1
|
Freitas M, Ribeiro D, Janela JS, Varela CL, Costa SC, da Silva ET, Fernandes E, Roleira FMF. Plant-derived and dietary phenolic cinnamic acid derivatives: Anti-inflammatory properties. Food Chem 2024; 459:140080. [PMID: 38986205 DOI: 10.1016/j.foodchem.2024.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Cinnamic acids are aromatic acids primarily found in plants and plant-derived food. Phenolic cinnamic acids, with one or more hydroxyl groups in the aromatic ring, often contribute to the biological activities attributed to these compounds. The presence of hydroxyl groups and a carboxyl group makes cinnamic acids very hydrophilic, preventing them from crossing biological membranes and exerting their biological activities. To alleviate this condition, a panel of synthetic modifications have been made leading to a diverse set of phenolic cinnamic structures. In this review, an overview of the natural phenolic cinnamic acid derivatives and their plant sources (more than 200) is described. The synthetic approaches to obtain the referred derivatives (more than 200) namely esters and amides are reviewed. Further, their anti-inflammatory activity (more than 70 compounds) is scrutinized. Finally, future directions will be indicated to translate the research on phenolic cinnamic derivatives into potentially effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marisa Freitas
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal; Faculdade de Ciências Agrárias e do Ambiente da Universidade dos Açores, Portugal.
| | - João S Janela
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Carla L Varela
- Univ Coimbra, CERES, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
| | - Saul C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Elisiário Tavares da Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Van Blarigan EL, Ma C, Ou FS, Bainter TM, Venook AP, Ng K, Niedzwiecki D, Giovannucci E, Lenz HJ, Polite BN, Hochster HS, Goldberg RM, Mayer RJ, Blanke CD, O’Reilly EM, Ciombor KK, Meyerhardt JA. Dietary fat in relation to all-cause mortality and cancer progression and death among people with metastatic colorectal cancer: Data from CALGB 80405 (Alliance)/SWOG 80405. Int J Cancer 2023; 152:123-136. [PMID: 35904874 PMCID: PMC9691576 DOI: 10.1002/ijc.34230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Data on diet and survival among people with metastatic colorectal cancer are limited. We examined dietary fat in relation to all-cause mortality and cancer progression or death among 1149 people in the Cancer and Leukemia Group B (Alliance)/Southwest Oncology Group (SWOG) 80405 trial who completed a food frequency questionnaire at initiation of treatment for advanced or metastatic colorectal cancer. We examined saturated, monounsaturated, total and specific types (n-3, long-chain n-3 and n-6) of polyunsaturated fat, animal and vegetable fats. We hypothesized higher vegetable fat intake would be associated with lower risk of all-cause mortality and cancer progression. We used Cox proportional hazards regression to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI). Over median follow-up of 6.1 years (interquartile range [IQR]: 5.3, 7.2 y), we observed 974 deaths and 1077 events of progression or death. Participants had a median age of 59 y; 41% were female and 86% identified as White. Moderate or higher vegetable fat was associated with lower risk of mortality and cancer progression or death (HRs comparing second, third and fourth to first quartile for all-cause mortality: 0.74 [0.62, 0.90]; 0.75 [0.61, 0.91]; 0.79 [0.63, 1.00]; P trend: .12; for cancer progression or death: 0.74 [0.62, 0.89]; 0.78 [0.64, 0.95]; 0.71 [0.57, 0.88]; P trend: .01). No other fat type was associated with all-cause mortality and cancer progression or death. Moderate or higher vegetable fat intake may be associated with lower risk of cancer progression or death among people with metastatic colorectal cancer.
Collapse
Affiliation(s)
| | - Chao Ma
- Dana-Farber Cancer Institute, Boston, MA
| | - Fang-Shu Ou
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | - Tiffany M. Bainter
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | - Alan P. Venook
- University of California, San Francisco, San Francisco, CA
| | - Kimmie Ng
- Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Heinz-Josef Lenz
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Blase N. Polite
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | | | | | | | - Charles D. Blanke
- SWOG Group Chair’s Office, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | | | | | | |
Collapse
|
3
|
Touihri-Barakati I, Kallech-Ziri O, Morjen M, Marrakchi N, Luis J, Hosni K. Inhibitory effect of phenolic extract from squirting cucumber ( Ecballium elaterium (L.) A. Rich) seed oil on integrin-mediated cell adhesion, migration and angiogenesis. RSC Adv 2022; 12:31747-31756. [PMID: 36380921 PMCID: PMC9638996 DOI: 10.1039/d2ra02593k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/01/2022] [Indexed: 03/10/2024] Open
Abstract
Integrin targeted therapies by natural bioactive compounds have attracted attention in the field of oncology and cancer treatment. This study evaluates the potential of phenolic extract from the medicinal herb Ecballium elaterium L. seed oil (PEO) to inhibit the adhesion and migration of the highly invasive human fibrosarcoma cell line HT1080. At safe concentrations (up to 40 μg mL-1), results show that PEO dose-dependently inhibits adhesion and migration of HT1080 to fibronectin (IC50 = 18 μg mL-1) and fibrinogen (IC50 = 12.86 μg mL-1). These observations were associated with the reduction of cell motility and migration velocity as revealed in the Boyden chamber and random motility using two-dimensional assays, respectively. Additional experiments using integrin blocking antibodies showed that PEO at the highest safe concentration (40 μg mL-1) competitively inhibited the attachment of HT1080 cell to anti-αvβ3 (>98%), anti-α5β1 (>86%), and to a lesser extent anti-α2 (>50%) immobilized antibodies, suggesting that αvβ3 and α5β1 integrins were selectively targeted by PEO. Moreover, PEO specifically targeted these integrins in human microvascular endothelial cells (HMEC-1) and dose-dependently blocked the in vitro tubulogenesis. In the CAM model, PEO inhibited the VEGF-induced neoangiogenesis confirming its anti-angiogenic effect. Collectively, these results indicate that PEO holds promise for the development of natural integrin-targeted therapies against fibrosarcoma.
Collapse
Affiliation(s)
- Imen Touihri-Barakati
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| | - Olfa Kallech-Ziri
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| | - Maram Morjen
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar Tunis 1002 Tunisia
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar Tunis 1002 Tunisia
| | - José Luis
- CNRS-UMR 7051, Institut de Neuro Physiopathologie (INP), Université Aix-Marseille 27 Bd Jean Moulin 13385 Marseille France
| | - Karim Hosni
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| |
Collapse
|
4
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
5
|
Senesi R, Andreani C, Baglioni P, Batista de Carvalho LAE, Licoccia S, Marques MPM, Moretti G, Noce A, Paolesse R, Parker SF, Preziosi E, Romanelli G, Romani A, Di Daniele N. Looking for Minor Phenolic Compounds in Extra Virgin Olive Oils Using Neutron and Raman Spectroscopies. Antioxidants (Basel) 2021; 10:antiox10050643. [PMID: 33922163 PMCID: PMC8145310 DOI: 10.3390/antiox10050643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Extra virgin olive oil (EVOO) is defined as a functional food as it contains numerous phenolic components with well-recognized health-beneficial properties, such as high antioxidant and anti-inflammatory capacity. These characteristics depend on their structural/conformational behavior, which is largely determined by intra- and intermolecular H-bond interactions. While the vibrational dynamics of isolated compounds have been studied in a number of recent investigations, their signal in a real-life sample of EVOO is overwhelmed by the major constituent acids. Here, we provide a full characterization of the vibrational spectroscopic signal from commercially available EVOO samples using Inelastic Neutron Scattering (INS) and Raman spectroscopies. The spectra are dominated by CH2 vibrations, especially at about 750 cm−1 and 1300 cm−1. By comparison with the spectra from hydroxytyrosol and other minor phenolic compounds, we show that the best regions in which to look for the structure–activity information related to the minor polar compounds is at 675 and 1200 cm−1 for hydroxytyrosol, and around 450 cm−1 for all minor polar compounds used as reference, especially if a selectively deuterated sample is available. The regional origin of the EVOO samples investigated appears to be related to the different amount of phenolic esters versus acids as reflected by the relative intensities of the peaks at 1655 and 1747 cm−1.
Collapse
Affiliation(s)
- Roberto Senesi
- NAST Centre, Physics Department, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca, Scientifica 1, 00133 Rome, Italy; (R.S.); (C.A.); (E.P.)
- CNR-IPCF Sezione di Messina, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Carla Andreani
- NAST Centre, Physics Department, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca, Scientifica 1, 00133 Rome, Italy; (R.S.); (C.A.); (E.P.)
| | - Piero Baglioni
- CSGI and Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; (P.B.); (G.M.)
| | | | - Silvia Licoccia
- NAST Centre, Chemical Science and Technologies Department, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (S.L.); (R.P.)
| | - Maria P. M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Correspondence: (M.P.M.M.); (G.R.)
| | - Giulia Moretti
- CSGI and Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; (P.B.); (G.M.)
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension, Nephrology Unit, Department of Systems Medicine, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.N.); (N.D.D.)
| | - Roberto Paolesse
- NAST Centre, Chemical Science and Technologies Department, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (S.L.); (R.P.)
| | - Stewart F. Parker
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK;
| | - Enrico Preziosi
- NAST Centre, Physics Department, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca, Scientifica 1, 00133 Rome, Italy; (R.S.); (C.A.); (E.P.)
| | - Giovanni Romanelli
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK;
- Correspondence: (M.P.M.M.); (G.R.)
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy;
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension, Nephrology Unit, Department of Systems Medicine, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.N.); (N.D.D.)
| |
Collapse
|
6
|
Aggarwal V, Kumar G, Aggarwal D, Yerer MB, Cumaoğlu A, Kumar M, Sak K, Mittal S, Tuli HS, Sethi G. Cancer preventive role of olives and olive oil via modulation of apoptosis and nuclear factor-kappa B activation. OLIVES AND OLIVE OIL IN HEALTH AND DISEASE PREVENTION 2021:377-388. [DOI: 10.1016/b978-0-12-819528-4.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
7
|
Beneficial effects of olive oil and Mediterranean diet on cancer physio-pathology and incidence. Semin Cancer Biol 2020; 73:178-195. [PMID: 33249203 DOI: 10.1016/j.semcancer.2020.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Virgin olive oil is a characteristic component and the main source of fat of the Mediterranean diet. It is a mix of high-value health compounds, including monounsaturated fatty acids (mainly oleic acid), simple phenols (such as hydroxytyrosol and tyrosol), secoiridoids (such as oleuropein, oleocanthal), flavonoids, and terpenoids (such as squalene). Olive oil consumption has been shown to improve different aspects of human health and has been associated with a lower risk of cancer. However, the underlying cellular mechanisms involved in such effects are still poorly defined, but seem to be related to a promotion of apoptosis, modulation of epigenetic patterns, blockade of cell cycle, and angiogenesis regulation. The aim of this review is to update the current associations of cancer risk with the Mediterranean diet, olive oil consumption and its main components. In addition, the identification of key olive oil components involved in anticarcinogenic mechanisms and pathways according to experimental models is also addressed.
Collapse
|
8
|
Seasonal Variations in the Chemical Composition of Liangshan Olive Leaves and Their Antioxidant and Anticancer Activities. Foods 2019; 8:foods8120657. [PMID: 31817958 PMCID: PMC6963812 DOI: 10.3390/foods8120657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 01/31/2023] Open
Abstract
The seasonal changes in the chemical composition of Olea europaea leaves from January to December at Liangshan (China) have been investigated. The highest total phenolic content (TPC), total flavonoid content (TFC), and free amino acid content (FAAC) levels were found in May and December, while the lowest levels were detected in April and September. The soluble protein content (SPC) and the soluble sugar content (SSC) were highest in spring but lowest in summer and winter. The levels of major phenolic compounds, including oleuropein, and luteolin-4’-O-glucoside, followed by apigenin-7-O-glucoside, quercetin, rutin, luteolin, and apigenin, increased during spring and winter but decreased during summer and autumn. In addition, phenolic extracts (PEs) showed dose-dependent antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide radical scavenging activity assays; the reducing power was tested. The anticancer activities of PE at various concentrations were assessed by a cell counting kit-8 (CCK-8), and the IC50 (50% effective concentration) to HEK293, HeLa, and S180 cells were 841.48, 7139, and 457.69 μg/mL, respectively. PE-treated S180 cells inhibited proliferation through activation of caspase-3/9 and disruption of the mitochondrial membrane potential. Thus, PE in Liangshan olive leaves possessed strong antioxidant and anticancer potential, and spring and winter were determined as optimal harvesting seasons.
Collapse
|
9
|
Singh VK, Arora D, Ansari MI, Sharma PK. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother Res 2019; 33:3064-3089. [DOI: 10.1002/ptr.6508] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Deepika Arora
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Material and Measurement LaboratoryNational Institute of Standards and Technology Gaithersburg 20899 Maryland USA
| | - Mohammad Imran Ansari
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| |
Collapse
|
10
|
Nowdijeh AA, Moosavi MA, Hosseinzadeh S, Soleimani M, Sabouni F, Hosseini-Mazinani M. Anti-oxidant and Selective Anti-proliferative Effects of the Total Cornicabra Olive Polyphenols on Human Gastric MKN45 Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e1967. [PMID: 31457043 PMCID: PMC6697859 DOI: 10.21859/ijb.1967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background According to the epidemiological studies, consuming olive products can decrease the incidence of the different types of cancers mostly due to the high anti-oxidant properties of their polyphenolic compounds. Objectives To evaluate the anti-oxidant and anti-proliferative potentials of the olive fruits total polyphenols on the gastric adenocarcinoma MKN45 cells in comparison to the normal Hu02 cells. Materials and Methods The total phenolic content of the olive fruits and radical scavenging activity were determined by Folin and 2,2-diphenyl-1-picrylhydrazyl (DPPH) tests respectively. MTT assay was performed for the evaluation of the cell viability. Intracellular reactive oxygen species (ROS) level was measured using DCFH-DA. Statistical analysis was performed using SPSS 16 statistical software. Results Treatment of the MKN45 cells with the phenolic compounds extracted from olive fruits decreased growth and viability of the cells in a dose- and time-dependent manner. In addition, treatment of the MKN45 cells with a combination of the phenolic compounds extracts and cytarabine further decreased cell compared to monotherapy of the cells with each compound alone. Mechanistically, we showed that the anti-cancer effects of the olive polyphenols in the MKN45 cells are mediated through depletion of ROS. Similarly, polyphenolic extracts were found to decrease ROS level in the normal cells at the concentrations of 500 and 1000 μg.mL-1 and short treatment times (6 h), but the viability of these cells did not significantly change. At high concentrations (2000 μg.mL-1) of the phenolic extracts or at longer times of incubation (12 h), however, both ROS levels and the viability of the cells were significantly decreased in the normal cells. Conclusions The olive fruits polyphenolic extract modulates ROS levels and selectively targets cancerous cells at low concentrations. Also, the effects of cytarabine could be potentiated by the olive fruits polyphenols. Thus, for a combined protocol of cancer cell therapy, olive fruit polyphenolic compound could be proposed as a proper candidate.
Collapse
Affiliation(s)
- Alireza Amiri Nowdijeh
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Simzar Hosseinzadeh
- School of Advanced Technologies of Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14115-331, Tehran, Iran.,Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Farzaneh Sabouni
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Hosseini-Mazinani
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
11
|
Sato K, Kanai K, Ozaki M, Kagawa T, Kita M, Yamashita Y, Nagai N, Tajima K. Preventive effects of tyrosol, a natural phenolic compound, on anterior uveitis induced by anterior chamber paracentesis in healthy beagle dogs. J Vet Med Sci 2019; 81:573-576. [PMID: 30799325 PMCID: PMC6483907 DOI: 10.1292/jvms.18-0723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We investigated the effects of tyrosol (Tyr) on anterior chamber paracentesis
(ACP)–induced anterior uveitis in beagle dogs, as determined by protein and prostaglandin
E2 (PGE2) concentrations in the aqueous humor (AH). Tyr at a dose of 100 or 200 mg/kg or
2.2 mg/kg of carprofen as a positive control was administered orally twice daily from 2.5
days before paracentesis. The initial ACP was performed in one eye of individual dogs and
0.5 ml AH was aspirated. The secondary AH was collected 60 min later.
Pretreatment with 200 mg/kg of Tyr and carprofen significantly decreased aqueous protein
and PGE2 concentrations compared to the control group. Overall, these findings suggested
that Tyr was useful for the management of canine anterior uveitis.
Collapse
Affiliation(s)
- Kazuaki Sato
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kazutaka Kanai
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Maiko Ozaki
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Takaaki Kagawa
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Mizuki Kita
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yohei Yamashita
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kazuki Tajima
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| |
Collapse
|
12
|
Asgharpour F, Moghadamnia AA, Kazemi S, Nouri HR, Pouramir M, Mousavi SN, Motallebnejad M. Chemical Composition Analysis and In Vitro Investigation of Cytotoxic and Antioxidative Activities of Iranian Propolis against Breast Cancer Cell Line, MCF-7. ChemistrySelect 2018. [DOI: 10.1002/slct.201802457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fariba Asgharpour
- Student Research Committee; Babol University of Medical sciences; Babol-47745 IRAN
- Dental Materials Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| | - Ali Akbar Moghadamnia
- Department of pharmacology; Babol University of Medical Sciences; Babol-47745 IRAN
- Cellular and Molecular Biology Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| | - Sohrab Kazemi
- Department of pharmacology; Babol University of Medical Sciences; Babol-47745 IRAN
- Cellular and Molecular Biology Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| | - Mahdi Pouramir
- Cellular and Molecular Biology Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
- Department of Clinical Biochemistry; Babol University of Medical Sciences; Babol-47745 IRAN
| | | | - Mina Motallebnejad
- Oral Health Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| |
Collapse
|
13
|
Wang W, Wu J, Zhang Q, Li X, Zhu X, Wang Q, Cao S, Du L. Mitochondria‐mediated apoptosis was induced by oleuropein in H1299 cells involving activation of p38 MAP kinase. J Cell Biochem 2018; 120:5480-5494. [DOI: 10.1002/jcb.27827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/12/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Wang Wang
- Key Laboratory of Bio‐Resources and Eco‐Environment of the Ministry of Education, College of Life Sciences, Sichuan University Chengdu China
| | - Jibing Wu
- Key Laboratory of Bio‐Resources and Eco‐Environment of the Ministry of Education, College of Life Sciences, Sichuan University Chengdu China
| | - Qingyan Zhang
- Key Laboratory of Bio‐Resources and Eco‐Environment of the Ministry of Education, College of Life Sciences, Sichuan University Chengdu China
| | - Xue Li
- Key Laboratory of Bio‐Resources and Eco‐Environment of the Ministry of Education, College of Life Sciences, Sichuan University Chengdu China
| | - Xixi Zhu
- Key Laboratory of Bio‐Resources and Eco‐Environment of the Ministry of Education, College of Life Sciences, Sichuan University Chengdu China
| | - Qiuying Wang
- Key Laboratory of Bio‐Resources and Eco‐Environment of the Ministry of Education, College of Life Sciences, Sichuan University Chengdu China
| | - Shasha Cao
- Key Laboratory of Bio‐Resources and Eco‐Environment of the Ministry of Education, College of Life Sciences, Sichuan University Chengdu China
| | - Linfang Du
- Key Laboratory of Bio‐Resources and Eco‐Environment of the Ministry of Education, College of Life Sciences, Sichuan University Chengdu China
| |
Collapse
|
14
|
Imran M, Nadeem M, Gilani SA, Khan S, Sajid MW, Amir RM. Antitumor Perspectives of Oleuropein and Its Metabolite Hydroxytyrosol: Recent Updates. J Food Sci 2018; 83:1781-1791. [PMID: 29928786 DOI: 10.1111/1750-3841.14198] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022]
Abstract
Olive fruit is a significant and promising source of potential bioactive compounds such as oleuropein and hydroxytyrosol. Oleuropein is the ester of elenolic acid and 3,4-dihydroxyphenyl ethanol (HT). It is the main glycoside in olives, the degradation of which results in the formation of hydroxytyrosol in olive oil. Both plays a significant role in the reduction of coronary heart diseases and a certain type of cancers. Both olive oil phenols have an effective role counter to cell proliferation, cell growth, migration, invasion, and angiogenesis. They down regulate the expression of BCL-2 and COX-2 proteins, and reduced DNA damage. Hydroxytyrosol and oleuropein inhibited the multiple stages in colon carcinogenesis; initiation, promotion, and metastasis. They also provide protection against various human cancers including colorectal, skin, breast, thyroid, digestive, lung, brain, blood, and cervical. This review article discusses the anticancer perspectives and mechanisms of oleuropein and hydroxytyrosol in cell cultures and animal and human studies.
Collapse
Affiliation(s)
- Muhammad Imran
- Univ. Inst. of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The Univ. of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem
- Dept. of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Syed Amir Gilani
- Univ. Inst. of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The Univ. of Lahore, Lahore, Pakistan
| | - Shaista Khan
- Dept. of Biochemistry, Shah Abdul University, Khairpur, Pakistan
| | | | - Rai Muhammad Amir
- Inst. of Food and Nutritional Sciences, PMAS-Arid Agriculture Univ., Rawalpindi, Pakistan
| |
Collapse
|
15
|
Zhang Y, Zhao H, Di Y, Li Q, Shao D, Shi J, Huang Q. Antitumor activity of Pinoresinol in vitro: Inducing apoptosis and inhibiting HepG2 invasion. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
16
|
Gorzynik-Debicka M, Przychodzen P, Cappello F, Kuban-Jankowska A, Marino Gammazza A, Knap N, Wozniak M, Gorska-Ponikowska M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int J Mol Sci 2018; 19:E686. [PMID: 29495598 PMCID: PMC5877547 DOI: 10.3390/ijms19030686] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/11/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate), as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.
Collapse
Affiliation(s)
| | - Paulina Przychodzen
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland.
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | | | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland.
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland.
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland.
- Institute of Biomaterials and Biomolecular Systems, Department of Biophysics, University of Stuttgart, 70569 Stuttgart, Germany.
| |
Collapse
|
17
|
Martínez L, Ros G, Nieto G. Hydroxytyrosol: Health Benefits and Use as Functional Ingredient in Meat. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E13. [PMID: 29360770 PMCID: PMC5874578 DOI: 10.3390/medicines5010013] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 02/01/2023]
Abstract
Hydroxytyrosol (HXT) is a phenolic compound drawn from the olive tree and its leaves as a by-product obtained from the manufacturing of olive oil. It is considered the most powerful antioxidant compound after gallic acid and one of the most powerful antioxidant compounds between phenolic compounds from olive tree followed by oleuropein, caffeic and tyrosol. Due to its molecular structure, its regular consumption has several beneficial effects such as antioxidant, anti-inflammatory, anticancer, and as a protector of skin and eyes, etc. For these reasons, the use of HXT extract is a good strategy for use in meat products to replace synthetics additives. However, this extract has a strong odour and flavour, so it is necessary to previously treat this compound in order to not alter the organoleptic quality of the meat product when is added as ingredient. The present review exposes the health benefits provided by HXT consumption and the latest research about its use on meat. In addition, new trends about the application of HXT in the list of ingredients of healthier meat products will be discussed.
Collapse
Affiliation(s)
- Lorena Martínez
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" (Economy based on agri-food), Campus de Espinardo, 30100 Espinardo, Murcia, Spain.
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" (Economy based on agri-food), Campus de Espinardo, 30100 Espinardo, Murcia, Spain.
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" (Economy based on agri-food), Campus de Espinardo, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|
18
|
Lombardo L, Grasso F, Lanciano F, Loria S, Monetti E. Broad-Spectrum Health Protection of Extra Virgin Olive Oil Compounds. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-64057-4.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
19
|
Deiana M, Serra G, Corona G. Modulation of intestinal epithelium homeostasis by extra virgin olive oil phenolic compounds. Food Funct 2018; 9:4085-4099. [DOI: 10.1039/c8fo00354h] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extra virgin olive oil polyphenols concentrate at the intestinal level and, by modulating the microbiota, oxidative status and inflammation, contribute to prevent the onset or delay the progression of inflammatory/degenerative diseases.
Collapse
Affiliation(s)
- Monica Deiana
- Department of Biomedical Sciences
- University of Cagliari
- Cagliari
- Italy
| | - Gessica Serra
- Department of Food and Nutritional Sciences
- University of Reading
- Reading
- UK
| | - Giulia Corona
- Health Sciences Research Centre
- University of Roehampton
- SW15 4JD London
- UK
| |
Collapse
|
20
|
Rossi M, Caruso F, Kwok L, Lee G, Caruso A, Gionfra F, Candelotti E, Belli SL, Molasky N, Raley-Susman KM, Leone S, Filipský T, Tofani D, Pedersen J, Incerpi S. Protection by extra virgin olive oil against oxidative stress in vitro and in vivo. Chemical and biological studies on the health benefits due to a major component of the Mediterranean diet. PLoS One 2017; 12:e0189341. [PMID: 29283995 PMCID: PMC5746230 DOI: 10.1371/journal.pone.0189341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/22/2017] [Indexed: 01/13/2023] Open
Abstract
We report the results of in vivo studies in Caenorhabditis elegans nematodes in which addition of extra virgin olive oil (EVOO) to their diet significantly increased their life span with respect to the control group. Furthermore, when nematodes were exposed to the pesticide paraquat, they started to die after two days, but after the addition of EVOO to their diet, both survival percentage and lifespans of paraquat-exposed nematodes increased. Since paraquat is associated with superoxide radical production, a test for scavenging this radical was performed using cyclovoltammetry and the EVOO efficiently scavenged the superoxide. Thus, a linear correlation (y = -0.0838x +19.73, regression factor = 0.99348) was observed for superoxide presence (y) in the voltaic cell as a function of aliquot (x) additions of EVOO, 10 μL each. The originally generated supoeroxide was approximately halved after 10 aliquots (100 μL total). The superoxide scavenging ability was analyzed, theoretically, using Density Functional Theory for tyrosol and hydroxytyrosol, two components of EVOO and was also confirmed experimentally for the galvinoxyl radical, using Electron Paramagnetic Resonance (EPR) spectroscopy. The galvinoxyl signal disappeared after adding 1 μL of EVOO to the EPR cell in 10 minutes. In addition, EVOO significantly decreased the proliferation of human leukemic THP-1 cells, while it kept the proliferation at about normal levels in rat L6 myoblasts, a non-tumoral skeletal muscle cell line. The protection due to EVOO was also assessed in L6 cells and THP-1 exposed to the radical generator cumene hydroperoxide, in which cell viability was reduced. Also in this case the oxidative stress was ameliorated by EVOO, in line with results obtained with tetrazolium dye reduction assays, cell cycle analysis and reactive oxygen species measurements. We ascribe these beneficial effects to EVOO antioxidant properties and our results are in agreement with a clear health benefit of EVOO use in the Mediterranean diet.
Collapse
Affiliation(s)
- Miriam Rossi
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Francesco Caruso
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Lorraine Kwok
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Grace Lee
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Alessio Caruso
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Fabio Gionfra
- Department of Sciences, University Roma Tre, Roma, Italy
| | | | - Stuart L. Belli
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Nora Molasky
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | | | - Stefano Leone
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Tomáš Filipský
- Department of Pharmacology and Toxicology in Hradec Králové, Charles University in Prague, Heyrovského, Czech Republic
| | - Daniela Tofani
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Jens Pedersen
- Department of Biology, University Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Roma, Italy
| |
Collapse
|
21
|
Prophetic medicine as potential functional food elements in the intervention of cancer: A review. Biomed Pharmacother 2017; 95:614-648. [DOI: 10.1016/j.biopha.2017.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
22
|
Bernini R, Carastro I, Palmini G, Tanini A, Zonefrati R, Pinelli P, Brandi ML, Romani A. Lipophilization of Hydroxytyrosol-Enriched Fractions from Olea europaea L. Byproducts and Evaluation of the in Vitro Effects on a Model of Colorectal Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6506-6512. [PMID: 28285526 DOI: 10.1021/acs.jafc.6b05457] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A hydroxytyrosol (HTyr)-enriched fraction containing HTyr 6% w/w, derived from Olea europaea L. byproducts and obtained using an environmentally and economically sustainable technology, was lipophilized under green chemistry conditions. The effects of three fractions containing hydroxytyrosyl butanoate, octanoate, and oleate, named, respectively, lipophilic fractions 5, 6, and 7, and unreacted HTyr on the human colon cancer cell line HCT8-β8 engineered to overexpress estrogen receptor β (ERβ) were evaluated and compared to those of pure HTyr. The experimental data demonstrated that HTyr and all fractions showed an antiproliferative effect, as had been observed by the evaluation of the cellular doubling time under these different conditions (mean control, 32 ± 4 h; HTyr 1, 65 ± 9 h; fraction 5, 64 ± 11 h; fraction 6, 62 ± 14 h; fraction 7, 133 ± 30 h). As evidenced, fraction 7 containing hydroxytyrosyl oleate showed the highest activity. These results were related to the link with ER-β, which was assessed through simultaneous treatment with an inhibitor of ERβ.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia , Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Isabella Carastro
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia , Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Gaia Palmini
- Department of Surgery and Translational Medicine, University of Florence , 50134 Florence, Italy
| | - Annalisa Tanini
- Department of Surgery and Translational Medicine, University of Florence , 50134 Florence, Italy
| | - Roberto Zonefrati
- Department of Surgery and Translational Medicine, University of Florence , 50134 Florence, Italy
| | - Patrizia Pinelli
- Department of Statistics, Computing, Applications "G. Parenti" (DISIA), PHYTOLAB, University of Florence , 50134 Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence , 50134 Florence, Italy
| | - Annalisa Romani
- Department of Statistics, Computing, Applications "G. Parenti" (DISIA), PHYTOLAB, University of Florence , 50134 Florence, Italy
| |
Collapse
|
23
|
López-Biedma A, Sánchez-Quesada C, Delgado-Rodríguez M, Gaforio JJ. The biological activities of natural lignans from olives and virgin olive oils: A review. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
López-Biedma A, Sánchez-Quesada C, Beltrán G, Delgado-Rodríguez M, Gaforio JJ. Phytoestrogen (+)-pinoresinol exerts antitumor activity in breast cancer cells with different oestrogen receptor statuses. Altern Ther Health Med 2016; 16:350. [PMID: 27604292 PMCID: PMC5015324 DOI: 10.1186/s12906-016-1233-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/19/2016] [Indexed: 11/17/2022]
Abstract
Background Consumption of virgin olive oil (VOO) has been associated with a low breast cancer incidence. Pinoresinol is a phytoestrogen that is typically found in VOO. Considering the role of oestrogen in breast cancer development and progression, we investigated the potential antitumor activity of pinoresinol in breast cancer cells. Methods To address this question, we treated MDA-MB-231 (oestrogen receptor [ER] negative) and MCF7 (ER+) human breast tumour cells and MCF10A human mammary epithelial cells (ER-) with different concentrations of pinoresinol. The cytotoxic activity, cell proliferation, cell cycle profile, apoptosis induction, reactive oxygen species production and DNA damage were assessed. Results Pinoresinol showed cytotoxic, anti-proliferative and pro-oxidant activity in human breast tumour cells, independent of their oestrogen receptor status. In addition, pinoresinol exerted antioxidant activity and prevented DNA damage associated with oxidative stress in human mammary epithelial cells. Conclusions Overall, the results suggest that pinoresinol may have antitumor activity in human breast cancer cells independently of oestrogen receptor status. Furthermore, the results show that the pinoresinol has the typical characteristics of a chemopreventive compound. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1233-7) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Czyżewska U, Siemionow K, Zaręba I, Miltyk W. Proapoptotic Activity of Propolis and Their Components on Human Tongue Squamous Cell Carcinoma Cell Line (CAL-27). PLoS One 2016; 11:e0157091. [PMID: 27281369 PMCID: PMC4900600 DOI: 10.1371/journal.pone.0157091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/24/2016] [Indexed: 02/01/2023] Open
Abstract
Propolis has been used since ancient times in folk medicine. It is a popular medicine possessing a broad spectrum of biological activities. This material is one of the richest sources of polyphenolic compounds such as flavonoids and phenolic acids. The ethanolic extract of propolis (EEP) evokes antibacterial, antiviral, antifungal and anticancer properties. Due to pharmacological properties it is used in the commercial production of nutritional supplements. In this study, gas chromatography coupled with mass spectrometry (GC-MS) was used to quantify main polyphenols in EEPs. The effect of EEPs, individual EEPs components (chrysin, galangin, pinocembrin, caffeic acid, p-coumaric acid, ferulic acid) and their mixture on viability of human tongue squamous cell carcinoma cell line (CAL-27) as well as the molecular mechanisms of the process were examined. The results of MTTs assay demonstrated that EEP, polyphenols and mixture of polyphenolic compounds were cytotoxic for CAL-27 cells in a dose dependent manner. The mechanism of cytotoxicity induced by these components undergoes through apoptosis as detected by flow cytometry. The ethanolic extracts of propolis activated caspases -3, -8, -9. Mixture of polyphenols was found as the most potent inducer of apoptosis thorough both intrinsic and extrinsic pathway. Therefore, we suggest that anticancer properties of propolis is related to synergistic activity of its main components.
Collapse
Affiliation(s)
- Urszula Czyżewska
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Bialystok, Poland
- * E-mail:
| | - Katarzyna Siemionow
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Ilona Zaręba
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
26
|
Combined dual effect of modulation of human neutrophils' oxidative burst and inhibition of colon cancer cells proliferation by hydroxycinnamic acid derivatives. Bioorg Med Chem 2016; 24:3556-64. [PMID: 27290693 DOI: 10.1016/j.bmc.2016.05.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023]
Abstract
Colon cancer is one of the most incident cancers in the Western World. While both genetic and epigenetic factors may contribute to the development of colon cancer, it is known that chronic inflammation associated to excessive production of reactive oxygen and nitrogen species by phagocytes may ultimately initiate the multistep process of colon cancer development. Phenolic compounds, which reveal antioxidant and antiproliferative activities in colon cancer cells, can be a good approach to surpass this problem. In this work, hydroxycinnamic amides and the respective acid precursors were tested in vitro for their capacity to modulate human neutrophils' oxidative burst and simultaneously to inhibit growth of colon cancer cells. A phenolic amide derivative, caffeic acid hexylamide (CAHA) (4) was found to be the most active compound in both assays, inhibiting human neutrophils' oxidative burst, restraining the inflammatory process, inhibiting growth of colon cancer cells and triggering mitochondrial dysfunction that leads cancer cells to apoptosis. Altogether, these achievements can contribute to the understanding of the relationship between antioxidant and anticancer activities and based on the structure-activity relationships (SAR) established can be the starting point to find more effective phenolic compounds as anticancer agents.
Collapse
|
27
|
Iaria DL, Chiappetta A, Muzzalupo I. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins "Switch-Off" in Olive (Olea europaea L.) Drupes at Different Stages of Maturation. FRONTIERS IN PLANT SCIENCE 2016; 6:1246. [PMID: 26834761 PMCID: PMC4717290 DOI: 10.3389/fpls.2015.01246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 05/23/2023]
Abstract
Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown "spot" which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of "Leucocarpa" and "Cassanese" olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in "Leucocarpa" and "Cassanese" genotypes, respectively, during 100-130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3'-hydrogenase (F3'H), flavonol 3'5 '-hydrogenase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute to reducing the current gap in information regarding metabolic processes, including those linked to fruit pigmentation in the olive.
Collapse
Affiliation(s)
- Domenico L. Iaria
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Olivicoltura e l'Industria OleariaCosenza, Italy
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaCosenza, Italy
| | - Innocenzo Muzzalupo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Olivicoltura e l'Industria OleariaCosenza, Italy
- Dipartimento di Farmacia, Scienze della Salute e della Nutrizione, Università della CalabriaCosenza, Italy
| |
Collapse
|
28
|
Terzuoli E, Giachetti A, Ziche M, Donnini S. Hydroxytyrosol, a product from olive oil, reduces colon cancer growth by enhancing epidermal growth factor receptor degradation. Mol Nutr Food Res 2015; 60:519-29. [DOI: 10.1002/mnfr.201500498] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/08/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Erika Terzuoli
- Department of Life Sciences; University of Siena; Siena Italy
| | | | - Marina Ziche
- Department of Life Sciences; University of Siena; Siena Italy
- Istituto Toscano Tumori (ITT); Florence Italy
| | - Sandra Donnini
- Department of Life Sciences; University of Siena; Siena Italy
- Istituto Toscano Tumori (ITT); Florence Italy
| |
Collapse
|
29
|
Jakobušić Brala C, Benčić D, Šindrak Z, Barbarić M, Uršić S. Labeled extra virgin olive oil as food supplement; phenolic compounds in oils from some autochthonous Croatian olives. GRASAS Y ACEITES 2015. [DOI: 10.3989/gya.0228151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Gosetti F, Bolfi B, Manfredi M, Calabrese G, Marengo E. Determination of eight polyphenols and pantothenic acid in extra-virgin olive oil samples by a simple, fast, high-throughput and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method. J Sep Sci 2015; 38:3130-3136. [PMID: 26136320 DOI: 10.1002/jssc.201500452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/09/2015] [Accepted: 06/17/2015] [Indexed: 12/28/2022]
Abstract
A new ultra high performance liquid chromatography coupled with tandem mass spectrometry method for a fast and sensitive determination of eight polyphenols (hydroxytyrosol, catechin, epicatechin, epigallocatechin gallate, oleuropein, quercetin, rutin, tyrosol) and panthotenic acid in extra-virgin olive oil was developed. The method does not require long sample pre-treatment and presents the lowest limit of detection and limit of quantitation values present in literature. Inter- and intra-day variability, linear dynamic range of the calibration curve, recovery and matrix effect were also determined and investigated. The method was applied to several oil samples of different type and origin. Given its accuracy, precision and rapidity, the method is characterized by an interestingly high throughput, reliability, and sensitivity.
Collapse
Affiliation(s)
- Fabio Gosetti
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Bianca Bolfi
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Giorgio Calabrese
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| |
Collapse
|
31
|
Rotelli MT, Bocale D, De Fazio M, Ancona P, Scalera I, Memeo R, Travaglio E, Zbar AP, Altomare DF. IN-VITRO evidence for the protective properties of the main components of the Mediterranean diet against colorectal cancer: A systematic review. Surg Oncol 2015; 24:145-52. [PMID: 26303826 DOI: 10.1016/j.suronc.2015.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023]
Abstract
AIM Epidemiological studies have shown that the incidence and mortality rates of colorectal cancer (CRC) vary over 10-fold worldwide where within Westernized societies lower rates are observed amongst populations living within the Mediterranean basin, suggesting a significant influence of environment and dietary style in CRC carcinogenesis. Interpretation of the data concerning the benefits of mediterranean (MD) diet is difficult in vivo because of the variability of alimentary regimens used, the differing compliance with dietary supplementation and because of the non-uniform duration of patient cohort observation. Therefore, the aim of this review is to evaluate the in-vitro effects on colorectal cancer cell lines. METHODS the literature concerning the in-vitro effects of 4 of the principal components symbolizing the MD such as olive oil (polyphenol), red chili (capsaicin), tomato (lycopene) and red grapes (resveratrol) have been systematically reviewed. RESULTS Several studies have demonstrated that polyphenols form olive oil, lycopene, resveratrol and capsaicin have multiple anticancer properties affecting several metabolic pathways involved in cancerogenesis, apoptosis, and metastasis in CRC cell lines. CONCLUSION This review summarizes some of the most recent data potentially supportive of the use of MD in CRC chemoprevention, analyzing the in vitro effects of individual components of the MD on CRC cell development, progression, metastasis and apoptosis.
Collapse
Affiliation(s)
- M T Rotelli
- DETO Dept of Emergency and Organ Transplantation, University "Aldo Moro" of Bari, Italy.
| | - D Bocale
- DETO Dept of Emergency and Organ Transplantation, University "Aldo Moro" of Bari, Italy
| | - M De Fazio
- DETO Dept of Emergency and Organ Transplantation, University "Aldo Moro" of Bari, Italy
| | - P Ancona
- DETO Dept of Emergency and Organ Transplantation, University "Aldo Moro" of Bari, Italy
| | - I Scalera
- DETO Dept of Emergency and Organ Transplantation, University "Aldo Moro" of Bari, Italy
| | - R Memeo
- DETO Dept of Emergency and Organ Transplantation, University "Aldo Moro" of Bari, Italy
| | - E Travaglio
- DETO Dept of Emergency and Organ Transplantation, University "Aldo Moro" of Bari, Italy
| | - A P Zbar
- Department of Surgery and Transplantation, Chaim Sheba Medical Center, Israel; Sackler School of Medicine, Tel Aviv University, Israel; Department of Anatomy, School of Medical Sciences, Centre for Bioengineering and Nanomedicine, University of Otago, Dunedin, New Zealand
| | - D F Altomare
- DETO Dept of Emergency and Organ Transplantation, University "Aldo Moro" of Bari, Italy
| |
Collapse
|
32
|
Koch K, Büchter C, Havermann S, Wätjen W. The Lignan Pinoresinol Induces Nuclear Translocation of DAF-16 in Caenorhabditis elegans but has No Effect on Life Span. Phytother Res 2015; 29:894-901. [PMID: 25826281 DOI: 10.1002/ptr.5330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 01/30/2023]
Abstract
The lignan pinoresinol is a constituent of flaxseed, sesame seeds and olive oil. Because of different molecular effects reported for this compound, e.g. antioxidative activity, pinoresinol is suggested to cause positive effects on humans. Because experimental data are limited, we have analysed the effects of the lignan on the nematode Caenorhabditis elegans: in spite of a strong antioxidative capacity detected in an in vitro assay, no antioxidative effects were detectable in vivo. In analogy to this result, no modulation of the sensitivity against thermal stress was detectable. However, incubation with pinoresinol caused an enhanced nuclear accumulation of the transcription factor DAF-16 (insulin/IGF-like signalling pathway). Using a strain with an enhanced oxidative stress level (mev-1 mutant), we clearly see an increase in stress resistance caused by this lignan, but no change in reactive oxygen species. Furthermore, we investigated the effects of pinoresinol on the life span of the nematode, but no modulation was found, neither in wild-type nor in mev-1 mutant nematodes. These results suggest that pinoresinol may exert pharmacologically interesting effects via modulation of the insulin-like signalling pathway in C. elegans as well as in other species like mammals due to the evolutionary conservation of this signalling pathway.
Collapse
Affiliation(s)
- Karoline Koch
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Weinbergweg 22 (Biozentrum), 06120, Halle/Saale, Germany
| | - Christian Büchter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Weinbergweg 22 (Biozentrum), 06120, Halle/Saale, Germany
| | - Susannah Havermann
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Weinbergweg 22 (Biozentrum), 06120, Halle/Saale, Germany
| | - Wim Wätjen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Weinbergweg 22 (Biozentrum), 06120, Halle/Saale, Germany
| |
Collapse
|
33
|
Roleira FMF, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem 2015; 183:235-58. [PMID: 25863633 DOI: 10.1016/j.foodchem.2015.03.039] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion.
Collapse
Affiliation(s)
- Fernanda M F Roleira
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Elisiário J Tavares-da-Silva
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla L Varela
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Saul C Costa
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tiago Silva
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Jorge Garrido
- CIQUP/Departamento de Engenharia Química, Instituto Superior de Engenharia, IPP, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal.
| |
Collapse
|
34
|
Hashim YZHY, Worthington J, Allsopp P, Ternan NG, Brown EM, McCann MJ, Rowland IR, Esposto S, Servili M, Gill CIR. Virgin olive oil phenolics extract inhibit invasion of HT115 human colon cancer cells in vitro and in vivo. Food Funct 2015; 5:1513-9. [PMID: 24836598 DOI: 10.1039/c4fo00090k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.
Collapse
Affiliation(s)
- Yumi Z H-Y Hashim
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yao J, Wu J, Yang X, Yang J, Zhang Y, Du L. Oleuropein induced apoptosis in HeLa cells via a mitochondrial apoptotic cascade associated with activation of the c-Jun NH2-terminal kinase. J Pharmacol Sci 2015; 125:300-11. [PMID: 25048019 DOI: 10.1254/jphs.14012fp] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Oleuropein could inhibit growth and/or induce apoptosis in several cancer cell lines. In this study, we investigate how oleuropein strongly induces apoptotic cell death in HeLa human cervical carcinoma cells. Oleuropein induced HeLa cells apoptosis as demonstrated by induction of a sub-G(1) peak in flow cytometry and apoptosis-related morphological changes observed by fluorescence microscopy after being stained by Hoechst 33324. The results also showed that 150 - 200 μM oleuropein–treated HeLa cells were arrested at the G(2)/M phase. Western blot analysis revealed that the phosphorylated ATF-2, c-Jun NH(2)-terminal kinase (JNK) protein, p53, p21, Bax, and cytochrome c protein in the cytoplasm significantly increased in a dose-dependent manner after treatment of oleuropein for 24 h. Additionally, increasing levels of Bax in response to JNK/SPAK signaling, which formed mitochondrial membrane channels, accounted for releasing of cytochrome c and activation of caspase-9 and -3. SP600125 (20 μM), a JNK(1/2) inhibitor, markedly suppressed the formation of apoptotic bodies and JNK activation induced by oleuropein at 200 μM. Thus, oleuropein-induced apoptosis was activated by the JNK/SPAK signal pathway. The result shows that oleuropein holds promise as a potential chemotherapeutic agent for the treatment of HeLa cells.
Collapse
Affiliation(s)
- Jie Yao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, China
| | | | | | | | | | | |
Collapse
|
36
|
Vilaplana-Pérez C, Auñón D, García-Flores LA, Gil-Izquierdo A. Hydroxytyrosol and potential uses in cardiovascular diseases, cancer, and AIDS. Front Nutr 2014; 1:18. [PMID: 25988120 PMCID: PMC4428486 DOI: 10.3389/fnut.2014.00018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/09/2014] [Indexed: 12/15/2022] Open
Abstract
Hydroxytyrosol is one of the main phenolic components of olive oil. It is present in the fruit and leaf of the olive (Olea europaea L.). During the past decades, it has been well documented that this phenolic compound has health benefits and a protective action has been found in preclinical studies against several diseases. Here, we review its bioavailability in human beings and several assays showing significant results related with cardiovascular diseases, cancer, and acquired immunodeficiency syndrome (AIDS). Mechanisms of action include potent anti-oxidant and anti-inflammatory effects, among others. The importance of hydroxytyrosol in protection of low-density lipoproteins and consequently its implication in the reduction of cardiovascular disease risk has been highlighted by the European Food Safety Authority, concluding that 5 mg of hydroxytyrosol and its derivatives should be consumed daily to reach this effect at physiological level. We discuss the potential uses of this compound in supplements, nutraceutic foods, or topical formulations in the disease risk reduction. Finally, we conclude that more studies are needed to sustain or reject many other health claims not yet fully documented and to validate these newly available hydroxytyrosol-based products, because it seems to be a good candidate to reduce the risk of diseases mentioned.
Collapse
Affiliation(s)
- Cristina Vilaplana-Pérez
- Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura, CSIC , Murcia , Spain
| | - David Auñón
- Department of Research and Development, Seprox BIOTECH, S.L. , Madrid , Spain
| | - Libia A García-Flores
- Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura, CSIC , Murcia , Spain
| | - Angel Gil-Izquierdo
- Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura, CSIC , Murcia , Spain
| |
Collapse
|
37
|
Goldsmith CD, Vuong QV, Stathopoulos CE, Roach PD, Scarlett CJ. Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves. Antioxidants (Basel) 2014; 3:700-12. [PMID: 26785235 PMCID: PMC4665494 DOI: 10.3390/antiox3040700] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/16/2022] Open
Abstract
Olive leaves are an agricultural waste of the olive-oil industry representing up to 10% of the dry weight arriving at olive mills. Disposal of this waste adds additional expense to farmers. Olive leaves have been shown to have a high concentration of phenolic compounds. In an attempt to utilize this waste product for phenolic compounds, we optimized their extraction using water—a “green” extraction solvent that has not yet been investigated for this purpose. Experiments were carried out according to a Box Behnken design, and the best possible combination of temperature, extraction time and sample-to-solvent ratio for the extraction of phenolic compounds with a high antioxidant activity was obtained using RSM; the optimal conditions for the highest yield of phenolic compounds was 90 °C for 70 min at a sample-to-solvent ratio of 1:100 g/mL; however, at 1:60 g/mL, we retained 80% of the total phenolic compounds and maximized antioxidant capacity. Therefore the sample-to-solvent ratio of 1:60 was chosen as optimal and used for further validation. The validation test fell inside the confidence range indicated by the RSM output; hence, the statistical model was trusted. The proposed method is inexpensive, easily up-scaled to industry and shows potential as an additional source of income for olive growers.
Collapse
Affiliation(s)
- Chloe D Goldsmith
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Quan V Vuong
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Costas E Stathopoulos
- Faculty of Bioscience Engineering, Ghent University Global Campus, Incheon 406-840, South Korea.
| | - Paul D Roach
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Christopher J Scarlett
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| |
Collapse
|
38
|
Coccia A, Bastianelli D, Mosca L, Monticolo R, Panuccio I, Carbone A, Calogero A, Lendaro E. Extra virgin olive oil phenols suppress migration and invasion of T24 human bladder cancer cells through modulation of matrix metalloproteinase-2. Nutr Cancer 2014; 66:946-54. [PMID: 24918476 DOI: 10.1080/01635581.2014.922204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The consumption of extra virgin olive oil (EVOO), a common dietary habit of the Mediterranean people, seems to be related to a lower incidence of certain types of cancer including bladder neoplasm. Metastases are the major cause of bladder cancer-related deaths and targeting cell motility has been proposed as a therapeutic strategy to prevent cancer spread. This study aimed to investigate the potential antimetastatic effect of total phenols extracted from EVOO against the human transitional bladder carcinoma cell line T24. We also aimed at verifying that EVOO extract exerts cytotoxic effect on tumor cells without affecting normal urothelial fibroblasts. Our results show that EVOO extract can significantly inhibit the proliferation and motility of T24 bladder cells in a dose-dependent manner. In the same experimental conditions fibroblast proliferation and motility were not significantly modified. Furthermore the enzymatic activity of MMP-2 was inhibited at nontoxic EVOO extract doses only in T24 cells. The qRT-PCR revealed a decrease of the MMP-2 expression and a simultaneous increase of the tissue inhibitors of metalloproteinases expression. Our results may support the epidemiological evidences that link olive oil consumption to health benefits and may represent a starting point for the development of new anticancer strategies.
Collapse
Affiliation(s)
- Andrea Coccia
- a Department of Medical-Surgical Sciences and Biotechnologies , "Sapienza" University of Rome , Latina , Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhao B, Ma Y, Xu Z, Wang J, Wang F, Wang D, Pan S, Wu Y, Pan H, Xu D, Liu L, Jiang H. Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways. Cancer Lett 2014; 347:79-87. [DOI: 10.1016/j.canlet.2014.01.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/05/2014] [Accepted: 01/24/2014] [Indexed: 11/25/2022]
|
40
|
Takashima T, Sakata Y, Iwakiri R, Shiraishi R, Oda Y, Inoue N, Nakayama A, Toda S, Fujimoto K. Feeding with olive oil attenuates inflammation in dextran sulfate sodium-induced colitis in rat. J Nutr Biochem 2014; 25:186-92. [DOI: 10.1016/j.jnutbio.2013.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023]
|
41
|
Lopez S, Bermudez B, Montserrat-de la Paz S, Jaramillo S, Varela LM, Ortega-Gomez A, Abia R, Muriana FJG. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1638-56. [PMID: 24440426 DOI: 10.1016/j.bbamem.2014.01.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/26/2022]
Abstract
The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | | | - Sara Jaramillo
- Laboratory of Phytochemicals and Food Quality, Instituto de la Grasa, CSIC, 41014 Seville, Spain
| | - Lourdes M Varela
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Almudena Ortega-Gomez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain.
| |
Collapse
|
42
|
Analgesic, anti-inflammatory and anticancer activities of extra virgin olive oil. J Lipids 2013; 2013:129736. [PMID: 24455277 PMCID: PMC3884608 DOI: 10.1155/2013/129736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/10/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022] Open
Abstract
Background. In folk medicine, extra virgin olive oil (EVOO) is used as a remedy for a variety of diseases. This study investigates the in vivo antinociceptive, anti-inflammatory, and anti-cancer effects of EVOO on mice and rats. Materials and Methods. In this experimental study, using the acetic acid-induced writhing and formalin tests in mice, the analgesic effect of EVOO was evaluated. Acetylsalicylic acid and morphine were used as standard drugs, respectively. The anti-inflammatory activity was investigated by means of the carrageenan-induced paw edema model in rats using acetylsalicylic acid and dexamethasone as standard drugs. Last, the xenograft model in athymic mice was used to evaluate the anticancer effect in vivo. Results. EVOO significantly decreased acetic acid-induced abdominal writhes and reduces acute and inflammatory pain in the two phases of the formalin test. It has also a better effect than Dexamethasone in the anti-inflammatory test. Finally, the intraperitoneal administration of EVOO affects the growth of HCT 116 tumours xenografted in athymic mice. Conclusion. EVOO has a significant analgesic, anti-inflammatory, and anticancer properties. However, further detailed studies are required to determine the active component responsible for these effects and mechanism pathway.
Collapse
|
43
|
Servili M, Sordini B, Esposto S, Urbani S, Veneziani G, Di Maio I, Selvaggini R, Taticchi A. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil. Antioxidants (Basel) 2013; 3:1-23. [PMID: 26784660 PMCID: PMC4665453 DOI: 10.3390/antiox3010001] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.
Collapse
Affiliation(s)
- Maurizio Servili
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Beatrice Sordini
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Sonia Esposto
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Stefania Urbani
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Gianluca Veneziani
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Ilona Di Maio
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Roberto Selvaggini
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Agnese Taticchi
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| |
Collapse
|
44
|
Hydroxytyrosyl ethyl ether exhibits stronger intestinal anticarcinogenic potency and effects on transcript profiles compared to hydroxytyrosol. Food Chem 2013; 138:1172-82. [DOI: 10.1016/j.foodchem.2012.11.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/22/2022]
|
45
|
Mateos R, Pereira-Caro G, Bacon JR, Bongaerts R, Sarriá B, Bravo L, Kroon PA. Anticancer activity of olive oil hydroxytyrosyl acetate in human adenocarcinoma Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3264-3269. [PMID: 23452288 DOI: 10.1021/jf305158q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The anticancer activity of hydroxytyrosyl acetate (HTy-Ac) has been studied in human colon adenocarcinoma cells. Gene expression of proteins involved in cell cycle (p21, p53, cyclin B1, and cyclin G2) and programmed cell death (BNIP3, BNIP3L, PDCD4, and ATF3), as well as phase I and phase II detoxifying enzymes CYPA1 and UGT1A10, were evaluated by reverse transcription polymerase chain reaction after 24 h of exposure of Caco-2/TC7 cells to 5, 10, and 50 μM of HTy-Ac. The results show that HTy-Ac inhibited cell proliferation and arrested cell cycle by enhancing p21 and CCNG2 and lowering CCNB1 protein expression. HTy-Ac also affected the transcription of genes involved in apoptosis up-regulating of BNIP3, BNIP3L, PDCD4, and ATF3 and activating caspase-3. In addition, HTy-Ac also up-regulated xenobiotic metabolizing enzymes CYP1A1 and UGT1A10, thus enhancing carcinogen detoxification. In conclusion, these results highlight that HTy-Ac has the potential to modulate biomarkers involved in colon cancer.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
Casaburi I, Puoci F, Chimento A, Sirianni R, Ruggiero C, Avena P, Pezzi V. Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: A review of in vitro studies. Mol Nutr Food Res 2012. [DOI: 10.1002/mnfr.201200503] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ivan Casaburi
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Francesco Puoci
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Adele Chimento
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Rosa Sirianni
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Carmen Ruggiero
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Paola Avena
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Vincenzo Pezzi
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| |
Collapse
|
47
|
Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation. PLoS One 2012. [PMID: 23185422 PMCID: PMC3504104 DOI: 10.1371/journal.pone.0049740] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0–50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer.
Collapse
|
48
|
Loizzo MR, Di Lecce G, Boselli E, Menichini F, Frega NG. Radical Scavenging, Total Antioxidant Capacity, and Antiproliferative Activity of Phenolic Extracts from Extra Virgin Olive Oil by Cultivar ‘Frantoio’. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2012. [DOI: 10.1080/10942912.2010.522291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Uptake and metabolism of olive oil polyphenols in human breast cancer cells using nano-liquid chromatography coupled to electrospray ionization-time of flight-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 898:69-77. [PMID: 22608806 DOI: 10.1016/j.jchromb.2012.04.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 01/30/2023]
Abstract
Polyphenols from extra virgin olive oil (EVOO), a main component of the Mediterranean diet, have demonstrated repeatedly anti-tumor activity in several in vitro and in vivo studies. However, little is known about the efficiency of the absorption process and metabolic conversion of these compounds at cellular level. In this study, a nano liquid chromatography-electrospray ionization-time of flight mass spectrometry (nanoLC-ESI-TOF MS) method was developed to study the cellular uptake and metabolism of olive oil phenols in JIMT-1 human breast cancer cells. After incubation for different time periods with EVOO-derived phenolic extracts, culture media, cytosolic fraction and solid particles fraction were separated and analyzed. Most of the free phenols, mainly hydroxytyrosol, its secoiridoid derivatives, and the flavonoid luteolin, disappeared in the culture media in different ways and at different times. Besides, several metabolites were detected in the culture media, fact that may indicate absorption and intracellular metabolism followed by rapid cellular export. Low intracellular accumulation was observed with only traces of some compounds detected in the cytosolic and solid particles fractions. Methylated conjugates were the major metabolites detected, suggesting a catalytic action of catechol-O-methyl transferase (COMT) in cancer cells.
Collapse
|
50
|
Fernández-Arroyo S, Gómez-Martínez A, Rocamora-Reverte L, Quirantes-Piné R, Segura-Carretero A, Fernández-Gutiérrez A, Ferragut J. Application of nanoLC-ESI-TOF-MS for the metabolomic analysis of phenolic compounds from extra-virgin olive oil in treated colon-cancer cells. J Pharm Biomed Anal 2012; 63:128-34. [DOI: 10.1016/j.jpba.2012.01.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 12/31/2022]
|