effect on five human ATC cell lines (HTh7, HTh 74, HTh83, C643, and SW1736), but showed no effect on one cell line (KAT-4). Cell cycle analysis of the growth-inhibited cells showed that 2-ME induced a G2/M-arrest, followed by an increased fraction of cells in sub-G1. Analysis of internucleosomal DNA laddering as well as DNA fragmentation in a terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL) assay demonstrated a high number of cells undergoing apoptosis after 2-ME treatment. An increased activation of caspase-3 and caspase-8 by 2-ME was observed, and inhibition of caspase-3 decreased the apoptotic effect. Addition of 2-ME increased activity of p38 mitogen-activated protein kinase (MAPK) in the sensitive HTh7 as well as the refractory KAT-4 cells, however, activation of stress-activated protein kinase/c-jun aminoterminal kinase (SAPK/JNK) was seen only in the HTh7 cells. Inhibitors of p38 MAPK and SAPK/JNK significantly attenuated the 2-ME effect. Taken together, our data demonstrate an antiproliferative and apoptotic effect of 2-ME on ATC cells involving activation of MAPKs.
Collapse
Affiliation(s)
- Pernilla Roswall
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital, Sweden
| | | | | | | | | |
Collapse
|
43
|
Sidor C, D'Amato R, Miller KD. The potential and suitability of 2-methoxyestradiol in cancer therapy. Clin Cancer Res 2005; 11:6094-5; author reply 6095-6. [PMID: 16115955 DOI: 10.1158/1078-0432.ccr-05-0724] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|