1
|
Dan W, Fan Y, Wang Y, Hou T, Wei Y, Liu B, Li M, Chen J, Fang Q, Que T, Lei Y, Guo C, Wang C, Gao Y, Zeng J, Li L. The Tumor Suppressor TPD52-Governed Endoplasmic Reticulum Stress is Modulated by APC Cdc20. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405441. [PMID: 39401430 PMCID: PMC11615746 DOI: 10.1002/advs.202405441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Indexed: 12/06/2024]
Abstract
Aberrant regulation of unfolded protein response (UPR)/endoplasmic reticulum (ER) stress pathway is associated with cancer development, metastasis, and relapse, and the UPR signal transducer ATF6 has been proposed as a diagnostic and prognostic marker for many cancers. However, a causal molecular link between ATF6 activation and carcinogenesis is not established. Here, it is found that tumor protein D52 (TPD52) integrates ER stress and UPR signaling with the chaperone machinery by promoting S2P-mediated cleavage of ATF6. Although TPD52 has been generally considered as an oncogene, TPD52 is identified as a novel tumor suppressor in bladder cancer. Significantly, attenuation of the ER stress via depletion of TPD52 facilitated tumorigenesis in a subset of human carcinomas. Furthermore, the APCCdc20 E3 ligase is validated as the upstream regulator marking TPD52 for polyubiquitination-mediated proteolysis. In addition, inactivation of Cdc20 sensitized cancer cells to treatment with the ER stress inducer in a TPD52-dependent manner. Thus, the study suggests that TPD52 is a novel Cdc20 substrate that may modulate ER stress to prevent tumorigenesis.
Collapse
|
2
|
Lai HH, Jeng KS, Huang CT, Chu AJ, Her GM. Heightened TPD52 linked to metabolic dysfunction and associated abnormalities in zebrafish. Arch Biochem Biophys 2024; 761:110166. [PMID: 39349129 DOI: 10.1016/j.abb.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The tumor protein D52 (TPD52) gene encodes a proto-oncogene protein associated with various medical conditions, including breast and prostate cancers. It plays a role in multiple biological pathways such as cell growth, differentiation, and apoptosis. The function of TPD52 in lipid droplet biosynthesis has been investigated in vitro. However, its precise role in lipid metabolism in animal models is not fully understood. To investigate the functions of TPD52 in vivo, we performed a conditional TPD52 protein expression analysis using a Tet-off transgenic system to establish conditionally expressed Tpd52 transgenic zebrafish. The effect of Tpd52 on lipogenesis was assessed using various methods, including whole-mount Oil Red O staining, histological examination, and measurement of inflammatory markers and potential targets using real-time quantitative polymerase chain reaction and immunoblotting in Tpd52 fish. Zebrafish with increased Tpd52 levels exhibited notable weight gain and the enlargement of fat deposits, which were mainly attributed to an increase in the volume of adipocytes. Moreover, Tpd52 overexpression was correlated with the triggering of the adipocyte differentiation signaling pathway. During adipocytic differentiation in response to nutrient status, our observations revealed adipogenesis, nonalcoholic fatty liver disease, and metabolic cardiomyopathy (MCM) in Tpd52 transgenic zebrafish. To gain a deeper understanding of the contribution of these proteins to the regulation of cellular growth, we investigated the expression of their corresponding genes and proteins in zebrafish. In the present study, the activated protein kinase pathway was identified as the primary target of TPD52. Adult Tpd52 zebrafish showed increased lipid accumulation, resulting in the development of visceral obesity, nonalcoholic fatty liver disease, and MCM. These findings strongly suggest that TPD52 actively contributes to adipose tissue expansion and its subsequent effects. This investigation provides compelling evidence that Tpd52 facilitates adipocyte development and related metabolic comorbidities in zebrafish.
Collapse
Affiliation(s)
- Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - Chung-Tsui Huang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - An-Ju Chu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
3
|
Kumar V, Tomar AK, Thapliyal A, Yadav S. Proteomics and Bioinformatics Investigations Link Overexpression of FGF8 and Associated Hub Genes to the Progression of Ovarian Cancer and Poor Prognosis. Biochem Res Int 2024; 2024:4288753. [PMID: 39309198 PMCID: PMC11415250 DOI: 10.1155/2024/4288753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 08/10/2024] [Indexed: 09/25/2024] Open
Abstract
Ovarian cancer's asymptomatic nature, high recurrence rate, and resistance to platinum-based chemotherapy highlight the need to find and characterize new diagnostic and therapeutic targets. While prior studies have linked aberrant expression of fibroblast growth factor 8 (FGF8) to various cancer types, its precise role has remained elusive. Recently, we observed that FGF8 silencing reduces the cancer-promoting properties of ovarian cancer cells, and thus, this study aimed to understand how FGF8 regulates the development of ovarian cancer. LC-MS/MS-based quantitative proteomics analysis identified 418 DEPs, and most of them were downregulated in FGF8-silenced ovarian cancer cells. Many of these DEPs are associated with cancer progression and unfavorable prognosis. To decipher the biological significance of DEPs, bioinformatics analyses encompassing gene ontology, pathway analysis, protein-protein interaction networks, and expression analysis of hub genes were carried out. Hub genes identified in the FGF8 protein network were upregulated in ovarian cancer compared to controls and were linked to poor prognosis. Subsequently, the expression of hub genes was correlated with patient survival and regulation of the tumor microenvironment. Conclusively, FGF8 and associated hub genes help in the progression of ovarian cancer, and their overexpression may lead to higher immune infiltration, poor prognosis, and poor survival.
Collapse
Affiliation(s)
- Vikrant Kumar
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Anil Kumar Tomar
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Ayushi Thapliyal
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Savita Yadav
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| |
Collapse
|
4
|
Gupta S, Prem R, Sethy C, Shrivastava S, Singh M, Yadav P, Huddar VG, Prajapati PK, Roy A, Sundd M, Patel AK. Exploring Anticancer Properties of Medicinal Plants against Breast Cancer by Downregulating Human Epidermal Growth Factor Receptor 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9717-9734. [PMID: 38624258 DOI: 10.1021/acs.jafc.3c07565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Sunny Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashima Prem
- National Institute of Immunology, New Delhi 110067, India
| | - Chinmayee Sethy
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Saurabh Shrivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manju Singh
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Pramod Yadav
- All India Institute of Ayurveda Delhi, New Delhi 110076, India
| | - V G Huddar
- All India Institute of Ayurveda Delhi, New Delhi 110076, India
| | - P K Prajapati
- All India Institute of Ayurveda Delhi, New Delhi 110076, India
| | - Anita Roy
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Monica Sundd
- National Institute of Immunology, New Delhi 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
5
|
Bright RK. Preclinical support for tumor protein D52 as a cancer vaccine antigen. Hum Vaccin Immunother 2023; 19:2273699. [PMID: 37904517 PMCID: PMC10760363 DOI: 10.1080/21645515.2023.2273699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Overexpressed tumor-associated antigens (TAAs) are a large group that includes proteins found at increased levels in tumors compared to healthy cells. Universal tumor expression can be defined as overexpression in all cancers examined as has been shown for Tumor Protein D52. TPD52 is an over expressed TAA actively involved in transformation, leading to increased proliferation and metastasis. TPD52 overexpression has been demonstrated in many human adult and pediatric malignancies. The murine orthologue of TPD52 (mD52) parallels normal tissue expression patterns and known functions of human TPD52 (hD52). Here in we present our preclinical studies over the past 15 years which have demonstrated that vaccine induced immunity against mD52 is effective against multiple cancers in murine models, without inducing autoimmunity against healthy tissues and cells.
Collapse
Affiliation(s)
- Robert K. Bright
- Department of Immunology and Molecular Microbiology, School of Medicine and Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
6
|
Khilar P, Sruthi KK, Parveen SMA, Natani S, Jadav SS, Ummanni R. AMPK targets a proto-oncogene TPD52 (isoform 3) expression and its interaction with LKB1 suppress AMPK-GSK3β signaling axis in prostate cancer. J Cell Commun Signal 2023; 17:957-974. [PMID: 37040029 PMCID: PMC10409946 DOI: 10.1007/s12079-023-00745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/26/2023] [Indexed: 04/12/2023] Open
Abstract
Tumor protein D52 (TPD52) is a proto-oncogene overexpressed in prostate cancer (PCa) due to gene amplification and it is involved in the cancer progression of many cancers including PCa. However, the molecular mechanisms underlying the role of TPD52 in cancer progression are still under investigation. In this study, we report that the activation of AMP-activated protein kinase (AMPK) by AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide) inhibited the LNCaP and VCaP cells growth by silencing TPD52 expression. Activation of AMPK inhibited the proliferation and migration of LNCaP and VCaP cells. Interestingly, AICAR treatment to LNCaP and VCaP cells led to the downregulation of TPD52 via activation of GSK3β by a decrease of inactive phosphorylation at Ser9. Moreover, in AICAR treated LNCaP cells, inhibition of GSK3β by LiCl attenuated downregulation of TPD52 indicating that AICAR acts via GSK3β. Furthermore, we found that TPD52 interacts with serine/threonine kinase 11 or Liver kinase B1 (LKB1) a known tumor suppressor and an upstream kinase for AMPK. The molecular modeling and MD simulations indicates that the interaction between TPD52 and LKB1 leads to inhibition of the kinase activity of LKB1 as its auto-phosphorylation sites were masked in the complex. Consequently, TPD52-LKB1 interaction may lead to inactivation of AMPK. Moreover, overexpression of TPD52 is found to be responsible for the reduction of pLKB1 (Ser428) and pAMPK (Thr172). Therefore, TPD52 may be playing its oncogenic role via suppressing the AMPK activation. Altogether, our results revealed a new mechanism of PCa progression in which TPD52 overexpression inhibits AMPK activation by interacting with LKB1. These results support that the use of AMPK activators and/or small molecules that could disrupt the TPD52-LKB1 interaction might be useful to suppress PCa cell growth. TPD52 interacts LKB1 and interfere with activation of AMPK in PCa cells.
Collapse
Affiliation(s)
- Priyanka Khilar
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K K Sruthi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakkarai Mohamed Asha Parveen
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sirisha Natani
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Surender Singh Jadav
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Kamal AHM, Chakrabarty JK, Chowdhury SM. Lipopolysaccharide and statin-mediated immune-responsive protein networks revealed in macrophages through affinity purification spacer-arm controlled cross-linking (AP-SPACC) proteomics. Mol Omics 2023; 19:48-59. [PMID: 36377691 DOI: 10.1039/d2mo00224h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toll-like receptor 4 (TLR4), a pattern recognition receptor, is activated by lipopolysaccharides (LPS) and induces the MyD88 pathway, which subsequently produces pro-inflammatory cytokines through activation of transcriptional nuclear factor (NF)-κB. Statins have been widely prescribed to reduce cholesterol synthesis for patients with cardiovascular disease. Statins may have pleiotropic effects, which include anti- and pro-inflammatory effects on cells. The molecular mechanism of the sequential influence of LPS and statin on the innate immune system remains unknown. We employed affinity purification-spacer-arm controlled cross-linking (AP-SPACC) MS-based proteomics analysis to identify the LPS- and statin-LPS-responsive proteins and their networks. LPS-stimulated RAW 264.7 macrophage cells singly and combined with the drug statin used in this study. Two chemical cross-linkers with different spacer chain lengths were utilized to stabilize the weak and transient interactors. Proteomic analysis identified 1631 differentially expressed proteins. We identified 151 immune-response proteins through functional enrichment analysis and visualized their interaction networks. Selected candidate protein-coding genes were validated, specifically squamous cell carcinoma antigens recognized by T cells 3, sphingosine-1-phosphate lyase 1, Ras-related protein Rab-35, and tumor protein D52 protein-coding genes through transcript-level expression analysis. The expressions of those genes were significantly increased upon statin treatment and decreased in LPS-stimulated macrophage cells. Therefore, we presumed that the expression changes of genes occurred due to immune response during activation of inflammation. These results highlight the immune-responsive proteins network, providing a new platform for novel investigations and discovering future therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, 76019, USA. .,Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Metabolomics Core, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jayanta K Chakrabarty
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, 76019, USA. .,Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY, 10027, USA
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, 76019, USA.
| |
Collapse
|
8
|
Elizondo CR, Bright JD, Bright RK. Vaccination with a shared oncogenic tumor-self antigen elicits a population of CD8+ T cells with a regulatory phenotype. Hum Vaccin Immunother 2022; 18:2108656. [PMID: 36069634 PMCID: PMC9746449 DOI: 10.1080/21645515.2022.2108656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy is a powerful tool for inducing antigen-specific antitumor cytotoxic T lymphocytes (CTLs). Next-generation strategies may include vaccination against overexpressed oncogenic tumor-self antigens. Previously, we reported vaccination against the oncogenic tumor-self antigen D52 (D52) was effective in preventing tumor growth. We recently reported that D52-vaccinated IL-10-deficient mice generated a significant memory response against tumor recurrence compared to wild-type mice and that vaccine-induced CD8+ IL-10+ T cells may possess regulatory function. Herein, we extended these studies by testing the hypothesis that D52-vaccine-elicited CD8+ IL-10+ T cells represent a distinct T cell population with a regulatory phenotype. C57Black/6J mice deficient in IL-10 or IFN-γ were vaccinated with the murine orthologue of D52; vaccination of wild-type (wt) mice served as a control for comparison. T cells were isolated from all three groups of vaccinated mice, and RNA was extracted from purified CD8+ T cells for deep sequencing and expression analysis. Chemokine receptor 8 (CCR8) and inducible co-stimulator (ICOS) were overexpressed in CD8+ T cells that produced IL-10 but not IFN-γ. These surface markers are associated with IL-10 producing CD4+ T regulatory cells thus supporting the possibility that CD8+ IL-10+ T cells elicited by D52 vaccination represent a unique regulatory T cell subset. The current phenotypic analyses of D52 vaccine elicited CD8+ T cells strengthen our premise that CD8+ IL-10+ T cells elicited by D52 tumor-self protein vaccination likely contribute to the suppression of memory CTL responses and inhibition of durable tumor immunity.
Collapse
Affiliation(s)
- C. Riccay Elizondo
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jennifer D. Bright
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert K. Bright
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
9
|
The Antitumor Effect of TPD52L2 Silencing on Oxaliplatin-Resistant Gastric Carcinoma Is Related to Endoplasmic Reticulum Stress In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4451178. [PMID: 35087592 PMCID: PMC8789433 DOI: 10.1155/2022/4451178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Tumor protein D52-like 2 or simply TPD52L2 belongs to the TPD52 family which has been implicated in a variety of human carcinomas. However, the TPD52L2 function in the gastric carcinoma oxaliplatin (OXA) resistance remains elusive. The main objective of this study is to evaluate the TPD52L2 effect in OXA-resistant gastric carcinoma cells in vitro. Oxaliplatin-resistant gastric carcinoma cells were generated in MGC-803 and SGC-7901 cells. siRNA-mediated knockdown of TPD52L2 was investigated in OXA-resistant MGC-803-OXA and SGC-7901-OXA cells. qRT-PCR was performed to assess the expression level of TPD52L2 mRNA. TPD52L2 protein expression level, apoptosis, and endoplasmic reticulum (ER) stress-associated proteins were identified via immunoblotting analysis. MTT assay was conducted for the evaluation of cell viability, while colony-forming activity was carried out via crystal violet staining. SGC-7901-OXA and MGC-803-OXA cells were found to be more resistant to OXA, as compared to the parental cell lines. The expression of TPD52L2 was found to be upregulated in OXA-resistant cells. Knockdown of TPD52L2 suppressed cell colony-forming potency, cell growth, and development in OXA-resistant cells. TPD52L2 knockdown also enhanced the PARP and caspase-3 cleavage. ER-associated proteins such as PERK, GRP78, CHOP, and IRE1α were found to be elevated in TPD52L2 knockdown cells. ER stress might be involved in TPD52L2 knockdown-induced apoptosis in OXA-resistant gastric carcinoma cells.
Collapse
|
10
|
Yuan J, Jiang X, Lan H, Zhang X, Ding T, Yang F, Zeng D, Yong J, Niu B, Xiao S. Multi-Omics Analysis of the Therapeutic Value of MAL2 Based on Data Mining in Human Cancers. Front Cell Dev Biol 2022; 9:736649. [PMID: 35111745 PMCID: PMC8803135 DOI: 10.3389/fcell.2021.736649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have reported that T-cell differentiation protein 2 (MAL2) is an important regulator in cancers. Here, we downloaded data from multiple databases to analyze MAL2 expression and function in pan-cancers, especially in ovarian cancer (OC). Gene Expression Profiling Interactive Analysis (GEPIA) databases was used to examine MAL2 expression in 13 types of cancer. Kaplan–Meier plotter database was used to analyze the overall survival rate of MAL2 in pan-cancers. The Catalog of Somatic Mutations in Cancer (COSMIC), cBioPortal, and UCSC databases were used to examine MAL2 mutation in human cancers. Metascape, STRING, and GeneMANIA websites were used to explore MAL2 function in OC. Furthermore, ggplot2 package and ROC package were performed to analyze hub gene expression and undertake receiver operating characteristic (ROC) analysis. Drug sensitivity of MAL2 in OC was examined by the GSCALite database. In order to verify the results from databases above, real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting were conducted to detect the expression of MAL2 in OC cells. CRISPR/Cas9 system was used to knockout the MAL2 gene in the OC cell lines HO8910 and OVCAR3, using specific guide RNA targeting the exons of MAL2. Then, we performed proliferation, colony formation, migration, and invasion assays to investigate the impact of MAL2 in OC cell lines in vivo and in vitro. Epithelial-mesenchymal transition (EMT)-associated biomarkers were significantly altered in vitro via western blotting and qRT-PCR. Taken together, we observed that MAL2 was remarkably dysregulated in multiple cancers and was related to patient overall survival (OS), mutation, and drug sensitivity. Furthermore, experimental results showed that MAL2 deletion negatively regulated the proliferation, migration, invasion, and EMT of OC, indicating that MAL2 is a novel oncogene that can activate EMT, significantly promote both the proliferation and migration of OC in vitro and in vivo, and provide new clues for treatment strategies.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Jiang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Zhang
- School of Life Science and Technology, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Tianyi Ding
- School of Life Science and Technology, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Fan Yang
- School of Life Science and Technology, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Da Zeng
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Yong
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Beibei Niu
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Beibei Niu, ; Songshu Xiao,
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Beibei Niu, ; Songshu Xiao,
| |
Collapse
|
11
|
Abe Y, Mukudai Y, Kurihara M, Houri A, Chikuda J, Yaso A, Kato K, Shimane T, Shirota T. Tumor protein D52 is upregulated in oral squamous carcinoma cells under hypoxia in a hypoxia-inducible-factor-independent manner and is involved in cell death resistance. Cell Biosci 2021; 11:122. [PMID: 34217360 PMCID: PMC8255020 DOI: 10.1186/s13578-021-00634-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background Tumor protein D52 (TPD52) reportedly plays an important role in the proliferation and metastasis of various cancer cells, including oral squamous cell carcinoma (OSCC) cells, and is expressed strongly at the center of the tumor, where the microenvironment is hypoxic. Thus, the present study investigated the roles of TPD52 in the survival and death of OSCC cells under hypoxia, and the relationship with hypoxia-inducible factor (HIF). We examined the expression of TPD52 in OSCC cells under hypoxic conditions and analyzed the effects of HIF on the modulation of TPD52 expression. Finally, the combinational effects of TPD52 knockdown and HIF inhibition were investigated both in vitro and in vivo. Results The mRNA and protein levels of TPD52 increased in OSCC cells under hypoxia. However, the increase was independent of HIF transcription. Importantly, the observation was due to upregulation of mRNA stability by binding of mRNA to T-cell intercellular antigen (TIA) 1 and TIA-related protein (TIAR). Simultaneous knockdown of TPD52 and inhibition of HIF significantly reduced cell viability. In addition, the in vivo tumor-xenograft experiments showed that TPD52 acts as an autophagy inhibitor caused by a decrease in p62. Conclusions This study showed that the expression of TPD52 increases in OSCC cells under hypoxia in a HIF-independent manner and plays an important role in the proliferation and survival of the cells in concordance with HIF, suggesting that novel cancer therapeutics might be led by TPD52 suppression. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00634-0.
Collapse
Affiliation(s)
- Yuzo Abe
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Yoshiki Mukudai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan.
| | - Mai Kurihara
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Asami Houri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Junichiro Chikuda
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Atsutoshi Yaso
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Kosuke Kato
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Toshikazu Shimane
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| |
Collapse
|
12
|
Zhang H, Li M, Zhang J, Shen Y, Gui Q. Exosomal Circ-XIAP Promotes Docetaxel Resistance in Prostate Cancer by Regulating miR-1182/TPD52 Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1835-1849. [PMID: 33976535 PMCID: PMC8106459 DOI: 10.2147/dddt.s300376] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
Background Exosomal circular RNAs (circRNAs) are involved in the pathogenesis of prostate cancer (PCa) and chemotherapy resistance. This research aimed to explore the function and molecular mechanism of circRNA X-linked inhibitor of apoptosis (circ-XIAP) in docetaxel (DTX) resistance of PCa. Methods The expression of circ-XIAP, microRNA-1182 (miR-1182), tumor protein D52 (TPD52) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Exosomes were detected with transmission electron microscopy (TEM). Cluster of differentiation 63 (CD63), cluster of differentiation 9 (CD9) and TPD52 protein levels were detected by Western blot (WB). FIfty percent inhibitory concentration (IC50) of DTX and cell viability were determined using Cell Counting Kit-8 (CCK-8) assay. Colony formation assay was applied to assess colony-forming ability. Cell cycle distribution and apoptosis were analyzed by flow cytometry. Transwell assay was used for measuring cell migration and invasion. Dual-reporter luciferase assay was performed to confirm the interaction between miR-1182 and circ-XIAP or TPD52. The role of circ-XIAP in vivo was confirmed via the mice xenograft model. Results Circ-XIAP and TPD52 were upregulated and miR-1182 was downregulated in DTX-resistant PCa tissue specimens and cell lines. Circ-XIAP was also overexpressed in exosomes from DTX-resistant cells and could be transmitted via exosomes. Circ-XIAP knockdown enhanced DTX sensitivity by suppressing DTX-resistant cell proliferation, migration and invasion and inducing cell cycle arrest and apoptosis. Circ-XIAP directly targeted miR-1182, and the effects of circ-XIAP knockdown were reversed by downregulating miR-1182 in DTX-resistant cells. TPD52 was the target of miR-1182, and its upregulation weakened the promotive effect of miR-1182 on DTX sensitivity. Importantly, circ-XIAP depletion inhibited tumor growth and increased DTX sensitivity in vivo. Conclusion Exosomal circ-XIAP promoted DTX resistance of PCa by regulating miR-1182/TPD52 axis, providing a promising therapeutic target for PCa chemotherapy.
Collapse
Affiliation(s)
- Hui Zhang
- College of Medical, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Minghui Li
- College of Medical, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Jing Zhang
- College of Medical, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Yanbing Shen
- Department of Urology, The Central Hospital of Zhumadian, Zhumadian, Henan, People's Republic of China
| | - Qi Gui
- Department of Urology, The Central Hospital of Zhumadian, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
13
|
Iqbal W, Demidova EV, Serrao S, ValizadehAslani T, Rosen G, Arora S. RRM2B Is Frequently Amplified Across Multiple Tumor Types: Implications for DNA Repair, Cellular Survival, and Cancer Therapy. Front Genet 2021; 12:628758. [PMID: 33868369 PMCID: PMC8045241 DOI: 10.3389/fgene.2021.628758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
RRM2B plays a crucial role in DNA replication, repair and oxidative stress. While germline RRM2B mutations have been implicated in mitochondrial disorders, its relevance to cancer has not been established. Here, using TCGA studies, we investigated RRM2B alterations in cancer. We found that RRM2B is highly amplified in multiple tumor types, particularly in MYC-amplified tumors, and is associated with increased RRM2B mRNA expression. We also observed that the chromosomal region 8q22.3–8q24, is amplified in multiple tumors, and includes RRM2B, MYC along with several other cancer-associated genes. An analysis of genes within this 8q-amplicon showed that cancers that have both RRM2B-amplified along with MYC have a distinct pattern of amplification compared to cancers that are unaltered or those that have amplifications in RRM2B or MYC only. Investigation of curated biological interactions revealed that gene products of the amplified 8q22.3–8q24 region have important roles in DNA repair, DNA damage response, oxygen sensing, and apoptosis pathways and interact functionally. Notably, RRM2B-amplified cancers are characterized by mutation signatures of defective DNA repair and oxidative stress, and at least RRM2B-amplified breast cancers are associated with poor clinical outcome. These data suggest alterations in RR2MB and possibly the interacting 8q-proteins could have a profound effect on regulatory pathways such as DNA repair and cellular survival, highlighting therapeutic opportunities in these cancers.
Collapse
Affiliation(s)
- Waleed Iqbal
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University College of Engineering, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Samantha Serrao
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Taha ValizadehAslani
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Gail Rosen
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
14
|
Yang C, Wu J, Liu X, Wang Y, Liu B, Chen X, Wu X, Yan D, Han L, Liu S, Shan L, Shang Y. Circadian Rhythm Is Disrupted by ZNF704 in Breast Carcinogenesis. Cancer Res 2020; 80:4114-4128. [PMID: 32651256 DOI: 10.1158/0008-5472.can-20-0493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022]
Abstract
Copy number gain in chromosome 8q21 is frequently detected in breast cancer, yet the oncogenic potential underlying this amplicon in breast carcinogenesis remains to be delineated. We report here that ZNF704, a gene mapped to 8q21, is recurrently amplified in various malignancies including breast cancer. ZNF704 acted as a transcriptional repressor and interacted with the transcriptional corepressor SIN3A complex. Genome-wide interrogation of transcriptional targets revealed that the ZNF704/SIN3A complex represses a panel of genes including PER2 that are critically involved in the function of the circadian clock. Overexpression of ZNF704 prolonged the period and dampened the amplitude of the circadian clock. ZNF704 promoted the proliferation and invasion of breast cancer cells in vitro and accelerated the growth and metastasis of breast cancer in vivo. Consistently, the level of ZNF704 expression inversely correlated with that of PER2 in breast carcinomas, and high level of ZNF704 correlated with advanced histologic grades, lymph node positivity, and poor prognosis of patients with breast cancer, especially those with HER2+ and basal-like subtypes. These results indicate that ZNF704 is an important regulator of the circadian clock and a potential driver for breast carcinogenesis. SIGNIFICANCE: This study indicates that ZNF704 could be a potential oncogenic factor, disrupting circadian rhythm of breast cancer cells and contributing to breast carcinogenesis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Beibei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lulu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Laboratory of Cancer Epigenetics, Chinese Academy of Medical Sciences Beijing, China
| |
Collapse
|
15
|
Elizondo CR, Bright JD, Byrne JA, Bright RK. Analysis of the CD8+ IL-10+ T cell response elicited by vaccination with the oncogenic tumor-self protein D52. Hum Vaccin Immunother 2020; 16:1413-1423. [PMID: 31769704 DOI: 10.1080/21645515.2019.1689746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Development of cancer vaccines targeting tumor self-antigens is complex and challenging due to the difficulty of overcoming immune tolerance to self-proteins. Vaccination against tumor self-protein D52 (D52) has been successful, although complete protection appears impaired by immune regulation. Our previous studies suggest that vaccine elicited CD8 + T cells producing interleukin 10 (IL-10) may have a negative impact on tumor protection. Understanding the role CD8+ IL-10 + T cells play in the immune response following vaccination with D52 could result in a more potent vaccine. To address this, we vaccinated IL-10 deficient mice with the murine orthologue of D52; vaccination of wild type (wt) C57BL/6J served as a control for comparison. In separate experiments, D52 vaccinated wt mice were administered IL-10R-specific mAb to neutralize IL-10 function. Interestingly, we observed similar protection against primary tumor challenge in the experimental groups compared to the controls. However, individual IL-10 deficient mice that rejected the primary tumor challenge were re-challenged 140 days post-primary challenge to access vaccine durability and immunologic memory against tumor recurrence. Mice deficient in IL-10 demonstrated a memory response in which 100% of the mice were protected from secondary tumor challenge, while wt mice had diminished recall response (25%) against tumor recurrence. These results with analysis of vaccine-elicited CD8 + T cells for tumor-specific killing and regulatory cell marker expression, add further support to our premise that CD8+ IL-10 + T cells elicited by D52 tumor-self protein vaccine contribute to the suppression of a memory CTL responses and durable tumor immunity.
Collapse
Affiliation(s)
- C Riccay Elizondo
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center , Lubbock, TX, USA
| | - Jennifer D Bright
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center , Lubbock, TX, USA
| | - Jennifer A Byrne
- Faculty of Medicine and Health, The University of Sydney , Westmead, Australia
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center , Lubbock, TX, USA.,Cancer Center, Texas Tech University Health Sciences Center , Lubbock, TX, USA
| |
Collapse
|
16
|
Shi R, Wu P, Liu M, Chen B, Cong L. Knockdown of lncRNA PCAT6 Enhances Radiosensitivity in Triple-Negative Breast Cancer Cells by Regulating miR-185-5p/ TPD52 Axis. Onco Targets Ther 2020; 13:3025-3037. [PMID: 32308433 PMCID: PMC7152555 DOI: 10.2147/ott.s237559] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported to play essential roles in regulating the radiosensitivity of cancers. Prostate cancer-associated transcript 6 (PCAT6) exerts oncogenic roles in several tumors. However, the roles of PCAT6 and its underlying mechanism in regulating the radiosensitivity of triple-negative breast cancer (TNBC) have not been investigated. Methods The expression levels of PCAT6, microRNA-185-5p (miR-185-5p) and tumor protein D52 (TPD52) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, apoptosis and colony formation were assessed by Cell Counting Kit-8 (CCK-8) assay, flow cytometry and colony formation assay, respectively. The interaction between miR-185-5p and PCAT6 or TPD52 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. Western blot was carried out to detect the protein level of TPD52. Results PCAT6 and TPD52 were highly expressed and miR-185-5p was lowly expressed in TNBC tissues and cells, which was associated with an aggressive tumor phenotype in patients, affecting lymph node metastasis and clinical stage. PCAT6 or TPD52 knockdown or miR-185-5p overexpression enhanced the radiosensitivity of TNBC cells via inhibiting proliferation and inducing apoptosis. PCAT6 directly interacted with miR-185-5p and negatively regulated miR-185-5p expression. Moreover, TPD52 was confirmed as a target of miR-185-5p. Besides, PCAT6 regulated the radiosensitivity of TNBC cells through acting as a molecular sponge of miR-185-5p to modulate TPD52 expression. Conclusion Knockdown of PCAT6 promoted the radiosensitivity of TNBC cells through regulating miR-185-5p/TPD52 axis, providing a vital theoretical basis to improve the radiotherapy efficiency of TNBC.
Collapse
Affiliation(s)
- Rui Shi
- Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, People's Republic of China
| | - Peng Wu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, People's Republic of China
| | - Miaomiao Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, People's Republic of China
| | - Bing Chen
- Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, People's Republic of China
| | - Longjiao Cong
- Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, People's Republic of China
| |
Collapse
|
17
|
Lu W, Wan X, Tao L, Wan J. Long Non-Coding RNA HULC Promotes Cervical Cancer Cell Proliferation, Migration and Invasion via miR-218/TPD52 Axis. Onco Targets Ther 2020; 13:1109-1118. [PMID: 32103980 PMCID: PMC7008195 DOI: 10.2147/ott.s232914] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
Objective Long non-coding RNAs (lncRNAs) have been identified as important players in tumorigenesis. LncRNA highly upregulated in liver cancer (HULC) has been identified as a key regulator in the progression of various cancers. However, the functional role and the mechanisms of HULC in regulating cervical cancer cell behavior remain unclear. Methods HULC expression, miR-218 expression and TPD52 mRNA level in cervical cancer cells were examined by qRT-PCR. Cell proliferation was evaluated by MTT assay. Cell migration and invasion were examined by Transwell assay. TPD52 protein level was measured by Western blot. Dual-luciferase reporter assay was measured to verify the combination of HULC and miR-218 as well as miR-218 and TPD52. Results HULC expression was upregulated in cervical cancer cell lines, and HULC promoted cervical cancer cell proliferation, migration and invasion. Mechanistically, HULC acted as a sponge of miR-218 to elevate expression of TPD52, a target of miR-218, and thereby promoted cervical cancer cell proliferation, migration, and invasion. Conclusion HULC promotes cervical cancer cell proliferation, migration and invasion via miR-218/TPD52 axis.
Collapse
Affiliation(s)
- Wenjun Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Xiaobin Wan
- Department of General Surgery, The Third Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Limin Tao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Junhui Wan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|
18
|
Noreen S, Gardner QA, Fatima I, Sadaf S, Akhtar MW. Upregulated Expression of Calcium-Dependent Annexin A6: A Potential Biomarker of Ovarian Carcinoma. Proteomics Clin Appl 2020; 14:e1900078. [PMID: 31747122 DOI: 10.1002/prca.201900078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/04/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE An early and accurate diagnosis of ovarian carcinoma (OC) may reduce morbidity and mortality of the patients. To improve the clinical outcome in OC patients, the present study is aimed at identifying robust biomarkers for early OC diagnosis. EXPERIMENTAL DESIGN: In order to look for early-stage protein markers, a systematic protein profiling approach involving 2-dimensional electrophoresis coupled with mass spectrometric analyses of human malignant and non-malignant ovarian biopsy samples, is performed. RESULTS Six 2D gel spots, corresponding to five proteins, display statistically significant differential expression in the tumor tissues compared to benign controls (FDR ≤ 0.05; PMF score ≥ 79). Ingenuity pathway analysis predicts two proteins, that is, Ca2+ -dependent membrane-binding protein annexin A6 (AnxA6) and the metabolic enzyme l-lactate dehydrogenase A chain, as potential predictive biomarkers. Increased expression of AnxA6 is further ascertained by Western blot and enzyme linked immunosorbent assay in the resected tissues and the plasma samples. The expression is found markedly increasing particularly in the advanced stage tumors. CONCLUSIONS AND CLINICAL RELEVANCE The significant upregulation of AnxA6 in OC, reported for the first time, is likely to provide insight into the mechanism of OC progression, which may lead to the design of potential diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shahzadi Noreen
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | | | - Iram Fatima
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Saima Sadaf
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | | |
Collapse
|
19
|
Dasari C, Reddy KRK, Natani S, Murthy TRL, Bhukya S, Ummanni R. Tumor protein D52 (isoform 3) interacts with and promotes peroxidase activity of Peroxiredoxin 1 in prostate cancer cells implicated in cell growth and migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1298-1309. [PMID: 30981892 DOI: 10.1016/j.bbamcr.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
Abstract
Tumor protein D52 (TPD52) is overexpressed in multiple cancers including prostate cancer due to gene amplification and investigations to understand its role in the pathophysiology of different cancers are continuing. GST pull-down assays and Tandem affinity purification of TPD52 as bait identified novel prey Peroxiredoxin 1 (PRDX1) in prostate cancer (PCa) cells. PRDX1 interaction with TPD52 was confirmed in immunoprecipitation and affinity interaction assays. Mapping of interaction domain indicated that PRDX1 interacts with C-terminal region of TPD52 containing PEST domain between 152 and 179 amino acids, a new binding region of TPD52. Here we show that TPD52 interaction with PRDX1 increased its peroxidase activity and ectopic expression of TPD52 induced dimerization of PRDX1 in PCa cells. Moreover, H2O2 exposure evoked the interaction between TPD52 and PRDX1 while depletion of both proteins led to the accumulation of H2O2 suggesting peroxidase activity is important to maintain oxidative capacity in PCa cells. We also observed that overexpression or downregulation of TPD52 and PRDX1 individually or together affecting PCa cells growth, survival, and migration. Altogether, our results show a novel interaction partner of TPD52 providing new insights of its functions and ascertain the role of TPD52-PRDX1 interaction in PCa progression.
Collapse
Affiliation(s)
- Chandrashekhar Dasari
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Karthik Reddy Kami Reddy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Sirisha Natani
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - T R L Murthy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Supriya Bhukya
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.
| |
Collapse
|
20
|
Zhuang Y, Ly RC, Frazier CV, Yu J, Qin S, Fan XY, Goetz MP, Boughey JC, Weinshilboum R, Wang L. The novel function of tumor protein D54 in regulating pyruvate dehydrogenase and metformin cytotoxicity in breast cancer. Cancer Metab 2019; 7:1. [PMID: 30697423 PMCID: PMC6345044 DOI: 10.1186/s40170-018-0193-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023] Open
Abstract
Background The role of tumor protein D54 in breast cancer has not been studied and its function in breast cancer remains unclear. In our previous pharmacogenomic studies using lymphoblastoid cell line (LCL), this protein has been identified to affect metformin response. Although metformin has been widely studied as a prophylactic and chemotherapeutic drug, there is still a lack of biomarkers predicting the response to metformin in breast cancer. In this study, we revealed the novel function of TPD54 in breast cancer through understanding how TPD54 altered the cancer cell sensitivity to metformin. Methods The role of TPD54 in altering cellular sensitivity to metformin treatment was carried out by either knockdown or overexpression of TPD54, followed by measuring cell viability and reactive oxygen species (ROS) production in MCF7 breast cancer cell line and breast cancer patient-derived xenografts. Functional analysis of TPD54 in breast cancer cells was demonstrated by studying TPD54 protein localization and identification of potential binding partners of TPD54 through immunoprecipitation followed by mass spectrometry. The effect of TPD54 on pyruvate dehydrogenase (PDH) protein regulation was demonstrated by western blot, immunoprecipitation, and site-directed mutagenesis. Results TPD54 inhibited colony formation and enhanced cellular sensitivity to metformin treatment in MCF7 cells and breast cancer patient-derived xenografts. Mechanistic study indicated that TPD54 had mitochondrial localization, bound to and stabilized pyruvate dehydrogenase E1α by blocking pyruvate dehydrogenase kinase 1 (PDK1)-mediated serine 232 phosphorylation. TPD54 knockdown increased PDH E1α protein degradation and led to decreased PDH enzyme activity, which reduced mitochondrial oxygen consumption and reactive oxygen species (ROS) production, thus contributing to the resistance of breast cancer cells to metformin treatment. Conclusion We have discovered a novel mechanism by which TPD54 regulates pyruvate dehydrogenase and affects the sensitivity of breast cancer to metformin treatment. Our findings highlight the important post-translational regulation of PDK1 on PDH E1α and the potential application of TPD54 as a biomarker for selecting tumors that may be sensitive to metformin therapy. These provide new insights into understanding the regulation of PDH complexes and the resistance mechanisms of cancer cells to metformin treatment. Electronic supplementary material The online version of this article (10.1186/s40170-018-0193-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongxian Zhuang
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Reynold C Ly
- 2Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of the Biomedical Sciences, Rochester, MN 55905 USA
| | | | - Jia Yu
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Sisi Qin
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Xiao-Yang Fan
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Matthew P Goetz
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA.,4Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Judy C Boughey
- 5Department of Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Richard Weinshilboum
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Liewei Wang
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
21
|
Wu Y, Huang J, Xu H, Gong Z. Over-expression of miR-15a-3p enhances the radiosensitivity of cervical cancer by targeting tumor protein D52. Biomed Pharmacother 2018; 105:1325-1334. [DOI: 10.1016/j.biopha.2018.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
|
22
|
Munkley J, Maia TM, Ibarluzea N, Livermore KE, Vodak D, Ehrmann I, James K, Rajan P, Barbosa-Morais NL, Elliott DJ. Androgen-dependent alternative mRNA isoform expression in prostate cancer cells. F1000Res 2018; 7:1189. [PMID: 30271587 PMCID: PMC6143958 DOI: 10.12688/f1000research.15604.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Androgen steroid hormones are key drivers of prostate cancer. Previous work has shown that androgens can drive the expression of alternative mRNA isoforms as well as transcriptional changes in prostate cancer cells. Yet to what extent androgens control alternative mRNA isoforms and how these are expressed and differentially regulated in prostate tumours is unknown. Methods: Here we have used RNA-Seq data to globally identify alternative mRNA isoform expression under androgen control in prostate cancer cells, and profiled the expression of these mRNA isoforms in clinical tissue. Results: Our data indicate androgens primarily switch mRNA isoforms through alternative promoter selection. We detected 73 androgen regulated alternative transcription events, including utilisation of 56 androgen-dependent alternative promoters, 13 androgen-regulated alternative splicing events, and selection of 4 androgen-regulated alternative 3' mRNA ends. 64 of these events are novel to this study, and 26 involve previously unannotated isoforms. We validated androgen dependent regulation of 17 alternative isoforms by quantitative PCR in an independent sample set. Some of the identified mRNA isoforms are in genes already implicated in prostate cancer (including LIG4, FDFT1 and RELAXIN), or in genes important in other cancers (e.g. NUP93 and MAT2A). Importantly, analysis of transcriptome data from 497 tumour samples in the TGCA prostate adenocarcinoma (PRAD) cohort identified 13 mRNA isoforms (including TPD52, TACC2 and NDUFV3) that are differentially regulated in localised prostate cancer relative to normal tissue, and 3 ( OSBPL1A, CLK3 and TSC22D3) which change significantly with Gleason grade and tumour stage. Conclusions: Our findings dramatically increase the number of known androgen regulated isoforms in prostate cancer, and indicate a highly complex response to androgens in prostate cancer cells that could be clinically important.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, Newcastle, NE1 3BZ, UK
| | - Teresa M. Maia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
- VIB Proteomics Core, Albert Baertsoenkaai 3, Ghent, 9000, Belgium
| | - Nekane Ibarluzea
- Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, Newcastle, NE1 3BZ, UK
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, 48903, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Valencia, 46010, Spain
| | - Karen E. Livermore
- Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, Newcastle, NE1 3BZ, UK
| | - Daniel Vodak
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Ehrmann
- Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, Newcastle, NE1 3BZ, UK
| | - Katherine James
- Interdisciplinary Computing and Complex BioSystems Research Group, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK
- Life and Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Prabhakar Rajan
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Nuno L. Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - David J. Elliott
- Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, Newcastle, NE1 3BZ, UK
| |
Collapse
|
23
|
Tumor Proteins D52 and D54 Have Opposite Effects on the Terminal Differentiation of Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6014278. [PMID: 28798933 PMCID: PMC5535702 DOI: 10.1155/2017/6014278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/05/2017] [Accepted: 06/18/2017] [Indexed: 11/18/2022]
Abstract
The tumor protein D (TPD) family consists of four members, TPD52, TPD53, TPD54, and TPD55. The physiological roles of these genes in normal tissues, including epidermal and mesenchymal tissues, have rarely been reported. Herein, we examined the expression of TPD52 and TPD54 genes in cartilage in vivo and in vitro and investigated their involvement in the proliferation and differentiation of chondrocytes in vitro. TPD52 and TPD54 were uniformly expressed in articular cartilage and trabecular bone and were scarcely expressed in the epiphyseal growth plate. In MC3T3E-1 cells, the expressions of TPD52 and TPD54 were increased in a differentiation-dependent manner. In contrast, their expressions were decreased in ATDC5 cells. In ATDC5 cells, overexpression of TPD52 decreased alkaline phosphatase (ALPase) activity, while knock-down of TPD52 showed little effect. In contrast, overexpression of TPD54 enhanced ALPase activity, Ca2+ deposition, and the expressions of type X collagen and ALPase genes, while knock-down of TPD54 reduced them. The results revealed that TPD52 inhibits and that TPD54 promotes the terminal differentiation of a chondrocyte cell line. As such, we report for the first time the important roles of TPD52 and TPD54, which work oppositely, in the terminal differentiation of chondrocytes during endochondral ossification.
Collapse
|
24
|
Dasari C, Yaghnam DP, Walther R, Ummanni R. Tumor protein D52 (isoform 3) contributes to prostate cancer cell growth via targeting nuclear factor-κB transactivation in LNCaP cells. Tumour Biol 2017; 39:1010428317698382. [PMID: 28466782 DOI: 10.1177/1010428317698382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our previous study showed that TPD52 overexpression could increase migration and proliferation of LNCaP cells contributing to the development of prostate cancer. However, mechanism of TPD52 in prostate cancer initiation and progression remains elusive. In this study, we investigated the possible underlying mechanism of TPD52 in prostate cancer progression. In LNCaP cells, TPD52 expression was altered by transfecting with either EGFP-TPD52 or specific short hairpin RNA. Overexpression of TPD52 protected LNCaP cells from apoptosis through elevated anti-apoptotic proteins XIAP, Bcl-2, and Cyclin D1, whereas Bax was downregulated. Mechanistically, we found that TPD52 confers transactivation of nuclear factor-κB, thereby enhancing its target gene expression in LNCaP cells. TPD52 promotes LNCaP cell invasion probably via increased matrix metalloproteinase 9 expression and its activity while tissue inhibitor of metalloproteinase expression is significantly downregulated. Notably, TPD52 might be involved in cell adhesion, promoting tumor metastasis by inducing loss of E-cadherin, expression of vimentin and vascular cell adhesion molecule, and additionally activation of focal adhesion kinase. Furthermore, TPD52 directly interacts with nuclear factor-κB p65 (RelA) and promotes accumulation of phosphorylated nuclear factor-κB (p65)S536 that is directly linked with nuclear factor-κB transactivation. Indeed, depletion of TPD52 or inhibition of nuclear factor-κB in TPD52-positive cells inhibited secretion of tumor-related cytokines and contributes to the activation of STAT3, nuclear factor-κB, and Akt. Interestingly, in TPD52 overexpressing LNCaP cells, nuclear factor-κB inhibition prevented the autocrine/paracrine activation of STAT3. TPD52 activates STAT3 through ascertaining a cross talk between the nuclear factor-κB and the STAT3 signaling systems. Collectively, these results reveal mechanism by which TPD52 is associated with prostate cancer progression and highlight the approach for therapeutic targeting of TPD52 in prostate cancer.
Collapse
Affiliation(s)
- Chandrashekhar Dasari
- 1 Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,2 Centre for Academy of Scientific & Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Dattu Prasad Yaghnam
- 1 Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Reinhard Walther
- 3 Department of Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Ramesh Ummanni
- 1 Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
25
|
Li J, Li Y, Liu H, Liu Y, Cui B. The four-transmembrane protein MAL2 and tumor protein D52 (TPD52) are highly expressed in colorectal cancer and correlated with poor prognosis. PLoS One 2017; 12:e0178515. [PMID: 28562687 PMCID: PMC5451064 DOI: 10.1371/journal.pone.0178515] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
The four-transmembrane protein MAL2 and tumor protein D52 (TPD52) have been shown to be involved in tumorigenesis of various cancers. However, their roles in colorectal cancer (CRC) remain unclear. In this study, we explored the expressions of MAL2 and TPD52 in tumor specimens resected from 123 CRC patients and the prognostic values of the two proteins in CRC. Immunohistochemical analyses showed that MAL2 (P<0.001) and TPD52 (P<0.001) were significantly highly expressed in primary carcinoma tissues compared with adjacent non-cancerous mucosa tissues. And TPD52 exhibited frequent overexpression in liver metastasis tissues relative to primary carcinoma tissues (P = 0.042), while MAL2 in lymphnode and liver metastasis tissues showed no significant elevation. Real-time quantitative PCR (RT-qPCR) showed the identical results. Correlation analyses by Pearson's chi-square test demonstrated that MAL2 in tumors was positively correlated with tumor status (pathological assessment of regional lymph nodes (pN, P = 0.024)), and clinic stage (P = 0.017). Additionally, the expression of TPD52 was detected under the same condition and was shown to be positively correlated withtumor status (pathological assessment of the primary tumor (pT, P = 0.035), distant metastasis (pM, P = 0.001)) and CRC clinicopathology(P = 0.024). Kaplan-Meier survival curves indicated that positive MAL2 (P<0.001) and TPD52 (P<0.001) expressions were associated with poor overall survival (OS) in CRC patients. Multivariate analysis showed that MAL2 and TPD52 expression was an independent prognostic factor for reduced OS of CRC patients. Moreover, overexpression of TPD52 in CRC SW480 cells showed an increased cell migration (P = 0.023) and invasion (P = 0.012) through inducing occurrence of epithelial-mesenchymal transition (EMT) and activating focal adhesion kinase (FAK)-mediated integrin signalling and PI3K⁄Akt signalling.Whereas TPD52-depleted cells showed the reverse effect. These data suggested that MAL2 and TPD52 might be potential biomarkers for clinical prognosis and might be a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongmin Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - He Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- * E-mail: (YLL); (BBC)
| | - Binbin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- * E-mail: (YLL); (BBC)
| |
Collapse
|
26
|
Zhang Z, Wang J, Gao R, Yang X, Zhang Y, Li J, Zhang J, Zhao X, Xi C, Lu X. Downregulation of MicroRNA-449 Promotes Migration and Invasion of Breast Cancer Cells by Targeting Tumor Protein D52 (TPD52). Oncol Res 2017; 25:753-761. [PMID: 27983918 PMCID: PMC7841004 DOI: 10.3727/096504016x14772342320617] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our study aimed to investigate whether microRNA-449 (miR-449) plays a key role in regulating the migration and invasion of breast cancer cells via targeting tumor protein D52 (TPD52). The results of the qRT-PCR and Western blotting showed that, in comparison with normal breast tissues and cells, miR-449 was significantly downregulated in breast cancer tissues and cells, while TPD52 was markedly upregulated. After transfection with an miR-449 inhibitor, suppression of miR-449 significantly promoted cell migration and invasion. Also, when miR-449 was overexpressed by transfection with miR-449 mimics, E-cadherin expression significantly increased, and the expression of N-cadherin and vimentin were markedly decreased, whereas the opposite effects were obtained when miR-449 was suppressed by transfection with an miR-449 inhibitor. TPD52 was also confirmed as the direct target of miR-449 via luciferase reporter analysis. Knockdown of TPD52 significantly alleviated the effects of miR-449 overexpression on cell migration and invasion, as well as the expression of E-cadherin, N-cadherin, and vimentin. Our results indicate that downregulation of miR-449 may promote the migration and invasion of breast cancer cells by targeting TPD52. miR-449 may serve as a potential target in the therapy of breast cancer.
Collapse
Affiliation(s)
- Zhiling Zhang
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Jiawei Wang
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Runfang Gao
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Xuan Yang
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Yafen Zhang
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Jie Li
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Jing Zhang
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Xingjuan Zhao
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Chunfang Xi
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Xiaoting Lu
- Department of Breast Surgery, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| |
Collapse
|
27
|
Kotapalli SS, Dasari C, Duscharla D, Kami Reddy KR, Kasula M, Ummanni R. All-Trans-Retinoic Acid Stimulates Overexpression of Tumor Protein D52 (TPD52, Isoform 3) and Neuronal Differentiation of IMR-32 Cells. J Cell Biochem 2017; 118:4358-4369. [PMID: 28436114 DOI: 10.1002/jcb.26090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/21/2017] [Indexed: 11/06/2022]
Abstract
Tumor protein D52 (TPD52), a proto-oncogene is overexpressed in a variety of epithelial carcinomas and plays an important role in cell proliferation, migration, and cell death. In the present study we found that the treatment of IMR-32 neuroblastoma (NB) cells with retinoic acid (RA) stimulates an increase in expression of TPD52. TPD52 expression is detectable after 72 h, can be maintained till differentiation of NB cells suggesting that TPD52 is involved in differentiation. Here, we demonstrate that TPD52 is essential for RA to promote differentiation of NB cells. Our results show that exogenous expression of EGFP-TPD52 in IMR-32 cells resulted cell differentiation even without RA. RA by itself and with overexpression of TPD52 can increase the ability of NB cells differentiation. Interestingly, transfection of IMR-32 cells with a specific small hairpin RNA for efficient knockdown of TPD52 attenuated RA induced NB cells differentiation. Transcriptional and translational level expression of neurotropic (BDNF, NGF, Nestin) and differentiation (β III tubulin, NSE, TH) factors in NB cells with altered TPD52 expression and/or RA treatment confirmed essential function of TPD52 in cellular differentiation. Furthermore, we show that TPD52 protects cells from apoptosis and arrest cell proliferation by varying expression of p27Kip1, activation of Akt and ERK1/2 thus promoting cell differentiation. Additionally, inhibition of STAT3 activation by its specific inhibitor arrested NB cells differentiation by EGFP-TPD52 overexpression with or without RA. Taken together, our data reveal that TPD52 act through activation of JAK/STAT signaling pathway to undertake NB cells differentiation induced by RA. J. Cell. Biochem. 118: 4358-4369, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sudha Sravanti Kotapalli
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Chandrashekhar Dasari
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Divya Duscharla
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Karthik Reddy Kami Reddy
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Manjula Kasula
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Ramesh Ummanni
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
28
|
Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability. Biochem J 2017; 474:1669-1687. [PMID: 28298474 DOI: 10.1042/bcj20160942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis-acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis-acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis-acting element and trans-acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene.
Collapse
|
29
|
Fish TJ, Benninghoff AD. DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons. Food Chem Toxicol 2017; 109:703-713. [PMID: 28476633 DOI: 10.1016/j.fct.2017.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise an important class of environmental pollutants that are known to cause lung cancer in animals and are suspected lung carcinogens in humans. Moreover, evidence from cell-based studies points to PAHs as modulators of the epigenome. The objective of this work was to assess patterns of genome-wide DNA methylation in lung tissues of adult offspring initiated in utero with the transplacental PAH carcinogens dibenzo [def,p]chrysene (DBC) or benzo [a]pyrene (BaP). Genome-wide methylation patterns for normal (not exposed), normal adjacent and lung tumor tissues obtained from adult offspring were determined using methylated DNA immunoprecipitation (MeDIP) with the NimbleGen mouse DNA methylation CpG island array. Lung tumor incidence in 45-week old mice initiated with BaP was 32%, much lower than that of the DBC-exposed offspring at 96%. Also, male offspring appeared more susceptible to BaP as compared to females. Distinct patterns of DNA methylation were associated with non-exposed, normal adjacent and adenocarcinoma lung tissues, as determined by principal components, hierarchical clustering and gene ontology analyses. From these methylation profiles, a set of genes of interest was identified that includes potential important targets for epigenetic modification during the process of lung tumorigenesis in animals exposed to environmental PAHs.
Collapse
Affiliation(s)
- Trevor J Fish
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; School of Veterinary Medicine, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
30
|
Liu XX, Ye H, Wang P, Li LX, Zhang Y, Zhang JY. Proteomic-based identification of HSP70 as a tumor-associated antigen in ovarian cancer. Oncol Rep 2017; 37:2771-2778. [PMID: 28339059 DOI: 10.3892/or.2017.5525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/21/2016] [Indexed: 11/06/2022] Open
|
31
|
Kato K, Mukudai Y, Motohashi H, Ito C, Kamoshida S, Shimane T, Kondo S, Shirota T. Opposite effects of tumor protein D (TPD) 52 and TPD54 on oral squamous cell carcinoma cells. Int J Oncol 2017; 50:1634-1646. [PMID: 28339026 DOI: 10.3892/ijo.2017.3929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
The tumor protein D52 (TPD52) protein family includes TPD52, -53, -54 and -55. Several reports have shown important roles for TPD52 and TPD53, and have also suggested the potential involvement of TPD54, in D52-family physiological effects. Therefore, we performed detailed expression analysis of TPD52 family proteins in oral squamous cell carcinoma (OSCC). Towards this end, TPD54-overexpressing or knocked-down cells were constructed using OSCC-derived SAS, HSC2 and HSC3 cells. tpd52 or tpd53 was expressed or co-expressed in these cells by transfection. The cells were then analyzed using cell viability (MTT), colony formation, migration, and invasion assays. In OSCC-xenograft experiments, the cells were transplanted into nude mice together with injection of anti-tpd siRNAs. MTT assay of cell monolayers showed little differences in growth of the transfected cells. tpd54 overexpression in SAS cells significantly decreased colony formation in an anchorage-independent manner. Additionally, knock-down of tpd54 enhanced the number of colonies formed and overexpression of tpd52 in tpd54 knock-down cells increased the size of the colonies formed. The chemotaxis assay showed that tpd54 overexpression decreased cell migration. In the OSCC-xenograft in vivo study, tpd54 overexpression slightly attenuated tumor volume in vivo, despite the fact that tumor metastasis or cell survival was not involved. Our results showed that TPD54 not only downregulated anchorage-independent growth and cell migration in vitro, but also attenuated tumor growth in vivo. Based on these results, it is considered that TPD54 might act as a negative regulator of tumor progression in OSCC cells.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Yoshiki Mukudai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Hiromi Motohashi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Chihiro Ito
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Shinnosuke Kamoshida
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Toshikazu Shimane
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Seiji Kondo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| |
Collapse
|
32
|
Zhao Z, Liu H, Hou J, Li T, Du X, Zhao X, Xu W, Xu W, Chang J. Tumor Protein D52 (TPD52) Inhibits Growth and Metastasis in Renal Cell Carcinoma Cells Through the PI3K/Akt Signaling Pathway. Oncol Res 2016; 25:773-779. [PMID: 27983909 PMCID: PMC7841249 DOI: 10.3727/096504016x14774889687280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor protein D52 (TPD52) is a member of the TPD52-like protein family and plays different roles in various types of malignancies. However, its role in renal cell carcinoma (RCC) is still unclear. In this study, we investigated the role of TPD52 in RCC. The mechanism of TPD52 in RCC was also investigated. Our data demonstrated that the expression levels of TPD52 in both mRNA and protein were significantly decreased in RCC cells. Overexpression of TPD52 inhibited proliferation, migration, and invasion with decreased epithelial–mesenchymal transition (EMT) phenotype in RCC cells, as well as attenuated tumor growth in renal cancer xenografts. Mechanistically, overexpression of TPD52 significantly inhibited downregulated phosphorylation levels of PI3K and Akt in RCC cells. In conclusion, the present study demonstrated that TPD52 inhibited growth and metastasis of RCC, at least in part, by suppressing the PI3K/Akt signaling pathway. Therefore, these findings suggest that TPD52 may be a promising therapeutic target for the treatment of human RCC.
Collapse
|
33
|
Chen H, Xu H, Meng YG, Zhang Y, Chen JY, Wei XN. miR-139-5p regulates proliferation, apoptosis, and cell cycle of uterine leiomyoma cells by targeting TPD52. Onco Targets Ther 2016; 9:6151-6160. [PMID: 27785063 PMCID: PMC5067016 DOI: 10.2147/ott.s108890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Uterine leiomyoma is one of the most common benign tumors in women. It dramatically decreases the quality of life in the affected women. However, there is a lack of effective treatment paradigms. Micro-RNAs are small noncoding RNA molecules that are extensively expressed in organisms, and they are interrelated with the occurrence and development of the tumor. miR-139-5p was found to be downregulated in various cancers, but its function and mechanism in uterine leiomyoma remain unknown. The aim of this study was to investigate the role of miR-139-5p and its target gene in uterine leiomyoma. Methods By using a bioinformatic assay, it was found that TPD52 was a potential target gene of miR-139-5p. Then, expressions of miR-139-5p and TPD52 in uterine leiomyoma and adjacent myometrium tissues were evaluated by quantitative real-time polymerase chain reaction and Western blot. Proliferation, apoptosis, and cell cycle of uterine leiomyoma cells transfected by miR-139-5p mimics or TPD52 siRNA were determined. Results It was observed that the expression of miR-139-5p in uterine leiomyoma tissues was significantly lower (P<0.001) than that in the adjacent myometrium tissues. Overexpression of miR-139-5p inhibited the growth of uterine leiomyoma cells and induced apoptosis and G1 phase arrest. Dual-luciferase reporter assay and Western blot validated that TPD52 is the target gene of miR-139-5p. Furthermore, downregulation of TPD52 by siRNA in uterine leiomyoma cells inhibited cell proliferation and induced cell apoptosis and G1 phase arrest. Conclusion Data suggested that miR-139-5p inhibited the proliferation of uterine leiomyoma cells and induced cell apoptosis and G1 phase arrest by targeting TPD52.
Collapse
Affiliation(s)
- Hong Chen
- Department of Gynaecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Hong Xu
- Department of Gynaecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Yu-Gang Meng
- Department of Gynaecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Yun Zhang
- Department of Gynaecology, The People's Hospital of Suzhou High Tech District, Suzhou, Jiangsu, People's Republic of China
| | - Jun-Ying Chen
- Department of Gynaecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Xiao-Ning Wei
- Department of Gynaecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| |
Collapse
|
34
|
Kumamoto T, Seki N, Mataki H, Mizuno K, Kamikawaji K, Samukawa T, Koshizuka K, Goto Y, Inoue H. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. Int J Oncol 2016; 49:1870-1880. [PMID: 27633630 PMCID: PMC5063422 DOI: 10.3892/ijo.2016.3690] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
The development of targeted molecular therapies has greatly benefited patients with lung adenocarcinomas. In contrast, these treatments have had little benefit in the management of lung squamous cell carcinoma (lung SCC). Therefore, new treatment options based on current genomic approaches are needed for lung SCC. Aberrant microRNA (miRNA) expression has been shown to promote lung cancer development and aggressiveness. Downregulation of microRNA-218 (miR-218) was frequently observed in our miRNA expression signatures of cancers, and previous studies have shown an antitumor function of miR-218 in several types of cancers. However, the impact of miR-218 on lung SCC is still ambiguous. The present study investigated the antitumor roles of miR-218 in lung SCC to identify the target genes regulated by this miRNA. Ectopic expression of miR-218 greatly inhibited cancer cell migration and invasion in the lung SCC cell lines EBC-1 and SK-MES-1. Through a combination of in silico analysis and gene expression data searching, tumor protein D52 (TPD52) was selected as a putative target of miR-218 regulation. Moreover, direct binding of miR-218 to the 3'-UTR of TPD52 was observed by dual luciferase reporter assay. Overexpression of TPD52 was observed in lung SCC clinical specimens, and knockdown of TPD52 significantly suppressed cancer cell migration and invasion in lung SCC cell lines. Furthermore, the downstream pathways mediated by TPD52 involved critical regulators of genomic stability and mitotic checkpoint genes. Taken together, our data showed that downregulation of miR-218 enhances overexpression of TPD52 in lung SCC cells, promoting cancer cell aggressiveness. Identification of tumor-suppressive miRNA-mediated RNA networks of lung SCC will provide new insights into the potential mechanisms of the molecular pathogenesis of the disease.
Collapse
Affiliation(s)
- Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroko Mataki
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kazuto Kamikawaji
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Takuya Samukawa
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
35
|
Cheong A, Zhang X, Cheung YY, Tang WY, Chen J, Ye SH, Medvedovic M, Leung YK, Prins GS, Ho SM. DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk. Epigenetics 2016; 11:674-689. [PMID: 27415467 PMCID: PMC5048723 DOI: 10.1080/15592294.2016.1208891] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease.
Collapse
Affiliation(s)
- Ana Cheong
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Xiang Zhang
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Yuk-Yin Cheung
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Wan-Yee Tang
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Jing Chen
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Shu-Hua Ye
- c Department of Urology , College of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| | - Mario Medvedovic
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA.,d Cincinnati Cancer Center , Cincinnati , OH , USA
| | - Yuet-Kin Leung
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA.,d Cincinnati Cancer Center , Cincinnati , OH , USA
| | - Gail S Prins
- c Department of Urology , College of Medicine, University of Illinois at Chicago , Chicago , IL , USA.,e University of Illinois Cancer Center , Chicago , IL , USA
| | - Shuk-Mei Ho
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA.,d Cincinnati Cancer Center , Cincinnati , OH , USA.,f Cincinnati Veteran Affairs Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
36
|
Wang Y, Chen CL, Pan QZ, Wu YY, Zhao JJ, Jiang SS, Chao J, Zhang XF, Zhang HX, Zhou ZQ, Tang Y, Huang XQ, Zhang JH, Xia JC. Decreased TPD52 expression is associated with poor prognosis in primary hepatocellular carcinoma. Oncotarget 2016; 7:6323-34. [PMID: 26575170 PMCID: PMC4868759 DOI: 10.18632/oncotarget.6319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023] Open
Abstract
Tumor protein D52 (TPD52) has been indicated to be involved in tumorigenesis of various malignancies. But its role in hepatocellular carcinoma (HCC) is unknown. This study aimed to explore the expression of TPD52 in HCC samples and cell lines using real-time quantitative PCR, western blotting, and immunohistochemistry. The prognostic value of TPD52 in HCC was also analysed. Meanwhile, the mechanism of TPD52 in hepatocarcinogenesis was further investigated by western blotting, immunohistochemistry, over-express and knockdown studies. We found that TPD52 expression was significantly decreased in the HCC tissues and HCC cell lines. TPD52 expression was significantly correlated with tumor-nodes-metastasis (TNM) stage. Kaplan-Meier survival curves showed that high TPD52 expression was associated with improved overall survival (OS) and disease-free survival (DFS) in HCC patients. Multivariate analysis indicated that TPD52 expression was an independent prognostic marker for the OS and DFS of patients. In addition, TPD52 expression was positively correlated with p21 and p53 expression, and was negatively correlated with MDM2, BCL2 and P-GSK-3β expression in HCC. In conclusions, our findings suggested that TPD52 is a potential tumor suppressor in HCC. It may be a novel prognostic biomarker and molecular therapy target for HCC.
Collapse
Affiliation(s)
- Ying Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chang-Long Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiu-Zhong Pan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying-Yuan Wu
- Department of Gynaecology and Obstetrics, Panyu Branch of Armed Police Corps Hospital of Guangdong, Guangzhou, China
| | - Jing-Jing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shan-Shan Jiang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jie Chao
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Fei Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hong-Xia Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Qi Zhou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xu-Qiong Huang
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Hua Zhang
- Department of Health Service Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
37
|
Wang X, Han J, Hardie DB, Yang J, Borchers CH. The use of matrix coating assisted by an electric field (MCAEF) to enhance mass spectrometric imaging of human prostate cancer biomarkers. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:86-95. [PMID: 26757076 DOI: 10.1002/jms.3728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
In this work, we combined a newly developed matrix coating technique - matrix coating assisted by an electric field (MCAEF) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to enhance the imaging of peptides and proteins in tissue specimens of human prostate cancer. MCAEF increased the signal-to-noise ratios of the detected proteins by a factor of 2 to 5, and 232 signals were detected within the m/z 3500-37500 mass range on a time-of-flight mass spectrometer and with the sinapinic acid MALDI matrix. Among these species, three proteins (S100-A9, S100-A10, and S100-A12) were only observed in the cancerous cell region and 14 proteins, including a fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2, a fragment of cAMP-regulated phosphoprotein 19, 3 apolipoproteins (C-I, A-I, and A-II), 2 S100 proteins (A6 and A8), β-microseminoprotein, tumor protein D52, α-1-acid glycoprotein 1, heat shock protein β-1, prostate-specific antigen, and 2 unidentified large peptides at m/z 5002.2 and 6704.2, showed significantly differential distributions at the p < 0.05 (t-test) level between the cancerous and the noncancerous regions of the tissue. Among these 17 species, the distributions of apolipoprotein C-I, S100-A6, and S100-A8 were verified by immunohistological staining. In summary, this study resulted in the imaging of the largest group of proteins in prostate cancer tissues by MALDI-MS reported thus far, and is the first to show a correlation between S100 proteins and prostate cancer in a MS imaging study. The successful imaging of the three proteins only found in the cancerous tissues, as well as those showing differential expressions demonstrated the potential of MCAEF-MALDI/MS for the in situ detection of potential cancer biomarkers. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiaodong Wang
- University of Victoria-Genome British Columbia Proteomics Centre, #3101-4464 Markham St., Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Jun Han
- University of Victoria-Genome British Columbia Proteomics Centre, #3101-4464 Markham St., Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, #3101-4464 Markham St., Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Juncong Yang
- University of Victoria-Genome British Columbia Proteomics Centre, #3101-4464 Markham St., Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, #3101-4464 Markham St., Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
38
|
Abstract
Overexpressed tumor-self antigens represent the largest group of candidate vaccine targets. Those exhibiting a role in oncogenesis may be some of the least studied but perhaps most promising. This review considers this subset of self antigens by highlighting vaccine efforts for some of the better known members and focusing on TPD52, a new promising vaccine target. We shed light on the importance of both preclinical and clinical vaccine studies demonstrating that tolerance and autoimmunity (presumed to preclude this class of antigens from vaccine development) can be overcome and do not present the obstacle that might have been expected. The potential of this class of antigens for broad application is considered, possibly in the context of low tumor burden or adjuvant therapy, as is the need to understand mechanisms of tolerance that are relatively understudied.
Collapse
Key Words
- ALK, Anaplastic lymphoma kinase
- AR, androgen receptor
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T lymphocyte-associated antigen 4
- HLA, human leukocyte antigen
- Her-2/neu, human epithelial growth factor receptor 2
- ODN, oligodeoxynucleotide
- Overexpressed tumor-self antigen
- TAA, tumor associated antigen
- TPD52
- TRAMP, Transgenic adenocarcinoma of the mouse prostate
- Treg, T regulatory cell
- VEGFR2, vascular endothelial growth factor receptor 2
- WT-1, Wilms tumor-1
- hD52
- hD52, human TPD52
- mD52
- mD52, murine TPD52
- oncogenic
- shared
- tumor protein D52
- universal
- vaccine
Collapse
Affiliation(s)
- Robert K Bright
- a Department of Immunology and Molecular Microbiology and the TTUHSC Cancer Center ; Texas Tech University Health Sciences Center ; Lubbock , TX USA
| | | | | |
Collapse
|
39
|
Qi H, Liu S, Guo C, Wang J, Greenaway FT, Sun MZ. Role of annexin A6 in cancer. Oncol Lett 2015; 10:1947-1952. [PMID: 26622779 DOI: 10.3892/ol.2015.3498] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/16/2015] [Indexed: 12/14/2022] Open
Abstract
Annexin A6 (AnxA6) is a member of a conserved superfamily of Ca2+-dependent membrane-binding annexin proteins. It participates in membrane and cytoskeleton organization, cholesterol homeostasis, membrane trafficking, cell adhesion and signal transduction. The expression levels of AnxA6 are closely associated with melanoma, cervical cancer, epithelial carcinoma, breast cancer, gastric cancer, prostate cancer, acute lymphoblastic leukemia, chronic myeloid leukemia, large-cell lymphoma and myeloma. AnxA6 exhibits dual functions in cancer, acting either as a tumor suppressor or promoter, depending on the type of cancer and the degree of malignancy. In several types of cancer, AnxA6 acts via Ras, Ras/MAPK and/or FAK/PI3K signaling pathways by mainly mediating PKCα, p120GAP, Bcr-Abl and YY1. In the present review, the roles of AnxA6 in different types of cancer are summarized.
Collapse
Affiliation(s)
- Houbao Qi
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jiasheng Wang
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
40
|
Gene expression differences predict treatment outcome of merkel cell carcinoma patients. J Skin Cancer 2014; 2014:596459. [PMID: 24634783 PMCID: PMC3929072 DOI: 10.1155/2014/596459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 12/25/2022] Open
Abstract
Due to the rarity of Merkel cell carcinoma (MCC), prospective clinical trials have not been practical. This study aimed to identify biomarkers with prognostic significance. While sixty-two patients were identified who were treated for MCC at our institution, only seventeen patients had adequate formalin-fixed paraffin-embedded archival tissue and followup to be included in the study. Patients were stratified into good, moderate, or poor prognosis. Laser capture microdissection was used to isolate tumor cells for subsequent RNA isolation and gene expression analysis with Affymetrix GeneChip Human Exon 1.0 ST arrays. Among the 191 genes demonstrating significant differential expression between prognostic groups, keratin 20 and neurofilament protein have previously been identified in studies of MCC and were significantly upregulated in tumors from patients with a poor prognosis. Immunohistochemistry further established that keratin 20 was overexpressed in the poor prognosis tumors. In addition, novel genes of interest such as phospholipase A2 group X, kinesin family member 3A, tumor protein D52, mucin 1, and KIT were upregulated in specimens from patients with poor prognosis. Our pilot study identified several gene expression differences which could be used in the future as prognostic biomarkers in MCC patients.
Collapse
|
41
|
Tennstedt P, Bölch C, Strobel G, Minner S, Burkhardt L, Grob T, Masser S, Sauter G, Schlomm T, Simon R. Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR. Int J Oncol 2013; 44:609-15. [PMID: 24317684 DOI: 10.3892/ijo.2013.2200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
Tumor protein D52 (TPD52) is located at chromosome 8q21, a region that is frequently gained or amplified in multiple human cancer types. TPD52 has been suggested as a potential target for new anticancer therapies. In order to analyze TPD52 expression in the most prevalent human cancer types, we employed quantitative PCR to measure TPD52 mRNA levels in formalin-fixed tissue samples from more than 900 cancer tissues obtained from 29 different human cancer types. TPD52 was expressed at varying levels in all tested normal tissues, including skin, lymph node, lung, oral mucosa, breast, endometrium, ovary, vulva, myometrium, liver, pancreas, stomach, kidney, prostate, testis, urinary bladder, thyroid gland, brain, muscle and fat tissue. TPD52 was upregulated in 18/29 (62%) tested cancer types. Strongest expression was found in non-seminoma (56-fold overexpression compared to corresponding normal tissue), seminoma (42-fold), ductal (28-fold) and lobular breast cancer (14-fold). In these tumor types, TPD52 upregulation was found in the vast majority (>80%) of tested samples. Downregulation was found in 11 (38%) tumor types, most strongly in papillary renal cell cancer (-8-fold), leiomyosarcoma (-6-fold), clear cell renal cell cancer (-5-fold), liposarcoma (-5-fold) and lung cancer (-4-fold). These results demonstrate that TPD52 is frequently and strongly upregulated in many human cancer types, which may represent candidate tumor types for potential anti-TPD52 therapies.
Collapse
Affiliation(s)
- Pierre Tennstedt
- Martini-Clinic, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Bölch
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gundula Strobel
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lia Burkhardt
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Grob
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sawinee Masser
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Bright JD, Schultz HN, Byrne JA, Bright RK. Injection site and regulatory T cells influence durable vaccine-induced tumor immunity to an over-expressed self tumor associated antigen. Oncoimmunology 2013; 2:e25049. [PMID: 24073379 PMCID: PMC3782160 DOI: 10.4161/onci.25049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/29/2022] Open
Abstract
Tumor protein D52 (D52) is constitutively expressed in healthy tissues and overexpressed in multiple cancers, including (but not limited to) breast, prostate and ovarian carcinomas. Although the normal functions of D52 are unknown, it is clear that increased D52 expression levels not only stimulate cell proliferation and metastasis, but also correlate with poor prognosis in a subset of breast cancer patients. The murine orthologs of D52 (mD52) shares 86% identity with its human counterpart (hD52) and mirrors hD52 expression patterns. The forced overexpression of mD52 induces anchorage-independent growth in vitro and promotes tumor formation as well as spontaneous metastasis in vivo. We have previously reported that the intramuscular administration of recombinant mD52 elicits immune responses capable of rejecting a challenge with tumor cells and preventing spontaneous metastasis only in 50% of mice. We hypothesized that mechanisms of peripheral tolerance dampen immune responses against mD52, thus limiting the protective effects of vaccination. To test this hypothesis, mice were depleted of CD25+ regulatory T cells (Tregs) and subcutaneously immunized with mD52 prior to a tumor challenge. The subcutaneous immunization failed to induce protective antitumor immunity unless accompanied by Treg depletion, which resulted in a rate of protection of 70% as compared with
Collapse
Affiliation(s)
- Jennifer D Bright
- Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | | | | | | |
Collapse
|
43
|
Mukudai Y, Kondo S, Fujita A, Yoshihama Y, Shirota T, Shintani S. Tumor protein D54 is a negative regulator of extracellular matrix-dependent migration and attachment in oral squamous cell carcinoma-derived cell lines. Cell Oncol (Dordr) 2013; 36:233-45. [DOI: 10.1007/s13402-013-0131-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
|
44
|
Aure MR, Steinfeld I, Baumbusch LO, Liestøl K, Lipson D, Nyberg S, Naume B, Sahlberg KK, Kristensen VN, Børresen-Dale AL, Lingjærde OC, Yakhini Z. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. PLoS One 2013; 8:e53014. [PMID: 23382830 PMCID: PMC3559658 DOI: 10.1371/journal.pone.0053014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022] Open
Abstract
Genomic copy number alterations are common in cancer. Finding the genes causally implicated in oncogenesis is challenging because the gain or loss of a chromosomal region may affect a few key driver genes and many passengers. Integrative analyses have opened new vistas for addressing this issue. One approach is to identify genes with frequent copy number alterations and corresponding changes in expression. Several methods also analyse effects of transcriptional changes on known pathways. Here, we propose a method that analyses in-cis correlated genes for evidence of in-trans association to biological processes, with no bias towards processes of a particular type or function. The method aims to identify cis-regulated genes for which the expression correlation to other genes provides further evidence of a network-perturbing role in cancer. The proposed unsupervised approach involves a sequence of statistical tests to systematically narrow down the list of relevant genes, based on integrative analysis of copy number and gene expression data. A novel adjustment method handles confounding effects of co-occurring copy number aberrations, potentially a large source of false positives in such studies. Applying the method to whole-genome copy number and expression data from 100 primary breast carcinomas, 6373 genes were identified as commonly aberrant, 578 were highly in-cis correlated, and 56 were in addition associated in-trans to biological processes. Among these in-trans process associated and cis-correlated (iPAC) genes, 28% have previously been reported as breast cancer associated, and 64% as cancer associated. By combining statistical evidence from three separate subanalyses that focus respectively on copy number, gene expression and the combination of the two, the proposed method identifies several known and novel cancer driver candidates. Validation in an independent data set supports the conclusion that the method identifies genes implicated in cancer.
Collapse
Affiliation(s)
- Miriam Ragle Aure
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Israel Steinfeld
- Laboratory of Computational Biology, Computer Science Department, Israel Institute of Technology, Haifa, Israel
| | - Lars Oliver Baumbusch
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Knut Liestøl
- Biomedical Informatics Lab, Department of Computer Science, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Doron Lipson
- Laboratory of Computational Biology, Computer Science Department, Israel Institute of Technology, Haifa, Israel
| | - Sandra Nyberg
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn Naume
- Division of Cancer Medicine and Radiotherapy, Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Kristine Kleivi Sahlberg
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vessela N. Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Clinical Epidemiology and Molecular Biology (EpiGen) Akershus University Hospital, Akershus, Norway
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Christian Lingjærde
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Biomedical Informatics Lab, Department of Computer Science, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- * E-mail: (OCL); (ZY)
| | - Zohar Yakhini
- Laboratory of Computational Biology, Computer Science Department, Israel Institute of Technology, Haifa, Israel
- Agilent Laboratories, Tel Aviv, Israel
- * E-mail: (OCL); (ZY)
| |
Collapse
|
45
|
Herbet M, Salomon A, Feige JJ, Thomas M. Acquisition order of Ras and p53 gene alterations defines distinct adrenocortical tumor phenotypes. PLoS Genet 2012; 8:e1002700. [PMID: 22589739 PMCID: PMC3349738 DOI: 10.1371/journal.pgen.1002700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/26/2012] [Indexed: 11/25/2022] Open
Abstract
Sporadic adrenocortical carcinomas (ACC) are rare endocrine neoplasms with a dismal prognosis. By contrast, benign tumors of the adrenal cortex are common in the general population. Whether benign tumors represent a separate entity or are in fact part of a process of tumor progression ultimately leading to an ACC is still an unresolved issue. To this end, we have developed a mouse model of tumor progression by successively transducing genes altered in adrenocortical tumors into normal adrenocortical cells. The introduction in different orders of the oncogenic allele of Ras (H-RasG12V) and the mutant p53DD that disrupts the p53 pathway yielded tumors displaying major differences in histological features, tumorigenicity, and metastatic behavior. Whereas the successive expression of RasG12V and p53DD led to highly malignant tumors with metastatic behavior, reminiscent of those formed after the simultaneous introduction of p53DD and RasG12V, the reverse sequence gave rise only to benign tumors. Microarray profiling revealed that 157 genes related to cancer development and progression were differentially expressed. Of these genes, 40 were up-regulated and 117 were down-regulated in malignant cell populations as compared with benign cell populations. This is the first evidence-based observation that ACC development follows a multistage progression and that the tumor phenotype is directly influenced by the order of acquisition of genetic alterations. A sequential acquisition of genetic events is critical in tumorigenesis, and a dysregulation of a limited set of pathways has been demonstrated as sufficient to progressively transform normal cells into tumor cells in several human tissues. However, in the case of adrenocortical tumorigenesis, whether benign tumors represent a separate entity or are in fact part of a process of tumor progression leading ultimately to an adrenal carcinoma is still an unresolved issue. Moreover, the importance of the order in which these genetic events must occur to transform a cell has not been established. Here, we developed a tissue reconstruction model in mice that allows direct comparison of cells modified with sequential introduction of two genetic events. This revealed that adrenocortical tumor development follows a multistage progression and that the tumor phenotype, including histopathology and metastatic behavior, is directly influenced by the order of acquisition of genetic alterations.
Collapse
Affiliation(s)
- Maryline Herbet
- Institut National de la Santé et de la Recherche, Unité 1036, Grenoble, France
- Commissariat à l'Énergie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Biologie du Cancer et de l'Infection, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
| | - Aude Salomon
- Institut National de la Santé et de la Recherche, Unité 1036, Grenoble, France
- Commissariat à l'Énergie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Biologie du Cancer et de l'Infection, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche, Unité 1036, Grenoble, France
- Commissariat à l'Énergie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Biologie du Cancer et de l'Infection, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
| | - Michaël Thomas
- Institut National de la Santé et de la Recherche, Unité 1036, Grenoble, France
- Commissariat à l'Énergie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Biologie du Cancer et de l'Infection, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- * E-mail:
| |
Collapse
|
46
|
Alagaratnam S, Lind GE, Kraggerud SM, Lothe RA, Skotheim RI. The testicular germ cell tumour transcriptome. ACTA ACUST UNITED AC 2011; 34:e133-50; discussion e150-1. [DOI: 10.1111/j.1365-2605.2011.01169.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Zeng W, Eriksson EM, Lew A, Jackson DC. Lipidation of intact proteins produces highly immunogenic vaccine candidates. Mol Immunol 2011; 48:490-6. [DOI: 10.1016/j.molimm.2010.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/07/2010] [Accepted: 10/10/2010] [Indexed: 11/29/2022]
|
48
|
Screening for DNA copy number aberrations in mucinous adenocarcinoma arising from the minor salivary gland: two case reports. ACTA ACUST UNITED AC 2010; 203:324-7. [DOI: 10.1016/j.cancergencyto.2010.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 08/02/2010] [Accepted: 08/28/2010] [Indexed: 11/21/2022]
|
49
|
Thomas DDH, Frey CL, Messenger SW, August BK, Groblewski GE. A role for tumor protein TPD52 phosphorylation in endo-membrane trafficking during cytokinesis. Biochem Biophys Res Commun 2010; 402:583-7. [PMID: 20946871 DOI: 10.1016/j.bbrc.2010.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/08/2010] [Indexed: 01/12/2023]
Abstract
Tumor protein D52 is expressed at high levels in exocrine cells containing large secretory granules where it regulates Ca(2+)-dependent protein secretion; however, D52 expression is also highly induced in multiple cancers. The present study investigated a role for the Ca(2+)-dependent phosphorylation of D52 at the single major phospho-acceptor site serine 136 on cell division. Ectopic expression of wild type D52 (D52wt) and the phosphomutants serine 136/alanine (S136A) or serine 136/glutamate (S136/E) resulted in significant multinucleation of cells. D52wt and S136/E each resulted in a greater than 2-fold increase in multinucleated cells compared to plasmid-transfected controls whereas the S136/A phospho-null mutant caused a 9-fold increase in multinucleation at 48h post-transfection. Electron microscopy revealed D52 expression induced a marked accumulation of vesicles along the mid-line between nuclei where the final stages of cell abscission normally occurs. Supporting this, D52wt strongly colocalized on vesicular structures containing the endosomal regulatory protein vesicle associated membrane protein 8 (VAMP 8) and this colocalization significantly increased with elevations in cellular Ca(2+). As VAMP 8 is known to be necessary for the endo-membrane fusion reactions that mediate the final stages of cytokinesis, these data indicate that D52 expression and phosphorylation at serine 136 play an important role in supporting the Ca(2+)-dependent membrane trafficking events necessary for cytokinesis in rapidly proliferating cancer cells.
Collapse
Affiliation(s)
- Diana D H Thomas
- University of Wisconsin, Department of Nutritional Sciences, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
50
|
Niu N, Qin Y, Fridley BL, Hou J, Kalari KR, Zhu M, Wu TY, Jenkins GD, Batzler A, Wang L. Radiation pharmacogenomics: a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines. Genome Res 2010; 20:1482-92. [PMID: 20923822 DOI: 10.1101/gr.107672.110] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiation therapy is used to treat half of all cancer patients. Response to radiation therapy varies widely among patients. Therefore, we performed a genome-wide association study (GWAS) to identify biomarkers to help predict radiation response using 277 ethnically defined human lymphoblastoid cell lines (LCLs). Basal gene expression levels and 1.3 million genome-wide single nucleotide polymorphism (SNP) markers from both Affymetrix and Illumina platforms were assayed for all 277 human LCLs. MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assays for radiation cytotoxicity were also performed to obtain area under the curve (AUC) as a radiation response phenotype for use in the association studies. Functional validation of candidate genes, selected from an integrated analysis that used SNP, expression, and AUC data, was performed with multiple cancer cell lines using specific siRNA knockdown, followed by MTS and colony-forming assays. A total of 27 loci, each containing at least two SNPs within 50 kb with P-values less than 10(-4) were associated with radiation AUC. A total of 270 expression probe sets were associated with radiation AUC with P < 10(-3). The integrated analysis identified 50 SNPs in 14 of the 27 loci that were associated with both AUC and the expression of 39 genes, which were also associated with radiation AUC (P < 10(-3)). Functional validation using siRNA knockdown in multiple tumor cell lines showed that C13orf34, MAD2L1, PLK4, TPD52, and DEPDC1B each significantly altered radiation sensitivity in at least two cancer cell lines. Studies performed with LCLs can help to identify novel biomarkers that might contribute to variation in response to radiation therapy and enhance our understanding of mechanisms underlying that variation.
Collapse
Affiliation(s)
- Nifang Niu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|