1
|
Bhat AM, Mohapatra BC, Luan H, Mushtaq I, Chakraborty S, Kumar S, Wu W, Nolan B, Dutta S, Storck MD, Schott M, Meza JL, Lele SM, Lin MF, Cook LM, Corey E, Morrissey C, Coulter DW, Rowley MJ, Natarajan A, Datta K, Band V, Band H. GD2 and its biosynthetic enzyme GD3 synthase promote tumorigenesis in prostate cancer by regulating cancer stem cell behavior. Sci Rep 2024; 14:13523. [PMID: 38866755 PMCID: PMC11169677 DOI: 10.1038/s41598-024-60052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024] Open
Abstract
While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored. Here, we show that GD2 is expressed in a small subpopulation of PC cells in a subset of patients and a higher proportion of metastatic tumors. Variable levels of cell surface GD2 expression were seen on many PC cell lines, and the expression was highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction was enriched upon growth of PC cells as tumorspheres and GD2high fraction was enriched in tumorsphere-forming ability. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2high CRPC cell models markedly impaired the in vitro oncogenic traits and growth as bone-implanted xenograft tumors and reduced the cancer stem cell and epithelial-mesenchymal transition marker expression. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.
Collapse
Affiliation(s)
- Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhopal C Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Incyte Corporation, Wilmington, DE, USA
| | - Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siddhartha Kumar
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Wangbin Wu
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Micah Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subodh M Lele
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Leah M Cook
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
- Incyte Corporation, Wilmington, DE, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Bhat AM, Mohapatra BC, Luan H, Mushtaq I, Chakraborty S, Kumar S, Wu W, Nolan B, Dutta S, Stock MD, Schott M, Meza JL, Lele SM, Lin MF, Cook LM, Corey E, Morrissey C, Coulter DW, Rowley J, Natarajan A, Datta K, Band V, Band H. GD2 and its biosynthetic enzyme GD3 synthase promote tumorigenesis in prostate cancer by regulating cancer stem cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.18.533299. [PMID: 36993422 PMCID: PMC10055271 DOI: 10.1101/2023.03.18.533299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored. Here, we show that GD2 is expressed in a small subpopulation of PC cells in a subset of patients and a higher proportion of metastatic tumors. Variable levels of cell surface GD2 expression were seen on many PC cell lines, and the expression was highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction was enriched upon growth of PC cells as tumorspheres and GD2high fraction was enriched in tumorsphere-forming ability. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2high CRPC cell models markedly impaired the in vitro oncogenic traits and growth as bone-implanted xenograft tumors and reduced the cancer stem cell (CSC) and epithelial-mesenchymal transition (EMT) marker expression. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.
Collapse
|
3
|
Butler W, Huang J. Glycosylation Changes in Prostate Cancer Progression. Front Oncol 2021; 11:809170. [PMID: 35004332 PMCID: PMC8739790 DOI: 10.3389/fonc.2021.809170] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate Cancer (PCa) is the most commonly diagnosed malignancy and second leading cause of cancer-related mortality in men. With the use of next generation sequencing and proteomic platforms, new biomarkers are constantly being developed to both improve diagnostic sensitivity and specificity and help stratify patients into different risk groups for optimal management. In recent years, it has become well accepted that altered glycosylation is a hallmark of cancer progression and that the glycan structures resulting from these mechanisms show tremendous promise as both diagnostic and prognostic biomarkers. In PCa, a wide range of structural alterations to glycans have been reported such as variations in sialylation and fucosylation, changes in branching, altered levels of Lewis and sialyl Lewis antigens, as well as the emergence of high mannose "cryptic" structures, which may be immunogenic and therapeutically relevant. Furthermore, aberrant expression of galectins, glycolipids, and proteoglycans have also been reported and associated with PCa cell survival and metastasis. In this review, we discuss the findings from various studies that have explored altered N- and O-linked glycosylation in PCa tissue and body fluids. We further discuss changes in O-GlcNAcylation as well as altered expression of galectins and glycoconjugates and their effects on PCa progression. Finally, we emphasize the clinical utility and potential impact of exploiting glycans as both biomarkers and therapeutic targets to improve our ability to diagnose clinically relevant tumors as well as expand treatment options for patients with advanced disease.
Collapse
Affiliation(s)
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
4
|
Mastelić A, Čikeš Čulić V, Režić Mužinić N, Vuica-Ross M, Barker D, Leung EY, Reynisson J, Markotić A. Glycophenotype of breast and prostate cancer stem cells treated with thieno[2,3- b]pyridine anticancer compound. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:759-769. [PMID: 28352152 PMCID: PMC5359006 DOI: 10.2147/dddt.s121122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor progression may be driven by a small subpopulation of cancer stem cells (CSCs characterized by CD44+/CD24− phenotype). We investigated the influence of a newly developed thienopyridine anticancer compound (3-amino-5-oxo-N-naphthyl-5,6,7, 8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide, 1) on the growth, survival and glycophenotype (CD15s and GM3 containing neuraminic acid substituted with acetyl residue, NeuAc) of breast and prostate cancer stem/progenitor-like cell population. MDA-MB-231 and Du-145 cells were incubated with compound 1 alone or in combination with paclitaxel. The cellular metabolic activity was determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The type of cell death induced by 48-h treatment was assessed using a combination of Annexin-V-FITC and propidium iodide staining. Flow cytometric analysis was performed to detect the percentage of CD44+/CD24− cells, and GM3 and CD15s positive CSCs, as well as the expression of GM3 and CD15s per one CSC, in both cell lines. Compound 1 produces a dose- and time-dependent cytotoxicity, mediated mainly by apoptosis in breast cancer cells, and slightly (2.3%) but statistically significant lowering breast CSC subpopulation. GM3 expression per one breast CSC was increased, and the percentage of prostate GM3+ CSC subpopulation was decreased in cells treated with compound 1 compared with non-treated cells. The percentage of CD15s+ CSCs was lower in both cell lines after treatment with compound 1. Considering that triple-negative breast cancers are characterized by an increased percentage of breast CSCs and knowing their association with an increased risk of metastasis and mortality, compound 1 is a potentially effective drug for triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Angela Mastelić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Milena Vuica-Ross
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David Barker
- School of Chemical Sciences, The University of Auckland
| | - Euphemia Y Leung
- Auckland Cancer Society Research Centre, The University of Auckland; Molecular Medicine and Pathology Department, The University of Auckland, Auckland, New Zealand
| | | | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
5
|
Hernández AM, Rodríguez-Zhurbenko N. Detection of Naturally Occurring Human Antibodies Against Gangliosides by ELISA. Methods Mol Biol 2017; 1643:179-186. [PMID: 28667538 DOI: 10.1007/978-1-4939-7180-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Natural antibodies against gangliosides have been detected not only in cancer patients but also in healthy donors. The presence of these antibodies can be used as diagnostic or prognostic factor. However, these responses are difficult to detect because anti-ganglioside antibodies are usually of IgM isotype and low affinity. Enzyme Linked Immunosorbent Assay (ELISA) is an immunoassay based on the specific binding of antibodies to antigens bound to a solid phase. These antigens can be glycolipids like gangliosides. An enzyme linked to the last reactant allows the detection of specific binding through the development of color after the addition of a suitable substrate. ELISA combines the specificity of antibodies with the sensitivity of enzyme reactions. The ELISA method described herein can be used to detect antibody responses against gangliosides not only related to cancer but also to autoimmune diseases and infections, both in healthy donors, and patients, untreated or receiving specific immunotherapy.
Collapse
|
6
|
Whole-Cell Cancer Vaccines Induce Large Antibody Responses to Carbohydrates and Glycoproteins. Cell Chem Biol 2016; 23:1515-1525. [PMID: 27889407 DOI: 10.1016/j.chembiol.2016.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/21/2016] [Accepted: 10/21/2016] [Indexed: 12/18/2022]
Abstract
Whole-cell cancer vaccines are a promising strategy for treating cancer, but the characteristics of a favorable immune response are not fully understood. New insights could enable development of better vaccines, discovery of new antigens, and identification of biomarkers of efficacy. Using glyco-antigen microarrays, we demonstrate that GVAX Pancreas (a granulocyte macrophage colony-stimulating factor-modified whole-cell tumor vaccine) induces large immunoglobulin G and immunoglobulin M responses to many antigens, including tumor-associated carbohydrates, blood group antigens, α-Gal, and bovine fetuin. Antibody responses to α-Gal, a glycan found in fetal bovine serum (FBS) used to produce the vaccine, correlated inversely with overall survival and appear to compete with productive responses to the vaccine. H1299 lysate vaccine, produced with FBS, also induced responses to α-Gal and fetuin but not K562-GM, which is produced in serum-free medium. Our results provide new potential biomarkers to evaluate productive/unproductive immune responses and suggest that removal/reduction of FBS could improve the efficacy of whole-cell vaccines.
Collapse
|
7
|
Li Z, Ma YY, Wang J, Zeng XF, Li R, Kang W, Hao XK. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther 2015; 9:139-48. [PMID: 26770063 PMCID: PMC4706124 DOI: 10.2147/ott.s95565] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Novel biomarkers for the diagnosis of prostate cancer (PCa) are urgently required. Increasing evidence suggests that exosomal microRNAs (miRNAs or miRs) in serum may be potential noninvasive biomarkers for certain diseases. The objective of the present study was to investigate and assess whether exosomal miR-141 is an effective biomarker for human PCa. METHODS In the present study, exosomes were isolated from the serum of patients with PCa, patients with benign prostate hyperplasia (BPH), and healthy volunteers. The total RNA was extracted from the exosomes and the level of miR-141 was analyzed by quantitative reverse transcription-polymerase chain reaction. The expression levels of miR-141 were compared between the whole serum and the serum exosomes of the three groups. Subsequently, the relevance of the exosomal expression of miR-141 to the clinicopathological factors in PCa was investigated. RESULTS The expression of miR-141 was higher in exosomes compared with whole serum (control group, P=0.0003; BPH group, P=0.0016; PCa group, P<0.0001). The level of serum exosomal miR-141 was significantly higher in the patients with PCa compared with the patients with BPH and the healthy controls (3.85-fold, P=0.0007 and 4.06-fold, P=0.0005, respectively). In addition, the expression levels were significantly higher in metastatic PCa compared with localized PCa (P<0.0001). Receiver-operating characteristic curve revealed that the serum exosomal miR-141 yielded an area under the curve of 0.8694, with 80% sensitivity and 87.1% specificity in discriminating patients with metastatic PCa from the patients with localized PCa. CONCLUSION Serum exosomes may serve as a more suitable material compared with the whole serum for measuring circulating miR-141 levels in patients with PCa. Exosomal miR-141 is upregulated in the serum from patients with PCa compared with patients with BPH or the healthy volunteers, and it may be a useful potential biomarker for the diagnosis of metastatic PCa.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China; Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yue-Yun Ma
- Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Juan Wang
- Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xian-Fei Zeng
- Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Rui Li
- Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Wei Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Ke Hao
- Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
8
|
Rivas-Serna IM, Polakowski R, Shoemaker GK, Mazurak VC, Clandinin MT. Profiling gangliosides from milk products and other biological membranes using LC/MS. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
de Aquino MTP, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 2015; 166:117-33. [PMID: 26096822 PMCID: PMC4499494 DOI: 10.1016/j.imlet.2015.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signalling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer.
Collapse
Affiliation(s)
- Maria Teresa P de Aquino
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anshu Malhotra
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; Tumor-Host Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Drake RR, Jones EE, Powers TW, Nyalwidhe JO. Altered glycosylation in prostate cancer. Adv Cancer Res 2015; 126:345-82. [PMID: 25727153 DOI: 10.1016/bs.acr.2014.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostate cancer is annually the most common newly diagnosed cancer in men. The prostate functions as a major secretory gland for the production of glycoproteins critical to sperm activation and reproduction. Prostate-specific antigen (PSA), produced by the prostate, is one of the most commonly assayed glycoproteins in blood, serving as a biomarker for early detection and progression of prostate cancer. The single site of N-glycosylation on PSA has been the target of multiple glycan characterization studies. In this review, the extensive number of studies that have characterized the changes in O-linked and N-linked glycosylations associated with prostate cancer development and progression will be summarized. This includes analysis of the glycosylation of PSA, and other prostate glycoproteins, in tissues, clinical biofluids, and cell line models. Other studies are summarized in the context of understanding the complexities of these glycan changes in order to address the many confounding questions associated with prostate cancer, as well as efforts to improve prostate cancer biomarker assays using targeted glycomic-based strategies.
Collapse
Affiliation(s)
- Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - E Ellen Jones
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thomas W Powers
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Julius O Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
11
|
Kieber-Emmons T, Saha S, Pashov A, Monzavi-Karbassi B, Murali R. Carbohydrate-mimetic peptides for pan anti-tumor responses. Front Immunol 2014; 5:308. [PMID: 25071769 PMCID: PMC4075079 DOI: 10.3389/fimmu.2014.00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/17/2014] [Indexed: 11/26/2022] Open
Abstract
Molecular mimicry is fundamental to biology and transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience examining the immunological aspects and implications of carbohydrate-peptide mimicry. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor-associated carbohydrate antigens, and the notion of reverse engineering to develop carbohydrate-mimetic peptides in vaccine design strategies to induce responses to glycan antigens expressed on cancer cells.
Collapse
Affiliation(s)
- Thomas Kieber-Emmons
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Somdutta Saha
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anastas Pashov
- Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Behjatolah Monzavi-Karbassi
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ramachandran Murali
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
12
|
Androgen-regulated transcriptional control of sialyltransferases in prostate cancer cells. PLoS One 2012; 7:e31234. [PMID: 22347453 PMCID: PMC3275626 DOI: 10.1371/journal.pone.0031234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/04/2012] [Indexed: 01/09/2023] Open
Abstract
The expression of gangliosides is often associated with cancer progression. Sialyltransferases have received much attention in terms of their relationship with cancer because they modulate the expression of gangliosides. We previously demonstrated that GD1a production was high in castration-resistant prostate cancer cell lines, PC3 and DU145, mainly due to their high expression of β-galactoside α2,3-sialyltransferase (ST3Gal) II (not ST3Gal I), and the expression of both ST3Gals was regulated by NF-κB, mainly by RelB. We herein demonstrate that GD1a was produced in abundance in cancerous tissue samples from human patients with hormone-sensitive prostate cancers as well as castration-resistant prostate cancers. The expression of ST3Gal II was constitutively activated in castration-resistant prostate cancer cell lines, PC3 and DU145, because of the hypomethylation of CpG island in its promoter. However, in androgen-depleted LNCap cells, a hormone-sensitive prostate cancer cell line, the expression of ST3Gal II was silenced because of the hypermethylation of the promoter region. The expression of ST3Gal II in LNCap cells increased with testosterone treatment because of the demethylation of the CpG sites. This testosterone-dependent ST3Gal II expression was suppressed by RelB siRNA, indicating that RelB activated ST3Gal II transcription in the testosterone-induced demethylated promoter. Therefore, in hormone-sensitive prostate cancers, the production of GD1a may be regulated by androgen. This is the first report indicating that the expression of a sialyltransferase is transcriptionally regulated by androgen-dependent demethylation of the CpG sites in its gene promoter.
Collapse
|
13
|
Kawamura S, Sato I, Wada T, Yamaguchi K, Li Y, Li D, Zhao X, Ueno S, Aoki H, Tochigi T, Kuwahara M, Kitamura T, Takahashi K, Moriya S, Miyagi T. Plasma membrane-associated sialidase (NEU3) regulates progression of prostate cancer to androgen-independent growth through modulation of androgen receptor signaling. Cell Death Differ 2011; 19:170-9. [PMID: 21681193 DOI: 10.1038/cdd.2011.83] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Prostate cancers generally become androgen-independent and resistant to hormone therapy with progression. To understand the underlying mechanisms and facilitate the development of novel treatments for androgen-independent prostate cancer, we have investigated plasma membrane-associated sialidase (NEU3), the key enzyme for ganglioside hydrolysis participating in transmembrane signaling. We have discovered NEU3 to be upregulated in human prostate cancer compared with non-cancerous tissue, correlating with the Gleason score. NEU3 silencing with siRNA in prostate cancer PC-3 and LNCaP cells resulted in increased expression of differentiation markers and in cell apoptosis, but decrease in Bcl-2 as well as a progression-related transcription factor, early growth response gene (EGR-1). In androgen-sensitive LNCaP cells, forced overexpression of NEU3 significantly induced expression of EGR-1, androgen receptor (AR) and PSA both with and without androgen, the cells becoming sensitive to androgen. The NEU3-mediated induction was abrogated by inhibitors for PI-3 kinase and MAP kinase and more specifically by their silencing in the absence of androgen, being confirmed by increased phosphorylation of AKT and ERK1/2 in NEU3 overexpressing cells. NEU3 siRNA introduction caused reduction of cell growth of an androgen-independent PC-3 cells in culture and of transplanted tumors in nude mice. These data suggest that NEU3 regulates tumor progression through AR signaling, and thus be a potential tool for diagnosis and therapy of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- S Kawamura
- Department of Urology, Miyagi Cancer Center, Natori, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hatano K, Miyamoto Y, Nonomura N, Kaneda Y. Expression of gangliosides, GD1a, and sialyl paragloboside is regulated by NF-κB-dependent transcriptional control of α2,3-sialyltransferase I, II, and VI in human castration-resistant prostate cancer cells. Int J Cancer 2011; 129:1838-47. [PMID: 21165949 DOI: 10.1002/ijc.25860] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/02/2010] [Indexed: 11/09/2022]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are associated with tumor malignancy and progression. Among the enzymes required for the production of gangliosides, sialyltransferases have received much attention in terms of their relationship with cancer. In our previous report, ganglioside GD1a and sialyl paragloboside (SPG), a neolacto-series ganglioside, were much more abundant in PC3 and DU145 cells, castration-resistant prostate cancer cells, as compared with hormone-sensitive prostate cancer cells and normal prostate epithelium. GD1a is synthesized from GM1 by α2,3 sialyltransferase (ST3Gal) I and mainly by ST3Gal II. The enzyme to synthesize SPG is ST3Gal VI. The high production of GD1a and SPG in castration-resistant prostate cancer cells was correlated with the high expression of ST3Gal II and VI, respectively. The expression of ST3Gal I and II was mildly induced by phorbol-12-myristate-13-acetate (PMA), and PMA-induced expression of ST3Gal I and ST3Gal II was inhibited by NF-κB decoy oligodeoxynucleotides (ODN) but not by AP-1 decoy ODN. Among the five mammalian homologs of the NF-κB family, RelB RNAi most effectively inhibited the expression of ST3Gal I and ST3Gal II. The expression of ST3Gal VI was also most effectively inhibited by RelB RNAi. The amount of GD1a and SPG was significantly reduced by RelB siRNA treatment in PC3 cells. Thus, the production of GD1a and SPG in castration-resistant prostate cancer cells was indirectly controlled by NF-κB, mainly by RelB, through the transcriptional regulation of ST3Gal I, II, and VI.
Collapse
Affiliation(s)
- Koji Hatano
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
15
|
Yonekubo Y, Wu P, Esechie A, Zhang Y, Du G. Characterization of new serum biomarkers in breast cancer using lipid microarrays. Tumour Biol 2010; 31:181-7. [PMID: 20393826 DOI: 10.1007/s13277-010-0027-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/13/2010] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is the most common form of cancer among women. Compared with other serum polypeptides, autoantibodies have many appealing features as biomarkers including sensitivity, stability, and easy detection. Anti-lipid autoantibodies are routinely used in the diagnosis of autoimmune diseases, but their potential for cancer diagnosis has not been explored. Dysregulation of cellular signaling in cancer cells would be expected to lead to irregular metabolism of many lipids, which could be sensed by the immune system and cause the production of autoantibodies. Discovery of anti-lipid antibodies could be used as biomarkers for early breast cancer diagnosis. We describe here a more sensitive and accurate method for lipid microarray detection using dual fluorescent labeling, and used it to examine global anti-lipid profiles in the MMTV-Neu transgenic breast cancer model. We conclude that, at the current technology, lipid microarray is not a preferred method for anti-lipid antibody detection in breast cancer animal models. Our result will help the future application of lipid microarrays in identifying anti-lipid autoantibodies in breast cancer and other human diseases.
Collapse
Affiliation(s)
- Yoshiya Yonekubo
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
16
|
Kawaguchi Y, Miyamoto Y, Inoue T, Kaneda Y. Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int J Cancer 2009; 124:2478-87. [PMID: 19173282 DOI: 10.1002/ijc.24234] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hormone-refractory prostate cancer is one of the intractable human cancers in the world. Here, we examined the direct tumor-killing activity of inactivated Sendai virus particle [hemagglutinating virus of Japan envelope (HVJ-E)] through induction of Type I interferon (IFN) in the hormone-resistant human prostate cancer cell lines PC3 and DU145. Preferential binding of HVJ-E to PC3 and DU145 over hormone-sensitive prostate cancer cell and normal prostate epithelium was observed, resulting in a number of fused cells. After HVJ-E treatment, a number of IFN-related genes were up-regulated, resulting in Type I IFN production in PC3 cells. Then, retinoic acid-inducible gene-I (RIG-I) helicase which activates Type I IFN expression after Sendai virus infection was up-regulated in cancer cells after HVJ-E treatment. Produced IFN-alpha and -beta enhanced caspase 8 expression via Janus kinases/Signal Transducers and Activators of Transcription pathway, activated caspase 3 and induced apoptosis in cancer cells. When HVJ-E was directly injected into a mass of PC3 tumor cells in SCID (severe combined immunodeficiency) mice, a marked reduction in the bulk of each tumor mass was observed and 85% of the mice became tumor-free. Although co-injection of an anti-asialo GM1 antibody with HVJ-E into each tumor mass slightly attenuated the tumor suppressive activity of HVJ-E, significant suppression of tumor growth was observed even in the presence of anti-asialo GM1 antibody. This suggests that natural killer cell activation made small contribution to tumor regression following HVJ-E treatment in hormone-resistant prostate cancer model in vivo. Thus, HVJ-E effectively targets hormone-resistant prostate cancer by inducing apoptosis in tumor cells, as well as activating anti-tumor immunity.
Collapse
Affiliation(s)
- Yoshifumi Kawaguchi
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
17
|
Newsom-Davis TE, Wang D, Steinman L, Chen PFT, Wang LX, Simon AK, Screaton GR. Enhanced immune recognition of cryptic glycan markers in human tumors. Cancer Res 2009; 69:2018-25. [PMID: 19223535 DOI: 10.1158/0008-5472.can-08-3589] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal glycosylation is one of the hallmarks of the cancer cell and is associated with tumor invasion and metastasis. The development of tumor-associated carbohydrate antigen (TACA) vaccines has been problematic due to poor immunogenicity. However, when appropriate targets can be identified, passive immunization with monoclonal antibodies (mAbs) directed against TACAs has been shown to have antitumor activity. Fas ligand (FasL) is a transmembrane protein that induces apoptosis in cells expressing its receptor, Fas. When grafted into mice, FasL-expressing tumor cells break immunologic tolerance to self-antigens and induce antibody-mediated tumor immunity. Here, five IgM mAbs were produced from mice vaccinated with FasL-expressing B16F10 mouse melanoma cells. They recognize various syngeneic and allogeneic murine tumor cell lines. One mAb, TM10, recognizes a range of human tumor cell lines, including melanoma, prostate, and ovarian cancer. It does not bind to untransformed cells. The epitopes recognized by all the mAbs were carbohydrates expressed on proteins. Using carbohydrate microarrays, the antigenic targets of TM10 were found to be high-mannose core structures of N-linked glycans. In normal cells, high-mannose clusters are hidden by extensive saccharide branching but they become exposed in cancer cells as a result of abnormal glycosylation pathways. Vaccination with FasL-expressing tumors therefore enables the immune system to break tolerance to self-antigens, allowing identification of novel TACAs that can form the basis of future humoral anticancer therapy.
Collapse
|
18
|
Ganglioside signatures of primary and nodal metastatic melanoma cell lines from the same patient. Melanoma Res 2008; 18:47-55. [PMID: 18227708 DOI: 10.1097/cmr.0b013e3282f43acf] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The primary cutaneous melanoma initially migrates to the regional lymph nodes (LNs). Human melanoma overexpresses gangliosides, the sialylglycosphingolipids. The ganglioside signatures may differ between primary and LN melanomas owing to the differences in the tumor microenvironments. The melanoma cells obtained from the primary and LN of the same patient might be useful to evaluate the above hypothesis. For this purpose, the cryopreserved cell lines from a primary cutaneous melanoma (IGR-39) and its nodal metastasis (IGR-37) from the same patient were used. We have also compared the ganglioside signatures of freshly obtained melanoma cells from primary, LN and organ metastases from different patients. Gangliosides were extracted, purified and identified by resorcinol and specific murine monoclonal antibodies. Comparison of the primary cell line with the nodal metastatic line obtained from the same patient distinctly showed the following features: (i) an increased production of gangliosides, (ii) O-acetylation of GM2 and GD3, (iii) an increased and altered O-acetylation of GD2 and (iv) possibly de-N-acetylation of GD3. These findings suggest that the nodal microenvironment might favor activation of O-acetyl-transferases capable of O-acetylating both alpha2, 3 and alpha2, 8 sialic acids of gangliosides. Supporting this, the primary melanoma cells obtained from different patients, showed no O-acetylation of GD3 or GD2. The cell line from groin LN showed the presence of O-acetyl (O-Ac)GD3. The cell lines from thyroid, spleen and jejunum expressed O-AcGD2. In all metastatic melanoma cell lines GD1a is more prevalent than GD3, suggesting that GD1a may be a major melanoma-ganglioside.
Collapse
|
19
|
Selvan SR, Dillman RO, Fowler AW, Carbonell DJ, Ravindranath MH. Monitoring response to treatment in melanoma patients: Potential of a serum glycomic marker. Int J Cancer 2007; 122:1374-83. [DOI: 10.1002/ijc.23155] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Ravindranath MH, Muthugounder S, Hannah MR, Morton DL. Significance of endogenous augmentation of antiganglioside IgM in cancer patients: potential tool for early detection and management of cancer therapy. Ann N Y Acad Sci 2007; 1107:212-22. [PMID: 17804549 DOI: 10.1196/annals.1381.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gangliosides expressed by solid malignancies are shed into the circulation at a rate that varies with tumor stage, burden, and progression. Gangliosides have an immunosuppressive effect; thus an increase in the total ganglioside (TG) serum level may coincide with tumor progression. However, circulating gangliosides also may induce an endogenous IgM response. Unlike conventional pentameric IgM antibodies against peptide antigens, antiganglioside IgM antibodies can be polymeric and may not have a J-chain. Because these antibodies can remove shed gangliosides from the tumor microenvironment and the circulation, therapy that actively or passively augments serum levels of IgM against tumor-derived immunosuppressive gangliosides might restore immunocompetence and thereby slow tumor progression. The success of this approach, in passive and active specific therapy of cancer patients, requires analysis of biopsy tissue or sera of therapy recipients to confirm the presence of target gangliosides, such as GM2 or GD3. A patient's response to active or passive immunotherapy against a specific ganglioside target(s) can be monitored by serial assessment of serum specimens for TG level and antiganglioside IgM titer(s). This tailored approach to immunotherapy could be incorporated in postoperative adjuvant protocols.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Department of Glycoimmunotherapy, John Wayne Cancer Institute, 2200 Santa Monica Blvd., Santa Monica, CA 90404-2302, USA.
| | | | | | | |
Collapse
|
21
|
Ravindranath MH, Yesowitch P, Sumobay C, Morton DL. Glycoimmunomics of human cancer: current concepts and future perspectives. Future Oncol 2007; 3:201-14. [PMID: 17381420 DOI: 10.2217/14796694.3.2.201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Future strategies for the treatment of human cancer require a full appreciation of the intracellular and extracellular changes that accompany neoplastic transformation. The changes may involve a variety of micro- and macro-molecules, including, but not restricted to, peptides, proteins (with sugar and/or lipid moieties), oligosaccharides, glycolipids (neutral or acidic, e.g., gangliosides), ceramides, fatty acids and other lipids. Although several therapeutic approaches have been well developed in recent years, most of the reported studies focus on proteins and peptides. Glycoantigens and lipoantigens have been neglected. Elucidation of the profiles and properties of all molecules associated with tumor progression is required to develop a successful strategy to treat human cancer. This review describes the unique immunomics of tumor-associated glycoantigens and explains why the field of glycoimmunomics may yield clinically important biomarkers and treatments for the management of human cancer.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Department of Glycoimmunotherapy, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404-2302, USA.
| | | | | | | |
Collapse
|
22
|
Monzavi-Karbassi B, Hennings LJ, Artaud C, Liu T, Jousheghany F, Pashov A, Murali R, Hutchins LF, Kieber-Emmons T. Preclinical studies of carbohydrate mimetic peptide vaccines for breast cancer and melanoma. Vaccine 2007; 25:3022-31. [PMID: 17303294 DOI: 10.1016/j.vaccine.2007.01.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Limited immune responses to tumor-associated carbohydrate antigens (TACA) are due in part to their being self-antigens. Immunization with xenoantigens of TACA provides an approach to break tolerance and augment responses to TACA. Carbohydrate mimetic peptides (CMPs) as xenoantigens can induce serum antibodies that target shared carbohydrate residues on differing carbohydrate structures. In preclinical studies, we observe that CMP immunization in mice induce immune responses that are effective in inhibiting the in vitro and in vivo growth of breast cancer and melanoma tumor cells expressing self-target antigens. CMPs of TACA can be further defined that induce IgM antibodies with broadened responses to both breast and melanoma cells. Consequently, CMPs are effective at generating a multifaceted carbohydrate-reactive immune response that should be clinically evaluated for their ability to amplify carbohydrate immune responses against circulating or disseminated tumor cells.
Collapse
Affiliation(s)
- Behjatolah Monzavi-Karbassi
- Arkansas Cancer Research Center, Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ravindranath MH, Muthugounder S, Presser N, Selvan SR, Santin AD, Bellone S, Saravanan TS, Morton DL. Immunogenic gangliosides in human ovarian carcinoma. Biochem Biophys Res Commun 2006; 353:251-8. [PMID: 17188646 DOI: 10.1016/j.bbrc.2006.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Ganglioside signatures of four poorly and three moderately differentiated ovarian epithelial cancer (OEC) cell lines reveal the presence of GM3, GM2, GD2, O-AcGD2, GD1a and GM1b. The expression of GM3, presence of GD1a and GM1b in the ascitic fluid and plasma, together with a positive correlation in the total-gangliosides levels between ascitic fluid and plasma of OEC patients support the earlier contention that the tumor-gangliosides may be released (or shed) into the tumor-microenvironment. The immunogenicity of OEC-gangliosides is determined by comparing anti-ganglioside-IgM titers in ascitic fluid (n = 14) and plasma (n = 23) of OEC-patients and age-matched healthy (n = 14). The titers were measured by ELISA. Strikingly, the level of anti-GD1a-IgM is significantly higher in ascitic fluid and plasma of patients than in the plasma of healthy volunteers. Paired sample analysis of ascitic fluid and plasma from the same patients confirmed the significant expression of anti-GD1a IgM in OEC patients, while no such difference was observed with other anti-ganglioside IgMs among different groups. The significance of the endogenous IgM response to GD1a may be to eliminate this immunosuppressive-ganglioside from the tumor-microenvironment.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Laboratory of Glycoimmunotherapy, John Wayne Cancer Institute at Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404-2302, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Low JA, Magnuson B, Tsai B, Imperiale MJ. Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 2006; 80:1361-6. [PMID: 16415013 PMCID: PMC1346969 DOI: 10.1128/jvi.80.3.1361-1366.2006] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gangliosides have been shown to be plasma membrane receptors for both murine polyomavirus and SV40, while JC virus uses serotonin receptors. In contrast, little is known of the membrane receptor and entry pathway for BK virus (BKV), which can cause severe disease in immunosuppressed bone marrow and renal transplant patients. Using sucrose flotation assays, we investigated BKV binding to and interaction with human erythrocyte membranes and determined that this interaction was dependent on a neuraminidase-sensitive, proteinase K-resistant molecule. BKV was found to interact with the gangliosides GT1b and GD1b. The terminal alpha2-8-linked disialic acid motif, present in both of these gangliosides, is likely to be important for this interaction. We also determined that the addition of GD1b and GT1b to LNCaP cells, which are normally resistant to BKV infection, made them susceptible to the virus. In addition, BKV interacted with membranes extracted from the endoplasmic reticulum (ER) and infection was blocked by the addition of brefeldin A, which interferes with transport from the ER to the Golgi apparatus. These data demonstrate that BKV uses the gangliosides GT1b and GD1b as receptors and passes through the ER on the way to the nucleus.
Collapse
Affiliation(s)
- Jonathan A Low
- Department of Microbiology and Immunology, University of Michigan Medical School, 1500 E. Medical Center Dr., 6304 Cancer Center, Ann Arbor, MI 48109-0942, USA
| | | | | | | |
Collapse
|
25
|
Imai M, Landen C, Ohta R, Cheung NKV, Tomlinson S. Complement-mediated mechanisms in anti-GD2 monoclonal antibody therapy of murine metastatic cancer. Cancer Res 2006; 65:10562-8. [PMID: 16288049 DOI: 10.1158/0008-5472.can-05-1894] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of complement in antibody therapy of cancer is in general poorly understood. We used the EL4 syngeneic mouse model of metastatic lymphoma to investigate the role of complement in immunotherapy directed against GD2, a target of clinical relevance. IgG2a and IgM anti-GD2 therapy protected EL4-challenged mice from metastases and prolonged survival. Expression of CD59, an inhibitor of direct complement-mediated cytotoxicity (CMC), effectively protected EL4 cells from CMC in vitro but did not affect the outcome of monoclonal antibody therapy. Protection by IgG therapy was also unaffected in mice deficient in C3 or complement receptor 3 (CR3) but was almost completely abrogated in FcgammaR I/III-deficient mice. These data indicate a crucial role for antibody-dependent cell-mediated cytoxicity (ADCC). However, at lower doses of IgG, therapeutic effect was partially abrogated in C3-deficient mice, indicating complement-mediated enhancement of ADCC at limiting IgG concentration. In contrast to IgG, the therapeutic effect of IgM was completely abrogated in C3-deficient mice. High level expression of CD59 on EL4 did not influence IgM therapy, suggesting IgM functions by complement-dependent cell-mediated cytotoxicity (CDCC), a mechanism thought to be inactive against tumor cells. Thus, IgG and IgM can operate via different primary mechanisms of action, and CDCC and complement-dependent enhancement of ADCC mechanisms are operative in vivo. The effects of complement can be supplemental to other antibody-mediated mechanisms and likely have increased significance at limiting antibody concentration or low antigen density.
Collapse
Affiliation(s)
- Masaki Imai
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29424, USA
| | | | | | | | | |
Collapse
|
26
|
Ravindranath MH, Muthugounder S, Saravanan TS, Presser N, Morton DL. Human Antiganglioside Autoantibodies: Validation of ELISA. Ann N Y Acad Sci 2005; 1050:229-42. [PMID: 16014538 DOI: 10.1196/annals.1313.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gangliosides have a hydrophilic sugar chain that contains antigenic determinants and a hydrophobic ceramide. In humans, gangliosides elicit a T-cell independent IgM response; antiganglioside IgM autoantibodies may be pentameric or polymeric. A correlation between specific neuropathies and antiganglioside autoantibodies has been confirmed. Although many neurologists attempt to lower titers of antiganglioside autoantibodies, oncologists are developing strategies to augment production of IgM antibodies that will remove immunosuppressive gangliosides from the circulation of patients and target gangliosides and kill tumor cells. Antiganglioside IgM antibodies can cause leakage of the blood-nerve barrier in a concentration-dependent and complement-independent manner, bind to neuronal gangliosides to create a neuromuscular block and serve as a marker of axonal damage in neuropathies such as multiple sclerosis. They are also a promising biomarker of early prostate cancer. There is a need to validate the protocol for enzyme-linked immunosorbent assay (ELISA) of antiganglioside IgM autoantibodies. This validation must consider the purity of gangliosides from different commercial sources, the coating of gangliosides onto a solid matrix in a manner that maximizes exposure of oligosaccharide epitopes to IgM paratopes, techniques to minimize background noise and eliminate nonspecific antibody binding, and carefully defined positive and negative controls. The validated protocol also must include a simple formula to estimate titers for several replicas. Finally, antibody titers must be converted to natural logs for statistical appraisal.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Laboratory of Glycoimmunotherapy, John Wayne Cancer Institute, 2200 Santa Monica Boulevard, Santa Monica, CA 90404-2302, USA.
| | | | | | | | | |
Collapse
|