1
|
The transcription factor E2A can bind to and cleave single-stranded immunoglobulin heavy chain locus DNA. Mol Immunol 2023; 153:51-59. [PMID: 36434987 DOI: 10.1016/j.molimm.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Class switch recombination (CSR) changes the constant region of the immunoglobulin heavy chain (IgH), and somatic hypermutation (SH) introduces point mutations in the variable regions of the antibody genes. Both these processes that optimize antibody responses of B lymphocytes are initiated by the enzyme Activation Induced cytidine Deaminase (AID). Here we have searched for CSR or SH coupled activities of the transcription factor E2A, since E2A is in a complex with AID and the transcription factors PAX5, ETS1 and IRF4 on key sequences of the Igh locus in B lymphocytes activated to CSR and SH. We report that E2A in contrast to other described transcription factors binds sequence specifically also to single-stranded DNA. The binding of E2A to single-stranded DNA has a strong sequence preference for one strand of a site in the intronic enhancer of the Igh locus. Furthermore, E2A was also found to cleave single-stranded DNA. The sequence profile of substrates cleaved by E2A is coupled to the sequences of substrates and products of AID, suggesting that E2A has a role not only in targeting of AID to switch regions and SH parts of antibody genes but also in cleavage of DNA at these sites.
Collapse
|
2
|
Mori H, Masahata K, Umeda S, Morine Y, Ishibashi H, Usui N, Shimada M. Risk of carcinogenesis in the biliary epithelium of children with congenital biliary dilatation through epigenetic and genetic regulation. Surg Today 2021; 52:215-223. [PMID: 34132887 DOI: 10.1007/s00595-021-02325-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
PURPOSES Congenital biliary dilatation (CBD), defined as pancreaticobiliary maljunction (PBM) with biliary dilatation, is a high risk factor for biliary tract cancer (BTC). KRAS and p53 mutations reportedly affect this process, but the mechanisms are unclear, as is the likelihood of BTC later in life in children with CBD. We investigated potential carcinogenetic pathways in children with CBD compared with adults. METHODS The subjects of this study were nine children with CBD and 13 adults with PBM (10 dilated, 3 non-dilated) without BTC who underwent extrahepatic bile duct resections, as well as four control patients who underwent pancreaticoduodenectomy for non-biliary cancer. We evaluated expressions of Ki-67, KRAS, p53, histone deacetylase (HDAC) and activation-induced cytidine deaminase (AID) in the biliary tract epithelium immunohistochemically. RESULTS The Ki-67 labeling index (LI) and expressions of KRAS, p53, HDAC, and AID in the gallbladder epithelium were significantly higher or tended to be higher in both the children with CBD and the adults with PBM than in the controls. CONCLUSIONS BTC may develop later in children with CBD and in adults with PBM, via HDAC and AID expression and through epigenetic and genetic regulation.
Collapse
Affiliation(s)
- Hiroki Mori
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka Women's and Children's Hospital, Murodoucho 840, Izumi, Osaka, 594-1101, Japan
| | - Satoshi Umeda
- Department of Pediatric Surgery, Osaka Women's and Children's Hospital, Murodoucho 840, Izumi, Osaka, 594-1101, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroki Ishibashi
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Noriaki Usui
- Department of Pediatric Surgery, Osaka Women's and Children's Hospital, Murodoucho 840, Izumi, Osaka, 594-1101, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
3
|
Ott JA, Ohta Y, Flajnik MF, Criscitiello MF. Lost structural and functional inter-relationships between Ig and TCR loci in mammals revealed in sharks. Immunogenetics 2021; 73:17-33. [PMID: 33449123 PMCID: PMC7909615 DOI: 10.1007/s00251-020-01183-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Immunoglobulins and T cell receptors (TCR) have obvious structural similarities as well as similar immunogenetic diversification and selection mechanisms. Nevertheless, the two receptor systems and the loci that encode them are distinct in humans and classical murine models, and the gene segments comprising each repertoire are mutually exclusive. Additionally, while both B and T cells employ recombination-activating genes (RAG) for primary diversification, immunoglobulins are afforded a supplementary set of activation-induced cytidine deaminase (AID)-mediated diversification tools. As the oldest-emerging vertebrates sharing the same adaptive B and T cell receptor systems as humans, extant cartilaginous fishes allow a potential view of the ancestral immune system. In this review, we discuss breakthroughs we have made in studies of nurse shark (Ginglymostoma cirratum) T cell receptors demonstrating substantial integration of loci and diversification mechanisms in primordial B and T cell repertoires. We survey these findings in this shark model where they were first described, while noting corroborating examples in other vertebrate groups. We also consider other examples where the gnathostome common ancestry of the B and T cell receptor systems have allowed dovetailing of genomic elements and AID-based diversification approaches for the TCR. The cartilaginous fish seem to have retained this T/B cell plasticity to a greater extent than more derived vertebrate groups, but representatives in all vertebrate taxa except bony fish and placental mammals show such plasticity.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Li A, Wu J, Zhai A, Qian J, Wang X, Qaria MA, Zhang Q, Li Y, Fang Y, Kao W, Song W, Zhang Z, Zhang F. HBV triggers APOBEC2 expression through miR‑122 regulation and affects the proliferation of liver cancer cells. Int J Oncol 2019; 55:1137-1148. [PMID: 31485598 DOI: 10.3892/ijo.2019.4870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/15/2019] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B virus (HBV) infection is responsible for 50% of liver cancer cases globally; this disease is one of the leading causes of cancer‑associated mortality. One reported mechanism underlying the development of liver cancer is the mutation of tumor suppressor genes induced by the overexpression of apolipoprotein B mRNA‑editing enzyme catalytic subunit 2 (APOBEC2) in hepatocytes. In addition, it has been observed that HBV inhibited microRNA (miR)‑122 expression in hepatocytes; however, the molecular mechanisms involved in liver cancer development remain unknown and further investigations are required. In the present study, the mechanistic roles of HBV infection in modulating the expression of miR‑122 and APOBEC2, and the development of liver cancer, were investigated. Reverse transcription‑quantitative PCR and western blot analyses revealed that APOBEC2 expression was markedly upregulated following HBV infection. Of note, the expression profile of APOBEC2 in the Huh7 and HepG2 liver cancer cell lines opposed that of miR‑122; this miR is the most abundant miRNA in the liver and has been associated with hepatocarcinogenesis. Mechanistically, it was demonstrated via a dual‑luciferase assay that miR‑122 could specifically bind to the 3'‑untranslated region (3'UTR) of APOBEC2 mRNA, inhibiting its expression. Collectively, the findings of the present study may provide insight into the mechanistic role of HBV infection in modulating the expression of miR‑122, which targets the 3'UTR of APOBEC2 mRNA, subsequently inducing liver carcinogenesis.
Collapse
Affiliation(s)
- Aimei Li
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Wu
- Hangzhou Key Laboratory of Inflammation and Immunoregulation, Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Aixia Zhai
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jun Qian
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xinyang Wang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Majjid A Qaria
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qingmeng Zhang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yujun Li
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yong Fang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wenping Kao
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wuqi Song
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Fengmin Zhang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
5
|
Sokolova O, Naumann M. Crosstalk Between DNA Damage and Inflammation in the Multiple Steps of Gastric Carcinogenesis. Curr Top Microbiol Immunol 2019; 421:107-137. [PMID: 31123887 DOI: 10.1007/978-3-030-15138-6_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Over the last years, intensive investigations in molecular biology and cell physiology extended tremendously the knowledge about the association of inflammation and cancer. In frame of this paradigm, the human pathogen Helicobacter pylori triggers gastritis and gastric ulcer disease, and contributes to the development of gastric cancer. Mechanisms, by which the bacteria-induced inflammation in gastric mucosa leads to intestinal metaplasia and carcinoma, are represented in this review. An altered cell-signaling response and increased production of free radicals by epithelial and immune cells account for the accumulation of DNA damage in gastric mucosa, if infection stays untreated. Host genetics and environmental factors, especially diet, can accelerate the process, which offers the opportunity of intervention based on a balanced nutrition. It is supposed that inflammation might influence stem- or progenitor cells in gastric tissue predisposing for metaplasia or tumor relapse. Herein, DNA is strongly mutated and labile, which restricts therapy options. Thus, the understanding of the mechanisms that underlie gastric carcinogenesis will be of preeminent importance for the development of strategies for screening and early detection. As most gastric cancer patients face late-stage disease with a poor overall survival, the development of multi-targeted therapeutic intervention strategies is a major challenge for the future.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
6
|
Araki A, Jin L, Nara H, Takeda Y, Nemoto N, Gazi MY, Asao H. IL-21 Enhances the Development of Colitis-Associated Colon Cancer: Possible Involvement of Activation-Induced Cytidine Deaminase Expression. THE JOURNAL OF IMMUNOLOGY 2019; 202:3326-3333. [DOI: 10.4049/jimmunol.1800550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
|
7
|
Grundström C, Kumar A, Priya A, Negi N, Grundström T. ETS1 and PAX5 transcription factors recruit AID to Igh DNA. Eur J Immunol 2018; 48:1687-1697. [PMID: 30089192 DOI: 10.1002/eji.201847625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 08/07/2018] [Indexed: 01/25/2023]
Abstract
B lymphocytes optimize antibody responses by class switch recombination (CSR), which changes the expressed constant region exon of the immunoglobulin heavy chain (IgH), and by somatic hypermutation (SH) that introduces point mutations in the variable regions of the antibody genes. Activation-induced cytidine deaminase (AID) is the key mutagenic enzyme that initiates both these antibody diversification processes by deaminating cytosine to uracil. Here we asked the question if transcription factors can mediate the specific targeting of the antibody diversification by recruiting AID. We have recently reported that AID is together with the transcription factors E2A, PAX5 and IRF4 in a complex on key sequences of the Igh locus. Here we report that also ETS1 is together with AID in this complex on key sequences of the Igh locus in splenic B cells of mice. Furthermore, we show that both ETS1 and PAX5 can directly recruit AID to DNA sequences from the Igh locus with the specific binding site for the transcription factor. Taken together, our findings support the notion of a targeting mechanism for the selective diversification of antibody genes with limited genome wide mutagenesis by recruitment of AID by PAX5 and ETS1 in a transcription factor complex.
Collapse
Affiliation(s)
| | - Anjani Kumar
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anshu Priya
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Neema Negi
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
8
|
Xie W, Hao J, Zhang K, Fang X, Liu X. Adenovirus armed with VGLL4 selectively kills hepatocellular carcinoma with G2/M phase arrest and apoptosis promotion. Biochem Biophys Res Commun 2018; 503:2758-2763. [PMID: 30119884 DOI: 10.1016/j.bbrc.2018.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 01/08/2023]
Abstract
The Vestigial-Like Family Member 4 (VGLL4) functions as a native inhibitor of cell proliferation and tumor growth through multiple signaling pathways. We first discovered that VGLL4 causes G2/M phase arrest in hepatocellular carcinoma (HCC) cells. Then, we designed a novel survivin-regulated oncolytic adenovirus Ad-sp-VGLL4 carrying the VGLL4 gene. Ad-sp-VGLL4 exerted high HCC-targeting-selectivity but is less harmful to normal cells. This adenovirus construction enhanced antitumor activity due to G2/M phase arrest and enhanced apoptosis. It's also indicated that Ad-sp-VGLL4 could suppress the growth of transplanted tumor of HCC in vivo experiment. Taken together, our results suggest that Ad-sp-VGLL4 possesses strong antitumor capacity and has great potential use for HCC therapy.
Collapse
Affiliation(s)
- Wenjie Xie
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Jiali Hao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Kangjian Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China; Shanghai YuanSong Biological Technology Co., Ltd, No. 1588, Shanghai and Hangzhou Highway, Fengxian District, Shanghai, 201401, PR China.
| | - Xianlong Fang
- Shanghai YuanSong Biological Technology Co., Ltd, No. 1588, Shanghai and Hangzhou Highway, Fengxian District, Shanghai, 201401, PR China.
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China; Shanghai YuanSong Biological Technology Co., Ltd, No. 1588, Shanghai and Hangzhou Highway, Fengxian District, Shanghai, 201401, PR China.
| |
Collapse
|
9
|
Yuan S, Fang X, Xu Y, Ni A, Liu XY, Chu L. An oncolytic adenovirus that expresses the HAb18 and interleukin 24 genes exhibits enhanced antitumor activity in hepatocellular carcinoma cells. Oncotarget 2018; 7:60491-60502. [PMID: 27528029 PMCID: PMC5312398 DOI: 10.18632/oncotarget.11134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by alterations in multiple genes. High expression of CD147 on the surface of HCC cells promotes proliferation. The monoclonal antibody HAb18 recognizes CD147. We constructed an oncolytic adenoviral vector to express HAb18 (ZD55-HAb18) in HCC cells. Interleukin 24 (IL24) was co-expressed through the use of an F2A linker. ZD55-HAb18-IL24 decreased HCC cell viability to a greater degree than either ZD55-HAb18 or ZD55-IL24 alone. ZD55-HAb18-IL24 also induced apoptosis and autophagy in PLC/PRF/5 HCC cells. Intratumoral injection of ZD55-HAb18-IL24 repressed tumor growth in a PLC/PRF/5 xenograft model. Our results suggest that antibody-antitumor gene conjugation elicited a stronger antitumor effect than the antibody alone, and that this strategy could broaden the applications of antibody-based therapies in HCC.
Collapse
Affiliation(s)
- Sujing Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xianlong Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yanni Xu
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, P. R. China
| | - Aimin Ni
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou 221002, P. R. China
| |
Collapse
|
10
|
Seishima N, Kondo S, Wakae K, Wakisaka N, Kobayashi E, Kano M, Moriyama-Kita M, Nakanishi Y, Endo K, Imoto T, Ishikawa K, Sugimoto H, Hatano M, Ueno T, Koura M, Kitamura K, Muramatsu M, Yoshizaki T. Expression and subcellular localisation of AID and APOBEC3 in adenoid and palatine tonsils. Sci Rep 2018; 8:918. [PMID: 29343743 PMCID: PMC5772672 DOI: 10.1038/s41598-017-18732-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) and apolipoprotein B mRNA-editing catalytic polypeptide 3 (A3) family are cytidine deaminases that play critical roles in B-cell maturation, antiviral immunity and carcinogenesis. Adenoids and palatine tonsils are secondary lymphoid immune organs, in which AID and A3s are thought to have several physiological or pathological roles. However, the expression of AID or A3s in these organs has not been investigated. Therefore, we investigated the expression profiles of AID and A3s, using 67 samples of adenoids and palatine tonsils from patients, with reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical analyses. AID and A3s expression levels in the adenoids and the palatine tonsils of the same individual significantly correlated with each other. Of note, AID expression level in the adenoids negatively correlated with the age (r = -0.373, P = 0.003). The younger group with adenoid vegetation and tonsillar hypertrophy showed more abundant AID expression than the older group with recurrent tonsillitis and peritonsillar abscesses (P = 0.026). Moreover, immunohistochemical analysis revealed the distribution of AID and A3s in the epithelial cells as well as germinal centres. The localisation of AID expression and its relation to age may contribute to adenoid vegetation and inflammation.
Collapse
Affiliation(s)
- Noriko Seishima
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kondo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Kousho Wakae
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naohiro Wakisaka
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Kano
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoko Imoto
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuya Ishikawa
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miyako Hatano
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Koichi Kitamura
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
11
|
Zaprazna K, Basu A, Tom N, Jha V, Hodawadekar S, Radova L, Malcikova J, Tichy B, Pospisilova S, Atchison ML. Transcription factor YY1 can control AID-mediated mutagenesis in mice. Eur J Immunol 2017; 48:273-282. [PMID: 29080214 DOI: 10.1002/eji.201747065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/24/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
Activation-induced cytidine deminase (AID) is crucial for controlling the immunoglobulin (Ig) diversification processes of somatic hypermutation (SHM) and class switch recombination (CSR). AID initiates these processes by deamination of cytosine, ultimately resulting in mutations or double strand DNA breaks needed for SHM and CSR. Levels of AID control mutation rates, and off-target non-Ig gene mutations can contribute to lymphomagenesis. Therefore, factors that control AID levels in the nucleus can regulate SHM and CSR, and may contribute to disease. We previously showed that transcription factor YY1 can regulate the level of AID in the nucleus and Ig CSR. Therefore, we hypothesized that conditional knock-out of YY1 would lead to reduction in AID localization at the Ig locus, and reduced AID-mediated mutations. Using mice that overexpress AID (IgκAID yy1f/f ) or that express normal AID levels (yy1f/f ), we found that conditional knock-out of YY1 results in reduced AID nuclear levels, reduced localization of AID to the Sμ switch region, and reduced AID-mediated mutations. We find that the mechanism of YY1 control of AID nuclear accumulation is likely due to YY1-AID physical interaction which blocks AID ubiquitination.
Collapse
Affiliation(s)
- Kristina Zaprazna
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Arindam Basu
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Nikola Tom
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Vibha Jha
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Suchita Hodawadekar
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Jitka Malcikova
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Michael L Atchison
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci 2017; 18:ijms18091876. [PMID: 28867784 PMCID: PMC5618525 DOI: 10.3390/ijms18091876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
13
|
Abstract
Helicobacter pylori infection is the most important cause of human gastric cancer worldwide. Gastric cancer develops over a long time after H. pylori infection via stepwise accumulation of genetic alterations and positive selection of cells with growth advantages. H. pylori itself and the resultant chronic inflammation lead to the emergence of genetic alterations in gastric epithelial cells via increased susceptibility of these cells to DNA damage. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in inflammatory and gastric epithelial cells, as well as the expression of cytidine deaminase in gastric epithelial cells, may link H. pylori-related inflammation and DNA damage. Recent comprehensive analyses of gastric cancer genomes provide clues for the possible molecular mechanisms of gastric carcinogenesis. In this chapter, we describe how genetic alterations emerge during gastric carcinogenesis related to H. pylori infection.
Collapse
|
14
|
Hauser J, Grundström C, Kumar R, Grundström T. Regulated localization of an AID complex with E2A, PAX5 and IRF4 at the Igh locus. Mol Immunol 2016; 80:78-90. [DOI: 10.1016/j.molimm.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
|
15
|
Liu WB, Wu JF, Du Y, Cao GW. Cancer Evolution-Development: experience of hepatitis B virus-induced hepatocarcinogenesis. ACTA ACUST UNITED AC 2016; 23:e49-56. [PMID: 26966413 DOI: 10.3747/co.23.2836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we present the basic concept and theoretical framework of a scientific hypothesis called Cancer Evolution-Development ("Cancer Evo-Dev"), based on our recent studies of the molecular mechanisms by which chronic infection with the hepatitis B virus induces hepatocarcinogenesis, together with related advances in that field. Several aspects central to our hypothesis are presented: ■ Immune imbalance-caused by the interaction of genetic predispositions and environmental exposures such as viral infection-is responsible for the maintenance of chronic non-resolving inflammation. Non-resolving inflammation promotes the occurrence and progression of cancers, characterized by an evolutionary process of "mutation-selection-adaptation" for both viruses and host cells.■ Under a microenvironment of non-resolving inflammation, proinflammatory factors promote mutations in viral or host genomes by transactivation of the expression of cytidine deaminases and their analogues. Most cells with genomic mutations and mutated viruses are eliminated in the competition for survival in the inflammatory microenvironment. Only a small percentage of the mutated cells that alter their survival signal pathways and exhibit the characteristics of "stem-ness" can survive and function as cancer-initiating cells.■ Cancers generally develop with properties of "backward evolution" and "retro-differentiation," indicating the indispensability of stem-like signal pathways in the evolution and development of cancers. The hypothesis of Cancer Evo-Dev not only lays the theoretical foundation for understanding the mechanisms by which inflammation promotes the development of cancers, but also plays an important role in specific prophylaxis, prediction, early diagnosis, and targeted treatment of cancers.
Collapse
Affiliation(s)
- W B Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, P.R.C
| | - J F Wu
- Department of Epidemiology, Second Military Medical University, Shanghai, P.R.C
| | - Y Du
- Department of Epidemiology, Second Military Medical University, Shanghai, P.R.C
| | - G W Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, P.R.C
| |
Collapse
|
16
|
Kawamura K, Wada A, Wang JY, Li Q, Ishii A, Tsujimura H, Takagi T, Itami M, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Expression of activation-induced cytidine deaminase is associated with a poor prognosis of diffuse large B cell lymphoma patients treated with CHOP-based chemotherapy. J Cancer Res Clin Oncol 2016; 142:27-36. [PMID: 26077666 DOI: 10.1007/s00432-015-2001-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/10/2015] [Indexed: 01/22/2023]
Abstract
PURPOSE Activation-induced cytidine deaminase (AID) is involved in somatic hypermutation and class switch recombination processes in the antibody formation. The AID activity induces gene mutations and could be associated with transformation processes of B cells. Nevertheless, the relation between AID expression and the prognosis of B cell lymphoma patients remains uncharacterized. METHODS We examined expression levels of the AID gene in 89 lymph node specimens from lymphoma and non-lymphoma patients with Northern blot analysis and investigated an association with their survival. RESULTS The AID gene was preferentially expressed in B cell lymphoma in particular in diffuse large B cell lymphoma and follicular lymphoma. We confirmed AID protein expression in the mRNA-positive but not in the negative specimens with Western blot analysis and immunohistochemical staining. Survival of the patients treated with cyclophosphamide-/doxorubicin-/vincristine-/prednisone-based chemotherapy demonstrated that the prognosis of diffuse large B cell patients was unfavorable in the mRNA-positive group compared with the negative group, and that AID expression levels were correlated with the poor prognosis. In contrast, AID expression was not linked with the prognosis of follicular lymphoma patients. CONCLUSIONS AID expression is a predictive marker for an unfavorable outcome in DLBCL patients treated with the chemotherapy.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Northern
- Blotting, Western
- Cyclophosphamide/therapeutic use
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- Doxorubicin/therapeutic use
- Female
- Follow-Up Studies
- Humans
- Immunoenzyme Techniques
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prednisone/therapeutic use
- Prognosis
- Survival Rate
- Vincristine/therapeutic use
- Young Adult
Collapse
Affiliation(s)
- Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Akihiko Wada
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ji-Yang Wang
- Department of Immunology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Quanhai Li
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akihiro Ishii
- Division of Hematology-Oncology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Hideki Tsujimura
- Division of Hematology-Oncology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Toshiyuki Takagi
- Division of Hematology-Oncology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, 66-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadasinden, Yachiyo, 276-8524, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
17
|
KAWATA SOICHIRO, YASHIMA KAZUO, YAMAMOTO SOHEI, SASAKI SHUJI, TAKEDA YOHEI, HAYASHI AKIHIRO, MATSUMOTO KAZUYA, KAWAGUCHI KOICHIRO, HARADA KENICHI, MURAWAKI YOSHIKAZU. AID, p53 and MLH1 expression in early gastric neoplasms and the correlation with the background mucosa. Oncol Lett 2015; 10:737-743. [PMID: 26622562 PMCID: PMC4509115 DOI: 10.3892/ol.2015.3342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
A number of tumor-associated genes have been associated with gastric cancer development. The present study evaluated differences in tumor-associated protein expression and phenotype among early gastric neoplasms, and correlated these data with those of the background mucosa. The expression of activation-induced cytidine deaminase (AID), p53 and MLH1 in 151 early gastric neoplasms [22 gastric adenomas, 92 intramucosal carcinomas (MCs), and 37 submucosal carcinomas (SMCs)] was examined immunohistochemically and compared with that of the corresponding background mucosal condition. The cellular phenotypes of the neoplasms and the corresponding background intestinal metaplasia were also determined. Aberrant AID, p53 and MLH1 expression was detected in 36.4, 0 and 0% of the adenomas, in 35.9, 32.6 and 16.3% of the MCs, and in 56.8, 62.2 and 21.6% of the SMCs, respectively. The frequency of aberrant AID and p53 expression in the SMCs was significantly increased compared with that in the MCs (AID, P<0.05; p53, P<0.01). Aberrant AID expression was significantly associated with p53 overexpression in the SMCs (P<0.01), but not in the adenomas or MCs. In addition, AID expression was associated with the severity of mononuclear cell activity in the non-cancerous mucosa adjacent to the tumor (P<0.05), particularly in the SMC cases. The percentage of MCs (34.8%) and SMCs (24.3%) that were of the gastric phenotype was higher compared with the percentage of adenomas (18.2%). These results indicated that p53 and MLH1 expression and a gastric phenotype may be important for carcinogenesis, and that chronic inflammation and AID and p53 expression are associated with submucosal progression.
Collapse
Affiliation(s)
- SOICHIRO KAWATA
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| | - KAZUO YASHIMA
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| | - SOHEI YAMAMOTO
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| | - SHUJI SASAKI
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| | - YOHEI TAKEDA
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| | - AKIHIRO HAYASHI
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| | - KAZUYA MATSUMOTO
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| | - KOICHIRO KAWAGUCHI
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| | - KENICHI HARADA
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| | - YOSHIKAZU MURAWAKI
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Nishicho, Yonago 683-8504, Japan
| |
Collapse
|
18
|
Sawai Y, Kodama Y, Shimizu T, Ota Y, Maruno T, Eso Y, Kurita A, Shiokawa M, Tsuji Y, Uza N, Matsumoto Y, Masui T, Uemoto S, Marusawa H, Chiba T. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations. Cancer Res 2015; 75:3292-301. [PMID: 26113087 DOI: 10.1158/0008-5472.can-14-3028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/13/2015] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops via an accumulation of various gene mutations. The mechanism underlying the mutations in PDAC development, however, is not fully understood. Recent insight into the close association between the mutation pattern of various cancers and specific mutagens led us to investigate the possible involvement of activation-induced cytidine deaminase (AID), a DNA editing enzyme, in pancreatic tumorigenesis. Our immunohistochemical findings revealed AID protein expression in human acinar ductal metaplasia, pancreatic intraepithelial neoplasia, and PDAC. Both the amount and intensity of the AID protein expression increased with the progression from precancerous to cancerous lesions in human PDAC tissues. To further assess the significance of ectopic epithelial AID expression in pancreatic tumorigenesis, we analyzed the phenotype of AID transgenic (AID Tg) mice. Consistent with our hypothesis that AID is involved in the mechanism of the mutations underlying pancreatic tumorigenesis, we found precancerous lesions developing in the pancreas of AID Tg mice. Using deep sequencing, we also detected Kras and c-Myc mutations in our analysis of the whole pancreas of AID Tg mice. In addition, Sanger sequencing confirmed the presence of Kras, c-Myc, and Smad4 mutations, with the typical mutational footprint of AID in precancerous lesions in AID Tg mice separated by laser capture microdissection. Taken together, our findings suggest that AID contributes to the development of pancreatic precancerous lesions by inducing tumor-related gene mutations. Our new mouse model without intentional manipulation of specific tumor-related genes provides a powerful system for analyzing the mutations involved in PDAC.
Collapse
Affiliation(s)
- Yugo Sawai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kurita
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihisa Tsuji
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshihiko Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Matsumoto T, Shimizu T, Takai A, Marusawa H. Exploring the Mechanisms of Gastrointestinal Cancer Development Using Deep Sequencing Analysis. Cancers (Basel) 2015; 7:1037-51. [PMID: 26083936 PMCID: PMC4491698 DOI: 10.3390/cancers7020823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized cancer genomics due to their high throughput sequencing capacity. Reports of the gene mutation profiles of various cancers by many researchers, including international cancer genome research consortia, have increased over recent years. In addition to detecting somatic mutations in tumor cells, NGS technologies enable us to approach the subject of carcinogenic mechanisms from new perspectives. Deep sequencing, a method of optimizing the high throughput capacity of NGS technologies, allows for the detection of genetic aberrations in small subsets of premalignant and/or tumor cells in noncancerous chronically inflamed tissues. Genome-wide NGS data also make it possible to clarify the mutational signatures of each cancer tissue by identifying the precise pattern of nucleotide alterations in the cancer genome, providing new information regarding the mechanisms of tumorigenesis. In this review, we highlight these new methods taking advantage of NGS technologies, and discuss our current understanding of carcinogenic mechanisms elucidated from such approaches.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
20
|
Matsumoto T, Shimizu T, Nishijima N, Ikeda A, Eso Y, Matsumoto Y, Chiba T, Marusawa H. Hepatic inflammation facilitates transcription-associated mutagenesis via AID activity and enhances liver tumorigenesis. Carcinogenesis 2015; 36:904-13. [DOI: 10.1093/carcin/bgv065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/06/2015] [Indexed: 11/14/2022] Open
|
21
|
Rebhandl S, Huemer M, Greil R, Geisberger R. AID/APOBEC deaminases and cancer. Oncoscience 2015; 2:320-33. [PMID: 26097867 PMCID: PMC4468319 DOI: 10.18632/oncoscience.155] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Mutations are the basis for evolution and the development of genetic diseases. Especially in cancer, somatic mutations in oncogenes and tumor suppressor genes alongside the occurrence of passenger mutations have been observed by recent deep-sequencing approaches. While mutations have long been considered random events induced by DNA-replication errors or by DNA damaging agents, genome sequencing led to the discovery of non-random mutation signatures in many human cancer. Common non-random mutations comprise DNA strand-biased mutation showers and mutations restricted to certain DNA motifs, which recently have become attributed to the activity of the AID/APOBEC family of DNA deaminases. Hence, APOBEC enzymes, which have evolved as key players in natural and adaptive immunity, have been proposed to contribute to cancer development and clonal evolution of cancer by inducing collateral genomic damage due to their DNA deaminating activity. This review focuses on how mutagenic events through AID/APOBEC deaminases may contribute to cancer development.
Collapse
Affiliation(s)
- Stefan Rebhandl
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Michael Huemer
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Richard Greil
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Roland Geisberger
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| |
Collapse
|
22
|
Kitamura J, Uemura M, Kurozumi M, Sonobe M, Manabe T, Hiai H, Date H, Kinoshita K. Chronic lung injury by constitutive expression of activation-induced cytidine deaminase leads to focal mucous cell metaplasia and cancer. PLoS One 2015; 10:e0117986. [PMID: 25659078 PMCID: PMC4320068 DOI: 10.1371/journal.pone.0117986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/04/2015] [Indexed: 11/19/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is an enzyme required for antibody diversification, and it causes DNA mutations and strand breaks. Constitutive AID expression in mice invariably caused lung lesions morphologically similar to human atypical adenomatous hyperplasia (AAH), which can be a precursor of bronchioloalveolar carcinoma. Similar to AAH, mouse AAH-like lesion (MALL) exhibited signs of alveolar differentiation, judging from the expression of alveolar type II (AT2) cell marker surfactant protein C (SP-C). However, electron microscopy indicated that MALL, which possessed certain features of a mucous cell, is distinct from an AAH or AT2 cell. Although MALL developed in all individuals within 30 weeks after birth, lung tumors occurred in only 10%; this suggests that the vast majority of MALLs fail to grow into visible tumors. MALL expressed several recently described markers of lung alveolar regeneration such as p63, keratin 5, keratin 14, leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), and Lgr6. Increased cell death was observed in the lungs of AID transgenic mice compared with wild-type mice. Based on these observations, we speculate that MALL is a regenerating tissue compensating for cellular loss caused by AID cytotoxicity. AID expression in such regenerating tissue should predispose cells to malignant transformation via its mutagenic activity.
Collapse
Affiliation(s)
- Jiro Kitamura
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
- Department of Thoracic Surgery, Nagahama City Hospital, Nagahama, Japan
| | | | | | - Makoto Sonobe
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | - Hiroshi Hiai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
23
|
Ji X, Zhang Q, Du Y, Liu W, Li Z, Hou X, Cao G. Somatic mutations, viral integration and epigenetic modification in the evolution of hepatitis B virus-induced hepatocellular carcinoma. Curr Genomics 2015; 15:469-80. [PMID: 25646075 PMCID: PMC4311391 DOI: 10.2174/1389202915666141114213833] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 02/08/2023] Open
Abstract
Liver cancer in men is the second leading cause of cancer death and hepatocellular carcinoma (HCC) accounts for 70%-85% of the total liver cancer worldwide. Chronic infection with hepatitis B virus (HBV) is the major cause of HCC. Chronic, intermittently active inflammation provides “fertile field” for “mutation, selection, and adaptation” of HBV and the infected hepatocytes, a long-term evolutionary process during HBV-induced carcinogenesis. HBV mutations, which are positively selected by insufficient immunity, can promote and predict the occurrence of HCC. Recently, advanced sequencing technologies including whole genome sequencing, exome sequencing, and RNA sequencing provide opportunities to better under-stand the insight of how somatic mutations, structure variations, HBV integrations, and epigenetic modifications contribute to HCC development. Genomic variations of HCC caused by various etiological factors may be different, but the common driver mutations are important to elucidate the HCC evolutionary process. Genome-wide analyses of HBV integrations are helpful in clarifying the targeted genes of HBV in carcinogenesis and disease progression. RNA sequencing can identify key molecules whose expressions are epigenetically modified during HCC evolution. In this review, we summarized the current findings of next generation sequencings for HBV-HCC and proposed a theory framework of Cancer Evolution and Development based on the current knowledge of HBV-induced HCC to characterize and interpret evolutionary mechanisms of HCC and possible other cancers. Understanding the key viral and genomic variations involved in HCC evolution is essential for generating effective diagnostic, prognostic, and predictive biomarkers as well as therapeutic targets for the interventions of HBV-HCC.
Collapse
Affiliation(s)
- Xiaowei Ji
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Qi Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Yan Du
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Shimizu T, Marusawa H, Matsumoto Y, Inuzuka T, Ikeda A, Fujii Y, Minamiguchi S, Miyamoto S, Kou T, Sakai Y, Crabtree JE, Chiba T. Accumulation of somatic mutations in TP53 in gastric epithelium with Helicobacter pylori infection. Gastroenterology 2014; 147:407-17.e3. [PMID: 24786892 DOI: 10.1053/j.gastro.2014.04.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/18/2014] [Accepted: 04/20/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection is a risk factor for gastric cancer. To explore the genetic basis of gastric cancer that develops in inflamed gastric mucosa, we investigated genetic aberrations that latently accumulate in nontumorous gastric epithelium with H pylori infection. METHODS We performed whole-exome sequencing of gastric tumors, noncancerous tissues with gastritis, and peripheral lymphocytes from 5 patients. We performed additional deep-sequencing analyses of selected tumor-related genes using 34 gastritis mucosal samples from patients with or without gastric cancer. We also performed deep sequencing analyses of gastric mucosal tissues from mice that express transgenic human TP53 and constitutively express activation-induced cytidine deaminase (AICDA or AID) (human TP53 knock-in/AID-transgenic mice). RESULTS Whole-exome sequencing revealed that somatic mutations accumulated in various genes in inflamed gastric tissues. Additional deep-sequencing analyses of tissues from regions of gastritis confirmed nonsynonymous low-abundance mutations in TP53 in 15 cases (44.1%) and ARID1A in 5 cases (14.7%). The mutations that accumulated in gastric mucosal tissues with H pylori-induced gastritis, as well as gastric tumors, were predominantly C:G>T:A transitions in GpCpX motifs-a marker of cytidine deamination induced by AID. Constitutive expression of AID in the gastric mucosa of mice led to mutations in the human TP53, at amino acid coding positions identical to those detected in human gastric cancers. CONCLUSIONS Studies of gastric tumors and tissues from humans and mice indicate that somatic mutations accumulate in various genes in gastric mucosal tissues with H pylori infection. Increased cytidine deaminase activity in these tissues appears to promote the accumulation of these mutations and might promote gastric carcinogenesis in patients with H pylori infection.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yuko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Inuzuka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuyuki Ikeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Fujii
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin'ichi Miyamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadayuki Kou
- Digestive Disease Center, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Yoshiharu Sakai
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jean E Crabtree
- Leeds Institute Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Suspène R, Caval V, Henry M, Bouzidi MS, Wain-Hobson S, Vartanian JP. Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics. Br J Cancer 2014; 110:2615-22. [PMID: 24691422 PMCID: PMC4021520 DOI: 10.1038/bjc.2014.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The revolution in cancer genomics shows that the dominant mutations are CG->TA transitions. The sources of these mutations are probably two host cell cytidine deaminases APOBEC3A and APOBEC3B. The former in particular can access nuclear DNA and monotonously introduce phenomenal numbers of C->T mutations in the signature 5'TpC context. These can be copied as G->A transitions in the 5'GpA context. METHODS DNA hypermutated by an APOBEC3 enzyme can be recovered by a technique called 3DPCR, which stands for differential DNA denaturation PCR. This method exploits the fact that APOBEC3-edited DNA is richer in A+T compared with the reference. We explore explicitly 3DPCR error using cloned DNA. RESULTS Here we show that the technique has a higher error rate compared with standard PCR and can generate DNA strands containing both C->T and G->A mutations in a 5'GpCpR context. Sequences with similar traits have been recovered from human tumour DNA using 3DPCR. CONCLUSIONS Differential DNA denaturation PCR cannot be used to identify fixed C->T transitions in cancer genomes. Presently, the overall mutation frequency is ∼10(4)-10(5) base substitutions per cancer genome, or 0.003-0.03 kb(-1). By contrast, the 3DPCR error rate is of the order of 4-20 kb(-1) owing to constant selection for AT DNA and PCR-mediated recombination. Accordingly, sequences recovered by 3DPCR harbouring mixed C->T and G->A mutations associated with the 5'GpC represent artefacts.
Collapse
Affiliation(s)
- R Suspène
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - V Caval
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - M Henry
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - M S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - S Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - J-P Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| |
Collapse
|
26
|
Miyazaki Y, Fujinami M, Inoue H, Kikuchi K, Ide F, Kusama K. Expression of activation-induced cytidine deaminase in oral epithelial dysplasia and oral squamous cell carcinoma. J Oral Sci 2013; 55:293-9. [PMID: 24351917 DOI: 10.2334/josnusd.55.293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Oral epithelial dysplasia is thought to be a precursor state of carcinogenesis and may harbor gene alterations. Recently, it was reported that gene editing enzyme, activation-induced cytidine deaminase (AID), is expressed in precursor and cancer epithelial cells during carcinogenesis associated with chronic inflammation/infection and that this enzyme induces mutation of tumor-suppressor genes. Thus, AID may have a role in carcinogenesis via oral epithelial dysplasia. In this study, we classified oral mucosal epithelium exhibiting epithelial dysplasia as squamous intraepithelial neoplasia (SIN) grades 1-3, according to the 2005 World Health Organization classification, and used immunohistochemical techniques to examine AID expression in oral mucosal epithelium exhibiting SIN and oral cancer tissues. AID was observed in prickle cells in oral mucosal epithelium with epithelial dysplasia and in oral cancer cells. Additionally, to investigate the mechanism of AID expression and its role in cancer progression, we incubated the oral cancer cell line HSC-2 with inflammatory cytokines. In the HSC-2 cell line, AID expression was enhanced by TNF-α via NF-κB activation and promoted expression of N-cadherin by regulating Snail expression. These findings suggest that AID has a role in the development of oral epithelial dysplasia and promotes progression of oral cancer.
Collapse
Affiliation(s)
- Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry
| | | | | | | | | | | |
Collapse
|
27
|
Kim SK, Marusawa H, Eso Y, Chiba T, Kudo M. Novel mouse models of hepatocarcinogenesis with stepwise accumulation of genetic alterations. Dig Dis 2013; 31:454-8. [PMID: 24281020 DOI: 10.1159/000355244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Various risk factors are involved in hepatocarcinogenesis. Among them, chronic inflammation, including chronic hepatitis and cirrhosis mainly caused by hepatitis B virus and/or hepatitis C virus infection, plays an important role in HCC development. On the other hand, comprehensive genetic analyses of HCC using whole genome and exome sequencing revealed that cancer cells possess a large number of somatic mutations, suggesting that a wide variety of genetic alterations and the resultant dysregulated molecular pathways contribute to the development of HCC. Activation-induced cytidine deaminase (AID) is a nucleotide-editing enzyme, and aberrant expression of AID induced by inflammatory responses contributes to hepatocarcinogenesis via the accumulation of genetic alterations in various tumor-related genes. Constitutive expression of AID in hepatocyte-lineage cells provides novel mouse models that recapitulate the tumorigenesis of human HCC through stepwise accumulation of genetic alterations.
Collapse
Affiliation(s)
- Soo Ki Kim
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
28
|
Deng Y, Du Y, Zhang Q, Han X, Cao G. Human cytidine deaminases facilitate hepatitis B virus evolution and link inflammation and hepatocellular carcinoma. Cancer Lett 2013; 343:161-71. [PMID: 24120759 DOI: 10.1016/j.canlet.2013.09.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
During hepatitis B virus (HBV)-induced hepatocarcinogenesis, chronic inflammation facilitates the evolution of hepatocellular carcinoma (HCC)-promoting HBV mutants. Cytidine deaminases, whose expression is stimulated by inflammatory cytokines and/or chemokines, play an important role in bridging inflammation and HCC. Through G-to-A hypermutation, cytidine deaminases inhibit HBV replication and facilitate the generation of HCC-promoting HBV mutants including C-terminal-truncated HBx. Cytidine deaminases also promote cancer-related somatic mutations including TP53 mutations. Their editing efficiency is counteracted by uracil-DNA glycosylase. Understanding the effects of cytidine deaminases in HBV-induced hepatocarcinogenesis and HCC progression will aid in developing efficient prophylactic and therapeutic strategies against HCC in HBV-infected population.
Collapse
Affiliation(s)
- Yang Deng
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yan Du
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Qi Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Division of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
29
|
Kim SK, Nasu A, Komori J, Shimizu T, Matsumoto Y, Minaki Y, Kohno K, Shimizu K, Uemoto S, Chiba T, Marusawa H. A model of liver carcinogenesis originating from hepatic progenitor cells with accumulation of genetic alterations. Int J Cancer 2013; 134:1067-76. [PMID: 23959426 DOI: 10.1002/ijc.28445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/07/2013] [Indexed: 02/06/2023]
Abstract
Activation-induced cytidine deaminase (AID) contributes to inflammation-associated carcinogenesis through its mutagenic activity. In our study, by taking advantage of the ability of AID to induce genetic aberrations, we investigated whether liver cancer originates from hepatic stem/progenitor cells that accumulate stepwise genetic alterations. For this purpose, hepatic progenitor cells enriched from the fetal liver of AID transgenic (Tg) mice were transplanted into recipient "toxin-receptor mediated conditional cell knockout" (TRECK) mice, which have enhanced liver regeneration activity under the condition of diphtheria toxin treatment. Whole exome sequencing was used to determine the landscape of the accumulated genetic alterations in the transplanted progenitor cells during tumorigenesis. Liver tumors developed in 7 of 11 (63.6%) recipient TRECK mice receiving enriched hepatic progenitor cells from AID Tg mice, while no tumorigenesis was observed in TRECK mice receiving hepatic progenitor cells of wild-type mice. Histologic examination revealed that the tumors showed characteristics of hepatocellular carcinoma and partial features of cholangiocarcinoma with expression of the AID transgene. Whole exome sequencing revealed that several dozen genes acquired single nucleotide variants in tumor tissues originating from the transplanted hepatic progenitor cells of AID Tg mice. Microarray analyses revealed that the majority of the mutations (>80%) were present in actively transcribed genes in the liver-lineage cells. These findings provided the evidence suggesting that accumulation of genetic alterations in fetal hepatic progenitor cells progressed to liver cancers, and the selection of mutagenesis depends on active transcription in the liver-lineage cells.
Collapse
Affiliation(s)
- Soo Ki Kim
- Department of Gastroenterology and Hepatology, Graduate School of MedicineKyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Activation-induced cytidine deaminase auto-activates and triggers aberrant gene expression. FEBS Lett 2013; 587:2487-92. [DOI: 10.1016/j.febslet.2013.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 12/31/2022]
|
31
|
Zhang YW, Niu J, Lu X, Yang YX, Zhao HW, He X, Yin GW, Wu JD, Yan DL, Sun JF, Wen JF, Feng JF, Xue HZ, Lau WY. Multi-target lentivirus specific to hepatocellular carcinoma: in vitro and in vivo studies. J Hepatol 2013; 58:502-8. [PMID: 23149065 DOI: 10.1016/j.jhep.2012.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 10/24/2012] [Accepted: 11/03/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS We aimed at investigating the effects of the targeted transduction of the Wtp53-pPRIME-miR30-shRNA gene into liver cancer cells, under the mediation of anti-alpha fetoprotein scFv-directed lentivirus, and the inhibitory effect of this system on liver cancer cells. METHODS The result of infection was observed by fluorescence microscopy. Polymerase chain reaction and Western blotting were used to demonstrate the successful transduction and transcription of the Wtp53-pPRIME-miR30-shRNA-IGF1R gene. Cell growth was observed via the Cell-Counting Kit-8 Method, and cell apoptosis was detected by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling. To observe further the effects of AFP-Wtp53-pPRIME-miR30-shRNA-IGF1R therapy in animals, models of BALB-C nude mice bearing subcutaneous human hepatocellular carcinoma were established. The influence of the growth of subcutaneously transplanted tumor, expression of Wtp53 protein, apoptosis, and microvessel formation on the overall level of AFP-Wtp53 pPRIME-miR30-shRNA-IGF1R were also evaluated. RESULTS Recombinant lentivirus was successfully constructed, and its functional plaque-forming unit titer was determined as 4.58 × 10(9)plaque-forming units/ml. A positive strand was detected by polymerase chain reaction and Western blotting. Lentiviral construction worked effectively in AFP-positive liver cancer cells. In vitro and in vivo experiments showed that the recombinant lentivirus was more efficacious in inhibiting the proliferation of Hep3B cells. CONCLUSIONS The Wtp53-pPRIME-miR30-shRNA gene can be subjected to targeted transduction into liver cancer cells under the mediation of anti-alpha fetoprotein scFv-directed lentivirus. The Wtp53-pPRIME-miR30-shRNA system has targeting ability and lethal effects on liver cancer cells.
Collapse
Affiliation(s)
- Ye-Wei Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hu Y, Ericsson I, Torseth K, Methot SP, Sundheim O, Liabakk NB, Slupphaug G, Di Noia JM, Krokan HE, Kavli B. A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching. J Mol Biol 2013; 425:424-43. [PMID: 23183374 DOI: 10.1016/j.jmb.2012.11.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-β-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants.
Collapse
Affiliation(s)
- Yi Hu
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Park SR. Activation-induced Cytidine Deaminase in B Cell Immunity and Cancers. Immune Netw 2012; 12:230-9. [PMID: 23396757 PMCID: PMC3566417 DOI: 10.4110/in.2012.12.6.230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 01/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is an enzyme that is predominantly expressed in germinal center B cells and plays a pivotal role in immunoglobulin class switch recombination and somatic hypermutation for antibody (Ab) maturation. These two genetic processes endow Abs with protective functions against a multitude of antigens (pathogens) during humoral immune responses. In B cells, AID expression is regulated at the level of either transcriptional activation on AID gene loci or post-transcriptional suppression of AID mRNA. Furthermore, AID stabilization and targeting are determined by post-translational modifications and interactions with other cellular/nuclear factors. On the other hand, aberrant expression of AID causes B cell leukemias and lymphomas, including Burkitt's lymphoma caused by c-myc/IgH translocation. AID is also ectopically expressed in T cells and non-immune cells, and triggers point mutations in relevant DNA loci, resulting in tumorigenesis. Here, I review the recent literatures on the function of AID, regulation of AID expression, stability and targeting in B cells, and AID-related tumor formation.
Collapse
Affiliation(s)
- Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| |
Collapse
|
34
|
Chiba T, Marusawa H, Ushijima T. Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 2012; 143:550-563. [PMID: 22796521 DOI: 10.1053/j.gastro.2012.07.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/05/2012] [Accepted: 07/03/2012] [Indexed: 12/12/2022]
Abstract
Chronic inflammation, regardless of infectious agents, plays important roles in the development of various cancers, particularly in digestive organs, including Helicobacter pylori-associated gastric cancer, hepatitis C virus-positive hepatocellular carcinoma, and colitis-associated colon cancers. Cancer development is characterized by stepwise accumulation of genetic and epigenetic alterations of various proto-oncogenes and tumor-suppressor genes. During chronic inflammation, infectious agents such as H pylori and hepatitis C virus as well as intrinsic mediators of inflammatory responses, including proinflammatory cytokines and reactive oxygen and nitrogen species, can induce genetic and epigenetic changes, including point mutations, deletions, duplications, recombinations, and methylation of various tumor-related genes through various mechanisms. Furthermore, inflammation also modulates the expressions of microRNAs that influence the production of several tumor-related messenger RNAs or proteins. These molecular events induced by chronic inflammation work in concert to alter important pathways involved in normal cellular function, and hence accelerate inflammation-associated cancer development. Among these, recent studies highlighted an important role of activation-induced cytidine deaminase, a nucleotide-editing enzyme essential for somatic hypermutation and class-switch recombination of the immunoglobulin gene, as a genomic modulator in inflammation-associated cancer development.
Collapse
Affiliation(s)
- Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
35
|
Takeda Y, Yashima K, Hayashi A, Sasaki S, Kawaguchi K, Harada K, Murawaki Y, Ito H. Expression of AID, P53, and Mlh1 proteins in endoscopically resected differentiated-type early gastric cancer. World J Gastrointest Oncol 2012; 4:131-7. [PMID: 22737274 PMCID: PMC3382659 DOI: 10.4251/wjgo.v4.i6.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/14/2012] [Accepted: 03/20/2012] [Indexed: 02/05/2023] Open
Abstract
AIM To analyze the expression of the tumor-related proteins in differentiated-type early gastric carcinoma (DEGC) samples. METHODS Tumor specimens were obtained from 102 patients (75 males and 27 females) who had received an endoscopic tumor resection at Tottori University Hospital between 2007 and 2009. Ninety-one cancer samples corresponded to noninvasive or intramucosal carcinoma according to the Vienna classification system, and 11 samples were submucosal invasive carcinomas. All of the EGCs were histologically differentiated carcinomas. All patients were classified as having Helicobacter pylori (H. pylori) infections by endoscopic atrophic changes or by testing seropositive for H. pylori IgG. All of the samples were histopathologically classified as either tubular or papillary adenocarcinoma according to their structure. The immunohistochemical staining was performed in a blinded manner with respect to the clinical information. Two independent observers evaluated protein expression. All data were statistically analyzed then. RESULTS The rates of aberrant activation-induced cytidine deaminase (AID) expression and P53 overexpression were both 34.3% in DEGCs. The expression of Mlh1 was lost in 18.6% of DEGCs. Aberrant AID expression was not significantly associated with P53 overexpression in DEGCs. However, AID expression was associated with the severity of mononuclear cell activity in the non-cancerous mucosa adjacent to the tumor (P = 0.064). The rate of P53 expression was significantly greater in flat or depressed tumors than in elevated tumors. The frequency of Mlh1 loss was significantly increased in distal tumors, elevated gross-type tumors, papillary histological-type tumors, and tumors with a severe degree of endoscopic atrophic gastritis (P < 0.05). CONCLUSION Aberrant AID expression, P53 overexpression, and the loss of Mlh1 were all associated with clinicopathological features and gastric mucosal alterations in DEGCs. The aberrant expression of AID protein may partly contribute to the induction of nuclear P53 expression.
Collapse
Affiliation(s)
- Yohei Takeda
- Yohei Takeda, Kazuo Yashima, Akihiro Hayashi, Shuji Sasaki, Koichiro Kawaguchi, Kenichi Harada, Yoshikazu Murawaki, Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago 683-8504, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Shimizu T, Marusawa H, Endo Y, Chiba T. Inflammation-mediated genomic instability: roles of activation-induced cytidine deaminase in carcinogenesis. Cancer Sci 2012; 103:1201-6. [PMID: 22469133 DOI: 10.1111/j.1349-7006.2012.02293.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a strong risk factor for the development of cancer. Many previous studies have demonstrated that a transcriptional factor, nuclear factor (NF)-κB, plays an important role in the association between inflammation and cancer development, particularly tumor promotion and tumor progression. Although it is well recognized that cancer develops via stepwise accumulation of genetic aberrations, the mechanisms underlying the generation of these genetic alterations in normal epithelial cells under inflammatory conditions are not known. We recently demonstrated that pathogenic bacterial or viral factors and the subsequent inflammatory reactions lead to the aberrant expression of a DNA mutator enzyme, activation-induced cytidine deaminase (AID), in various epithelial cells via NF-κB activation, which causes the accumulation of genetic alterations in tumor-related genes. AID activation is widely observed in gastrointestinal tissues with cancer-associated inflammation, such as chronic viral hepatitis, Helicobacter pylori-related gastritis, Barrett's esophagus and inflammatory bowel disease. Furthermore, a deficiency of endogenous AID expression reduces both accumulation of somatic mutations in tumor-related genes and tumor incidence in a mouse model of inflammation-associated cancer development. These findings strongly suggest that AID plays an integral role in inflammation-associated carcinogenesis and is therefore a potential target molecule for the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
37
|
Gushima M, Hirahashi M, Matsumoto T, Fujita K, Ohuchida K, Oda Y, Yao T, Iida M, Tsuneyoshi M. Expression of activation-induced cytidine deaminase in ulcerative colitis-associated carcinogenesis. Histopathology 2012; 59:460-9. [PMID: 22034886 DOI: 10.1111/j.1365-2559.2011.03965.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Activation-induced cytidine deaminase (AID) is a DNA/RNA-editing enzyme that is essential for hypermutation and class-switch recombination in immunoglobulin genes. The aim of this study was to investigate the expression of AID and its association with p53 mutation in ulcerative colitis (UC)-associated carcinogenesis. METHODS AND RESULTS The expression of AID was examined in 25 patients with UC-associated neoplasia, 20 UC patients without neoplasia, 18 patients with non-inflamed colorectal mucosa unaffected by UC, and 19 patients with sporadic colorectal cancer, by immunohistochemistry and quantitative reverse transcription polymerase chain reaction analysis. Mutational analysis and immunohistochemistry for p53 were also performed. The degree of AID expression was not different between UC-associated neoplasia and sporadic colorectal cancer. However, AID was expressed in both UC-associated neoplasia and UC without neoplasia. Whereas AID expression in UC-associated neoplasia was not correlated with the grade of dysplasia, expression in non-neoplastic mucosa of UC was correlated with the histological grade of inflammation. In UC-associated neoplasia, there was no significant correlation between AID expression and p53 mutation. CONCLUSIONS AID is associated with inflammation in UC, whereas it may not specifically contribute to carcinogenesis in UC.
Collapse
Affiliation(s)
- Masaki Gushima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Marusawa H, Endo Y, Takai A, Chiba T. Molecular mechanism of colitis-associated colorectal carcinogenesis. Inflamm Regen 2012. [DOI: 10.2492/inflammregen.32.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
39
|
Honjo T, Kobayashi M, Begum N, Kotani A, Sabouri S, Nagaoka H. The AID dilemma: infection, or cancer? Adv Cancer Res 2012; 113:1-44. [PMID: 22429851 DOI: 10.1016/b978-0-12-394280-7.00001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AID's ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.
Collapse
|
40
|
Mita M, Satoh M, Shimada A, Azuma S, Himeno S, Hara S. Metallothionein deficiency exacerbates chronic inflammation associated with carcinogenesis in stomach of mice infected with Helicobacter pylori. J Toxicol Sci 2012. [DOI: 10.2131/jts.37.1261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Masaharu Mita
- Laboratory Animal Research Center, School of Pharmaceutical Sciences, Kitasato University
| | - Masahiko Satoh
- Department of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Akinori Shimada
- Department of Veterinary Pathology, Faculty of Agriculture, Tottori University
| | - Sadahiro Azuma
- Center for Genetic Studies of Integrated Biological Functions, School of Medicine, Kitasato University
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Shuntaro Hara
- Department of Health Chemistry, School of Pharmacy, Showa University
| |
Collapse
|
41
|
Activation-induced cytidine deaminase expression in CD4+ T cells is associated with a unique IL-10-producing subset that increases with age. PLoS One 2011; 6:e29141. [PMID: 22216188 PMCID: PMC3247255 DOI: 10.1371/journal.pone.0029141] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/21/2011] [Indexed: 12/04/2022] Open
Abstract
Activation-induced cytidine deaminase (AID), produced by the Aicda gene, is essential for the immunoglobulin gene (Ig) alterations that form immune memory. Using a Cre-mediated genetic system, we unexpectedly found CD4+ T cells that had expressed Aicda (exAID cells) as well as B cells. ExAID cells increased with age, reaching up to 25% of the CD4+ and B220+ cell populations. ExAID B cells remained IgM+, suggesting that class-switched memory B cells do not accumulate in the spleen. In T cells, AID was expressed in a subset that produced IFN-γ and IL-10 but little IL-4 or IL-17, and showed no evidence of genetic mutation. Interestingly, the endogenous Aicda expression in T cells was enhanced in the absence of B cells, indicating that the process is independent from the germinal center reaction. These results suggest that in addition to its roles in B cells, AID may have previously unappreciated roles in T-cell function or tumorigenesis.
Collapse
|
42
|
Morita S, Matsumoto Y, Okuyama S, Ono K, Kitamura Y, Tomori A, Oyama T, Amano Y, Kinoshita Y, Chiba T, Marusawa H. Bile acid-induced expression of activation-induced cytidine deaminase during the development of Barrett's oesophageal adenocarcinoma. Carcinogenesis 2011; 32:1706-12. [PMID: 21890457 DOI: 10.1093/carcin/bgr194] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) induces somatic mutations in various host genes of non-lymphoid tissues, thereby contributing to carcinogenesis. We recently demonstrated that Helicobacter pylori infection and/or proinflammatory cytokine stimulation triggers aberrant AID expression in gastric epithelial cells, causing mutations in the tumour-suppressor TP53 gene. The findings of the present study provide evidence of ectopic AID expression in Barrett's oesophagus and Barrett's oesophageal adenocarcinoma, a cancer that develops under chronic inflammatory conditions. Immunoreactivity for endogenous AID was observed in 24 of 28 (85.7%) specimens of the columnar cell-lined Barrett's oesophagus and in 20 of 22 (90.9%) of Barrett's adenocarcinoma, whereas weak or no AID protein expression was detectable in normal squamous epithelial cells of the oesophagus. We validated these results by analysing tissue specimens from another cohort comprising 16 cases with Barrett's oesophagus and four cases with Barrett's adenocarcinoma. In vitro treatment of human non-neoplastic oesophageal squamous-derived cells with sodium salt deoxycholic acid induced ectopic AID expression via the nuclear factor-kappaB activation pathway. These findings suggest that aberrant AID expression occurs in a substantial proportion of Barrett's epithelium, at least in part due to bile acid stimulation. Considering the genotoxic activity of AID, our current findings suggest that aberrant AID expression might enhance the susceptibility to genetic alterations in Barrett's columnar-lined epithelial cells, leading to cancer development.
Collapse
Affiliation(s)
- Shuko Morita
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Targeting activation-induced cytidine deaminase prevents colon cancer development despite persistent colonic inflammation. Oncogene 2011; 31:1733-42. [PMID: 21841819 DOI: 10.1038/onc.2011.352] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is an important etiologic factor in the development of colorectal cancer. However, the mechanism underlying carcinogenesis through chronic inflammation is still unknown. Activation-induced cytidine deaminase (AID) is induced by the inflammation and involved in various human carcinogenesis via its mutagenic activity. In the current study, we investigated whether the inflammation/AID axis plays an integral role in the development of colitis-associated cancers. Inflammation in the cecum was more severe than that in other colonic regions, and endogenous AID expression was enhanced most prominently in the inflamed cecal mucosa of interleukin (IL)-10(-/-) mice. Blockade of tumor necrosis factor (TNF)-α and IL-12 significantly suppressed AID expression. Although proinflammatory cytokine expression was comparable between IL-10(-/-)AID(+/+) and IL-10(-/-)AID(-/-) mice, sequencing analyses revealed a significantly lower incidence of somatic mutations in Trp53 gene in the colonic mucosa of IL-10(-/-)AID(-/-) than IL-10(-/-)AID(+/+) mice. Colon cancers spontaneously developed in the cecum in 6 of 22 (27.2%) IL-10(-/-)AID(+/+) mice. In contrast, none of the IL-10(-/-)AID(-/-) mice developed cancers except only one case of neoplasia in the distal colon. These findings suggest that the proinflammatory cytokine-induced aberrant production of AID links colonic inflammation to an enhanced genetic susceptibility to oncogenic mutagenesis. Targeting AID could be a novel strategy to prevent colitis-associated colon carcinogenesis irrespective of ongoing colonic inflammation.
Collapse
|
44
|
Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis. Cancers (Basel) 2011; 3:2750-66. [PMID: 24212831 PMCID: PMC3757441 DOI: 10.3390/cancers3022750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 02/06/2023] Open
Abstract
Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis.
Collapse
|
45
|
Okuyama S, Marusawa H, Matsumoto T, Ueda Y, Matsumoto Y, Endo Y, Takai A, Chiba T. Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis. Int J Cancer 2011; 130:1294-301. [PMID: 21469143 DOI: 10.1002/ijc.26114] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 03/25/2011] [Indexed: 11/06/2022]
Abstract
Apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) was originally identified as a member of the cytidine deaminase family with putative nucleotide editing activity. To clarify the physiologic and pathologic roles, and the target nucleotide of APOBEC2, we established an APOBEC2 transgenic mouse model and investigated whether APOBEC2 expression causes nucleotide alterations in host DNA or RNA sequences. Sequence analyses revealed that constitutive expression of APOBEC2 in the liver resulted in significantly high frequencies of nucleotide alterations in the transcripts of eukaryotic translation initiation factor 4 gamma 2 (Eif4g2) and phosphatase and tensin homolog (PTEN) genes. Hepatocellular carcinoma developed in 2 of 20 APOBEC2 transgenic mice at 72 weeks of age. In addition, constitutive APOBEC2 expression caused lung tumors in 7 of 20 transgenic mice analyzed. Together with the fact that the proinflammatory cytokine tumor necrosis factor-α induces ectopic expression of APOBEC2 in hepatocytes, our findings indicate that aberrant APOBEC2 expression causes nucleotide alterations in the transcripts of the specific target gene and could be involved in the development of human hepatocellular carcinoma through hepatic inflammation.
Collapse
Affiliation(s)
- Shunsuke Okuyama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-Ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Goto A, Hirahashi M, Osada M, Nakamura K, Yao T, Tsuneyoshi M, Takayanagi R, Oda Y. Aberrant activation-induced cytidine deaminase expression is associated with mucosal intestinalization in the early stage of gastric cancer. Virchows Arch 2011; 458:717-24. [PMID: 21538122 DOI: 10.1007/s00428-011-1086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 02/07/2023]
Abstract
Although Helicobacter pylori is a risk factor for gastric cancer (GC), its detailed carcinogenesis remains unclear. Recently, aberrant expression of activation-induced cytidine deaminase (AID) was demonstrated in gastric epithelium with H. pylori infection and seems to cause the accumulation of mutation. This investigation aims to elucidate whether or not AID expression plays an important role in the carcinogenesis of early GC. We examined the correlation between immunohistochemical AID expression and histological characteristics, including pre-existing chronic gastritis and cellular mucin phenotype in 138 cases of intramucosal GC. Furthermore, we investigated the relationship between AID, p53 protein, and β-catenin. The low degree of polymorphonuclear neutrophil activity, and the high degree of glandular atrophy and intestinal metaplasia were significantly correlated with the high levels of AID expression in non-neoplastic mucosa (P = 0.007, P ≤ 0.001, and P = 0.003). With regard to mucin phenotype of carcinoma, the intestinal phenotype tended to have the higher AID expression levels (P = 0.052). AID showed close correlations with Cdx2 and nuclear staining of β-catenin (P = 0.003, P = 0.034). As for p53 protein, no correlation was found with AID expression. Our findings suggest that aberrant AID expression is correlated with persistent inflammatory condition induced by H. pylori infection and may contribute to the development of GC through an inflammatory condition and intestinalization.
Collapse
Affiliation(s)
- Ayako Goto
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Stavnezer J. Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol 2011; 32:194-201. [PMID: 21493144 DOI: 10.1016/j.it.2011.03.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 01/10/2023]
Abstract
Activation-induced cytidine deaminase (AID) instigates mutations and DNA breaks in Ig genes that undergo somatic hypermutation and class switch recombination during B cell activation in response to immunization and infection. This review discusses how AID expression and activity are regulated, including recent discoveries of AID-interacting proteins that might recruit AID to Ig genes, and allow it to target both DNA strands. Also discussed is the accumulating evidence that AID binds to, mutates, and creates breaks at numerous non-Ig sites in the genome, which initiates cell transformation and malignancies.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
48
|
Yao NH, Yao DF, Qian J, Dong ZZ, Qiu LW, Yu DD. Construction of expression plasmids carrying miRNA targeting IGF-II and detection of their inhibitory effect on IGF-II expression in human HepG2 cells. Shijie Huaren Xiaohua Zazhi 2011; 19:1015-1021. [DOI: 10.11569/wcjd.v19.i10.1015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate inhibitory effect of transfection of eukaryotic expression plasmids carrying specific microRNA (miRNA) on insulin-like growth factor II (IGF-II) gene and protein expression in human HepG2 cells.
METHODS: Four miRNAs targeting the IGF-II gene were synthesized and inserted into the pcDNATM6.2-GW/EmGFPmiR vector. The recombinant plasmids were identified and transiently transfected into HepG2 cells. Their inhibitory efficiency on IGF-II expression was determined at gene level by real time-PCR and at protein level by ELISA.
RESULTS: Four eukaryotic expression plasmids carrying miRNA targeting IGF-II were constructed successfully and confirmed by sequencing. HepG2 cells were then transfected with these plasmids (MR-IGF-II-1 to 4). The highest transfection efficiency was up to 50%. The reduced rates of IGF-II gene expression were 33%, 43%, 0% and 3% in cells transfected with MR-IGF-II-1 to 4, respectively. Transfection of the MR-IGF-II-2 plasmid for 72 h reduced IGF-II protein expression by 44% in HepG2 cells.
CONCLUSION: The expression plasmids carrying miRNA targeting IGF-II have been successfully constructed. Transfection of these plamsids can efficiently inhibit IGF-II expression in HepG2 cells.
Collapse
|
49
|
Storck S, Aoufouchi S, Weill JC, Reynaud CA. AID and partners: for better and (not) for worse. Curr Opin Immunol 2011; 23:337-44. [PMID: 21439803 DOI: 10.1016/j.coi.2011.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 01/27/2023]
Abstract
Post-rearrangement diversification of the antibody repertoire relies on a DNA editing factor, the cytidine deaminase AID. How B lymphocytes avoid generalized mutagenesis while expressing high levels of AID remained a long-standing question. Genome-wide studies of AID targeting combined to the discovery of several co-factors controlling its recruitment and its local activity shed new light on this enigma.
Collapse
Affiliation(s)
- Sébastien Storck
- Institut National de la Santé et de la Recherche Médicale Unité 783 Développement du système immunitaire, Université Paris Descartes, Faculté de Médecine, Site Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris, Cedex 15, France
| | | | | | | |
Collapse
|
50
|
Shinmura K, Igarashi H, Goto M, Tao H, Yamada H, Matsuura S, Tajima M, Matsuda T, Yamane A, Funai K, Tanahashi M, Niwa H, Ogawa H, Sugimura H. Aberrant expression and mutation-inducing activity of AID in human lung cancer. Ann Surg Oncol 2011; 18:2084-92. [PMID: 21290192 DOI: 10.1245/s10434-011-1568-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Activation-induced cytidine deaminase (AID) is expressed in B lymphocytes and triggers antibody diversification. Recent reports have indicated that the constitutive expression of AID in mice causes not only lymphomas, but also cancers of some organs including the lung, prompting us to investigate the expression and effect of AID on human lung cancer. MATERIALS AND METHODS We examined AID mRNA expression in 17 lung cancer cell lines and 51 primary lung cancers using a quantitative RT-PCR analysis. Next, we established H1299 lung cancer cells stably overexpressing AID and performed a supF forward mutation assay. We then examined AID protein expression and p53 mutation in 129 primary lung cancers by an immunohistochemical analysis and PCR-SSCP and sequencing analyses, respectively. RESULTS Aberrant mRNA expression of AID was detected in 29% (5 of 17) of the lung cancer cell lines and 31% (16 of 51) of the primary lung cancers. AID-overexpressing H1299 clones showed a 5.0- to 6.1-fold higher mutation frequency than an empty vector-transfected H1299 clone, and about half of the AID-induced mutations were base substitutions, indicating that AID induces gene mutations in lung cancer cells. Furthermore, an association was found between the AID protein expression level and the p53 mutation status in an analysis of 129 primary lung cancers. A further expression analysis revealed that a portion of AID is localized at the centrosomes. CONCLUSION Our current findings suggest that the aberrant expression of AID may be involved in a subset of human lung cancers as a result of its mutation-inducing activity.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|