1
|
Jenča A, Mills DK, Ghasemi H, Saberian E, Jenča A, Karimi Forood AM, Petrášová A, Jenčová J, Jabbari Velisdeh Z, Zare-Zardini H, Ebrahimifar M. Herbal Therapies for Cancer Treatment: A Review of Phytotherapeutic Efficacy. Biologics 2024; 18:229-255. [PMID: 39281032 PMCID: PMC11401522 DOI: 10.2147/btt.s484068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024]
Abstract
Natural products have proven to be promising anti-cancer agents due to their diverse chemical structures and bioactivity. This review examines their central role in cancer treatment, focusing on their mechanisms of action and therapeutic benefits. Medicinal plants contain bioactive compounds, such as flavonoids, alkaloids, terpenoids and polyphenols, which exhibit various anticancer properties. These compounds induce apoptosis, inhibit cell proliferation and cell cycle progression, interfere with microtubule formation, act on topoisomerase targets, inhibit angiogenesis, modulate key signaling pathways, improve the tumor microenvironment, reverse drug resistance and activate immune cells. Herbal anti-cancer drugs offer therapeutic advantages, particularly selective toxicity against cancer cells, reducing the adverse side effects associated with conventional chemotherapy. Recent studies and clinical trials highlight the benefits of herbal medicines in alleviating side effects, improving tolerance to chemotherapy and the occurrence of synergistic effects with conventional treatments. For example, the herbal medicine SH003 was found to be safe and potentially effective in the treatment of solid cancers, while Fucoidan showed anti-inflammatory properties that are beneficial for patients with advanced cancer. The current research landscape on herbal anticancer agents is extensive. Numerous studies and clinical trials are investigating their efficacy, safety and mechanisms of action in various cancers such as lung, prostate, breast and hepatocellular carcinoma. Promising developments include the polypharmacological approach, combination therapies, immunomodulation and the improvement of quality of life. However, there are still challenges in the development and use of natural products as anti-cancer drugs, such as the need for further research into their mechanisms of action, possible drug interactions and optimal dosage. Standardizing herbal extracts, improving bioavailability and delivery, and overcoming regulatory and acceptance hurdles are critical issues that need to be addressed. Nonetheless, the promising anticancer effects and therapeutic benefits of natural products warrant further investigation and development. Multidisciplinary collaboration is essential to advance herbal cancer therapy and integrate these agents into mainstream cancer treatment.
Collapse
Affiliation(s)
- Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - David K Mills
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadis Ghasemi
- Department of Chemistry, College of Art and Science, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Elham Saberian
- Pavol Jozef Šafárik University, Klinika and Akadémia Košice Bacikova, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | | | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Zeinab Jabbari Velisdeh
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza
| |
Collapse
|
2
|
Solano-Gálvez SG, Gutiérrez-Kobeh L, Wilkins-Rodríguez AA, Vázquez-López R. Artemisinin: An Anti-Leishmania Drug that Targets the Leishmania Parasite and Activates Apoptosis of Infected Cells. Arch Med Res 2024; 55:103041. [PMID: 38996535 DOI: 10.1016/j.arcmed.2024.103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Leishmaniasis is a relevant disease worldwide due to its presence in many countries and an estimated prevalence of 10 million people. The causative agent of this disease is the obligate intracellular parasite Leishmania which can infect different cell types. Part of its success depends on its ability to evade host defense mechanisms such as apoptosis. Apoptosis is a finely programmed process of cell death in which cells silently dismantle and actively participate in several processes such as immune response, differentiation, and cell growth. Leishmania has the ability to delay its initiation to persist in the cell. It has been well documented that different Leishmania species target different pathways that lead to apoptosis of cells such as macrophages, neutrophils, and dendritic cells. In many cases, the observed anti-apoptotic effect has been associated with a significant reduction in caspase-3 activity. Leishmania has also been shown to target several pathways involved in apoptosis such as MAPK, PI3K/Akt, and the antiapoptotic protein Bcl-xL. Understanding the strategies used by Leishmania to subvert the defense mechanisms of host cells, particularly apoptosis, is very relevant for the development of therapies and vaccines. In recent years, the drug artemisinin has been shown to be effective against several parasitic diseases. Its role against Leishmania may be promising. In this review, we provide important aspects of the disease, the strategies used by the parasite to suppress apoptosis, and the role of artemisinin in Leishmania infection.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Unidad de Investigación, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo A Wilkins-Rodríguez
- Unidad de Investigación, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico.
| |
Collapse
|
3
|
Sharma V, Chaudhary AA, Bawari S, Gupta S, Mishra R, Khan SUD, Ali MAM, Shahid M, Srivastava S, Verma D, Gupta A, Kumar S, Kumar S. Unraveling cancer progression pathways and phytochemical therapeutic strategies for its management. Front Pharmacol 2024; 15:1414790. [PMID: 39246660 PMCID: PMC11377287 DOI: 10.3389/fphar.2024.1414790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 09/10/2024] Open
Abstract
Cancer prevention is currently envisioned as a molecular-based approach to prevent carcinogenesis in pre-cancerous stages, i.e., dysplasia and carcinoma in situ. Cancer is the second-leading cause of mortality worldwide, and a more than 61% increase is expected by 2040. A detailed exploration of cancer progression pathways, including the NF-kβ signaling pathway, Wnt-B catenin signaling pathway, JAK-STAT pathway, TNF-α-mediated pathway, MAPK/mTOR pathway, and apoptotic and angiogenic pathways and effector molecules involved in cancer development, has been discussed in the manuscript. Critical evaluation of these effector molecules through molecular approaches using phytomolecules can intersect cancer formation and its metastasis. Manipulation of effector molecules like NF-kβ, SOCS, β-catenin, BAX, BAK, VEGF, STAT, Bcl2, p53, caspases, and CDKs has played an important role in inhibiting tumor growth and its spread. Plant-derived secondary metabolites obtained from natural sources have been extensively studied for their cancer-preventing potential in the last few decades. Eugenol, anethole, capsaicin, sanguinarine, EGCG, 6-gingerol, and resveratrol are some examples of such interesting lead molecules and are mentioned in the manuscript. This work is an attempt to put forward a comprehensive approach to understanding cancer progression pathways and their management using effector herbal molecules. The role of different plant metabolites and their chronic toxicity profiling in modulating cancer development pathways has also been highlighted.
Collapse
Affiliation(s)
- Vikas Sharma
- Metro College of Health Sciences and Research, Greater Noida, India
- School of Pharmacy, Sharda University, Greater Noida, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Devvrat Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Arti Gupta
- Lloyd School of Pharmacy, Greater Noida, India
| | - Sanjay Kumar
- Biological and Bio-computational Laboratory, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India
- DST-FIST Laboratory, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
4
|
Haddad N, Gamaethige SM, Wehida N, Elbediwy A. Drug Repurposing: Exploring Potential Anti-Cancer Strategies by Targeting Cancer Signalling Pathways. BIOLOGY 2024; 13:386. [PMID: 38927266 PMCID: PMC11200741 DOI: 10.3390/biology13060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The repurposing of previously clinically approved drugs as an alternative therapeutic approach to treating disease has gained significant attention in recent years. A multitude of studies have demonstrated various and successful therapeutic interventions with these drugs in a wide range of neoplastic diseases, including multiple myeloma, leukaemia, glioblastoma, and colon cancer. Drug repurposing has been widely encouraged due to the known efficacy, safety, and convenience of already established drugs, allowing the bypass of the long and difficult road of lead optimization and drug development. Repurposing drugs in cancer therapy is an exciting prospect due to the ability of these drugs to successfully target cancer-associated genes, often dysregulated in oncogenic signalling pathways, amongst which are the classical cancer signalling pathways; WNT (wingless-related integration type) and Hippo signalling. These pathways play a fundamental role in controlling organ size, tissue homeostasis, cell proliferation, and apoptosis, all hallmarks of cancer initiation and progression. Prolonged dysregulation of these pathways has been found to promote uncontrolled cellular growth and malignant transformation, contributing to carcinogenesis and ultimately leading to malignancy. However, the translation of cancer signalling pathways and potential targeted therapies in cancer treatment faces ongoing challenges due to the pleiotropic nature of cancer cells, contributing to resistance and an increased rate of incomplete remission in patients. This review provides analyses of a range of potential anti-cancer compounds in drug repurposing. It unravels the current understanding of the molecular rationale for repurposing these drugs and their potential for targeting key oncogenic signalling pathways.
Collapse
Affiliation(s)
| | | | - Nadine Wehida
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
| |
Collapse
|
5
|
Yu XH, Wu JB, Fan HY, Dai L, Xian HC, Chen BJ, Liao P, Huang MC, Pang X, Zhang M, Liang XH, Tang YL. Artemisinin suppressed tumour growth and induced vascular normalisation in oral squamous cell carcinoma via inhibition of macrophage migration inhibitory factor. Oral Dis 2024; 30:363-375. [PMID: 36321394 DOI: 10.1111/odi.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Tumour vascular normalisation therapy advocates a balance between pro-angiogenic factors and anti-angiogenic factors in tumours. Artemisinin (ART), which is derived from traditional Chinese medicine, has been shown to inhibit tumour growth; however, the relationship between ART and tumour vascular normalisation in oral squamous cell carcinoma (OSCC) has not been previously reported. METHODS Different concentrations(0 mg/kg, 25 mg/kg, 50 mg/kg, 100 mg/kg)of ART were used to treat the xenograft nude mice model of OSCC. The effects of ART on migration and proliferation of OSCC and human umbilical vein endothelial cells (HUVEC) cells were detected by scratch assay and CCK-8 assay. OSCC cells with macrophage migration inhibitory factor (MIF) silenced were constructed to explore the effect of MIF. RESULTS Treatment with ART inhibited the growth and angiogenesis of OSCC xenografts in nude mice and downregulated vascular endothelial growth factor (VEGF), IL-8, and MIF expression levels. ART reduced the proliferation, migration, and tube formation of HUVEC, as well as the expression of VEGFR1 and VEGFR2. When the dose of ART was 50 mg/kg, vascular normalisation of OSCC xenografts was induced. Moreover, VEGF and IL-8 were needed in rhMIF restoring tumour growth and inhibit vascular normalisation after the addition of rhMIF to ART-treated cells. CONCLUSION Artemisinin might induce vascular normalisation and inhibit tumour growth in OSCC through the MIF-signalling pathway.
Collapse
Affiliation(s)
- Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Bing-Jun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Peng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
6
|
Ismail M, Yang W, Li Y, Chai T, Zhang D, Du Q, Muhammad P, Hanif S, Zheng M, Shi B. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials 2022; 287:121608. [PMID: 35690021 DOI: 10.1016/j.biomaterials.2022.121608] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
The effective treatment of glioblastoma (GBM) is a great challenge because of the blood-brain barrier (BBB) and the growing resistance to single-agent therapeutics. Targeted combined co-delivery of drugs could circumvent these challenges; however, the absence of more effective combination drug delivery strategies presents a potent barrier. Here, a unique combination ApoE-functionalized liposomal nanoplatform based on artesunate-phosphatidylcholine (ARTPC) encapsulated with temozolomide (ApoE-ARTPC@TMZ) was presented that can successfully co-deliver dual therapeutic agents to TMZ-resistant U251-TR GBM in vivo. Examination in vitro showed ART-mediated inhibition of DNA repair through the Wnt/β-catenin signaling cascade, which also improved GBM sensitivity to TMZ, resulting in enhanced synergistic DNA damage and induction of apoptosis. In assessing BBB permeation, the targeted liposomes were able to effectively traverse the BBB through low-density lipoprotein family receptors (LDLRs)-mediated transcytosis and achieved deep intracranial tumor penetration. More importantly, the targeted combination liposomes resulted in a significant decrease of U251-TR glioma burden in vivo that, in concert, substantially improved the survival of mice. Additionally, by lowering the effective dosage of TMZ, the combination liposomes reduced systemic TMZ-induced toxicity, highlighting the preclinical potential of this novel integrative strategy to deliver combination therapies to brain tumors.
Collapse
Affiliation(s)
- Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Wen Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yanfei Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Tianran Chai
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Qiuli Du
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
7
|
Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers (Basel) 2022; 14:cancers14051100. [PMID: 35267408 PMCID: PMC8909202 DOI: 10.3390/cancers14051100] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is a life-threatening disease and is considered to be among the leading causes of death worldwide. Chemoresistance, severe toxicity, relapse and metastasis are the major obstacles in cancer therapy. Therefore, introducing new therapeutic agents for cancer remains a priority to increase the range of effective treatments. Terpenoids, a large group of secondary metabolites, are derived from plant sources and are composed of several isoprene units. The high diversity of terpenoids has drawn attention to their potential anticancer and pharmacological activities. Some terpenoids exhibit an anticancer effect by triggering various stages of cancer progression, for example, suppressing the early stage of tumorigenesis via induction of cell cycle arrest, inhibiting cancer cell differentiation and activating apoptosis. At the late stage of cancer development, certain terpenoids are able to inhibit angiogenesis and metastasis via modulation of different intracellular signaling pathways. Significant progress in the identification of the mechanism of action and signaling pathways through which terpenoids exert their anticancer effects has been highlighted. Hence, in this review, the anticancer activities of twenty-five terpenoids are discussed in detail. In addition, this review provides insights on the current clinical trials and future directions towards the development of certain terpenoids as potential anticancer agents.
Collapse
|
8
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
9
|
Yang X, Zheng Y, Liu L, Huang J, Wang F, Zhang J. Progress on the study of the anticancer effects of artesunate. Oncol Lett 2021; 22:750. [PMID: 34539854 PMCID: PMC8436334 DOI: 10.3892/ol.2021.13011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Artesunate (ART) is a derivative of artemisinin that is extracted from the wormwood plant Artemisia annua. ART is an antimalarial drug that has been shown to be safe and effective for clinical use. In addition to its antimalarial properties, ART has been attracting attention over recent years due to its reported inhibitory effects on cancer cell proliferation, invasion and migration. Therefore, ART has a wider range of potential clinical applications than first hypothesized. The aim of the present review was to summarize the latest research progress on the possible anticancer effects of ART, in order to lay a theoretical foundation for the further development of ART as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Xiulan Yang
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yudong Zheng
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lian Liu
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jiangrong Huang
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Fei Wang
- Center of Experiment and Training, Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| | - Jie Zhang
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
10
|
Dang S, Kumari P. Anti-cancer potential of some commonly used drugs. Curr Pharm Des 2021; 27:4530-4538. [PMID: 34161206 DOI: 10.2174/1381612827666210622104821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Cancer is a global concern leading to millions of deaths every year. A declining trend in new drug discovery and development is becoming one of the major issues among the pharmaceutical, biotechnology industries, and regulatory agencies. New drug development is proven to be a very lengthy and costly process. The launch of a new drug takes 8-12 years and huge investments. The success rate in oncology therapeutics is also low due to toxicities at the pre-clinical and clinical trial levels. Many oncological drugs get rejected at a very promising stage, showing adverse reactions on healthy cells. Thus, exploring new therapeutic benefits of the existing, shelved drugs for their anti-cancerous action could result in a therapeutic approach preventing the toxicities which occur during clinical trials. Drug repurposing has the potential to overcome the challenges faced via conventional way of drug discovery and is becoming an area of interest for researchers and scientists. However, very few in vivo studies are conducted to prove the anti-cancerous activity of the drugs. Insufficient in vivo animal studies and a lack of human clinical trials are the lacunae in the field of drug repurposing. This review focuses on an aspect of drug repurposing for cancer therapeutics. Various studies that show that drugs approved for clinical indications other than cancer have shown promising anti-cancer activities. Some of the commonly used drugs like Benzodiazepines (Diazepam, Midzolam), Antidepressants (Imipramine, Clomipramine, and Citalopram), Antiepileptic (Valporic acid, Phenytoin), Antidiabetics (metformin), etc. have been reported to show potential activity against the cancerous cells.
Collapse
Affiliation(s)
- Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, NOIDA, U.P, India
| | - Pallavi Kumari
- Department of Biotechnology, Jaypee Institute of Information Technology, NOIDA, U.P, India
| |
Collapse
|
11
|
Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021; 26:molecules26041109. [PMID: 33669817 PMCID: PMC7922180 DOI: 10.3390/molecules26041109] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Despite the recent advances in the field of chemically synthetized pharmaceutical agents, nature remains the main supplier of bioactive molecules. The research of natural products is a valuable approach for the discovery and development of novel biologically active compounds possessing unique structures and mechanisms of action. Although their use belongs to the traditional treatment regimes, plant-derived compounds still cover a large portion of the current-day pharmaceutical agents. Their medical importance is well recognized in the field of oncology, especially as an alternative to the limitations of conventional chemotherapy (severe side effects and inefficacy due to the occurrence of multi-drug resistance). This review offers a comprehensive perspective of the first blockbuster chemotherapeutic agents of natural origin’s (e.g. taxol, vincristine, doxorubicin) mechanism of action using 3D representation. In addition is portrayed the step-by-step evolution from preclinical to clinical evaluation of the most recently studied natural compounds with potent antitumor activity (e.g. resveratrol, curcumin, betulinic acid, etc.) in terms of anticancer mechanisms of action and the possible indications as chemotherapeutic or chemopreventive agents and sensitizers. Finally, this review describes several efficient platforms for the encapsulation and targeted delivery of natural compounds in cancer treatment
Collapse
|
12
|
Phull MS, Jadav SS, Gundla R, Mainkar PS. A perspective on medicinal chemistry approaches towards adenomatous polyposis coli and Wnt signal based colorectal cancer inhibitors. Eur J Med Chem 2021; 212:113149. [PMID: 33445154 DOI: 10.1016/j.ejmech.2020.113149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of carcinogenic mortality in numbers only after lung and breast cancers. The mutations in adenomatous polyposis coli (APC) gene leads to formation of colorectal polyps in the colonic region and which develop as a malignant tumour upon coalition with patient related risk factors. The protein-protein interaction (PPI) of APC with Asef (A Rac specific guanine nucleotide exchange factor) overwhelms the patient's conditions by rapidly spreading in the entire colorectal region. Most mutations in APC gene occur in mutated cluster region (MCR), where it specifically binds with the cytosolic β-catenin to regulate the Wnt signalling pathway required for CRC cell adhesion, invasion, progression, differentiation and stemness in initial cell cycle phages. The current broad spectrum perspective is attempted to elaborate the sources of identification, development of selective APC inhibitors by targeting emopamil-binding protein (EBP) & dehydrocholesterol reductase-7 & 24 (DHCR-7 & 24); APC-Asef, β-catenin/APC, Wnt/β-catenin, β-catenin/TCF4 PPI inhibitors with other vital Wnt signal cellular proteins and APC/Pol-β interface of colorectal cancer. In this context, this perspective would serve as a platform for design of new medicinal agents by targeting cellular essential components which could accelerate anti-colorectal potential candidates.
Collapse
Affiliation(s)
- Manjinder Singh Phull
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Surender Singh Jadav
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Prathama S Mainkar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Utter Pradesh, India.
| |
Collapse
|
13
|
Poloznikov AA, Muyzhnek EL, Nikulin SV, Kaprin AD, Ashrafyan LA, Rozhkova NI, Labazanova PG, Kiselev VI. Antitumor Activity of Indole-3-carbinol in Breast Cancer Cells: Phenotype, Genetic Pattern, and DNA Methylation Inversion. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820090070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Augustin Y, Staines HM, Krishna S. Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing. Pharmacol Ther 2020; 216:107706. [PMID: 33075360 PMCID: PMC7564301 DOI: 10.1016/j.pharmthera.2020.107706] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Artemisinins are a unique class of antimalarial drugs with significant potential for drug repurposing for a wide range of diseases including cancer. Cancer is a leading cause of death globally and the majority of cancer related deaths occur in Low and Middle Income Countries (LMICs) where conventional treatment options are often limited by financial cost. Drug repurposing can significantly shorten new therapeutic discovery pathways, ensuring greater accessibility and affordability globally. Artemisinins have an excellent safety and tolerability profile as well as being affordable for deployment in Low and Middle Class Income Countries at around USD1 per daily dose. Robust, well designed clinical trials of artemisinin drug repurposing are indicated for a variety of different cancers and treatment settings.
Collapse
Affiliation(s)
- Yolanda Augustin
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Henry M Staines
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Sanjeev Krishna
- Institute of Infection & Immunity, St George's University of London, United Kingdom.
| |
Collapse
|
15
|
Li W, Ma G, Deng Y, Wu Q, Wang Z, Zhou Q. Artesunate exhibits synergistic anti-cancer effects with cisplatin on lung cancer A549 cells by inhibiting MAPK pathway. Gene 2020; 766:145134. [PMID: 32898605 DOI: 10.1016/j.gene.2020.145134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Artesunate (ART) has been used extensively as anti-malarial drugs worldwide. Besides, it has also been reported to have anti-cancer activities. This study was aimed to explore the anti-cancer activity of ART in combination with cisplatin (CIS) on A549 cells. METHODS Cells were cultured with different concentrations of ART and/or CIS for 24, 48, or 72 h to test the anti-proliferative effects by CCK-8 assay. Colony formation assay and EdU staining were also performed. TUNEL staining was used to illustrate the morphologic changes. Cell cycle and apoptosis were determined by flow cytometry assay, and Western blot analysis was conducted to detect the expression of apoptosis- and proliferation-related proteins. Caspase activities were determined by colorimetric assay kit. Moreover, the synergistic effect of ART with CIS in A549 cell xenograft model was also determined. RESULTS ART significantly inhibited cell proliferation in dose- and time-dependent manners. Collectively, the combination treatment remarkably decreased colony formation rates and increased the rates of TUNEL-positive cells compared with mono-treatment. Mechanistically, the combination treatment influenced the expression of Bcl-2, Bax, p-P53, Caspase-3/7, Caspase-9, CyclinB1, P34, P21, and synergistically regulated the activity of P38/JNK/ERK1/2 MAPK pathway. In mice A549 xenograft tumors, the combination strategy significantly increased the anti-cancer efficacy of ART and CIS alone, consistent with the in vitro observations. CONCLUSIONS ART exhibited significant anti-tumor effect on A549 cells and this efficiency could be enhanced by combination with CIS.
Collapse
Affiliation(s)
- Wen Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Guangzhi Ma
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunfu Deng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Qiang Wu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Zhu Wang
- Laboratory of Molecular Diagnosis of Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| |
Collapse
|
16
|
Kiani BH, Kayani WK, Khayam AU, Dilshad E, Ismail H, Mirza B. Artemisinin and its derivatives: a promising cancer therapy. Mol Biol Rep 2020; 47:6321-6336. [PMID: 32710388 DOI: 10.1007/s11033-020-05669-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The world is experiencing a cancer epidemic and an increase in the prevalence of the disease. Cancer remains a major killer, accounting for more than half a million deaths annually. There is a wide range of natural products that have the potential to treat this disease. One of these products is artemisinin; a natural product from Artemisia plant. The Nobel Prize for Medicine was awarded in 2015 for the discovery of artemisinin in recognition of the drug's efficacy. Artemisinin produces highly reactive free radicals by the breakdown of two oxygen atoms that kill cancerous cells. These cells sequester iron and accumulate as much as 1000 times in comparison with normal cells. Generally, chemotherapy is toxic to both cancerous cells and normal cells, while no significant cytotoxicity from artemisinin to normal cells has been found in more than 4000 case studies, which makes it far different than conventional chemotherapy. The pleiotropic response of artemisinin in cancer cells is responsible for growth inhibition by multiple ways including inhibition of angiogenesis, apoptosis, cell cycle arrest, disruption of cell migration, and modulation of nuclear receptor responsiveness. It is very encouraging that artemisinin and its derivatives are anticipated to be a novel class of broad-spectrum antitumor agents based on efficacy and safety. This review aims to highlight these achievements and propose potential strategies to develop artemisinin and its derivatives as a new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Asma Umer Khayam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
17
|
Wang T, Wang J, Ren W, Liu ZL, Cheng YF, Zhang XM. Combination treatment with artemisinin and oxaliplatin inhibits tumorigenesis in esophageal cancer EC109 cell through Wnt/β-catenin signaling pathway. Thorac Cancer 2020; 11:2316-2324. [PMID: 32657048 PMCID: PMC7396387 DOI: 10.1111/1759-7714.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/20/2023] Open
Abstract
Background Esophageal cancer (EC) is a prevalent malignant cancer worldwide. Interestingly, the antimalaria compound artemisinin (ART) is also reported to have anticancer potential, although its underlying mechanism in EC is unclear. In this study, we explored the anticancer role of ART in EC109 and further explored the combination of ART and oxaliplatin (OXA) for their synergetic anticancer functions. Methods Human EC cell line EC109 was used. After ART or oxaliplatin (OXA) treatment, cell proliferation, migration, and invasion were measured by MTT, transwell, and scratch wound assays, respectively. Flow cytometry was performed to examine the cell cycle and apoptosis. The mRNA and protein levels were determined using qRT‐PCR and western blotting. Results The migration and invasion abilities of EC109 were suppressed by ART. This was due to the inhibitory effect of ART on the Wnt/β‐catenin signaling pathway. The levels of β‐catenin, c‐myc, and survivin were also downregulated by ART. ART inhibits the proliferation of EC109 cells by arresting the cells in the G1‐phase of cell cycle. By using LiCl, an activator of the Wnt/β‐catenin pathway, we further verified that the inhibition of the Wnt/β‐catenin pathway was indeed due to ART. Remarkably, ART enhanced the anticancer effects of OXA in EC109 cells. OXA combined with ART was found to be more efficient in decreasing tumor growth compared to the individual drugs. Conclusions ART could suppress tumor progression by inhibiting Wnt/β‐catenin signaling pathway, and it may also enhance the antitumor effect of OXA in EC. Thus, ART could be a novel anticancer drug for EC treatment. Key points Significant findings of the study ART could be a novel anticancer drug for esophageal cancer (EC) treatment. What this study adds Combination treatment with artemisinin and oxaliplatin inhibits tumorigenesis in esophageal cancer EC109 cells through the Wnt/β‐catenin signaling pathway.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiotherapy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian Wang
- Department of Ultrasound, Shandong Province Coal Taishan Sanatorium, Taian, China
| | - Wei Ren
- Department of Radiotherapy, The People's Hospital of Lanling County, Linyi, China
| | - Zhu-Long Liu
- Department of Radiotherapy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu-Feng Cheng
- Department of Radiotherapy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Mei Zhang
- Department of Radiotherapy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Antiparkinson Drug Benztropine Suppresses Tumor Growth, Circulating Tumor Cells, and Metastasis by Acting on SLC6A3/DAT and Reducing STAT3. Cancers (Basel) 2020; 12:cancers12020523. [PMID: 32102440 PMCID: PMC7072357 DOI: 10.3390/cancers12020523] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor growth, progression, and therapy resistance are crucial factors in the prognosis of cancer. The properties of three-dimensional (3D) tumor-like organoids (tumoroids) more closely resemble in vivo tumors compared to two-dimensionally cultured cells and are therefore effectively used for assays and drug screening. We here established a repurposed drug for novel anticancer research and therapeutics using a 3D tumoroid-based screening system. We screened six pharmacologically active compounds by using an original tumoroid-based multiplex phenotypic screening system with a matrix metalloproteinase 9 (MMP9) promoter-driven fluorescence reporter for the evaluation of both tumoroid formation and progression. The antiparkinson drug benztropine was the most effective compound uncovered by the screen. Benztropine significantly inhibited in vitro tumoroid formation, cancer cell survival, and MMP9 promoter activity. Benztropine also reduced the activity of oncogenic signaling transducers and trans-activators for MMP9, including STAT3, NF-κB, and β-catenin, and the properties of cancer stem cells/cancer-initiating cells. Benztropine and GBR-12935 directly targeted the dopamine transporter DAT/SLC6A3, whose genetic alterations such as amplification were correlated with poor prognosis for cancer patients. Benztropine also inhibited the tumor growth, circulating tumor cell (CTC) number, and rate of metastasis in a tumor allograft model in mice. In conclusion, we propose the repurposing of benztropine for anticancer research and therapeutics that can suppress tumor progression, CTC, and metastasis of aggressive cancers by reducing key pro-tumorigenic factors.
Collapse
|
19
|
Ma L, Fei H. Antimalarial drug artesunate is effective against chemoresistant anaplastic thyroid carcinoma via targeting mitochondrial metabolism. J Bioenerg Biomembr 2020; 52:123-130. [PMID: 32036542 DOI: 10.1007/s10863-020-09824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/02/2020] [Indexed: 12/29/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid malignancies and resistant to chemotherapy. Novel therapeutic strategy is required for better management of ATC. In this work, we show that artesunate, an antimalarial drug, is active against chemoresistant ATC cells. Artesunate dose-dependently inhibits growth and induces apoptosis in chemo-sensitive (8505C and KAT-4) and -resistant (8505C-r and KAT-4-r) ATC cells, and acts synergistically with doxorubicin. Using multiple xenograft mouse models, artesunate is active against chemo-sensitive and -resistant ATC cells in vivo at doses that do not cause toxicity in mice. Our mechanism analysis reveals that artesunate acts on ATC cells through suppressing mitochondrial functions without affecting glycolysis, leading to oxidative stress and damage, regardless of whether they are sensitive or resistant to chemotherapy. Interestingly, KAT-4-r cells demonstrate decreased glycolysis, increased mitochondrial membrane potential and mitochondrial respiration compared to KAT-4 cells whereas such phenomenon is not observed between 8505C and 8505C-r cells. This suggests that some but not all ATC cells gain enhanced mitochondrial biogenesis after prolonged exposure to chemotherapy drug, which may explain the different sensitivities of 8505C-r and KAT-4-r to artesunate. Our work demonstrates that artesunate is a potential addition to the treatment armamentarium for ATC, particularly those with chemoresistance. Our findings also highlight the therapeutic value of targeting mitochondria in chemoresistant ATC.
Collapse
Affiliation(s)
- Ling Ma
- Department of Endocrinology, First Affiliated Hospital, First Clinical Medical College, Yangtze University, Jingzhou, Hubei, 434000, China
| | - Honghua Fei
- Department of Endocrinology, People's Hospital of Rizhao, No.126, Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
20
|
Artesunate targets oral tongue squamous cell carcinoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibition. J Bioenerg Biomembr 2020; 52:113-121. [PMID: 31965456 DOI: 10.1007/s10863-020-09823-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Although mitochondrial metabolism has recently gained attention as a promising therapeutic strategy in cancer, little is known on the impact of mitochondrial respiration inhibition on oral tongue squamous cell carcinoma (OTSCC). Using in vitro and in vivo OTSCC models, our work demonstrates that inducing mitochondrial dysfunction by anti-malarial drug artesunate is effective in targeting OTSCC stem-cell like and bulk cells. Artesunate inhibits anchorage-independent colony formation, proliferation and survival in all tested OTSCC cell lines although with varying efficacy. Artesunate displays preferential anti-OTSCC activity by sparing normal cells. Mechanism analysis indicates that artesunate inhibits mitochondrial respiration via suppressing mitochondrial complex I and II but not IV or V, resulting in oxidative stress and damage. Interestingly, OTSCC cells that are more sensitive to artesunate have higher level of basal mitochondrial respiration and reversed respiratory capacity compared to those with less sensitivity to artesunate, suggesting the varying dependence on mitochondrial respiration among OTSCC cell lines. In addition, artesunate induces oxidative stress and damage in cells with low sensitivity to a less extent than in those with high sensitivity. We confirm that mitochondrial respiration inhibition is required for the action of artesunate in OTSCC. Mitochondrial dysfunction by artesunate further activates AMPK and suppresses Akt/mTOR. Importantly, the in vitro observations are reproducible in vivo OTSCC xenograft mouse model. Our findings provide pre-clinical evidence on the efficacy of artesunate and emphasize the therapeutic value of targeting mitochondrial respiration in OTSCC.
Collapse
|
21
|
Zheng C, Shan L, Tong P, Efferth T. Cardiotoxicity and Cardioprotection by Artesunate in Larval Zebrafish. Dose Response 2020; 18:1559325819897180. [PMID: 31975974 PMCID: PMC6958657 DOI: 10.1177/1559325819897180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Although artesunate (ART) is generally accepted as a safe and well-tolerated
first-line treatment of severe malaria, cases of severe side effects and
toxicity of this compound are also documented. This study applied larval
zebrafishes to determine the acute toxicity and efficacy of ART and performed
RNA-sequencing analyses to unravel the underlying signaling pathways
contributing to ART’s activities. Results from acute toxicity assay showed that
a single-dose intravenous injection of ART from 3.6 ng/fish (1/9 maximum
nonlethal concentration) to 41.8 ng/fish (lethal dose 10%) obviously induced
pericardial edema, circulation defects, yolk sac absorption delay, renal edema,
and swim bladder loss, indicating acute cardiotoxicity, nephrotoxicity, and
developmental toxicity of ART. Efficacy assay showed that ART at 1/2 lowest
observed adverse effect level (LOAEL) exerted cardioprotective effects on
zebrafishes with verapamil-induced heart failure. Artesunate significantly
restored cardiac malformation, venous stasis, cardiac output decrease, and blood
flow dynamics reduction. No adverse events were observed with this treatment,
indicating that ART at doses below LOAEL was effective and safe. These results
indicate that ART at low doses was cardioprotective, but revealed cardiotoxicity
at high doses. RNA-sequencing analysis showed that gene expression of
frizzled class receptor 7a (fzd7a) was
significantly upregulated in zebrafishes with verapamil-induced heart failure
and significantly downregulated if ART at 1/2 LOAEL was coadministrated,
indicating that fzd7a-modulated Wnt signaling may mediate the
cardioprotective effect of ART. For the first time, this study revealed the
biphasic property of ART, providing in-depth knowledge on the pharmacological
efficacy-safety profile for its therapeutic and safe applications in clinic.
Collapse
Affiliation(s)
- Chuanrui Zheng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
22
|
Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol 2020; 866:172784. [DOI: 10.1016/j.ejphar.2019.172784] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
|
23
|
Li Y, Lu J, Chen Q, Han S, Shao H, Chen P, Jin Q, Yang M, Shangguan F, Fei M, Wang L, Liu Y, Liu N, Lu B. Artemisinin suppresses hepatocellular carcinoma cell growth, migration and invasion by targeting cellular bioenergetics and Hippo-YAP signaling. Arch Toxicol 2019; 93:3367-3383. [PMID: 31563988 DOI: 10.1007/s00204-019-02579-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023]
Abstract
The primary liver cancer (PLC) is one of the leading causes of cancer-related death worldwide. The predominant form of PLC is hepatocellular carcinoma (HCC), which accounts for about 85% of all PLC. Artemisinin (ART) was clinically used as anti-malarial agents. Recently, it was demonstrated to inhibit cell growth and migration in multiple cancer types. However, the molecular mechanism underlying these anti-cancer activity remains largely unknown. Herein, it is discovered that ART dramatically suppresses HCC cell growth in vitro through arresting cell cycle progression, and represses cell migration and invasion via regulating N-cadherin-Snail-E-cadherin axis. In addition, the disruption of cellular bioenergetics contributed to ART-caused cell growth, migration and invasion inhibition. Moreover, ART (100 mg/kg, intraperitoneally) substantially inhibits HCC xenograft growth in vivo. Importantly, Hippo-YAP signal transduction is remarkably inactivated in HCC cells upon ART administration. Collectively, these data reveal a novel mechanism of ART in regulating HCC cell growth, migration, and invasion, which indicates that ART could be considered as a potential drug for the treatment of HCC.
Collapse
Affiliation(s)
- Yujie Li
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China.,Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Lu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Qin Chen
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shengnan Han
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Hua Shao
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Pingyi Chen
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Qiumei Jin
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Mingyue Yang
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Mingming Fei
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Lu Wang
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China. .,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Naxin Liu
- Department of Pancreatitis Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China. .,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
24
|
Kumar VL, Verma S, Das P. Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer. Drug Dev Res 2019; 80:1089-1097. [PMID: 31471932 DOI: 10.1002/ddr.21590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022]
Abstract
Anti-inflammatory drugs are well known to reduce the risk of colon cancer and prophylactic use of such agents is gaining acceptance as a cancer prevention therapy. As artesunate, an antimalarial drug, has been shown to exhibit chemopreventive properties, the present study was carried out to evaluate its inhibitory effect on oxidative stress and inflammation in a rat model of colon carcinogenesis. A chemical carcinogen, 1,2-dimethylhydrazine was injected twice at an interval of 1 week to induce preneoplastic lesions in the colon and the parameters indicating oxidative stress and inflammation were evaluated after 8 weeks. Artesunate (50 and 150 mg/kg) and aspirin (60 mg/kg) were administered orally throughout the study. Analysis of colon tissue revealed that both the drugs preserved histoarchitecture, inhibited cellular influx, decreased the levels of oxidative stress and inflammatory markers, downregulated cyclooxygenase-2, inducible nitric oxide synthase, nuclear factor κB, and interleukin 1β in comparison to the experimental control. Suppression of oxidative stress and pro-inflammatory signaling by both the drugs were found to contribute to inhibition of colon carcinogenesis. The protection afforded by these drugs was found to be comparable. Our study shows that like aspirin, use of artesunate could also reduce the risk of colon cancer and it has a potential for further evaluation for the treatment purpose.
Collapse
Affiliation(s)
- Vijay L Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Sneh Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Sogawa C, Eguchi T, Okusha Y, Ono K, Ohyama K, Iizuka M, Kawasaki R, Hamada Y, Takigawa M, Sogawa N, Okamoto K, Kozaki KI. A Reporter System Evaluates Tumorigenesis, Metastasis, β-catenin/MMP Regulation, and Druggability. Tissue Eng Part A 2019; 25:1413-1425. [PMID: 30734664 DOI: 10.1089/ten.tea.2018.0348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer invasion, metastasis, and therapy resistance are the crucial phenomena in cancer malignancy. The high expression of matrix metalloproteinase 9 (MMP9) is a biomarker as well as a causal factor of cancer invasiveness and metastatic activity. However, a regulatory mechanism underlying MMP9 expression in cancer is not clarified yet. In addition, a new strategy for anticancer drug discovery is becoming an important clue. In the present study, we aimed (i) to develop a novel reporter system evaluating tumorigenesis, invasiveness, metastasis, and druggability with a combination of three-dimensional tumoroid model and Mmp9 promoter and (ii) to examine pharmacological actions of anticancer medications using this reporter system. High expression and genetic amplification of MMP9 were found in colon cancer cases. We found that proximal promoter sequences of MMP9 in murine and human contained conserved binding sites for transcription factors β-catenin/TCF/LEF, glucocorticoid receptor (GR), and nuclear factor kappa-B (NF-κB). The murine Mmp9 promoter (-569 to +19) was markedly activated in metastatic colon cancer cells and additionally activated by tumoroid formation and by β-catenin signaling stimulator lithium chloride. The Mmp9 promoter-driven fluorescent reporter cells enabled the monitoring of activities of MMP9/gelatinase, tumorigenesis, invasion, and metastasis in syngeneic transplantation experiments. We also demonstrated pharmacological actions as follows: dexamethasone and hydrocortisone, steroidal medications binding to GR, inhibited the Mmp9 promoter but did not inhibit tumorigenesis. On the contrary, antimetabolite 5-fluorouracil, a gold standard for colon cancer chemotherapy, inhibited tumoroid formation but did not inhibit Mmp9 promoter activity. Notably, antimalaria medication artesunate inhibited both tumorigenesis and the Mmp9 promoter in vitro, potentially through inhibition of β-catenin/TCF/LEF signaling. Thus, this novel reporter system enabled monitoring tumorigenesis, invasiveness, metastasis, key regulatory signalings such as β-catenin/MMP9 axis, and druggability. Impact Statement Cancer invasion and metastasis have been shown to be driven by matrix metalloproteinase 9 (MMP9), whose expression mechanism is not clarified yet. In addition, a new strategy for anticancer drug discovery is becoming important. We established a novel reporter system evaluating tumorigenesis, invasiveness, metastasis, and druggability with a combination of three-dimensional (3D) tumoroid model and Mmp9 promoter. Using this reporter system, we demonstrated pharmacological actions of anticancer medications such as antimetabolite 5-fluorouracil (5-FU) and antimalaria medication artesunate (ART), which inhibited both tumorigenesis and β-catenin/MMP regulatory signaling. Our study impacts the translational fields of oncology, drug discovery, and organoid model.
Collapse
Affiliation(s)
- Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kisho Ono
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazumi Ohyama
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Motoharu Iizuka
- Research Program for Undergraduate Students, Okayama University Dental School, Okayama, Japan
| | - Ryu Kawasaki
- Research Program for Undergraduate Students, Okayama University Dental School, Okayama, Japan
| | - Yusaku Hamada
- Research Program for Undergraduate Students, Okayama University Dental School, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Norio Sogawa
- Department of Dental Pharmacology, Matsumoto Dental University, Shiojiri, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken-Ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
26
|
Goldsberry WN, Londoño A, Randall TD, Norian LA, Arend RC. A Review of the Role of Wnt in Cancer Immunomodulation. Cancers (Basel) 2019; 11:cancers11060771. [PMID: 31167446 PMCID: PMC6628296 DOI: 10.3390/cancers11060771] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Alterations in the Wnt signaling pathway are associated with the advancement of cancers; however, the exact mechanisms responsible remain largely unknown. It has recently been established that heightened intratumoral Wnt signaling correlates with tumor immunomodulation and immune suppression, which likely contribute to the decreased efficacy of multiple cancer therapeutics. Here, we review available literature pertaining to connections between Wnt pathway activation in the tumor microenvironment and local immunomodulation. We focus specifically on preclinical and clinical data supporting the hypothesis that strategies targeting Wnt signaling could act as adjuncts for cancer therapy, either in combination with chemotherapy or immunotherapy, in a variety of tumor types.
Collapse
Affiliation(s)
- Whitney N Goldsberry
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Angelina Londoño
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Troy D Randall
- Division of Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Lyse A Norian
- Department of Nutritional Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
27
|
Greenshields AL, Fernando W, Hoskin DW. The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells. Exp Mol Pathol 2019; 107:10-22. [DOI: 10.1016/j.yexmp.2019.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 01/30/2023]
|
28
|
Galluzzi L, Spranger S, Fuchs E, López-Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol 2019; 29:44-65. [PMID: 30220580 PMCID: PMC7001864 DOI: 10.1016/j.tcb.2018.08.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
Deregulated WNT signaling has been shown to favor malignant transformation, tumor progression, and resistance to conventional cancer therapy in a variety of preclinical and clinical settings. Accumulating evidence suggests that aberrant WNT signaling may also subvert cancer immunosurveillance, hence promoting immunoevasion and resistance to multiple immunotherapeutics, including immune checkpoint blockers. Here, we discuss the molecular and cellular mechanisms through which WNT signaling influences cancer immunosurveillance and present potential therapeutic avenues to harness currently available WNT modulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| | - Stefani Spranger
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo. Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
29
|
Anti-hypoxic effect of dihydroartemisinin on pulmonary artery endothelial cells. Biochem Biophys Res Commun 2018; 506:840-846. [DOI: 10.1016/j.bbrc.2018.10.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023]
|
30
|
Lv J, Bai R, Wang L, Gao J, Zhang H. Artesunate may inhibit liver fibrosis via the FAK/Akt/β-catenin pathway in LX-2 cells. BMC Pharmacol Toxicol 2018; 19:64. [PMID: 30326962 PMCID: PMC6192352 DOI: 10.1186/s40360-018-0255-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND An increasing number of studies are investigating the effects of Chinese medicine on hepatic fibrosis, but only few studies have examined the anti-fibrogenic properties of Artesunate (ART). The aim of the present study was to explore the anti-fibrotic effects of ART on LX-2 cells, the human HSC cell line, and to determine potential molecular mechanisms via the focal adhesion kinase (FAK)/ protein kinase B (Akt)/ β-catenin pathway. METHODS LX-2 cells were stimulated with different concentration of ART (0, 12.5, 25 and 50 μg/ml) for 12, 24, 48 or 72 h, their proliferation was analyzed using the Cell Counting Kit-8 (CCK-8) assay. LX-2 cells were treated with different doses of ART (0, 12.5, 25 and 50 μg/ml) for 24 h, their apoptosis was measured using flow cytometry, the levels of mRNAs encoding collagen I or α-smooth muscle actin (α-SMA) were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the levels of key proteins in the FAK/Akt/β-catenin signaling pathway were assessed by western blotting. Specific inhibitors of FAK were added to the LX-2 cells cultures to explore the potential signaling. RESULTS Exposing LX-2 cells to ART efficiently inhibited their proliferation, significantly promoted early apoptosis in a dose-dependent manner, and markedly downregulated the mRNA expression of α-SMA and collagen I. In addition, ART, similar to FAK inhibitor PF562271 significantly inhibited the FAK/Akt/β-catenin signaling pathway by reducing the levels of phosphorylated FAK, Akt and GSK-3β. CONCLUSIONS Our present study shows that ART could regulate the proliferation, apoptosis and activation of LX-2. Meanwhile, the anti-fibrogenic mechanisms of ART was correlated with FAK/Akt/β-catenin pathway. Future research should verify and extend these findings, as well as explore other molecules and therefore serve as useful therapeutic targets.
Collapse
Affiliation(s)
- Jian Lv
- Department of Pharmacy, Renmin Hospital of Wuhan University, Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Ruidan Bai
- Department of Pharmacy, Renmin Hospital of Wuhan University, Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Li Wang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Jiefang Gao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hong Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
31
|
Prevention of carcinogenesis and metastasis by Artemisinin-type drugs. Cancer Lett 2018; 429:11-18. [DOI: 10.1016/j.canlet.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
|
32
|
Deeken JF, Wang H, Hartley M, Cheema AK, Smaglo B, Hwang JJ, He AR, Weiner LM, Marshall JL, Giaccone G, Liu S, Luecht J, Spiegel JY, Pishvaian MJ. A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 2018; 81:587-596. [PMID: 29392450 DOI: 10.1007/s00280-018-3533-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE The artemisinin class of anti-malarial drugs has shown significant anti-cancer activity in pre-clinical models. Proposed anti-cancer mechanisms include DNA damage, inhibition of angiogenesis, TRAIL-mediated apoptosis, and inhibition of signaling pathways. We performed a phase I study to determine the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs) of intravenous artesunate (IV AS). METHODS Patients were enrolled in an accelerated titration dose escalation study with planned dose levels of 8, 12, 18, 25, 34 and 45 mg/kg given on days 1 and 8 of a 21-day cycle. Toxicities were assessed using the NCI CTCAE (ver. 4.0), and response was assessed using RECIST criteria (version 1.1). Pharmacokinetic (PK) studies were performed during cycle 1. RESULTS A total of 19 pts were enrolled, 18 of whom were evaluable for toxicity and 15 were evaluable for efficacy. DLTs were seen at dosages of 12 (1 of 6 patients), 18 (1 of 6) and 25 mg/kg (2 of 2), and were neutropenic fever (Gr 4), hypersensitivity reaction (Gr 3), liver function test abnormalities (Gr 3/4) along with neutropenic fever, and nausea/vomiting (Gr 3) despite supportive care. The MTD was determined to be 18 mg/kg. No responses were observed, while four patients had stable disease, including three with prolonged stable disease for 8, 10, and 11 cycles, for a disease control rate of 27%. PK parameters of AS and its active metabolite, dihydroartemisinin (DHA), correlated with dose. CONCLUSION The MTD of intravenous artesunate is 18 mg/kg on this schedule. Treatment was well tolerated. Modest clinical activity was seen in this pre-treated population. CLINICALTRIALS. GOV IDENTIFIER NCT02353026.
Collapse
Affiliation(s)
- John F Deeken
- Inova Schar Cancer Institute, Inova Health System, 3300 Gallows Road, Falls Church, VA, 22042, USA.
| | - Hongkun Wang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Marion Hartley
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Amrita K Cheema
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Brandon Smaglo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jimmy J Hwang
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| | - Aiwu Ruth He
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Louis M Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - John L Marshall
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Giuseppe Giaccone
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Stephen Liu
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jim Luecht
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jay Y Spiegel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
33
|
Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA. More insights into the pharmacological effects of artemisinin. Phytother Res 2017; 32:216-229. [PMID: 29193409 DOI: 10.1002/ptr.5958] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities.
Collapse
Affiliation(s)
- Abdelmajid Zyad
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Mounir Tilaoui
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Abdeslam Jaafari
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Moulay Ali Oukerrou
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| |
Collapse
|
34
|
Verma S, Das P, Kumar VL. Chemoprevention by artesunate in a preclinical model of colorectal cancer involves down regulation of β-catenin, suppression of angiogenesis, cellular proliferation and induction of apoptosis. Chem Biol Interact 2017; 278:84-91. [PMID: 29031619 DOI: 10.1016/j.cbi.2017.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/23/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022]
Abstract
Use of anti-inflammatory drugs is well known to decrease the risk of colorectal cancer, one of the most common causes of cancer related mortality. In view of anti-inflammatory property of artesunate reported in various experimental models, the present study was carried out to evaluate its efficacy in rat model where colon carcinogenesis was induced by 1, 2 dimethylhydrazine (DMH). A time course study revealed that two injections of DMH given at an interval of one week resulted in appearance of multiple plaque lesions and aberrant crypt foci in the colon with a peak effect occurring at the end of 8 weeks. An efficacy study carried out with daily oral administration of artesunate (50 and 150 mg/kg) and aspirin (60 mg/kg) showed a marked reduction in pre-neoplastic changes with a significant decrease in the number of aberrant crypt foci, crypt multiplicity and restoration of histoarchitecture. Both the drugs down regulated β-catenin signaling, reduced the levels of angiogenic markers like VEGF, MMP-9 and inhibited cellular proliferation. The anti-cancer effect of these drugs was concomitant with the pro-apoptotic effect as revealed by increased DNA fragmentation, TUNEL positivity and Bax/Bcl2 immunoreactivity. This is the first study to evaluate the inhibitory effect of artesunate on pre-neoplastic changes in colon where its chemopreventive effect was found to be comparable to that of aspirin. Our study strengthens the previous findings and shows that it has a preventive and therapeutic potential in the treatment of colon cancer.
Collapse
Affiliation(s)
- Sneh Verma
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Vijay L Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| |
Collapse
|
35
|
Tan M, Rong Y, Su Q, Chen Y. Artesunate induces apoptosis via inhibition of STAT3 in THP-1 cells. Leuk Res 2017; 62:98-103. [PMID: 29031126 DOI: 10.1016/j.leukres.2017.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Our objective was to explore STAT3 expression in patients with acute myeloid leukaemia (AML), assess the anti-proliferative effects of artesunate (ART) on THP-1 cells in vivo and in vitro, and investigate the underlying mechanisms. METHODS In this study, we examined 30 patients with acute myeloid leukaemia diagnosed in our hospital from January 2015 to January 2016. The 20 control group patients had non-haematological diseases and were hospitalized for the same period. We extracted 2ml bone marrow, separated the mononuclear cells, obtained total proteins, and detected STAT3 protein levels with Western blot analyses. The THP-1 cells were treated with different concentrations of ART(0, 10, 25, 50, 100, 200μM). Then, THP-1 cell viability was detected with CCK-8 assays, apoptosis was measured with flow cytometry, and the STAT3, caspase-3 and caspase-8 protein levels were assessed using Western blot analyses. THP-1 cells in logarithmic growth phase were subcutaneously injected into the necks of 5-week-old nude mice. The control group was subcutaneously injected with 0.1ml PBS. After the nude mouse tumours grew, the mice were divided into the control group and drug intervention groups (ART 100μM group, ART 200μM group). The mice in the intervention groups were intraperitoneally injected with ART, and the control group was injected with the same amount of normal saline. Then, changes in the tumours were observed. After the drug intervention, the total protein was extracted, and STAT3 expression was detected by Western blot analysis. RESULTS Compared with the control group, the AML patients had significantly increased STAT3 protein levels (P<0.01). ART significantly inhibited the proliferation of THP-1 cells in a dose-dependent and time-dependent manner. ART also increased THP-1cell apoptosis. After treatment with ART, STAT3 protein was significantly down-regulated, and apoptosis of the cells was induced by the activation of caspase-3 and caspse-8. CONCLUSION AML patients had higher expression of STAT3 than that of the controls. ART induced apoptosis in THP-1 cells and inhibited the growth of xenografts in nude mice, and we also observed that ART down-regulated the expression of STAT3 and activated the caspase-3 and caspase-8. We speculated that the effect of ART on THP-1 cells may be related to inhibition of STAT3 and activation of caspase3 and caspase-8.
Collapse
Affiliation(s)
- Mei Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Ying Rong
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Qiong Su
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China.
| |
Collapse
|
36
|
From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017; 46:65-83. [DOI: 10.1016/j.semcancer.2017.02.009] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022]
|
37
|
Chen X, Wong YK, Lim TK, Lim WH, Lin Q, Wang J, Hua Z. Artesunate Activates the Intrinsic Apoptosis of HCT116 Cells through the Suppression of Fatty Acid Synthesis and the NF-κB Pathway. Molecules 2017; 22:E1272. [PMID: 28786914 PMCID: PMC6152404 DOI: 10.3390/molecules22081272] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022] Open
Abstract
The artemisinin compounds, which are well-known for their potent therapeutic antimalarial activity, possess in vivo and in vitro antitumor effects. Although the anticancer effect of artemisinin compounds has been extensively reported, the precise mechanisms underlying its cytotoxicity remain under intensive study. In the present study, a high-throughput quantitative proteomics approach was applied to identify differentially expressed proteins of HCT116 colorectal cancer cell line with artesunate (ART) treatment. Through Ingenuity Pathway Analysis, we discovered that the top-ranked ART-regulated biological pathways are abrogation of fatty acid biosynthetic pathway and mitochondrial dysfunction. Subsequent assays showed that ART inhibits HCT116 cell proliferation through suppressing the fatty acid biosynthetic pathway and activating the mitochondrial apoptosis pathway. In addition, ART also regulates several proteins that are involved in NF-κB pathway, and our subsequent assays showed that ART suppresses the NF-κB pathway. These proteomic findings will contribute to improving our understanding of the underlying molecular mechanisms of ART for its therapeutic cytotoxic effect towards cancer cells.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Yin Kwan Wong
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
| | - Teck Kwang Lim
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
| | - Wei Hou Lim
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
| | - Jigang Wang
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
- Changzhou High-Tech Research Institute of Nanjing University, Institute of Biotechnology, Jiangsu Industrial Technology Research Institute and Jiangsu TargetPharma Laboratories Inc., Changzhou 213164, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University, Institute of Biotechnology, Jiangsu Industrial Technology Research Institute and Jiangsu TargetPharma Laboratories Inc., Changzhou 213164, China.
| |
Collapse
|
38
|
Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res Treat 2017; 164:359-369. [DOI: 10.1007/s10549-017-4261-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023]
|
39
|
Li Q, Ni W, Deng Z, Liu M, She L, Xie Q. Targeting nasopharyngeal carcinoma by artesunate through inhibiting Akt/mTOR and inducing oxidative stress. Fundam Clin Pharmacol 2017; 31:301-310. [PMID: 28078787 DOI: 10.1111/fcp.12266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Drug repurposing has become an alternative therapeutic strategy for cancer treatment given the known pharmacokinetics and toxicity. The inhibitory effects of artesunate have been reported in various cancers. In this work, we investigated the effects of artesunate in nasopharyngeal carcinoma (NPC). We demonstrate that artesunate significantly inhibits proliferation via arresting NPC cells at G2/M phase. It also induces apoptosis through caspase-dependent and mitochondria-independent pathways in multiple NPC cell lines. The combination of artesunate and cisplatin is synergistic in targeting NPC cells in in vitro cellular culture system and in vivo xenograft tumor models. Artesunate inhibits phosphorylation of essential molecules involved in Akt/mTOR pathway in NPC cells, such as Akt, mTOR, and 4EBP1, and its inhibitory effects are partially abolished by overexpression of constitutively active Akt. In addition, artesunate also induces mitochondrial dysfunction and oxidative stress via inhibiting mitochondrial respiration, increasing levels of mitochondrial superoxide and cellular reactive oxygen species (ROS), leading to decreased ATP levels. Two ROS scavengers partially abolish the inhibitory effects of artesunate in NPC cells. These data suggest that both inhibition of Akt/mTOR pathway and induction of ROS are required for the action of artesunate in NPC cells. Our work demonstrates that artesunate is a potential candidate for NPC treatment. Our work also highlights the critical roles of Akt/mTOR pathway and mitochondrial function in NPC cells.
Collapse
Affiliation(s)
- Qin Li
- Otolaryngology-Head and Neck Surgery, The Second Clinical Medical College, Yangtze University, Renmin Road 1, Jing Zhou, 434020, China
| | - Wei Ni
- Otolaryngology-Head and Neck Surgery, The Second Clinical Medical College, Yangtze University, Renmin Road 1, Jing Zhou, 434020, China
| | - Zhifeng Deng
- Otolaryngology-Head and Neck Surgery, The Second Clinical Medical College, Yangtze University, Renmin Road 1, Jing Zhou, 434020, China
| | - Minghe Liu
- Otolaryngology-Head and Neck Surgery, The Second Clinical Medical College, Yangtze University, Renmin Road 1, Jing Zhou, 434020, China
| | - Lazhi She
- Otolaryngology-Head and Neck Surgery, The Second Clinical Medical College, Yangtze University, Renmin Road 1, Jing Zhou, 434020, China
| | - Qiong Xie
- Otolaryngology-Head and Neck Surgery, The Second Clinical Medical College, Yangtze University, Renmin Road 1, Jing Zhou, 434020, China
| |
Collapse
|
40
|
Farnesylthiosalicylic acid sensitizes hepatocarcinoma cells to artemisinin derivatives. PLoS One 2017; 12:e0171840. [PMID: 28182780 PMCID: PMC5300221 DOI: 10.1371/journal.pone.0171840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Dihydroartemisinin (DHA) and artesunate (ARS), two artemisinin derivatives, have efficacious anticancer activities against human hepatocarcinoma (HCC) cells. This study aims to study the anticancer action of the combination treatment of DHA/ARS and farnesylthiosalicylic acid (FTS), a Ras inhibitor, in HCC cells (Huh-7 and HepG2 cell lines). FTS pretreatment significantly enhanced DHA/ARS-induced phosphatidylserine (PS) externalization, Bak/Bax activation, mitochondrial membrane depolarization, cytochrome c release, and caspase-8 and -9 activations, characteristics of the extrinsic and intrinsic apoptosis. Pretreatment with Z-IETD-FMK (caspase-8 inhibitor) potently prevented the cytotoxicity of the combination treatment of DHA/ARS and FTS, and pretreatment with Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited the loss of ΔΨm induced by DHA/ARS treatment or the combination treatment of DHA/ARS and FTS in HCC cells. Furthermore, silencing Bak/Bax modestly but significantly inhibited the cytotoxicity of the combination treatment of DHA/ARS and FTS. Interestingly, pretreatment with an antioxidant N-Acetyle-Cysteine (NAC) significantly prevented the cytotoxicity of the combination treatment of DHA and FTS instead of the combination treatment of ARS and FTS, suggesting that reactive oxygen species (ROS) played a key role in the anticancer action of the combination treatment of DHA and FTS. Similar to FTS, DHA/ARS also significantly prevented Ras activation. Collectively, our data demonstrate that FTS potently sensitizes Huh-7 and HepG2 cells to artemisinin derivatives via accelerating the extrinsic and intrinsic apoptotic pathways.
Collapse
|
41
|
Fröhlich T, Ndreshkjana B, Muenzner JK, Reiter C, Hofmeister E, Mederer S, Fatfat M, El-Baba C, Gali-Muhtasib H, Schneider-Stock R, Tsogoeva SB. Synthesis of Novel Hybrids of Thymoquinone and Artemisinin with High Activity and Selectivity Against Colon Cancer. ChemMedChem 2017; 12:226-234. [PMID: 27973725 DOI: 10.1002/cmdc.201600594] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/28/2022]
Abstract
Colorectal cancer causes 0.5 million deaths each year. To combat this type of cancer the development of new specific drug candidates is urgently needed. In the present work seven novel thymoquinone-artemisinin hybrids with different linkers were synthesized and tested for their in vitro anticancer activity against a panel of various tumor cell lines. The thymoquinone-artesunic acid hybrid 7 a, in which both subunits are connected via an ester bond, was found to be the most active compound and selectively decreased the viability of colorectal cancer cells with an IC50 value of 2.4 μm (HCT116) and 2.8 μm (HT29). Remarkably, hybrid 7 a was up to 20-fold more active than its parent compounds (thymoquinone and artesunic acid), while not affecting nonmalignant colon epithelial HCEC cells (IC50 >100 μm). Moreover, the activity of hybrid 7 a was superior to that of various 1:1 mixtures of thymoquinone and artesunic acid. Furthermore, hybrid 7 a was even more potent against both colon cancer cell lines than the clinically used drug 5-fluorouracil. These results are another excellent proof of the hybridization concept and confirm that the type and length of the linker play a crucial role for the biological activity of a hybrid drug. Besides an increase in reactive oxygen species (ROS), elevated levels of the DNA-damage marker γ-H2AX were observed. Both effects seem to be involved in the molecular mechanism of action for hybrid 7 a in colorectal cancer cells.
Collapse
Affiliation(s)
- Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| | - Benardina Ndreshkjana
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Julienne K Muenzner
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Christoph Reiter
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| | - Elisabeth Hofmeister
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| | - Sandra Mederer
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Maamoun Fatfat
- Department of Biology, Department of Anatomy, Cell Biology and Physiological Science, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Hala Gali-Muhtasib
- Department of Biology, Department of Anatomy, Cell Biology and Physiological Science, American University of Beirut, Beirut, Lebanon
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| |
Collapse
|
42
|
Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget 2016; 6:33046-64. [PMID: 26426994 PMCID: PMC4741748 DOI: 10.18632/oncotarget.5422] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
Despite advances in the development of molecularly targeted therapies, metastatic renal cell carcinoma (RCC) is still incurable. Artesunate (ART), a well-known anti-malarial drug with low toxicity, exhibits highly selective anti-tumor actions against various tumors through generation of cytotoxic carbon-centered free radical in the presence of free iron. However, the therapeutic efficacy of ART against metastatic RCC has not yet been fully elucidated. In the analysis on a dataset from The Cancer Genome Atlas (TCGA) (n = 469) and a tissue microarray set from Samsung Medical Center (n = 119) from a cohort of patients with clear cell RCC (ccRCC), up-regulation of transferrin receptor 1 (TfR1), which is a well-known predictive marker for ART, was correlated with the presence of distant metastasis and an unfavorable prognosis. Moreover, ART exerted potent selective cytotoxicity against human RCC cell lines (Caki-1, 786-O, and SN12C-GFP-SRLu2) and sensitized these cells to sorafenib in vitro, and the extent of ART cytotoxicity correlated with TfR1 expression. ART-mediated growth inhibition of human RCC cell lines was shown to result from the induction of cell cycle arrest at the G2/M phase and oncosis-like cell death. Furthermore, ART inhibited cell clonogenicity and invasion of human RCC cells and anti-angiogenic effects in vitro in a dose-dependent manner. Consistent with these in vitro data, anti-tumor, anti-metastatic and anti-angiogenic effects of ART were also validated in human 786-O xenografts. Taken together, ART is a promising novel candidate for treating human RCC, either alone or in combination with other therapies.
Collapse
|
43
|
Hepatotoxicity by combination treatment of temozolomide, artesunate and Chinese herbs in a glioblastoma multiforme patient: case report review of the literature. Arch Toxicol 2016; 91:1833-1846. [DOI: 10.1007/s00204-016-1810-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
44
|
Abdolmaleki Z, Arab HA, Amanpour S, Muhammadnejad S. Anti-angiogenic effects of ethanolic extract of Artemisia sieberi compared to its active substance, artemisinin. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model. Oncotarget 2016; 6:4020-35. [PMID: 25738364 PMCID: PMC4414170 DOI: 10.18632/oncotarget.3004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/21/2014] [Indexed: 12/16/2022] Open
Abstract
Artesunate (ART), a semi-synthetic derivative of artemisinin, is one of the most commonly used anti-malarial drugs. Also, ART possesses anticancer potential albeit through incompletely understood molecular mechanism(s). Here, the effect of ART on various protein kinases, associated gene products, cellular response, and apoptosis was investigated. The in vivo effect of ART on the growth of human CML xenograft tumors in athymic nu/nu mice was also examined. In our preliminary experiments, we first observed that phosphorylation of p38, ERK, CREB, Chk-2, STAT5, and RSK proteins were suppressed upon ART exposure. Interestingly, ART induced the expression of SOCS-1 protein and depletion of SOCS-1 using siRNA abrogated the STAT5 inhibitory effect of the drug. Also various dephosphorylations caused by ART led to the suppression of various survival gene products and induced apoptosis through caspase-3 activation. Moreover, ART also substantially potentiated the apoptosis induced by chemotherapeutic agents. Finally, when administered intraperitoneally, ART inhibited p38, ERK, STAT5, and CREB activation in tumor tissues and the growth of human CML xenograft tumors in mice without exhibiting any significant adverse effects. Overall, our results suggest that ART exerts its anti-proliferative and pro-apoptotic effects through suppression of multiple signaling cascades in CML both in vitro and in vivo.
Collapse
|
46
|
Michaelsen FW, Saeed MEM, Schwarzkopf J, Efferth T. Activity of Artemisia annua and artemisinin derivatives, in prostate carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1223-1231. [PMID: 26655404 DOI: 10.1016/j.phymed.2015.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Artemisia annua L, artemisinin and artesunate reveal profound activity not only against malaria, but also against cancer in vivo and clinical trials. Longitudinal observations on the efficacy of A. annua in patients are, however missing as of yet. METHODS Clinical diagnosis was performed by imaging techniques (MRT, scintigraphy, SPECT/CT) and blood examinations of standard parameters from clinical chemistry. Immunohistochemistry of formalin-fixed, paraffin-embedded tumor material was performed to determine the expression of several biomarkers (cycloxygenase-2 (COX2), epidermal growth factor receptor (EGFR), glutathione S-transferase P1 (GSTP1), Ki-67, MYC, oxidized low density lipoprotein (lectin-like) receptor 1 (LOX1), p53, P-glycoprotein, transferrin receptor (TFR, CD71), vascular endothelial growth factor (VEGF), von Willebrand factor (CD31)). The immunohistochemical expression has been compared with the microarray-based mRNA expression of these markers in two prostate carcinoma cell lines (PC-3, DU-145). RESULTS A patient with prostate carcinoma (pT3bN1M1, Gleason score 8 (4+4)) presented with a prostate specific antigen (PSA) level >800 µg/l. After short-term treatment with bacalitumide (50 mg/d for 14 days) and long-term oral treatment with A. annua capsules (continuously 5 × 50 mg/d), the PSA level dropped down to 0.98 µg/l. MRT, scintigraphy and SPECT/CT verified tumor remission. Seven months later, PSA and ostase levels increased, indicating tumor recurrence and skeletal metastases. Substituting A. annua capsules by artesunate injections (2 × 150 mg twice weekly i.v.) did not prohibit tumor recurrence. PSA and ostase levels rose to 1245 µg/l and 434 U/l, respectively, and MRT revealed progressive skeletal metastases, indicating that the tumor acquired resistance. The high expression of MYC, TFR, and VEGFC in the patient biopsy corresponded with high expression of these markers in the artemisinin-sensitive PC-3 cells compared to artemisinin-resistant DU-145 cells. CONCLUSION Long-term treatment with A. annua capsules combined with short-term bicalitumide treatment resulted in considerable regression of advanced metastasized prostate carcinoma. Controlled clinical trials are required to evaluate the clinical benefit of A. annua in prostate cancer.
Collapse
Affiliation(s)
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
47
|
Ooko E, Saeed MEM, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, Janah R, Greten HJ, Efferth T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1045-54. [PMID: 26407947 DOI: 10.1016/j.phymed.2015.08.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Apoptosis and other forms of cell death have been intensively investigated in the past years to explain the mode of action of synthetic anticancer drugs and natural products. Recently, a new form of cell death emerged, which was termed ferroptosis, because it depends on intracellular iron. Here, the role of genes involved in iron metabolism and homeostasis for the cytotoxicity of ten artemisinin derivatives have been systematically investigated. MATERIAL AND METHODS Log10IC50 values of 10 artemisinin derivatives (artesunate, artemether, arteether, artenimol, artemisitene, arteanuin B, another monomeric artemisinin derivative and three artemisinin dimer molecules) were correlated to the microarray-based mRNA expression of 30 iron-related genes in 60 cell lines of the National Cancer Institute (NCI, USA) as determined in 218 different microarray hybridization experiments. The effect of desferoxamine and ferrostatin-1 on the cytotoxicity of artenimol of CCRF-CEM cells was determined by resazurin assays. The mRNA expression of TFRC was exemplarily validated by immunohistochemical detection of transferrin receptor protein expression. RESULTS The mRNA expression of 20 genes represented by 59 different cDNA clones significantly correlated to the log10IC50 values for the artemisinins, including genes encoding transferrin (TF), transferrin receptors 1 and 2 (TFRC, TFR2), cerulopasmin (CP), lactoferrin (LTF) and others. The ferroptosis inhibitor ferrostatin-1 and the iron chelator deferoxamine led to a significantly reduced cytotoxicity of artenimol, indicating ferroptosis as cell death mode. CONCLUSION The numerous iron-related genes, whose expression correlated with the response to artemisinin derivatives speak in factor for the relevance of iron for the cytotoxic activity of these compounds. Treatment with ferroptosis-inducing agents such as artemisinin derivatives represents an attractive strategy for cancer therapy. Pre-therapeutic determination of iron-related genes may indicate tumor sensitivity to artemisinins. Ferroptosis induced by artemisinin-type drugs deserve further investigation for individualized tumor therapy.
Collapse
Affiliation(s)
- Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Shabnam Sarvi
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Merve Colak
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Kaoutar Elmasaoudi
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Rabab Janah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Henry J Greten
- Biomedical Sciences Institute Abel Salazar, University of Porto, Portugal, and Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Thomas Efferth
- Biomedical Sciences Institute Abel Salazar, University of Porto, Portugal, and Heidelberg School of Chinese Medicine, Heidelberg, Germany.
| |
Collapse
|
48
|
Gong XS, Jiang RJ, Liao XL, Xie HD, Ma X, Gao CZ, Yang B, Zhao YL. Synthesis, characterization and in vitro evaluation of a series of novel polyrotaxane-based delivery system for artesunate. Carbohydr Res 2015; 412:7-14. [DOI: 10.1016/j.carres.2015.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
|
49
|
Khakshour S, Beischlag TV, Sparrey C, Park EJ. Probing mechanical properties of Jurkat cells under the effect of ART using oscillating optical tweezers. PLoS One 2015; 10:e0126548. [PMID: 25928073 PMCID: PMC4416051 DOI: 10.1371/journal.pone.0126548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/03/2015] [Indexed: 01/10/2023] Open
Abstract
Acute lymphoid leukemia is a common type of blood cancer and chemotherapy is the initial treatment of choice. Quantifying the effect of a chemotherapeutic drug at the cellular level plays an important role in the process of the treatment. In this study, an oscillating optical tweezer was employed to characterize the frequency-dependent mechanical properties of Jurkat cells exposed to the chemotherapeutic agent, artesunate (ART). A motion equation for a bead bound to a cell was applied to describe the mechanical characteristics of the cell cytoskeleton. By comparing between the modeling results and experimental results from the optical tweezer, the stiffness and viscosity of the Jurkat cells before and after the ART treatment were obtained. The results demonstrate a weak power-law dependency of cell stiffness with frequency. Furthermore, the stiffness and viscosity were increased after the treatment. Therefore, the cytoskeleton cell stiffness as the well as power-law coefficient can provide a useful insight into the chemo-mechanical relationship of drug treated cancer cells and may serve as another tool for evaluating therapeutic performance quantitatively.
Collapse
Affiliation(s)
- Samaneh Khakshour
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada
| | | | - Carolyn Sparrey
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada
| | - Edward J Park
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
50
|
Xu N, Zhou X, Wang S, Xu LL, Zhou HS, Liu XL. Artesunate Induces SKM-1 Cells Apoptosis by Inhibiting Hyperactive β-catenin Signaling Pathway. Int J Med Sci 2015; 12:524-9. [PMID: 26078714 PMCID: PMC4466518 DOI: 10.7150/ijms.11352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/13/2015] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Artesunate (ART), a wildly used agent to treat severe malarial around the world, also has the power to inhibit growth of different types of tumor. However, the exact molecular mechanisms keep unknown. METHOD In this study, we used myelodysplastic syndrome (MDS) cells (SKM-1 cells) with differential ART concentrations treatment at multiple time points to observe the subsequence cell function alteration and the possible involved pathway genes. RESULTS We found that ART demonstrated the ability to inhibit proliferation and induce apoptosis in SKM-1 in a dose and time-dependent manner. Demethylase recovered CDH1 gene expression may be involved in the apoptosis process. The β-catenin protein translocated from the nucleus and cytoplasm to the membrane result in inactivation of β-catenin signaling pathway. CONCLUSION Our findings provide a rational basis to develop ART as a useful therapeutic agent for the treatment of myelodysplastic syndromes.
Collapse
Affiliation(s)
- Na Xu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Shuang Wang
- 2. Department of Ultrasound, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Lu-lu Xu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-sheng Zhou
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-li Liu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|