1
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
Mutated p53 in HGSC-From a Common Mutation to a Target for Therapy. Cancers (Basel) 2021; 13:cancers13143465. [PMID: 34298679 PMCID: PMC8304959 DOI: 10.3390/cancers13143465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Ovarian high-grade serous cancer (HGSC), the most common and the deadliest subtype of epithelial ovarian cancer, is characterized by frequent mutations in the TP53 tumor suppressor gene, encoding for the p53 protein in nearly 100% of cases. This makes p53 the focus of many studies trying to understand its role in HGSC. The aim of our review paper is to provide updates on the latest findings related to the role of mutant p53 in HGSC. This includes the clinical outcomes of TP53 mutations in HGSC, upstream regulators and downstream effectors of p53, its function in the earliest stages of HGSC development and in the interplay between the tumor cells and their microenvironment. We summarize with the likelihood of p53 mutants to serve as biomarkers for early diagnosis and as targets for therapy in HGSC. Abstract Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.
Collapse
|
3
|
Inflammation and immunity in ovarian cancer. EJC Suppl 2020; 15:56-66. [PMID: 33240443 PMCID: PMC7569134 DOI: 10.1016/j.ejcsup.2019.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/15/2019] [Accepted: 12/27/2019] [Indexed: 12/30/2022] Open
Abstract
The standard first-line therapy for ovarian cancer is a combination of surgery and carboplatin/paclitaxel-based chemotherapy. Patients with longer survival and improved response to chemotherapy usually present T-cell inflamed tumours. The presence of tumour-infiltrating T cells (TILs) notably varies among the different subtypes of ovarian tumours, being highest in high-grade serous ovarian carcinoma, intermediate in endometrioid tumours, and lowest in low-grade serous, mucinous and clear cell tumours. Interestingly, the presence of TILs is often accompanied by a strong immunosuppressive tumour environment. A better understanding of the immune response against ovarian cancer and the tumour immune evasion mechanisms will enable improved prognostication, response prediction and immunotherapy of this disease. This article provides an overview of some ovarian cancer cell features relevant for antitumour response, such as tumour-associated antigens, including neoantigens, expression of inhibitory molecules, and other mechanisms of immune evasion. Moreover, we describe relevant immune cell types found in epithelial ovarian tumours, including T and B lymphocytes, regulatory T cells, natural killer cells, tumour-associated macrophages, myeloid-derived suppressor cells and neutrophils. We focus on how these components influence the burden of the tumour and the clinical outcome. The presence of spontaneous tumour-specific T lymphocytes and the existence of multiple immune evasion mechanisms in epithelial ovarian cancer (EOC) support the immunogenicity of this tumour. Tumour-infiltrating T lymphocytes (TILs) have been associated with disease outcome in EOC, indicating their clinical significance. The subtypes of EOC, mutations in TP53 and breast and ovarian cancer susceptibility protein 1/2 and the immune expression signature are factors associated to TIL density in EOC. The tumour microenvironment in EOC consists of a dynamic and complex network of soluble factors, inhibitory receptors and immunosuppressive cells.
Collapse
|
4
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
5
|
Abstract
The importance of cancer-cell-autonomous functions of the tumour suppressor p53 (encoded by TP53) has been established in many studies, but it is now clear that the p53 status of the cancer cell also has a profound impact on the immune response. Loss or mutation of p53 in cancers can affect the recruitment and activity of myeloid and T cells, allowing immune evasion and promoting cancer progression. p53 can also function in immune cells, resulting in various outcomes that can impede or support tumour development. Understanding the role of p53 in tumour and immune cells will help in the development of therapeutic approaches that can harness the differential p53 status of cancers compared with most normal tissue.
Collapse
Affiliation(s)
- Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D Buck
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
6
|
Rodriguez-Garcia A, Minutolo NG, Robinson JM, Powell DJ. T-cell target antigens across major gynecologic cancers. Gynecol Oncol 2017; 145:426-435. [PMID: 28377094 DOI: 10.1016/j.ygyno.2017.03.510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/30/2022]
Abstract
Immunotherapies have achieved remarkable success in treating different forms of cancer including melanoma, non-small cell lung carcinoma, bladder cancer, synovial cell sarcoma, and multiple myeloma using immune checkpoint blockade or gene-engineered T-cells. Although gynecologic cancers have not been historically classified as immunogenic tumors, growing evidence has shown that they are in fact able to elicit endogenous antitumor immune responses suggesting that patients with these cancers may benefit from immunotherapy. Modest clinical success has been accomplished in early trials using immunotherapeutic modalities for major gynecologic cancers including ovarian, cervical, and endometrial cancer. Unlike solid cancers with high mutational burdens, or hematologic malignancies where target antigens are expressed homogenously and exclusively by tumor cells, identifying tumor-restricted antigens has been challenging when designing a T-cell targeted therapy for gynecologic tumors. Nevertheless, mounting preclinical and clinical evidence suggests that targeting shared, viral or patient-specific mutated antigens expressed by gynecologic tumors with T-cells may improve patient outcome. Here we review the strengths and weaknesses of targeting these various antigens, as well as provide insight into the future of immunotherapy for gynecologic cancers.
Collapse
Affiliation(s)
- Alba Rodriguez-Garcia
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas G Minutolo
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M Robinson
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Gynecologic Oncology, MD Anderson Cooper Cancer Center, Cooper University Hospital, Camden, NJ 08103, USA
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Shamalov K, Levy SN, Horovitz-Fried M, Cohen CJ. The mutational status of p53 can influence its recognition by human T-cells. Oncoimmunology 2017; 6:e1285990. [PMID: 28507791 PMCID: PMC5414872 DOI: 10.1080/2162402x.2017.1285990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022] Open
Abstract
p53 was reported to be an attractive immunotherapy target because it is mutated in approximately half of human cancers, resulting in its inactivation and often accumulation in tumor cells. Peptides derived from p53 are presented by class I MHC molecules and may act as tumor-associated epitopes which could be targeted by p53-specific T cells. Interestingly, it was recently shown that there is a lack of significant correlation between p53 expression levels in tumors and their recognition by p53-TCR transduced T cells. To better understand the influence of the mutational status of p53 on its presentation by the MHC system and on T cell antitumor reactivity, we generated several mutant p53 constructs and expressed them in HLA-A2+/p53- cells. Upon co-culture with p53-specific T cells, we measured the specific recognition of p53-expressing target cells by means of cytokine secretion, marker upregulation and cytotoxicity, and in parallel determined p53 expression levels by intracellular staining. We also examined the relevance of antigen presentation components on p53 recognition and the impact of mutant p53 expression on cell-cycle dynamics. Our results show that selected p53 mutations altering protein stability can modulate p53 presentation to T cells, leading to a differential immune reactivity inversely correlated with measured p53 protein levels. Thus, p53 may behave differently than other classical tumor antigens and its mutational status should therefore be taken into account when elaborating immunotherapy treatments of cancer patients targeting p53.
Collapse
Affiliation(s)
- Katerina Shamalov
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shlomo N. Levy
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Miryam Horovitz-Fried
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J. Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Dijkgraaf EM, Santegoets SJAM, Reyners AKL, Goedemans R, Nijman HW, van Poelgeest MIE, van Erkel AR, Smit VTHBM, Daemen TAHH, van der Hoeven JJM, Melief CJM, Welters MJP, Kroep JR, van der Burg SH. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget 2016; 6:32228-43. [PMID: 26334096 PMCID: PMC4741673 DOI: 10.18632/oncotarget.4772] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Preclinical tumor models show that chemotherapy has immune modulatory properties which can be exploited in the context of immunotherapy. The purpose of this study was to determine the feasibility and immunogenicity of combinations of such an immunomodulatory chemotherapeutic agent with immunotherapy, p53 synthetic long peptide (SLP) vaccine and Pegintron (IFN-α) in patients with platinum-resistant p53-positive epithelial ovarian cancer (EOC). Experimental design This is a phase 1/2 trial in which patients sequential 6 cycles of gemcitabine (1000 mg/kg2 iv; n = 3), gemcitabine with Pegintron before and after the first gemcitabine cycle (Pegintron 1 μg/kg sc; n = 6), and gemcitabine and Pegintron combined with p53 SLP vaccine (0.3 mg/peptide, 9 peptides; n = 6). At baseline, 22 days after the 2nd and 6th cycle, blood was collected for immunomonitoring. Toxicity, CA-125, and radiologic response were evaluated after 3 and 6 cycles of chemotherapy. Results None of the patients enrolled experienced dose-limiting toxicity. Predominant grade 3/4 toxicities were nausea/vomiting and dyspnea. Grade 1/2 toxicities consisted of fatigue (78%) and Pegintron-related flu-like symptoms (72%). Gemcitabine reduced myeloid-derived suppressor cells (p = 0.0005) and increased immune-supportive M1 macrophages (p = 0.04). Combination of gemcitabine and Pegintron stimulated higher frequencies of circulating proliferating CD4+ and CD8+ T-cells but not regulatory T-cells. All vaccinated patients showed strong vaccine-induced p53-specific T-cell responses. Conclusion Combination of gemcitabine, the immune modulator Pegintron and therapeutic peptide vaccination is a viable approach in the development of combined chemo-immunotherapeutic regimens to treat cancer.
Collapse
Affiliation(s)
- Eveline M Dijkgraaf
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Saskia J A M Santegoets
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - An K L Reyners
- Department of Clinical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Renske Goedemans
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Hans W Nijman
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Arien R van Erkel
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Toos A H H Daemen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
9
|
Garziera M, Montico M, Bidoli E, Scalone S, Sorio R, Giorda G, Lucia E, Toffoli G. Prognostic Role of Serum Antibody Immunity to p53 Oncogenic Protein in Ovarian Cancer: A Systematic Review and a Meta-Analysis. PLoS One 2015; 10:e0140351. [PMID: 26451959 PMCID: PMC4599823 DOI: 10.1371/journal.pone.0140351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 01/21/2023] Open
Abstract
Objective Serum p53 autoantibodies (p53-AAbs) are the product of an endogenous immune response against p53 overexpression driven by the ovarian tumour. The p53-AAbs are detectable only in a subset of patients. To date, the evidence of an association between the presence of p53-AAbs and ovarian cancer outcomes has been poorly investigated. Methods A systematic literature search was performed to identify eligible studies investigating the association of serum p53-AAbs and overall survival (OS) and disease free survival (DFS). Associations between presence of serum p53-AAbs and baseline tumour characteristics were also evaluated. Pooled hazard ratios (HRs) and corresponding 95% confidence intervals (CI) were computed to estimate the prognostic impact of serum p53-AAbs. Heterogeneity between studies was assessed. Results A total of 583 patients (7 studies) for OS and 356 patients (4 studies) for DFS were included in the meta-analysis. Presence of p53-AAbs was not associated to OS (pooled uni- multivariate HR = 1.09; 95% CI: 0.55–2.16), and a large heterogeneity was found. When only multivariate HRs were pooled together (4 studies), presence of p53-AAbs was significantly associated to a better OS (pooled HR = 0.57; 95% CI: 0.40–0.81), and no significant heterogeneity was observed. A reduced DFS was associated to p53-AAbs (pooled uni- multivariate HR = 1.37; 95% CI: 0.83–2.25), though not significantly and with a moderate heterogeneity. Conclusions The prognostic significance of serum p53-AAbs in ovarian cancer was diverging according to uni or multivariate models used. Since the results of this work were based on only few investigations, large prospective studies are needed to better define the role of antibody immunity against p53.
Collapse
Affiliation(s)
- Marica Garziera
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano National Cancer Institute, via F. Gallini 2, 33081, Aviano, (PN), Italy
- * E-mail:
| | - Marcella Montico
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano National Cancer Institute, via F. Gallini 2, 33081, Aviano, (PN), Italy
| | - Ettore Bidoli
- Epidemiology and Biostatistics Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano National Cancer Institute, via F. Gallini 2, 33081, Aviano, (PN), Italy
| | - Simona Scalone
- Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano National Cancer Institute, via F. Gallini 2, 33081, Aviano, (PN), Italy
| | - Roberto Sorio
- Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano National Cancer Institute, via F. Gallini 2, 33081, Aviano, (PN), Italy
| | - Giorgio Giorda
- Department of Gynecological Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, National Cancer Institute, via F. Gallini 2, 33081, Aviano, (PN), Italy
| | - Emilio Lucia
- Department of Gynecological Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, National Cancer Institute, via F. Gallini 2, 33081, Aviano, (PN), Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano National Cancer Institute, via F. Gallini 2, 33081, Aviano, (PN), Italy
| |
Collapse
|
10
|
Abstract
Clinical outcomes, such as recurrence-free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathological network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Keith L Knutson
- Cancer Vaccines and Immune Therapies Program, The Vaccine and Gene Therapy Institute of Florida, 9801 SW Discovery Way, Port St. Lucie, FL, 34949, USA,
| | | | | | | |
Collapse
|
11
|
Humar M, Azemar M, Maurer M, Groner B. Adaptive Resistance to Immunotherapy Directed Against p53 Can be Overcome by Global Expression of Tumor-Antigens in Dendritic Cells. Front Oncol 2014; 4:270. [PMID: 25340039 PMCID: PMC4186483 DOI: 10.3389/fonc.2014.00270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/17/2014] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy of cancer utilizes dendritic cells (DCs) for antigen presentation and the induction of tumor-specific immune responses. However, the therapeutic induction of anti-tumor immunity is limited by tumor escape mechanisms. In this study, immortalized dendritic D2SC/1 cells were transduced with a mutated version of the p53 tumor suppressor gene, p53M234I, or p53C132F/E168G, which are overexpressed in MethA fibrosarcoma tumor cells. In addition, D2SC/1 cells were fused with MethA tumor cells to generate a vaccine that potentially expresses a large repertoire of tumor-antigens. Cellular vaccines were transplanted onto Balb/c mice and MethA tumor growth and anti-tumor immune responses were examined in vaccinated animals. D2SC/1–p53M234I and D2SC/1–p53C132F/E168G cells induced strong therapeutic and protective MethA tumor immunity upon transplantation in Balb/c mice. However, in a fraction of immunized mice MethA tumor growth resumed after an extended latency period. Analysis of these tumors indicated loss of p53 expression. Mice, pre-treated with fusion hybrids generated from D2SC/1 and MethA tumor cells, suppressed MethA tumor growth and averted adaptive immune escape. Polyclonal B-cell responses directed against various MethA tumor proteins could be detected in the sera of D2SC/1–MethA inoculated mice. Athymic nude mice and Balb/c mice depleted of CD4+ or CD8+ T-cells were not protected against MethA tumor cell growth after immunization with D2SC/1–MethA hybrids. Our results highlight a potential drawback of cancer immunotherapy by demonstrating that the induction of a specific anti-tumor response favors the acquisition of tumor phenotypes promoting immune evasion. In contrast, the application of DC/tumor cell fusion hybrids prevents adaptive immune escape by a T-cell dependent mechanism and provides a simple strategy for personalized anti-cancer treatment without the need of selectively priming the host immune system.
Collapse
Affiliation(s)
- Matjaz Humar
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg , Freiburg , Germany
| | - Marc Azemar
- Internistische Onkologie, Tumor Biology Center , Freiburg , Germany
| | - Martina Maurer
- Basilea Pharmaceutica International Ltd. , Basel , Switzerland
| | - Bernd Groner
- Institute for Biomedical Research, Georg Speyer Haus , Frankfurt am Main , Germany
| |
Collapse
|
12
|
P53 and expression of immunological markers may identify early stage thyroid tumors. Clin Dev Immunol 2013; 2013:846584. [PMID: 24171036 PMCID: PMC3792533 DOI: 10.1155/2013/846584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/20/2013] [Indexed: 02/07/2023]
Abstract
Background. Besides its major role in cell proliferation, DNA repair, and apoptosis, functional p53 protein is involved in the induction of antitumor cytotoxic-T-cell activity against carcinoma cells. We aimed to investigate p53 and immune cell markers utility as diagnostic and prognostic markers of differentiated thyroid cancer (DTC). Methods. ACIS-III system was used to evaluate p53 and immune cell markers including tumor-associated macrophages (TAM); CD68 and tumor-infiltrating lymphocytes (TIL) subsets such as CD3, CD4, CD8, and CD20 in 206 thyroid carcinomas, 105 benign nodules, and 18 normal tissues. Also, TP53 was sequenced in 78 out of 164 patients with papillary thyroid carcinoma. Results. P53 expression was observed more frequently in malignant than in benign lesions (P < 0.0001) and helped discriminate follicular patterned lesions. In addition, p53 was more frequent in smaller (P = 0.0015), unique tumors (P = 0.0286), with thyroiditis (P = 0.0486) and without metastasis at diagnosis (P = 0.0201). TAM was more frequent in P53 negative tumors (P = 0.002). Infiltration of CD8+ TIL was found in 61.7% of P53 positive and 25.6% of P53 negative DTC (P < 0.001). Conclusions. We suggest that p53 and CD8+ TIL immune profile analysis might be useful in DTC.
Collapse
|
13
|
Abstract
PURPOSE This review will address the current state of individualized cancer therapy for glioblastoma. Glioblastomas are highly malignant primary brain tumors presumably originating from neuroglial progenitor cells. Median survival is less than 1 year. DESIGN Recent developments in the morphologic, clinical, and molecular classification of glioblastoma were reviewed, and their impact on clinical decision making was analyzed. RESULTS Glioblastomas can be classified by morphology, clinical characteristics, complex molecular signatures, single biomarkers, or imaging parameters. Some of these characteristics, including age and Karnofsky Performance Scale score, provide important prognostic information. In contrast, few markers help to choose between various treatment options. Promoter methylation of the O-methylguanine methyltransferase gene seems to predict benefit from alkylating agent chemotherapy. Hence, it is used as an entry criterion for alkylator-free experimental combination therapy with radiotherapy. Screening for a specific type of epidermal growth factor receptor mutation is currently being explored as a biomarker for selecting patients for vaccination. Positron emission tomography for the detection of ανβ3/5 integrins could be used to select patients for treatment with anti-integrin antiangiogenic approaches. DISCUSSION Despite extensive efforts at defining biological markers as a basis for selecting therapies, most treatment decisions for glioblastoma patients are still based on age and performance status. However, several ongoing clinical trials may enrich the repertoire of criteria for clinical decision making in the very near future. The concept of individualized or personalized targeted cancer therapy has gained significant attention throughout oncology. Yet, data in support of such an approach to glioblastoma, the most malignant subtype of glioma, are limited, and personalized medicine plays a minor role in current clinical neuro-oncology practice. In essence, this concept proposes that tumors that are currently lumped together based on common morphologic features can be subclassified in a way that the resulting subentities are more homogeneous, for example, in molecular signatures and will therefore be amenable to selective therapeutic interventions. At present, the major "biomarkers" used to allocate treatment in glioblastoma are age and Karnofsky Performance Scale score, and these markers have so far survived all efforts at more sophisticated approaches to the management of this disease. Treatment allocation basically means intensity of treatment, especially the use of the standard-of-care or radiotherapy alone beyond age 65 to 70 years or below a Karnofsky Performance Scale score of 60.
Collapse
|
14
|
Vermeij R, Leffers N, Hoogeboom BN, Hamming ILE, Wolf R, Reyners AKL, Molmans BHW, Hollema H, Bart J, Drijfhout JW, Oostendorp J, van der Zee AGJ, Melief CJ, van der Burg SH, Daemen T, Nijman HW. Potentiation of a p53-SLP vaccine by cyclophosphamide in ovarian cancer: a single-arm phase II study. Int J Cancer 2012; 131:E670-80. [PMID: 22139992 DOI: 10.1002/ijc.27388] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/21/2011] [Indexed: 01/21/2023]
Abstract
The purpose of the current phase II single-arm clinical trial was to evaluate whether pretreatment with low-dose cyclophosphamide improves immunogenicity of a p53-synthetic long peptide (SLP) vaccine in patients with recurrent ovarian cancer. Patients with ovarian cancer with elevated serum levels of CA-125 after primary treatment were immunized four times with the p53-SLP vaccine. Each immunization was preceded by administration of 300 mg/m2 intravenous cyclophosphamide as a means to affect regulatory T cells (Tregs). Vaccine-induced p53-specific interferon-gamma (IFN-γ)-producing T cells evaluated by IFN-γ ELISPOT were observed in 90% (9/10) and 87.5% (7/8) of evaluable patients after two and four immunizations, respectively. Proliferative p53-specific T cells, observed in 80.0% (8/10) and 62.5% (5/8) of patients, produced both T-helper 1 and T-helper-2 cytokines. Cyclophosphamide induced neither a quantitative reduction of Tregs determined by CD4+ FoxP3+ T cell levels nor a demonstrable qualitative difference in Treg function tested in vitro. Nonetheless, the number of vaccine-induced p53-specific IFN-γ-producing T cells was higher in our study compared to a study in which a similar patient group was treated with p53-SLP monotherapy (p≤0.012). Furthermore, the strong reduction in the number of circulating p53-specific T cells observed previously after four immunizations was currently absent. Stable disease was observed in 20.0% (2/10) of patients, and the remainder of patients (80.0%) showed clinical, biochemical and/or radiographic evidence of progressive disease. The outcome of this phase II trial warrants new studies on the use of low-dose cyclophosphamide to potentiate the immunogenicity of the p53-SLP vaccine or other antitumor vaccines.
Collapse
Affiliation(s)
- Renee Vermeij
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Song GY, Srivastava T, Ishizaki H, Lacey SF, Diamond DJ, Ellenhorn JDI. Recombinant modified vaccinia virus ankara (MVA) expressing wild-type human p53 induces specific antitumor CTL expansion. Cancer Invest 2011; 29:501-10. [PMID: 21843052 PMCID: PMC3260009 DOI: 10.3109/07357907.2011.606248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The p53 gene product is an attractive target for tumor immunotherapy. The present study aims to understand the potential of MVAp53 vaccine to induce expansion of p53-specific cytotoxic T lymphocyte ex vivo in cancer patients. The result indicated that 14 of 23 cancer patients demonstrated p53-specific IFN-γ production, degranulation, cell proliferation, and lysis of p53 overexpressed human tumor cell lines. These experiments show that MVAp53 stimulation has the potential to induce the expansion of p53-specific cytotoxic T lymphocyte from the memory T cell repertoire. The data suggest that MVAp53 vaccine is an ideal candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Guang-Yun Song
- Division of Translational Vaccine Research, City of Hope National Medical Center, Duarte, California, USA
| | | | | | | | | | | |
Collapse
|
16
|
Preston CC, Goode EL, Hartmann LC, Kalli KR, Knutson KL. Immunity and immune suppression in human ovarian cancer. Immunotherapy 2011; 3:539-56. [PMID: 21463194 DOI: 10.2217/imt.11.20] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clinical outcomes in ovarian cancer are heterogeneous, independent of common features such as stage, response to therapy and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling issue is the response of the patient's immune system to her ovarian cancer. Several studies have confirmed a prominent role for the immune system in modifying disease course. This has led to the identification and evaluation of novel immune-modulating therapeutic approaches such as vaccination and antibody therapy. Antitumor immunity, however, is often negated by immune suppression mechanisms present in the tumor microenvironment. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological issues that could influence ovarian cancer outcome, including tumor antigens, endogenous immune responses, immune escape and new and developing immunotherapeutic strategies.
Collapse
|
17
|
Leffers N, Vermeij R, Hoogeboom BN, Schulze UR, Wolf R, Hamming IE, van der Zee AG, Melief KJ, van der Burg SH, Daemen T, Nijman HW. Long-term clinical and immunological effects of p53-SLP® vaccine in patients with ovarian cancer. Int J Cancer 2011; 130:105-12. [PMID: 21328579 DOI: 10.1002/ijc.25980] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/26/2011] [Indexed: 01/21/2023]
Abstract
Vaccine-induced p53-specific immune responses were previously reported to be associated with improved response to secondary chemotherapy in patients with small cell lung cancer. We investigated long-term clinical and immunological effects of the p53-synthetic long peptide (p53-SLP®) vaccine in patients with recurrent ovarian cancer. Twenty patients were immunized with the p53-SLP® vaccine between July 2006 and August 2007. Follow-up information on patients was obtained. Clinical responses to secondary chemotherapy after p53-SLP® immunizations were determined by computerized tomography and/or tumor marker levels (CA125). Disease-specific survival was compared to a matched historical control group. Immune responses were analyzed by flow cytometry, proliferation assay, interferon gamma (IFN-γ) ELISPOT and/or cytokine bead array. Lymphocytes cultured from skin biopsy were analyzed by flow cytometry and proliferation assay. Of 20 patients treated with the p53-SLP® vaccine, 17 were subsequently treated with chemotherapy. Eight of these patients volunteered another blood sample. No differences in clinical response rates to secondary chemotherapy or disease-specific survival were observed between immunized patients and historical controls (p = 0.925, resp. p = 0.601). p53-specific proliferative responses were observed in 5/8 patients and IFN-γ production in 2/7 patients. Lymphocytes cultured from a prior injection site showing inflammation during chemotherapy did not recognize p53-SLP®. Thus, treatment with the p53-SLP® vaccine does not affect responses to secondary chemotherapy or survival, although p53-specific T-cells do survive chemotherapy.
Collapse
Affiliation(s)
- Ninke Leffers
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Coleman JA, Correa I, Cooper L, Bohnenkamp HR, Poulsom R, Burchell JM, Taylor-Papadimitriou J. T cells reactive with HLA-A*0201 peptides from the histone demethylase JARID1B are found in the circulation of breast cancer patients. Int J Cancer 2011; 128:2114-24. [PMID: 21105039 DOI: 10.1002/ijc.25792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/27/2010] [Indexed: 11/11/2022]
Abstract
The nuclear protein PLU-1/JARID1B/KDM5 is widely expressed in breast cancers while showing highly restricted expression in normal adult tissues. To investigate whether JARID1B is a potential target antigen for immunotherapy of breast cancer, we have analyzed the responses of CD8(+) T cells to JARID1B HLA-A*0201 peptides in vitro and used peptide multimers to detect the presence of JARID1B reactive T cells in the circulation of breast cancer patients. Peptides were selected using two web-based algorithms: criteria for inclusion being a high score in both prediction algorithms, and nonhomology with retinoblastoma binding protein-2 (RBP2/JARID1A/KDM5A). A 65-peptide panel was selected and assayed for binding strength by competition assay to obtain the IC(50). The immunogenicity in vitro of these peptides was assessed by T cell stimulation experiments, using autologous dendritic cells as APCs in the first rounds followed by autologous lymphoblasts. Fourteen of the peptides assayed produced cultures having >2% of the CD8(+) cells being IFN-γ(+) after 3-6 rounds of stimulation. An HLA-A*0201 cell line could activate the specific T cells if pulsed with peptide, but endogenous peptide levels were insufficient for activation. Nevertheless, multimer staining of circulating T cells from breast cancer patients showed a significantly higher percentage of multimer positive CD8(+) T cells, as compared to healthy adults for two of three JARID1B epitopes tested. One of these, peptide 73 (QLYALPCVL), was analyzed for memory phenotype, and found to have a significantly higher proportion of central memory T cells than the control group, demonstrating a previous exposure to the peptide.
Collapse
Affiliation(s)
- Julia A Coleman
- King's College London, Research Oncology, Breast Cancer Biology Group, Bermondsey Wing, Guy's Hospital, Great Maze Pond, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Potential target antigens for a universal vaccine in epithelial ovarian cancer. Clin Dev Immunol 2010; 2010. [PMID: 20885926 PMCID: PMC2946591 DOI: 10.1155/2010/891505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/16/2010] [Indexed: 01/08/2023]
Abstract
The prognosis of epithelial ovarian cancer (EOC), the primary cause of death from gynaecological malignancies, has only modestly improved over the last decades. Immunotherapeutic treatment using a cocktail of antigens has been proposed as a "universal" vaccine strategy. We determined the expression of tumor antigens in the context of MHC class I expression in 270 primary tumor samples using tissue microarray. Expression of tumor antigens p53, SP17, survivin, WT1, and NY-ESO-1 was observed in 120 (48.0%), 173 (68.9%), 208 (90.0%), 129 (56.3%), and 27 (11.0%) of 270 tumor specimens, respectively. In 93.2% of EOC, at least one of the investigated tumor antigens was (over)expressed. Expression of MHC class I was observed in 78.1% of EOC. In 3 out 4 primary tumors, (over)expression of a tumor antigen combined with MHC class I was observed. These results indicate that a multiepitope vaccine, comprising these antigens, could serve as a universal therapeutic vaccine for the vast majority of ovarian cancer patients.
Collapse
|
20
|
Anderson KS, Wong J, Vitonis A, Crum CP, Sluss PM, Labaer J, Cramer D. p53 autoantibodies as potential detection and prognostic biomarkers in serous ovarian cancer. Cancer Epidemiol Biomarkers Prev 2010; 19:859-68. [PMID: 20200435 DOI: 10.1158/1055-9965.epi-09-0880] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND This study examined the value of serum p53 autoantibodies (p53-AAb) as detection and prognostic biomarkers in ovarian cancer. METHODS p53-AAb were detected by ELISA in sera obtained preoperatively from women undergoing surgery for a pelvic mass. This group included women subsequently diagnosed with invasive serous ovarian cancer (n = 60), nonserous ovarian cancers (n = 30), and women with benign disease (n = 30). Age-matched controls were selected from the general population (n = 120). Receiver operating characteristic curves were constructed to compare the values of p53-AAb, CA 125, and HE4 as a screening biomarker. Kaplan-Meier curves and Cox proportional hazards modeling were used to assess its prognostic value on survival. RESULTS p53-AAb were detected in 25 of 60 (41.7%) of serous cases, 4 of 30 (13.3%) nonserous cases, 3 of 30 (10%) benign disease cases, and 10 of 120 (8.3%) controls (combined P = 0.0002). p53-AAb did not significantly improve the detection of cases [area under the curve (AUC), 0.69] or the discrimination of benign versus malignant disease (AUC, 0.64) compared with CA 125 (AUC, 0.99) or HE4 (AUC, 0.98). In multivariate analysis among cases, p53-AAb correlated only with a family history of breast cancer (P = 0.01). Detectable p53 antibodies in pretreatment sera were correlated with improved overall survival (P = 0.04; hazard ratio, 0.57; 95% confidence interval, 0.33-0.97) in serous ovarian cancer. CONCLUSIONS Antibodies to p53 are detected in the sera of 42% of patients with advanced serous ovarian cancer. IMPACT Although their utility as a preoperative diagnostic biomarker, beyond CA 125 and HE4, is limited, p53-AAb are prognostic for improved overall survival.
Collapse
Affiliation(s)
- Karen S Anderson
- Cancer Vaccine Center, Department of Medical Oncology, Dana-Farber Cancer Institute, HIM416, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hospers GAP, Meijer C, Dam WA, Roossink F, Mulder NH. Construction of a triple modified p53 containing DNA vaccine to enhance processing and presentation of the p53 antigen. Vaccine 2009; 28:386-91. [PMID: 19878752 DOI: 10.1016/j.vaccine.2009.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 10/05/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
More effective and less toxic treatments are urgently needed in the treatment of patients with cancer. The tumour suppressor protein p53 is a tumour-associated antigen that could serve that purpose when applied in an immunologic approval to cancer. It is mutated in approximately 50% of the tumours resulting in p53 overexpression, which can serve as target for therapy. To improve the immunisation results in patients with p53 overexpression tumours we constructed a DNA vaccine that could lead to improved processing and presentation of p53 peptides in the MHC-class I. We constructed a triple modified p53 fusion protein containing DNA vaccine by (1) addition of a xeno-antigen (mouse or rat p53 fragment), (2) potentiation of intra-cytoplasmatic accumulation of p53 by deleting the nuclear signalling part, (3) improving the processing to peptides of p53 by addition of ubiquitin. In-vitro experiments confirmed correct construction of the DNA vaccine. Preliminary testing in normal and HLA-A2 mice of this triple modified p53 containing DNA construct meant for human application showed a trend towards a superior immunogenicity.
Collapse
Affiliation(s)
- Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen and University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Leffers N, Lambeck AJA, Gooden MJM, Hoogeboom BN, Wolf R, Hamming IE, Hepkema BG, Willemse PHB, Molmans BHW, Hollema H, Drijfhout JW, Sluiter WJ, Valentijn ARPM, Fathers LM, Oostendorp J, van der Zee AGJ, Melief CJ, van der Burg SH, Daemen T, Nijman HW. Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial. Int J Cancer 2009; 125:2104-13. [PMID: 19621448 DOI: 10.1002/ijc.24597] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The prognosis of ovarian cancer, the primary cause of death from gynecological malignancies, has only modestly improved over the last decades. Immunotherapy is one of the new treatment modalities explored for this disease. To investigate safety, tolerability, immunogenicity and obtain an impression of clinical activity of a p53 synthetic long peptide (p53-SLP) vaccine, twenty patients with recurrent elevation of CA-125 were included, eighteen of whom were immunized 4 times with 10 overlapping p53-SLP in Montanide ISA51. The first 5 patients were extensively monitored for toxicity, but showed no > or = grade 3 toxicity, thus accrual was continued. Overall, toxicity was limited to grade 1 and 2, mostly locoregional, inflammatory reactions. IFN-gamma producing p53-specific T-cell responses were induced in all patients who received all 4 immunizations as measured by IFN-gamma ELISPOT. An IFN-gamma secretion assay showed that vaccine-induced p53-specific T-cells were CD4(+), produced both Th1 and Th2 cytokines as analyzed by cytokine bead array. Notably, Th2 cytokines dominated the p53-specific response. P53-specific T-cells were present in a biopsy of the last immunization site of at least 9/17 (53%) patients, reflecting the migratory capacity of p53-specific T-cells. As best clinical response, stable disease evaluated by CA-125 levels and CT-scans, was observed in 2/20 (10%) patients, but no relationship was found with vaccine-induced immunity. This study shows that the p53-SLP vaccine is safe, well tolerated and induces p53-specific T-cell responses in ovarian cancer patients. Upcoming trials will focus on improving T helper-1 polarization and clinical efficacy.
Collapse
Affiliation(s)
- Ninke Leffers
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Ovarian cancer remains a challenging disease for which improved treatments are urgently needed. Most patients present with advanced disease that is highly responsive to surgery combined with platinum- and taxane-based chemotherapy, with a state of minimal residual disease being achieved in many cases. However, chemotherapy-resistant recurrent tumors typically appear within 1-5 years and are ultimately fatal. Recently, several groups have shown that ovarian tumors are often infiltrated by activated T cells at the time of diagnosis, and patients with dense infiltrates of CD3+CD8+ T cells experience unexpectedly favorable progression-free and overall survival. Other cell types in the immune infiltrate oppose anti-tumor immunity, including CD4+CD25+FoxP3+ regulatory T cells, CD8+ regulatory T cells, macrophages, and dendritic cells. The composition of immune infiltrates is shaped by the expression of cytokines, chemokines, antigens, major histocompatibility complex molecules, and costimulatory molecules. The relationship between these various immunological factors is reviewed here with a strong emphasis on outcomes data so as to create a knowledge base that is well grounded in clinical reality. With improved understanding of the functional properties of natural CD8+ T-cell responses to ovarian cancer, there is great potential to improve clinical outcomes by amplifying host immunity.
Collapse
Affiliation(s)
- Brad H Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada.
| |
Collapse
|
24
|
Speetjens FM, Kuppen PJ, Welters MJ, Essahsah F, Voet van den Brink AME, Lantrua MGK, Valentijn ARP, Oostendorp J, Fathers LM, Nijman HW, Drijfhout JW, van de Velde CJ, Melief CJ, van der Burg SH. Induction of p53-Specific Immunity by a p53 Synthetic Long Peptide Vaccine in Patients Treated for Metastatic Colorectal Cancer. Clin Cancer Res 2009; 15:1086-95. [DOI: 10.1158/1078-0432.ccr-08-2227] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Affiliation(s)
- Mary Clouser
- Division of Women's Cancers, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
26
|
Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS One 2008; 3:e3409. [PMID: 18923710 PMCID: PMC2561074 DOI: 10.1371/journal.pone.0003409] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/17/2008] [Indexed: 12/20/2022] Open
Abstract
Background Tumor-infiltrating CD8+ T cells are correlated with prolonged progression-free and overall survival in epithelial ovarian cancer (EOC). A significant fraction of EOC patients mount autoantibody responses to various tumor antigens, however the relationship between autoantibodies and tumor-infiltrating T cells has not been investigated in EOC or any other human cancer. We hypothesized that autoantibody and T cell responses may be correlated in EOC and directed toward the same antigens. Methodology and Principal Findings We obtained matched serum and tumor tissue from 35 patients with high-grade serous ovarian cancer. Serum samples were assessed by ELISA for autoantibodies to the common tumor antigen NY-ESO-1. Tumor tissue was examined by immunohistochemistry for expression of NY-ESO-1, various T cell markers (CD3, CD4, CD8, CD25, FoxP3, TIA-1 and Granzyme B) and other immunological markers (CD20, MHC class I and MHC class II). Lymphocytic infiltrates varied widely among tumors and included cells positive for CD3, CD8, TIA-1, CD25, FoxP3 and CD4. Twenty-six percent (9/35) of patients demonstrated serum IgG autoantibodies to NY-ESO-1, which were positively correlated with expression of NY-ESO-1 antigen by tumor cells (r = 0.57, p = 0.0004). Autoantibodies to NY-ESO-1 were associated with increased tumor-infiltrating CD8+, CD4+ and FoxP3+ cells. In an individual HLA-A2+ patient with autoantibodies to NY-ESO-1, CD8+ T cells isolated from solid tumor and ascites were reactive to NY-ESO-1 by IFN-γ ELISPOT and MHC class I pentamer staining. Conclusion and Significance We demonstrate that tumor-specific autoantibodies and tumor-infiltrating T cells are correlated in human cancer and can be directed against the same target antigen. This implies that autoantibodies may collaborate with tumor-infiltrating T cells to influence clinical outcomes in EOC. Furthermore, serological screening methods may prove useful for identifying clinically relevant T cell antigens for immunotherapy.
Collapse
|
27
|
Rudchenko S, Scanlan M, Kalantarov G, Yavelsky V, Levy C, Estabrook A, Old L, Chan GL, Lobel L, Trakht I. A human monoclonal autoantibody to breast cancer identifies the PDZ domain containing protein GIPC1 as a novel breast cancer-associated antigen. BMC Cancer 2008; 8:248. [PMID: 18721486 PMCID: PMC2529336 DOI: 10.1186/1471-2407-8-248] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 08/24/2008] [Indexed: 01/29/2023] Open
Abstract
Background We have been studying the native autoimmune response to cancer through the isolation of human monoclonal antibodies that are cancer specific from cancer patients. To facilitate this work we previously developed a fusion partner cell line for human lymphocytes, MFP-2, that fuses efficiently with both human lymph node lymphocytes and peripheral blood lymphocytes. Using this unique trioma fusion partner cell line we isolated a panel of autologous human monoclonal antibodies, from both peripheral blood and lymph node lymphocytes, which are representative of the native repertoire of anti-cancer specific antibodies from breast cancer patients. Methods The current study employs immunocytochemistry, immunohistochemistry, Western blot analysis as well as Northern blots, Scatchard binding studies and finally SEREX analysis for target antigen identification. Results By application of an expression cloning technique known as SEREX, we determined that the target antigen for two monoclonal antibodies, 27.B1 and 27.F7, derived from lymph node B-cells of a breast cancer patient, is the PDZ domain-containing protein known as GIPC1. This protein is highly expressed not only in cultured human breast cancer cells, but also in primary and metastatic tumor tissues and its overexpression appears to be cancer cell specific. Confocal microscopy revealed cell membrane and cytoplasmic localization of the target protein, which is consistent with previous studies of this protein. Conclusion We have determined that GIPC1 is a novel breast cancer-associated immunogenic antigen that is overexpressed in breast cancer. Its role, however, in the initiation and/or progression of breast cancer remains unclear and needs further clarification.
Collapse
Affiliation(s)
- Sergei Rudchenko
- College of Physicians and Surgeons, Columbia University, 630 W, 168 St,, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Survival of ovarian cancer patients overexpressing the tumour antigen p53 is diminished in case of MHC class I down-regulation. Gynecol Oncol 2008; 110:365-73. [PMID: 18571704 DOI: 10.1016/j.ygyno.2008.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/18/2008] [Accepted: 04/24/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The adaptive immune system seems to play an essential role in the natural course of ovarian cancer. Aim of this study was to establish whether disease-specific survival for patients expressing the tumour antigen p53 is influenced by MHC class I expression or the presence of p53 autoantibodies (p53-Aab). METHODS P53 and MHC class I expression were analysed in ovarian cancer tissue of 329 patients by immunohistochemistry using tissue microarrays. For 233 patients, pre-treatment serum samples were available to study the presence of p53 autoantibodies by ELISA. Data were linked to clinicopathological parameters and disease-specific survival. RESULTS P53 overexpression, MHC class I down-regulation in neoplastic cells and serum p53 autoantibodies were observed in 49.4, 38.9 and 15.9% of patients, respectively. MHC class I down-regulation in p53-overexpressing tumours correlated with a 10-month reduced disease-specific survival in univariate analysis (log-rank 4.10; p=0.043). p53-Aab were strongly correlated with p53 overexpression (p<0.001), but did not influence disease-specific survival. CONCLUSIONS As the prognosis of patients with p53-overexpressing ovarian cancer is affected by the MHC class I status of tumour cells and ovarian cancer patients can generate immune responses to the p53 tumour antigen, the further development of immunotherapy should evaluate strategies to improve MHC class I expression by tumour cells to facilitate antigen presentation in an attempt to increase clinical responses.
Collapse
|
29
|
Shah CA, Allison KH, Garcia RL, Gray HJ, Goff BA, Swisher EM. Intratumoral T cells, tumor-associated macrophages, and regulatory T cells: association with p53 mutations, circulating tumor DNA and survival in women with ovarian cancer. Gynecol Oncol 2008; 109:215-9. [PMID: 18314181 DOI: 10.1016/j.ygyno.2008.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/31/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Forty percent of women with ovarian cancer have circulating free tumor DNA. We sought to determine if the tumor immune infiltrate varied based on tumor p53 mutation status or presence of circulating tumor DNA. METHODS We performed immunohistochemistry on 119 ovarian cancer specimens with CD3 and CD8 (Intratumoral T cells (TILs)), CD68 (tumor-associated macrophages (TAMs)), and FoxP3 (T regulatory cells (Tregs)). Tumors had been previously sequenced for mutations in exons 4-10 of p53, and plasma from women characterized for free tumor DNA. RESULTS TIL and TAM levels were positively correlated (P<0.0001). High levels of TILs were identified in 54 of 119 tumors (45.4%). No survival difference was identified according to the presence of TILs or TAMs. Patients with greater TILs were more likely to be optimally cytoreduced (P=0.005). p53 mutations were associated with more TILs (P=0.008). The presence of circulating tumor DNA did not correlate with TILs, TAMs, or Tregs. In the subgroup with a low host antitumor immune response, the intermediate response Tregs group did have a survival advantage (P=0.049). CONCLUSIONS p53 mutations are associated with higher levels of TILs. The ratio of Tregs to TILS may be more important than absolute levels. A brisk T cell response within the tumor predicts adequacy of cytoreduction, suggesting successful cytoreduction may be partially due to underlying tumor biology and host response.
Collapse
Affiliation(s)
- Chirag A Shah
- University of Washington Medical Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Piersma SJ, Welters MJP, van der Hulst JM, Kloth JN, Kwappenberg KMC, Trimbos BJ, Melief CJM, Hellebrekers BW, Fleuren GJ, Kenter GG, Offringa R, van der Burg SH. Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and -DP as a restriction element. Int J Cancer 2008; 122:486-94. [PMID: 17955486 DOI: 10.1002/ijc.23162] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human papillomavirus (HPV)-induced malignancies are frequently infiltrated by lymphocytes. To comprehend the contribution of HPV-specific T cells in this anti-tumor response we developed a method that allowed the analysis of the presence and specificity of cervix-infiltrating and draining lymph node resident T cells in a group of 74 patients with cervical malignancies, 54 of which were induced by HPV16 or HPV18. We detected the presence of HPV16 or HPV18-specific T cells in at least 23 of the 54 HPV-16 or -18 positive patients, and not in the 20 controls. Detailed studies resulted in the identification of 17 novel CD4+ and CD8+ T cell epitopes and their HLA-restriction elements, and also revealed that the HPV-specific immune response was aimed at both E6 and E7 and showed no preferential recognition of immunodominant regions. Unexpectedly, the vast majority of the CD4+ T cell epitopes were presented in the context of the less abundantly expressed HLA-DQ and HLA-DP molecules. Since the identified T cell epitopes constitute physiological targets in the immune response to HPV16 and HPV18 positive tumors they will be valuable for detailed studies on the interactions between the tumor and the immune system. This is crucial for the optimization of cancer immunotherapy in patients with pre-existing tumor-immunity.
Collapse
Affiliation(s)
- Sytse J Piersma
- Department of Clinical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|