1
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Chan KH, Zheng BX, Leung ASL, Long W, Zhao Y, Zheng Y, Wong WL. A NRAS mRNA G-quadruplex structure-targeting small-molecule ligand reactivating DNA damage response in human cancer cells for combination therapy with clinical PI3K inhibitors. Int J Biol Macromol 2024; 279:135308. [PMID: 39244134 DOI: 10.1016/j.ijbiomac.2024.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The Neuroblastoma RAS (NRAS) oncogene homologue plays crucial roles in diverse cellular processes such as cell proliferation, survival, and differentiation. Several strategies have been developed to inhibit NRAS or its downstream effectors; however, there is no effective drug available to treat NRAS-driven cancers and thus new approaches are needed to be established. The mRNA sequence expressing NRAS containing several guanine(G)-rich regions may form quadruplex structures (G4s) and regulate NRAS translation. Therefore, targeting NRAS mRNA G4s to repress NRAS expression at translational level with ligands may be a feasible strategy against NRAS-driven cancers but it is underexplored. We reported herein a NRAS mRNA G4-targeting ligand, B3C, specifically localized in cytoplasm in HeLa cells. It effectively downregulates NRAS proteins, reactivates the DNA damage response (DDR), causes cell cycle arrest in G2/M phase, and induces apoptosis and senescence. Moreover, combination therapy with NARS mRNA G4-targeting ligands and clinical PI3K inhibitors for cancer cells inhibition treatment is unexplored, and we demonstrated that B3C combining with PI3Ki (pictilisib (GDC-0941)) showed potent antiproliferation activity against HeLa cells (IC50 = 1.03 μM (combined with 10 μM PI3Ki) and 0.42 μM (combined with 20 μM PI3Ki)) and exhibited strong synergistic effects in inhibiting cell proliferation. This study provides new insights into drug discovery against RAS-driven cancers using this conceptually new combination therapy strategy.
Collapse
Affiliation(s)
- Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yuchen Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yingying Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| |
Collapse
|
3
|
Grisetti L, Garcia CJC, Saponaro AA, Tiribelli C, Pascut D. The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer. Cell Prolif 2024; 57:e13641. [PMID: 38590119 PMCID: PMC11294426 DOI: 10.1111/cpr.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Aurora Kinase A (AURKA) plays a central role as a serine/threonine kinase in regulating cell cycle progression and mitotic functions. Over the years, extensive research has revealed the multifaceted roles of AURKA in cancer development and progression. AURKA's dysregulation is frequently observed in various human cancers, including hepatocellular carcinoma (HCC). Its overexpression in HCC has been associated with aggressive phenotypes and poor clinical outcomes. This review comprehensively explores the molecular mechanisms underlying AURKA expression in HCC and its functional implications in cell migration, invasion, epithelial-to-mesenchymal transition, metastasis, stemness, and drug resistance. This work focuses on the clinical significance of AURKA as a diagnostic and prognostic biomarker for HCC. High levels of AURKA expression have been correlated with shorter overall and disease-free survival in various cohorts, highlighting its potential utility as a sensitive prognostic indicator. Recent insights into AURKA's role in modulating the tumour microenvironment, particularly immune cell recruitment, may provide valuable information for personalized treatment strategies. AURKA's critical involvement in modulating cellular pathways and its overexpression in cancer makes it an attractive target for anticancer therapies. This review discusses the evidence about novel and selective AURKA inhibitors for more effective treatments for HCC.
Collapse
Affiliation(s)
- Luca Grisetti
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Clarissa J. C. Garcia
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Anna A. Saponaro
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| | | | - Devis Pascut
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| |
Collapse
|
4
|
Tora R, Welch J, Sun J, Agarwal SK, Bell DA, Merino M, Weinstein LS, Simonds WF, Jha S. Phenotypic Profiling and Molecular Mechanisms in Hyperparathyroidism-jaw Tumor Syndrome. J Clin Endocrinol Metab 2023; 108:3165-3177. [PMID: 37339334 PMCID: PMC10655532 DOI: 10.1210/clinem/dgad368] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
CONTEXT Hyperparathyroidism-jaw tumor (HPT-JT) syndrome is a heritable form of primary hyperparathyroidism caused by germline inactivating mutations in CDC73 encoding parafibromin and is associated with an increased risk of parathyroid cancer. There is little evidence to guide the management of patients with the disease. OBJECTIVE (1) Characterize the natural history of HPT-JT, (2) correlate genotype and histology of parathyroid tumors with parafibromin immunostaining, (3) understand molecular changes downstream to CDC73 loss. DESIGN Retrospective study of patients with HPT-JT syndrome (genetically confirmed or affected first-degree relatives). Independent review of uterine tumor from 2 patients and staining for parafibromin on parathyroid tumors from 19 patients (13 adenomas, 6 carcinomas) was performed. RNA-sequencing was performed in 21 parathyroid samples (8 HPT-JT-related adenomas, 6 HPT-JT-related carcinomas, and 7 sporadic carcinomas with wild-type CDC73). RESULTS We identified 68 patients from 29 kindreds with HPT-JT with median age at last follow-up of 39 [interquartile range, 29-53] years. A total of 55/68 (81%) developed primary hyperparathyroidism; 17/55 (31%) had parathyroid carcinoma. Twelve of 32 (38%) females developed uterine tumors. Of the 11 patients who had surgical resection for uterine tumors, 12/24 (50%) tumors were rare mixed epithelial mesenchymal polypoid lesions. Four of 68 patients (6%) developed solid kidney tumors; 3/4 had a CDC73 variant at p.M1 residue. Parafibromin staining of parathyroid tumors did not correlate with tumor histology or genotype. RNA-sequencing showed a significant association of HPT-JT-related parathyroid tumors with transmembrane receptor protein tyrosine kinase signaling pathway, mesodermal commitment pathway, and cell-cell adhesion. CONCLUSIONS Multiple, recurrent atypical adenomyomatous uterine polyps appear to be enriched in women with HPT-JT and appear characteristic of the disease. Patients with CDC73 variants at p.M1 residue appear predisposed to kidney tumors. CLINICAL TRIAL NUMBER NCT04969926.
Collapse
Affiliation(s)
- Rana Tora
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Welch
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Sun
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra A Bell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Pang JM, Chien PC, Kao MC, Chiu PY, Chen PX, Hsu YL, Liu C, Liang X, Lin KT. MicroRNA-708 emerges as a potential candidate to target undruggable NRAS. PLoS One 2023; 18:e0284744. [PMID: 37083947 PMCID: PMC10120925 DOI: 10.1371/journal.pone.0284744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023] Open
Abstract
RAS, the most frequently mutated oncogene that drives tumorigenesis by promoting cell proliferation, survival, and motility, has been perceived as undruggable for the past three decades. However, intense research in the past has mainly focused on KRAS mutations, and targeted therapy for NRAS mutations remains an unmet medical need. NRAS mutation is frequently observed in several cancer types, including melanoma (15-20%), leukemia (10%), and occasionally other cancer types. Here, we report using miRNA-708, which targets the distinct 3' untranslated region (3'UTR) of NRAS, to develop miRNA-based precision medicine to treat NRAS mutation-driven cancers. We first confirmed that NRAS is a direct target of miRNA-708. Overexpression of miRNA-708 successfully reduced NRAS protein levels in melanoma, leukemia, and lung cancer cell lines with NRAS mutations, resulting in suppressed cell proliferation, anchorage-independent growth, and promotion of reactive oxygen species-induced apoptosis. Consistent with the functional data, the activities of NRAS-downstream effectors, the PI3K-AKT-mTOR or RAF-MEK-ERK signaling pathway, were impaired in miR-708 overexpressing cells. On the other hand, cell proliferation was not disturbed by miRNA-708 in cell lines carrying wild-type NRAS. Collectively, our data unveil the therapeutic potential of using miRNA-708 in NRAS mutation-driven cancers through direct depletion of constitutively active NRAS and thus inhibition of its downstream effectors to decelerate cancer progression. Harnessing the beneficial effects of miR-708 may therefore offer a potential avenue for small RNA-mediated precision medicine in cancer treatment.
Collapse
Affiliation(s)
- Jia Meng Pang
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Chen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Chien Kao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Yun Chiu
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pin-Xu Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Ling Hsu
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chengyang Liu
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaowei Liang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kai-Ti Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Park TY, Leiserson MD, Klau GW, Raphael BJ. SuperDendrix algorithm integrates genetic dependencies and genomic alterations across pathways and cancer types. CELL GENOMICS 2022; 2. [PMID: 35382456 PMCID: PMC8979493 DOI: 10.1016/j.xgen.2022.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent genome-wide CRISPR-Cas9 loss-of-function screens have identified genetic dependencies across many cancer cell lines. Associations between these dependencies and genomic alterations in the same cell lines reveal phenomena such as oncogene addiction and synthetic lethality. However, comprehensive identification of such associations is complicated by complex interactions between genes across genetically heterogeneous cancer types. We introduce and apply the algorithm SuperDendrix to CRISPR-Cas9 loss-of-function screens from 769 cancer cell lines, to identify differential dependencies across cell lines and to find associations between differential dependencies and combinations of genomic alterations and cell-type-specific markers. These associations respect the position and type of interactions within pathways: for example, we observe increased dependencies on downstream activators of pathways, such as NFE2L2, and decreased dependencies on upstream activators of pathways, such as CDK6. SuperDendrix also reveals dozens of dependencies on lineage-specific transcription factors, identifies cancer-type-specific correlations between dependencies, and enables annotation of individual mutated residues. Using SuperDendrix, Park et al. examine associations between genetic dependencies in 769 cancer cell lines. They report 127 genetic dependencies explained by combinations of mutually exclusive somatic mutations congregating into a few oncogenic pathways across cancer subtypes. These present a small number of prominent and highly specific genetic vulnerabilities in cancer. Graphical abstract
Collapse
|
7
|
Chhabra G, Ahmad N. BRAF Inhibitors in Melanoma Management: When Friends Become Foes. J Invest Dermatol 2021; 142:1256-1259. [PMID: 34872726 PMCID: PMC9199497 DOI: 10.1016/j.jid.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
The BRAF inhibitor (BRAFi) vemurafenib improves survival of patients with melanoma with BRAFV600E mutations. However, effects of sustained BRAFis on BRAFi-resistant melanomas with dual mutations in BRAF and NRAS are not well characterized. Jandova and Wondrak (2021) report that vemurafenib selectively enhances expression of genes involved in the epithelial-to-mesenchymal transition in BRAFV600E/NRASQ61K melanoma cells, paradoxically promoting tumor growth and metastasis in mice. This preclinical study provides compelling reasons to be cautious in the use of BRAFis in patients with NRAS-driven melanoma.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
8
|
Rocha-Brito KJP, Clerici SP, Cordeiro HG, Scotá Ferreira AP, Barreto Fonseca EM, Gonçalves PR, Abrantes JLF, Milani R, Massaro RR, Maria-Engler SS, Ferreira-Halder CV. Quercetin increases mitochondrial proteins (VDAC and SDH) and downmodulates AXL and PIM-1 tyrosine kinase receptors in NRAS melanoma cells. Biol Chem 2021; 403:293-303. [PMID: 34854272 DOI: 10.1515/hsz-2021-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022]
Abstract
Melanoma is a type of skin cancer with low survival rates after it has metastasized. In order to find molecular differences that could represent targets of quercetin in anti-melanoma activity, we have chosen SKMEL-103 and SKMEL-28 melanoma cells and human melanocytes as models. Firstly, we observed that quercetin was able in reducing SKMEL-103 cell viability, but not in SKMEL-28. Besides that, quercetin treatment caused inhibition of AXL in both cell lines, but upregulation of PIM-1 in SKMEL-28 and downregulation in SKMEL-103. Moreover, HIF-1 alpha expression decreased in both cell lines. Interestingly, quercetin was more effective against SKMEL-103 than kinases inhibitors, such as Imatinib, Temsirolimus, U0126, and Erlotinib. Interestingly, we observed that while the levels of succinate dehydrogenase and voltage-dependent anion channel increased in SKMEL-103, both proteins were downregulated in SKMEL-28 after quercetin's treatment. Furthermore, AKT, AXL, PIM-1, ABL kinases were much more active and chaperones HSP90, HSP70 and GAPDH were highly expressed in SKMEL-103 cells in comparison with melanocytes. Our findings indicate, for the first time, that the efficacy of quercetin to kill melanoma cells depends on its ability in inhibiting tyrosine kinase and upregulating mitochondrial proteins, at least when SKMEL-103 and SKMEL-28 cells response were compared.
Collapse
Affiliation(s)
- Karin J P Rocha-Brito
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.,Department of Medicine, Health Sciences Center, University Center of Maringá, Maringá, Paraná, Brazil
| | - Stefano Piatto Clerici
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Helon Guimarães Cordeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Amanda Petrina Scotá Ferreira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Emanuella Maria Barreto Fonseca
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.,Federal Institute of Education, Science and Technology of São Paulo. São Roque, São Paulo, Brazil
| | - Paola R Gonçalves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil.,Department of Health Sciences, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus, Espírito Santo, Brazil
| | - Júlia Laura F Abrantes
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Renato Milani
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Renato Ramos Massaro
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| |
Collapse
|
9
|
Jandova J, Wondrak GT. Vemurafenib Drives Epithelial-to-Mesenchymal Transition Gene Expression in BRAF Inhibitor‒Resistant BRAF V600E/NRAS Q61K Melanoma Enhancing Tumor Growth and Metastasis in a Bioluminescent Murine Model. J Invest Dermatol 2021; 142:1456-1465.e1. [PMID: 34687745 PMCID: PMC9021323 DOI: 10.1016/j.jid.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
BRAF inhibitor (BRAFi) resistance compromises long-term survivorship of patients with malignant melanoma, and mutant NRAS is a major mediator of BRAFi resistance. In this study, employing phenotypic and transcriptomic analysis of isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E/NRASQ61 vs. BRAFi-resistant A375-BRAFV600E/NRASQ61K), we show that BRAFi (vemurafenib) treatment selectively targets BRAFV600E/NRASQ61K cells upregulating epithelial-to-mesenchymal transition (EMT) gene expression, paradoxically promoting invasiveness and metastasis in vitro and in vivo. First, NanoString nCounter transcriptomic analysis identified the upregulation of specific gene expression networks (EMT and EMT to metastasis) as a function of NRASQ61K status. Strikingly, BRAFi treatment further exacerbated the upregulation of genes promoting EMT in BRAFV600E/NRASQ61K cells (with opposing downregulation of EMT-driver genes in the BRAFV600E/NRASQ61 genotype) as detected by EMT-focused RT2 Profiler qPCR array analysis. In BRAFV600E/NRASQ61K cells, BRAFi treatment enhanced proliferation and invasiveness, together with activation of phosphorylated protein kinase B (Ser473), with opposing phenotypic effects observable in BRAFV600E/NRASQ61 cells displaying downregulation of phosphorylated protein kinase B and phosphorylated extracellular signal-regulated kinase 1/2. In a SCID mouse bioluminescent melanoma metastasis model, BRAFi treatment enhanced lung tumor burden imposed by BRAFV600E/NRASQ61K cells while blocking BRAFV600E/NRASQ61 metastasis. These preclinical data document the BRAFi-driven enhancement of tumorigenesis and metastasis in BRAFi-resistant human BRAFV600E/NRASQ61K melanoma, a finding with potential clinical implications for patients with NRAS-driven BRAFi-resistant tumors receiving BRAFi treatment.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA; UA Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Georg T Wondrak
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA; UA Cancer Center, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
10
|
Garcia-Alvarez A, Ortiz C, Muñoz-Couselo E. Current Perspectives and Novel Strategies of NRAS-Mutant Melanoma. Onco Targets Ther 2021; 14:3709-3719. [PMID: 34135599 PMCID: PMC8202735 DOI: 10.2147/ott.s278095] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the deadliest cutaneous cancer. Activating mutations in NRAS are found in 20% of melanomas. NRAS-mutant melanoma is more aggressive and, therefore, has poorer outcomes, compared to non-NRAS-mutant melanoma. Despite promising preclinical data, to date immune checkpoint inhibitors remain the standard of care for locally advanced unresectable or metastatic NRAS melanoma. Data for efficacy of immunotherapy for NRAS melanoma mainly come from retrospective cohorts with divergent conclusions. MEK inhibitors have been the most developed targeted therapy approach. Although associated with an increase in progression-free survival, MEK inhibitors do not provide any benefit in terms of overall survival. Combination strategies with PI3K-AKT-mTOR pathway and CDK4/6 inhibitors seem to increase MEK inhibitors' benefit. Nevertheless, results from clinical trials are still prelaminar. A greater comprehension of the biology and intracellular interactions of NRAS-mutant melanoma will outline novel impactful strategies which could improve prognosis of these subgroup of patients.
Collapse
Affiliation(s)
- Alejandro Garcia-Alvarez
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Carolina Ortiz
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Eva Muñoz-Couselo
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| |
Collapse
|
11
|
Valenti F, Falcone I, Ungania S, Desiderio F, Giacomini P, Bazzichetto C, Conciatori F, Gallo E, Cognetti F, Ciliberto G, Morrone A, Guerrisi A. Precision Medicine and Melanoma: Multi-Omics Approaches to Monitoring the Immunotherapy Response. Int J Mol Sci 2021; 22:3837. [PMID: 33917181 PMCID: PMC8067863 DOI: 10.3390/ijms22083837] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment and management of patients with metastatic melanoma have evolved considerably in the "era" of personalized medicine. Melanoma was one of the first solid tumors to benefit from immunotherapy; life expectancy for patients in advanced stage of disease has improved. However, many progresses have yet to be made considering the (still) high number of patients who do not respond to therapies or who suffer adverse events. In this scenario, precision medicine appears fundamental to direct the most appropriate treatment to the single patient and to guide towards treatment decisions. The recent multi-omics analyses (genomics, transcriptomics, proteomics, metabolomics, radiomics, etc.) and the technological evolution of data interpretation have allowed to identify and understand several processes underlying the biology of cancer; therefore, improving the tumor clinical management. Specifically, these approaches have identified new pharmacological targets and potential biomarkers used to predict the response or adverse events to treatments. In this review, we will analyze and describe the most important omics approaches, by evaluating the methodological aspects and progress in melanoma precision medicine.
Collapse
Affiliation(s)
- Fabio Valenti
- Oncogenomics and Epigenetics, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (P.G.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Sara Ungania
- Medical Physics and Expert Systems Laboratory, Department of Research and Advanced Technologies, IRCCS-Regina Elena Institute, 00144 Rome, Italy;
| | - Flora Desiderio
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Patrizio Giacomini
- Oncogenomics and Epigenetics, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (P.G.)
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Enzo Gallo
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Gennaro Ciliberto
- Scientific Direction IRCSS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Morrone
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Antonino Guerrisi
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| |
Collapse
|
12
|
Activation of RAS Signalling is Associated with Altered Cell Adhesion in Phaeochromocytoma. Int J Mol Sci 2020; 21:ijms21218072. [PMID: 33138083 PMCID: PMC7663737 DOI: 10.3390/ijms21218072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Phaeochromocytomas and paragangliomas (PPGLs) are neuroendocrine catecholamine-producing tumours that may progress into inoperable metastatic disease. Treatment options for metastatic disease are limited, indicating a need for functional studies to identify pharmacologically targetable pathophysiological mechanisms, which require biologically relevant experimental models. Recently, a human progenitor phaeochromocytoma cell line named “hPheo1” was established, but its genotype has not been characterised. Performing exome sequencing analysis, we identified a KIF1B T827I mutation, and the oncogenic NRAS Q61K mutation. While KIF1B mutations are recurring somatic events in PPGLs, NRAS mutations have hitherto not been detected in PPGLs. Therefore, we aimed to assess its implications for the hPheo1 cell line, and possible relevance for the pathophysiology of PPGLs. We found that transient downregulation of NRAS in hPheo1 led to elevated expression of genes associated with cell adhesion, and enhanced adhesion to hPheo1 cells’ extracellular matrix. Analyses of previously published mRNA data from two independent PPGL patient cohorts (212 tissue samples) revealed a subcluster of PPGLs featuring hyperactivated RAS pathway-signalling and under-expression of cell adhesion-related gene expression programs. Thus, we conclude that NRAS activity in hPheo1 decreases adhesion to their own extracellular matrix and mirrors a transcriptomic RAS-signalling-related phenomenon in PPGLs.
Collapse
|
13
|
Sharma S, Lang C, Khadka J, Inacio MC. Association of Age-Related Cataract With Skin Cancer in an Australian Population. Invest Ophthalmol Vis Sci 2020; 61:48. [PMID: 32460312 PMCID: PMC7405762 DOI: 10.1167/iovs.61.5.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose Ultraviolet radiation from sunlight contributes to age-related cataract and skin cancer. The EPHA2 gene is implicated in both these diseases. The purpose of this study was to determine whether age-related cataract and skin cancer are associated in a cohort of older Australians. Methods A cross-sectional study was performed using the Historical Cohort of the Registry of Senior Australians. Individuals aged ≥65 years or aged ≥50 years and of Aboriginal or Torres Strait Islander descent, who had an aged care eligibility assessment between July 2005 and June 2015, and had a history of cataract surgery and/or skin cancer according to the Australian Government Medicare Benefits Schedule dataset, during the 3-year period prior, were evaluated (N = 599,316). A multivariable logistic regression model was used to determine association and multiple hypothesis correction was employed. Results Of the evaluated individuals, 87,097 (14.5%) had a history of cataract and 170,251 (28.4%) a history of skin cancer. Among those with a history of cataract, 20,497 (23.5%), 1127 (1.3%), and 14,730 (16.9%) individuals had a concurrent history of keratinocyte, melanoma, and premalignant/solar keratosis, respectively. Those with a history of cataract were 19% more likely to have a history of skin cancer (odds ratio [OR], 1.19; 95% confidence interval [CI], (1.17–1.21). Co-occurrence of keratinocyte skin cancer was 16% (OR, 1.16; 95% CI, 1.14–1.18), melanoma 21% (OR, 1.21; 95% CI, 1.13–1.29), and premalignant/solar keratosis 19% (OR, 1.19; 95% CI, 1.17–1.22) more in the presence than absence of history of cataract. Conclusions Age-related cataract is positively associated with skin cancer and its subtypes, including premalignant lesions in an older Australian population.
Collapse
|
14
|
EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. Br J Cancer 2020; 123:942-954. [PMID: 32601464 PMCID: PMC7493992 DOI: 10.1038/s41416-020-0943-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/07/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background The activation of the EGFR/Ras-signalling pathway in tumour cells induces a distinct chemokine repertoire, which in turn modulates the tumour microenvironment. Methods The effects of EGFR/Ras on the expression and translation of CCL20 were analysed in a large set of epithelial cancer cell lines and tumour tissues by RT-qPCR and ELISA in vitro. CCL20 production was verified by immunohistochemistry in different tumour tissues and correlated with clinical data. The effects of CCL20 on endothelial cell migration and tumour-associated vascularisation were comprehensively analysed with chemotaxis assays in vitro and in CCR6-deficient mice in vivo. Results Tumours facilitate progression by the EGFR/Ras-induced production of CCL20. Expression of the chemokine CCL20 in tumours correlates with advanced tumour stage, increased lymph node metastasis and decreased survival in patients. Microvascular endothelial cells abundantly express the specific CCL20 receptor CCR6. CCR6 signalling in endothelial cells induces angiogenesis. CCR6-deficient mice show significantly decreased tumour growth and tumour-associated vascularisation. The observed phenotype is dependent on CCR6 deficiency in stromal cells but not within the immune system. Conclusion We propose that the chemokine axis CCL20–CCR6 represents a novel and promising target to interfere with the tumour microenvironment, and opens an innovative multimodal strategy for cancer therapy.
Collapse
|
15
|
Wang G, Wu M, Durham AC, Radaelli E, Mason NJ, Xu X, Roth DB. Molecular subtypes in canine hemangiosarcoma reveal similarities with human angiosarcoma. PLoS One 2020; 15:e0229728. [PMID: 32210430 PMCID: PMC7094861 DOI: 10.1371/journal.pone.0229728] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Angiosarcoma (AS) is a rare neoplasm with limited treatment options and a poor survival rate. Development of effective therapies is hindered by the rarity of this disease. Dogs spontaneously develop hemangiosarcoma (HSA), a common, histologically similar neoplasm. Metastatic disease occurs rapidly and despite chemotherapy, most dogs die several months after diagnosis. These features suggest that HSA might provide a tractable model to test experimental therapies in clinical trials. We previously reported whole exome sequencing of 20 HSA cases. Here we report development of a NGS targeted resequencing panel to detect driver mutations in HSA and other canine tumors. We validated the panel by resequencing the original 20 cases and sequenced 30 additional cases. Overall, we identified potential driver mutations in over 90% of the cases, including well-documented (in human cancers) oncogenic mutations in PIK3CA (46%), PTEN (6%), PLCG1(4%), and TP53 (66%), as well as previously undetected recurrent activating mutations in NRAS (24%). The driver role of these mutations is further demonstrated by augmented downstream signaling crucial to tumor growth. The recurrent, mutually exclusive mutation patterns suggest distinct molecular subtypes of HSA. Driver mutations in some subtypes closely resemble those seen in some AS cases, including NRAS, PLCG1, PIK3CA and TP53. Furthermore, activation of the MAPK and PI3K pathways appear to be key oncogenic mechanisms in both species. Together, these observations suggest that dogs with spontaneous HSA could serve as a useful model for testing the efficacy of targeted therapies, some of which could potentially be of therapeutic value in AS.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (GW); (DBR)
| | - Ming Wu
- Illumina, San Diego, CA, United States of America
| | - Amy C. Durham
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nicola J. Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - XiaoWei Xu
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - David B. Roth
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (GW); (DBR)
| |
Collapse
|
16
|
TLD1433 Photosensitizer Inhibits Conjunctival Melanoma Cells in Zebrafish Ectopic and Orthotopic Tumour Models. Cancers (Basel) 2020; 12:cancers12030587. [PMID: 32143295 PMCID: PMC7139549 DOI: 10.3390/cancers12030587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
The ruthenium-based photosensitizer (PS) TLD1433 has completed a phase I clinical trial for photodynamic therapy (PDT) treatment of bladder cancer. Here, we investigated a possible repurposing of this drug for treatment of conjunctival melanoma (CM). CM is a rare but often deadly ocular cancer. The efficacy of TLD1433 was tested on several cell lines from CM (CRMM1, CRMM2 and CM2005), uveal melanoma (OMM1, OMM2.5, MEL270), epidermoid carcinoma (A431) and cutaneous melanoma (A375). Using 15 min green light irradiation (21 mW/cm2, 19 J.cm-2, 520 nm), the highest phototherapeutic index (PI) was reached in CM cells, with cell death occurring via apoptosis and necrosis. The therapeutic potential of TLD1433 was hence further validated in zebrafish ectopic and newly-developed orthotopic CM models. Fluorescent CRMM1 and CRMM2 cells were injected into the circulation of zebrafish (ectopic model) or behind the eye (orthotopic model) and 24 h later, the engrafted embryos were treated with the maximally-tolerated dose of TLD1433. The drug was administrated in three ways, either by (i) incubating the fish in drug-containing water (WA), or (ii) injecting the drug intravenously into the fish (IV), or (iii) injecting the drug retro-orbitally (RO) into the fish. Optimally, four consecutive PDT treatments were performed on engrafted embryos using 60 min drug-to-light intervals and 90 min green light irradiation (21 mW/cm2, 114 J.cm-2, 520 nm). This PDT protocol was not toxic to the fish. In the ectopic tumour model, both systemic administration by IV injection and RO injection of TLD1433 significantly inhibited growth of engrafted CRMM1 and CRMM2 cells. However, in the orthotopic model, tumour growth was only attenuated by localized RO injection of TLD1433. These data unequivocally prove that the zebrafish provides a fast vertebrate cancer model that can be used to test the administration regimen, host toxicity and anti-cancer efficacy of PDT drugs against CM. Based on our results, we suggest repurposing of TLD1433 for treatment of incurable CM and further testing in alternative pre-clinical models.
Collapse
|
17
|
Lo Presti C, Fauvelle F, Mondet J, Mossuz P. The differential activation of metabolic pathways in leukemic cells depending on their genotype and micro-environmental stress. Metabolomics 2020; 16:13. [PMID: 31925544 DOI: 10.1007/s11306-020-1633-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is characterized by a set of malignant proliferations leading to an accumulation of blasts in the bone marrow and blood. The prognosis is pejorative due to the molecular complexity and pathways implicated in leukemogenesis. OBJECTIVES Our research was focused on comparing the metabolic profiles of leukemic cells in basal culture and deprivation conditions to investigate their behaviors under metabolic stress. METHODS We performed untargeted metabolomics using 1H HRMAS-NMR. Five human leukemic cell lines-KG1, K562, HEL, HL60 and OCIAML3-were studied in the basal and nutrient deprivation states. A multivariate analysis of the metabolic profile was performed to find over- or under- expressed metabolites in the different cell lines, depending on the experimental conditions. RESULTS In the basal state, each leukemic cell line exhibited a specific metabolic signature related to the diversity of AML subtypes represented and their phenotypes. When cultured in a serum-free medium, they showed quick metabolic adaptation and continued to proliferate and survive despite the lack of nutrients. Low apoptosis was observed. Increased phosphocholine and glutathione was a common feature of all the observed cell lines, with the maximum increase in these metabolites at 24 h of culture, suggesting the involvement of lipid metabolism and oxidative stress regulators in the survival mechanism developed by the leukemic cells. CONCLUSIONS Our study provides new insights into the metabolic mechanisms in leukemogenesis and suggests a hierarchy of metabolic pathways activated within leukemic cells, some dependent on their genotypes and others conserved among the subtypes but commonly induced under micro-environmental stress.
Collapse
Affiliation(s)
- Caroline Lo Presti
- Department of Biological Hematology, Grenoble Alpes University Hospital, Grenoble, France.
- UGA/INSERM U1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France.
| | - Florence Fauvelle
- UGA/INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France
- UGA/INSERM US17, Grenoble MRI Facility IRMaGe, Grenoble, France
| | - Julie Mondet
- UGA/INSERM U1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
- Molecular Pathology Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| | - Pascal Mossuz
- Department of Biological Hematology, Grenoble Alpes University Hospital, Grenoble, France
- UGA/INSERM U1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
18
|
Savoia P, Fava P, Casoni F, Cremona O. Targeting the ERK Signaling Pathway in Melanoma. Int J Mol Sci 2019; 20:ijms20061483. [PMID: 30934534 PMCID: PMC6472057 DOI: 10.3390/ijms20061483] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
The discovery of the role of the RAS/RAF/MEK/ERK pathway in melanomagenesis and its progression have opened a new era in the treatment of this tumor. Vemurafenib was the first specific kinase inhibitor approved for therapy of advanced melanomas harboring BRAF-activating mutations, followed by dabrafenib and encorafenib. However, despite the excellent results of first-generation kinase inhibitors in terms of response rate, the average duration of the response was short, due to the onset of genetic and epigenetic resistance mechanisms. The combination therapy with MEK inhibitors is an excellent strategy to circumvent drug resistance, with the additional advantage of reducing side effects due to the paradoxical reactivation of the MAPK pathway. The recent development of RAS and extracellular signal-related kinases (ERK) inhibitors promises to add new players for the ultimate suppression of this signaling pathway and the control of pathway-related drug resistance. In this review, we analyze the pharmacological, preclinical, and clinical trial data of the various MAPK pathway inhibitors, with a keen interest for their clinical applicability in the management of advanced melanoma.
Collapse
Affiliation(s)
- Paola Savoia
- Department of Health Science, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Paolo Fava
- Section of Dermatology, Department of Medical Science, University of Turin, 10124 Turin, Italy.
| | - Filippo Casoni
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 58, 20132 Milano, Italy.
- Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| | - Ottavio Cremona
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 58, 20132 Milano, Italy.
- Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
19
|
Torres-Collado AX, Knott J, Jazirehi AR. Reversal of Resistance in Targeted Therapy of Metastatic Melanoma: Lessons Learned from Vemurafenib (BRAF V600E-Specific Inhibitor). Cancers (Basel) 2018; 10:cancers10060157. [PMID: 29795041 PMCID: PMC6025215 DOI: 10.3390/cancers10060157] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has a very low survival rate. Over 50% of melanomas harbor various BRAF mutations with the most common being the V600E. BRAFV600E mutation that causes constitutive activation of the MAPK pathway leading to drug-, immune-resistance, apoptosis evasion, proliferation, survival, and metastasis of melanomas. The ATP competitive BRAFV600E selective inhibitor, vemurafenib, has shown dramatic success in clinical trials; promoting tumor regression and an increase in overall survival of patients with metastatic melanoma. Regrettably, vemurafenib-resistance develops over an average of six months, which renders melanomas resistant to other therapeutic strategies. Elucidation of the underlying mechanism(s) of acquisition of vemurafenib-resistance and design of novel approaches to override resistance is the subject of intense clinical and basic research. In this review, we summarize recent developments in therapeutic approaches and clinical investigations on melanomas with BRAFV600E mutation to establish a new platform for the treatment of melanoma.
Collapse
Affiliation(s)
- Antoni Xavier Torres-Collado
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey Knott
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ali R Jazirehi
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Liu Q, Das M, Liu Y, Huang L. Targeted drug delivery to melanoma. Adv Drug Deliv Rev 2018; 127:208-221. [PMID: 28939379 DOI: 10.1016/j.addr.2017.09.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022]
Abstract
Melanoma derived from melanocytes is the most aggressive genre of skin cancer. Although the considerable advancement in the study of human cancer biology and drug discovery, most advanced melanoma patients are inevitably unable to be cured. With the emergence of nanotechnology, the use of nano-carriers is widely expected to alter the landscape of melanoma treatment. In this review, we will discuss melanoma biology, current treatment options, mechanisms behind drug resistance, and nano-based solutions for effective anti-cancer therapy, followed by challenges and perspectives in both pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Potu H, Peterson LF, Kandarpa M, Pal A, Sun H, Durham A, Harms PW, Hollenhorst PC, Eskiocak U, Talpaz M, Donato NJ. Usp9x regulates Ets-1 ubiquitination and stability to control NRAS expression and tumorigenicity in melanoma. Nat Commun 2017; 8:14449. [PMID: 28198367 PMCID: PMC5316860 DOI: 10.1038/ncomms14449] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/30/2016] [Indexed: 01/20/2023] Open
Abstract
ETS transcription factors are commonly deregulated in cancer by chromosomal translocation, overexpression or post-translational modification to induce gene expression programs essential in tumorigenicity. Targeted destruction of these proteins may have therapeutic impact. Here we report that Ets-1 destruction is regulated by the deubiquitinating enzyme, Usp9x, and has major impact on the tumorigenic program of metastatic melanoma. Ets-1 deubiquitination blocks its proteasomal destruction and enhances tumorigenicity, which could be reversed by Usp9x knockdown or inhibition. Usp9x and Ets-1 levels are coincidently elevated in melanoma with highest levels detected in metastatic tumours versus normal skin or benign skin lesions. Notably, Ets-1 is induced by BRAF or MEK kinase inhibition, resulting in increased NRAS expression, which could be blocked by inactivation of Usp9x and therapeutic combination of Usp9x and MEK inhibitor fully suppressed melanoma growth. Thus, Usp9x modulates the Ets-1/NRAS regulatory network and may have biologic and therapeutic implications.
Collapse
Affiliation(s)
- Harish Potu
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Luke F. Peterson
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Malathi Kandarpa
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Anupama Pal
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Hanshi Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Alison Durham
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | - Paul W. Harms
- Departments of Pathology and Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | - Peter C. Hollenhorst
- Department of Biochemistry and Molecular Biology, Medical Sciences Program, Indiana University Bloomington, 1001 Third St, Bloomington, Indiana 47405, USA
| | - Ugur Eskiocak
- Children's Research Institute and Department of Pediatrics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Nicholas J. Donato
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
22
|
Association of MITF and other melanosome-related proteins with chemoresistance in melanoma tumors and cell lines. Melanoma Res 2015; 23:360-5. [PMID: 23921446 DOI: 10.1097/cmr.0b013e328362f9cd] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies in cell lines have suggested a role for melanosomes and related protein trafficking pathways in melanoma drug response. We have investigated the expression of six proteins related to melanosomes and melanogenesis (MITF, GPR143, gp100/PMEL, MLANA, TYRP1, and RAB27A) in pretreatment metastases from melanoma patients (n = 52) with different response to dacarbazine/temozolomide. Microphthalmia-associated transcription factor (MITF) and G-protein coupled receptor 143 (GPR143) showed significantly higher expression in nonresponders compared with responders. The premelanosome protein (gp100/PMEL) has been indicated previously in resistance to cisplatin in melanoma cells, but the expression levels of gp100/PMEL showed no association with response to dacarbazine/temozolomide in our clinical material. We also investigated the effects on chemosensitivity of siRNA inhibition of gp100/PMEL in the MNT-1 melanoma cell line. As expected from the study of the tumor material, no effect was detected with respect to response to temozolomide. However, knockdown of gp100/PMEL sensitized the cells to both paclitaxel and cisplatin. Overall, our results suggest that MITF, and several MITF-regulated factors, are associated with resistance to chemotherapy in melanoma and that different MITF targets can be of importance for different drugs.
Collapse
|
23
|
Metastatic melanoma treatment: Combining old and new therapies. Crit Rev Oncol Hematol 2015; 98:242-53. [PMID: 26616525 DOI: 10.1016/j.critrevonc.2015.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 01/04/2023] Open
Abstract
Metastatic melanoma is an aggressive form of cancer characterised by poor prognosis and a complex etiology. Until 2010, the treatment options for metastatic melanoma were very limited. Largely ineffective dacarbazine, temozolamide or fotemustine were the only agents in use for 35 years. In recent years, the development of molecularly targeted inhibitors in parallel with the development of checkpoint inhibition immunotherapies has rapidly improved the outcomes for metastatic melanoma patients. Despite these new therapies showing initial promise; resistance and poor duration of response have limited their effectiveness as monotherapies. Here we provide an overview of the history of melanoma treatment, as well as the current treatments in development. We also discuss the future of melanoma treatment as we go beyond monotherapies to a combinatorial approach. Combining older therapies with the new molecular and immunotherapies will be the most promising way forward for treatment of metastatic melanoma.
Collapse
|
24
|
Wijeratne DT, Rodger J, Wood FM, Fear MW. The role of Eph receptors and Ephrins in the skin. Int J Dermatol 2015; 55:3-10. [PMID: 26498559 DOI: 10.1111/ijd.12968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/21/2014] [Accepted: 12/31/2014] [Indexed: 12/01/2022]
Abstract
Eph receptors and Ephrin ligands are widely expressed in the skin. Various studies have been carried out to identify the effects of these molecules on many aspects of skin development. Here we summarize the literature that has identified roles for Eph receptors and Ephrins in the skin, focusing mainly on the epidermis, hair follicles, and cutaneous innervation. This review may help direct and focus further investigations into the role of Eph receptors and Ephrins in the development, maintenance, and repair processes in cutaneous biology.
Collapse
Affiliation(s)
- Dulharie T Wijeratne
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Perth, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia.,The Fiona Wood Foundation, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia.,The Fiona Wood Foundation, Perth, WA, Australia
| |
Collapse
|
25
|
Emamjomeh A, Goliaei B, Torkamani A, Ebrahimpour R, Mohammadi N, Parsian A. Protein-protein interaction prediction by combined analysis of genomic and conservation information. Genes Genet Syst 2015; 89:259-72. [PMID: 25948120 DOI: 10.1266/ggs.89.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Protein-protein interactions (PPIs) are highly important because of their main role in cellular processes and biochemical pathways; therefore, PPI can be very useful in the prediction of protein functions. Experimental techniques of PPI detection have certain drawbacks; hence computational methods can be used to complement wet lab techniques. Such methods can be applied to PPI prediction as well as validation of experimental results. Computational algorithms can lead to many false PPI predictions, which in turn result in non-adequate performance. We have developed a novel method based on combined analysis, entitled PPIccc. Three different descriptors for PPIccc included gene co-expression values, codon usage similarity and conservation of surface residues between protein products of a gene pair, which combined to predict PPI. Validation of results based on Human Protein Reference Database (HPRD) indicated improvement of performance in our proposed method. The results also revealed that conservation of surface residues between proteins in combination with codon usage similarity of their related genes increase the performance of PPI prediction. This means that codon usage similarity and surface residues between proteins (only sequence-based features) can predict PPIs as good as PPIccc.
Collapse
|
26
|
Muñoz-Couselo E, García JS, Pérez-García JM, Cebrián VO, Castán JC. Recent advances in the treatment of melanoma with BRAF and MEK inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:207. [PMID: 26488003 DOI: 10.3978/j.issn.2305-5839.2015.05.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selective inhibition of the mitogen activated protein kinase (MAPK) pathway with either BRAF or MEK inhibition has emerged as the key component for the treatment of BRAF-mutant metastatic melanoma. New evidence from several phase III trials suggests that the combination of BRAF and MEK inhibitors improves tumor response rate and progression-free survival (PFS). Some of the serious adverse events, in particular, the incidence of cutaneous squamous cell carcinoma seen with the monotherapy treatment with a BRAF inhibitor are attenuated with combination therapy, whereas milder side effects such as pyrexia can be more common with combination therapy. Although dose reductions and dose interruptions are slightly more common with combination therapy, overall data supports the notion that combination therapy is safe and improves the outcomes for metastatic melanoma patients compared to single agent BRAF inhibitors.
Collapse
|
27
|
Basu D, Salgado CM, Bauer BS, Johnson D, Rundell V, Nikiforova M, Khakoo Y, Gunwaldt LJ, Panigrahy A, Reyes-Múgica M. Nevospheres from neurocutaneous melanocytosis cells show reduced viability when treated with specific inhibitors of NRAS signaling pathway. Neuro Oncol 2015; 18:528-37. [PMID: 26354928 DOI: 10.1093/neuonc/nov184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neurocutaneous melanocytosis (NCM) is characterized by clonal nevomelanocytic proliferations in the CNS and skin. Given the scarcity of effective therapeutic targets, testing new drugs requires a reliable and reproducible in vitro cellular model of the disease. METHODS We generated nevomelanocytic spheroids in vitro from lesions of the spinal cord, brain, and skin from 4 NCM patients. Nevomelanocytic cells were grown as monolayers or spheroids and their growth characteristics were evaluated. Cultured cell identity was confirmed by demonstration of the same NRAS mutation found in the original lesions and by immunophenotyping. Nevomelanocytic spheroids were treated with inhibitors of specific mediators of the NRAS signaling pathway (vemurafenib, MEK162, GDC0941, and GSK2126458). Drug sensitivity and cell viability were assessed. RESULTS Cultured cells were growth-factor dependent, grew as spheroids on Geltrex matrix, and maintained their clonogenicity in vitro over passages. Skin-derived cells formed more colonies than CNS-derived cells. Inhibitors of specific mediators of the NRAS signaling pathway reduced viability of NRAS mutated cells. The highest effect was obtained with GSK2126458, showing a viability reduction below 50%. CONCLUSIONS NRAS mutated cells derived from clinical NCM samples are capable of continuous growth as spheroid colonies in vitro and retain their genetic identity. Drugs targeting the NRAS signaling pathway reduce in vitro viability of NCM cells. NCM lesional spheroids represent a new and reliable experimental model of NCM for use in drug testing and mechanistic studies.
Collapse
Affiliation(s)
- Dipanjan Basu
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Cláudia M Salgado
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Bruce S Bauer
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Donald Johnson
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Veronica Rundell
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Marina Nikiforova
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Yasmin Khakoo
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Lorelei J Gunwaldt
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Ashok Panigrahy
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Miguel Reyes-Múgica
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| |
Collapse
|
28
|
Vujic I, Posch C, Sanlorenzo M, Yen AJ, Tsumura A, Kwong A, Feichtenschlager V, Lai K, Arneson DV, Rappersberger K, Ortiz-Urda SM. Mutant NRASQ61 shares signaling similarities across various cancer types--potential implications for future therapies. Oncotarget 2015; 5:7936-44. [PMID: 25277205 PMCID: PMC4202171 DOI: 10.18632/oncotarget.2326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oncogenic mutations in the Neuroblastoma Rat Sarcoma oncogene (NRAS) are frequent in melanoma, but are also found in several other cancer types, such as lung cancer, neuroblastoma and colon cancer. We designed our study to analyze changes in NRAS mutant tumor cells derived from malignancies other than melanoma. A variety of small molecule inhibitors as well as their combinations was tested in order to find beneficial inhibitory modalities in NRASQ61 mutant lung cancer and neuroblastoma cell lines. Signaling changes after incubation with inhibitors were studied and compared to those found in NRAS mutant melanoma. All cell lines were most sensitive to inhibition in the MAPK pathway with the MEK inhibitor trametinib. MEK/AKT and MEK/CDK4,6 inhibitor combinations did not show any beneficial effects in vitro. However, we observed strong synergism combining MEK and PI3K/mTOR inhibitors in all cell lines. Our study provides evidence that NRAS mutant cancers share signaling similarities across different malignancies. We demonstrate that dual pathway inhibition of the MAPK and PI3K/AKT/mTOR pathway synergistically reduces cell viability in NRAS mutant cancers regardless of their tissue origin. Our results suggest that such inhibitor combinations may be a potential treatment option for non-melanoma tumors harboring activating NRAS mutations.
Collapse
Affiliation(s)
- Igor Vujic
- University of California San Francisco, Mt. Zion Cancer Research Center, San Francisco, USA. Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Department of Dermatology, Juchgasse, Vienna, Austria
| | - Christian Posch
- University of California San Francisco, Mt. Zion Cancer Research Center, San Francisco, USA. Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Department of Dermatology, Juchgasse, Vienna, Austria
| | - Martina Sanlorenzo
- University of California San Francisco, Mt. Zion Cancer Research Center, San Francisco, USA. Department of Medical Sciences, Section of Dermatology, University of Turin, Italy
| | - Adam J Yen
- University of California San Francisco, Mt. Zion Cancer Research Center, San Francisco, USA
| | - Aaron Tsumura
- University of California San Francisco, Mt. Zion Cancer Research Center, San Francisco, USA
| | - Andrew Kwong
- University of California San Francisco, Mt. Zion Cancer Research Center, San Francisco, USA
| | - Valentin Feichtenschlager
- Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Department of Dermatology, Juchgasse, Vienna, Austria
| | - Kevin Lai
- University of California San Francisco, Mt. Zion Cancer Research Center, San Francisco, USA
| | - Douglas V Arneson
- University of California San Francisco, Mt. Zion Cancer Research Center, San Francisco, USA
| | - Klemens Rappersberger
- Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Department of Dermatology, Juchgasse, Vienna, Austria
| | - Susana M Ortiz-Urda
- University of California San Francisco, Mt. Zion Cancer Research Center, San Francisco, USA
| |
Collapse
|
29
|
Beyond BRAF: where next for melanoma therapy? Br J Cancer 2014; 112:217-26. [PMID: 25180764 PMCID: PMC4453440 DOI: 10.1038/bjc.2014.476] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022] Open
Abstract
In recent years, melanoma has become a poster-child for the development of oncogene-directed targeted therapies. This approach, which has been exemplified by the development of small-molecule BRAF inhibitors and the BRAF/MEK inhibitor combination for BRAF-mutant melanoma, has brought new hope to patients. Despite these successes, treatment failure seems near inevitable in the majority of cases—even in individuals treated with the BRAF/MEK inhibitor doublet. In the current review, we discuss the future of combination strategies for patients with BRAF-mutant melanoma as well as the emerging therapeutic options for patients with NRAS-mutant and BRAF/NRAS-wild-type melanoma. We also outline some of the newest developments in the in-depth personalisation of therapy that should allow melanoma treatment to continue shaping the field precision cancer medicine.
Collapse
|
30
|
Skowronki K, Andrews J, Rodenhiser DI, Coomber BL. Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation. PLoS One 2014; 9:e103243. [PMID: 25079072 PMCID: PMC4117527 DOI: 10.1371/journal.pone.0103243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022] Open
Abstract
DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia), two common micro-environmental changes in solid tumours, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116) was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel data suggests that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.
Collapse
Affiliation(s)
- Karolina Skowronki
- Department of Biomedical Sciences; Ontario Veterinary College; University of Guelph; Guelph, ON, Canada
| | - Joseph Andrews
- Departments of Biochemistry, Oncology and Paediatrics; University of Western Ontario; London Regional Cancer Centre and Children’s Health Research Institute; London, ON, Canada
| | - David I. Rodenhiser
- Departments of Biochemistry, Oncology and Paediatrics; University of Western Ontario; London Regional Cancer Centre and Children’s Health Research Institute; London, ON, Canada
| | - Brenda L. Coomber
- Department of Biomedical Sciences; Ontario Veterinary College; University of Guelph; Guelph, ON, Canada
| |
Collapse
|
31
|
Abstract
From 1976 to 2010, only 2 medications were approved for treating metastatic melanoma. Between 2011 and 2013, 4 agents were approved and other therapies have shown great promise in clinical trials. Fundamental discoveries, such as the identification of oncogenic mutations in most melanomas, the elucidation of the molecular signaling resulting from these mutations, and the revelation that several cell surface molecules serve as regulators of immune activation, have been instrumental in this progress. This article summarizes the molecular pathogenesis of melanoma, describes the current efforts to target oncogene-driven signaling, and presents the rationale for combining immune and molecular targeting.
Collapse
Affiliation(s)
- Ryan J Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Bartlett 6, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Kito Y, Bai J, Goto N, Okubo H, Adachi Y, Nagayama T, Takeuchi T. Pathobiological properties of the ubiquitin ligase Nedd4L in melanoma. Int J Exp Pathol 2013; 95:24-8. [PMID: 24456330 DOI: 10.1111/iep.12051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/18/2013] [Indexed: 12/28/2022] Open
Abstract
A recent global gene expression profiling study unexpectedly showed that activated oncogenic NRAS may recruit neural precursor cell expressed, developmentally downregulated 4L (Nedd4L; a human homologue of Nedd4-2) in cultured melanoma cells. However, whether Nedd4L was expressed in melanoma tissues or participated in melanoma carcinogenesis remains to be clarified. Here, we investigated the expression status of Nedd4L in human melanocytes, benign nevi and melanoma tissue specimens and subsequently attempted to determine the role of Nedd4L in melanoma cell growth. Immunohistochemical staining revealed that Nedd4L was not present in any non-tumorous melanocytes or in 18 benign nevi tissues, but it was detected in 34 of 79 cutaneous melanomas and 9 of 32 nodal metastatic melanomas. Downregulation of Nedd4L significantly reduced the growth of cultured G361 melanoma cells in vitro. Moreover, exogenous Nedd4L expression significantly promoted the growth of A2058 melanoma cells in vivo in a xenograft assay. The present findings indicate that Nedd4L expression may be increased to facilitate tumour growth in many melanomas.
Collapse
Affiliation(s)
- Yusuke Kito
- Department of Immunopathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Bello DM, Ariyan CE, Carvajal RD. Melanoma Mutagenesis and Aberrant Cell Signaling. Cancer Control 2013; 20:261-81. [DOI: 10.1177/107327481302000404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Danielle M. Bello
- Department of Surgery Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Charlotte E. Ariyan
- Department of Surgery Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard D. Carvajal
- Department of Medical Oncology Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
34
|
Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152:714-26. [PMID: 23415222 DOI: 10.1016/j.cell.2013.01.019] [Citation(s) in RCA: 1076] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/15/2012] [Accepted: 01/06/2013] [Indexed: 02/06/2023]
Abstract
Clonal evolution is a key feature of cancer progression and relapse. We studied intratumoral heterogeneity in 149 chronic lymphocytic leukemia (CLL) cases by integrating whole-exome sequence and copy number to measure the fraction of cancer cells harboring each somatic mutation. We identified driver mutations as predominantly clonal (e.g., MYD88, trisomy 12, and del(13q)) or subclonal (e.g., SF3B1 and TP53), corresponding to earlier and later events in CLL evolution. We sampled leukemia cells from 18 patients at two time points. Ten of twelve CLL cases treated with chemotherapy (but only one of six without treatment) underwent clonal evolution, predominantly involving subclones with driver mutations (e.g., SF3B1 and TP53) that expanded over time. Furthermore, presence of a subclonal driver mutation was an independent risk factor for rapid disease progression. Our study thus uncovers patterns of clonal evolution in CLL, providing insights into its stepwise transformation, and links the presence of subclones with adverse clinical outcomes.
Collapse
|
35
|
Lin DC, Xu L, Ding LW, Sharma A, Liu LZ, Yang H, Tan P, Vadgama J, Karlan BY, Lester J, Urban N, Schummer M, Doan N, Said JW, Sun H, Walsh M, Thomas CJ, Patel P, Yin D, Chan D, Koeffler HP. Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers. Proc Natl Acad Sci U S A 2013; 110:6109-14. [PMID: 23536305 PMCID: PMC3625360 DOI: 10.1073/pnas.1218206110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Discovery of cancer genes through interrogation of genomic dosage is one of the major approaches in cancer research. In this study, we report that phosphodiesterase subtype 4D (PDE4D) gene was homozygously deleted in 198 cases of 5,569 primary solid tumors (3.56%), with most being internal microdeletions. Unexpectedly, the microdeletions did not result in loss of their gene products. Screening PDE4D expression in 11 different types of primary tumor samples (n = 165) with immunohistochemistry staining revealed that its protein levels were up-regulated compared with corresponding nontransformed tissues. Importantly, depletion of endogenous PDE4D with three independent shRNAs caused apoptosis and growth inhibition in multiple types of cancer cells, including breast, lung, ovary, endometrium, gastric, and melanoma, which could be rescued by reexpression of PDE4D. We further showed that antitumor events triggered by PDE4D suppression were lineage-dependently associated with Bcl-2 interacting mediator of cell death (BIM) induction and microphthalmia-associated transcription factor (MITF) down-regulation. Furthermore, ectopic expression of the PDE4D short isoform, PDE4D2, enhanced the proliferation of cancer cells both in vitro and in vivo. Moreover, treatment of cancer cells with a unique specific PDE4D inhibitor, 26B, triggered massive cell death and growth retardation. Notably, these antineoplastic effects induced by either shRNAs or small molecule occurred preferentially in cancer cells but not in nonmalignant epithelial cells. These results suggest that although targeted by genomic homozygous microdeletions, PDE4D functions as a tumor-promoting factor and represents a unique targetable enzyme of cancer cells.
Collapse
Affiliation(s)
- De-Chen Lin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kapoor S, Takeuchi T, Goto N, Kito Y, Furihata M. Role of altered expression of Nedd4L in the pathogenesis of systemic malignancies. Int J Exp Pathol 2012; 93:463; author reply 463-4. [PMID: 23082989 DOI: 10.1111/j.1365-2613.2012.00834.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
37
|
Abstract
Molecular diagnostic strategies are gaining wider acceptance and use in dermatology and dermatopathology as more practitioners in this field develop an understanding of the principles and applications of genomic technologies. Molecular testing is facilitating more accurate diagnosis, staging, and prognostication, in addition to guiding the selection of appropriate treatment, monitoring of therapy, and identification of novel therapeutic targets, for a wide variety of skin diseases.
Collapse
Affiliation(s)
- Zendee Elaba
- Department of Pathology, Hartford Hospital, Hartford, CT, USA
| | | | | |
Collapse
|
38
|
NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene 2012; 32:3009-18. [PMID: 23069660 DOI: 10.1038/onc.2012.453] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recent years have seen a significant shift in the expectations for the therapeutic management of disseminated melanoma. The clinical success of BRAF targeted therapy suggests that long-term disease control may one day be a reality for genetically defined subgroups of melanoma patients. Despite this progress, few advances have been made in developing targeted therapeutic strategies for the 50% of patients whose melanomas are BRAF wild-type. The most well-characterized subgroup of BRAF wild-type tumors is the 15-20% of all melanomas that harbor activating NRAS (Neuroblastoma Rat Sarcoma Virus) mutations. Emerging preclinical and clinical evidence suggests that NRAS mutant melanomas have patterns of signal transduction and biological behavior that is distinct from BRAF mutant melanomas. This overview will discuss the unique clinical and prognostic behavior of NRAS mutant melanoma and will summarize the emerging data on how NRAS-driven signaling networks can be translated into novel therapeutic strategies.
Collapse
|
39
|
Aggarwal N, Swerdlow SH, Kelly LM, Ogilvie JB, Nikiforova MN, Sathanoori M, Nikiforov YE. Thyroid carcinoma-associated genetic mutations also occur in thyroid lymphomas. Mod Pathol 2012; 25:1203-11. [PMID: 22575864 PMCID: PMC3434253 DOI: 10.1038/modpathol.2012.73] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular testing for mutations activating the mitogen-associated protein kinase signaling pathway is being used to help diagnose thyroid carcinomas. However, the prevalence of these mutations in thyroid lymphomas has not been reported. Therefore, we studied the prevalence of BRAF, NRAS, HRAS, and KRAS mutations in 33 thyroid lymphomas and correlated the mutational status with the clinical, pathological, cytogenetic, and immunophenotypic findings. Eleven cases were also tested for PAX8/PPARγ translocations. The lymphomas included 25 diffuse large B-cell lymphomas, 6 extranodal marginal-zone lymphomas of mucosa-associated lymphoid tissue type, and 2 follicular lymphomas. Seventeen diffuse large B-cell lymphomas were germinal center type, six non-germinal center type, and two unclassifiable (Hans algorithm). None of the cases had an associated thyroid carcinoma. Mutations of the BRAF gene were identified in six (24%) diffuse large B-cell lymphomas (D594G in three germinal center diffuse large B-cell lymphomas, K601N in two germinal center diffuse large B-cell lymphomas, and V600E in one non-germinal center diffuse large B-cell lymphoma) and of the NRAS gene in two (8%) non-germinal center diffuse large B-cell lymphomas (Q61K and Q61H). BRAF and NRAS mutations were not found in any extranodal marginal-zone lymphomas of mucosa-associated lymphoid tissue type or follicular lymphomas. HRAS and KRAS mutations were not identified in any of the cases, nor were PAX8/PPARγ translocations found. Thus, interpretation of finding a BRAF or NRAS mutation in the thyroid, particularly in preoperative thyroid aspirates, must take into account the differential diagnosis of a lymphoma. In addition to the diagnostic importance, our data also demonstrate that alteration in the mitogen-associated protein kinase pathway may have a role in the pathogenesis of some large B-cell lymphomas of the thyroid with potential therapeutic implications.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Lindsey M. Kelly
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jennifer B. Ogilvie
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mariana N. Nikiforova
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Malini Sathanoori
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yuri E. Nikiforov
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
40
|
|
41
|
Targeting the Cellular Signaling: BRAF Inhibition and Beyond for the Treatment of Metastatic Malignant Melanoma. Dermatol Res Pract 2011; 2012:259170. [PMID: 22216021 PMCID: PMC3246694 DOI: 10.1155/2012/259170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/14/2011] [Indexed: 12/19/2022] Open
Abstract
Although advances in cytotoxic treatments have been obtained in several neoplasias, in metastatic melanoma there was no drug able to significantly change the natural history of the disease in the last 30 years. In the last decade, translational research identified important mechanisms in malignant transformation, invasion, and progression. Signaling pathways can be abnormally activated by oncogenes. The identification of oncogenic mutated kinases implicated in this process provides an opportunity for new target therapies. The melanoma dependence on BRAF-mutated kinase allowed the development of inhibitors that produced major responses in clinical trials. This is the beginning of a novel class of drugs in metastatic melanoma; the identification of the transduction signaling networking and other “druggable” kinases is in active research. In this paper, we discuss the ongoing research on cellular signaling inhibition, resistance mechanisms, and strategies to overcome treatment failure.
Collapse
|
42
|
Sero JE, Thodeti CK, Mammoto A, Bakal C, Thomas S, Ingber DE. Paxillin mediates sensing of physical cues and regulates directional cell motility by controlling lamellipodia positioning. PLoS One 2011; 6:e28303. [PMID: 22194823 PMCID: PMC3237434 DOI: 10.1371/journal.pone.0028303] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/05/2011] [Indexed: 12/17/2022] Open
Abstract
Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5-10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax-/- and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax-/- cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax-/- and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices.
Collapse
Affiliation(s)
- Julia E. Sero
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles K. Thodeti
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akiko Mammoto
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chris Bakal
- Dynamical Cell Systems Team, Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Sheila Thomas
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donald E. Ingber
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, United States of America
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Eph/ephrin signaling in epidermal differentiation and disease. Semin Cell Dev Biol 2011; 23:92-101. [PMID: 22040910 DOI: 10.1016/j.semcdb.2011.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023]
Abstract
Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.
Collapse
|
44
|
EphrinA1 inhibits malignant mesothelioma tumor growth via let-7 microRNA-mediated repression of the RAS oncogene. Cancer Gene Ther 2011; 18:806-16. [PMID: 21869823 DOI: 10.1038/cgt.2011.50] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
EphrinA1 binding with receptor EphA2 suppresses malignant mesothelioma (MM) growth. The mechanisms whereby EphrinA1 attenuates the MM cell (MMC) growth are not clear. In this study, we report that the activation of MMCs with EphrinA1 leads to an induction of let-7 microRNA (miRNA) expression, repression of RAS proto-oncogene and the attenuation of MM tumor growth. The expression of miRNAs was determined by reverse transcription-quantitative polymerase chain reaction and in situ hybridization. RAS expression was determined by q-PCR, western blotting and immunofluorescence. MMC proliferation and tumor growth were determined by WST-1 and Matrigel assay, respectively. EphrinA1 activation induced several fold increases in let-7a1, let-7a3, let-7f1 and let-7f2 miRNA expression in MMCs. In contrast, EphrinA1 activation significantly downregulated H-RAS, K-RAS and N-RAS expression and inhibited MMC proliferation and tumor growth. In MMCs transfected with 2'-O-methyl antisense oligonucleotides to let-7 miRNA, EphrinA1 activation failed to inhibit the proliferative response and tumor growth. In mismatch antisense oligonucleotide-treated MMCs, the proliferation and tumor growth were comparable to untreated proliferating cells. Furthermore, the transfection of MMCs with let-7a miRNA precursor inhibited RAS expression and attenuated MMC tumor growth. Our data revealed that EphrinA1 signaling induces let-7 miRNA expression and attenuates MM tumor growth by targeting RAS proto-oncogene in MMCs.
Collapse
|
45
|
Zhu J, Yu L, Zhan P, Song Y, Wang Q. The relationships between cyclin D1 expression and prognosis of non-small cell lung cancer. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:803-8. [PMID: 20704822 PMCID: PMC6000561 DOI: 10.3779/j.issn.1009-3419.2010.08.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE cyclin D1 is a member of the cyclin family, and it has been proven that it plaied an important role in tumorigenesis, invasion and metastasis. We performed a retrospective study on the cyclin D1 expression in non-small cell lung cancer (NSCLC) according to the clinical characteristics. METHODS One hundred fifteen postsurgical NSCLC patients were investigated. Immunohistochemistry was used to evaluate the cyclin D1 expression. RESULTS Overall survival was significantly lower in patients with cyclin D1-high expression of tumors than those with cyclin D1 low expression of tumors (Chi-square=5.132, P=0.023). In early stage patients (stage I, II), the overall survival was significantly lower in patients with cyclin D1-high expression of tumors than those with cyclin D1-low expression of tumors (Chi-square=6.863, P=0.009). cyclin D1 status (hazard ratio=0.630; P=0.035), differentiation (hazard ratio=0.399; P<0.001), and pTNM (hazard ratio=1.576; P<0.001) to be independent prognostic factors for NSCLC patients. Specifically, the cyclin D1 status (hazard ratio=0.188; P=0.008) was a significant prognostic factor for patients with stage I NSCLCs. CONCLUSION cyclin D1 expression is an independent prognosis factor for postoperative patient in stage I, II NSCLCs.
Collapse
Affiliation(s)
- Jiping Zhu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing University School of Medicine, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
46
|
Laragione T, Gulko PS. mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol Med 2010; 16:352-8. [PMID: 20517583 DOI: 10.2119/molmed.2010.00049] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/28/2010] [Indexed: 01/12/2023] Open
Abstract
The invasive properties of fibroblast-like synoviocytes (FLS) correlate with radiographic and histologic damage in rheumatoid arthritis (RA) and pristane-induced arthritis (PIA). We previously determined that highly invasive FLS obtained from PIA-susceptible DA (blood type D, Agouti) rats have increased expression of genes associated with invasive cancers, including Villin-2/ezrin. Villin-2/ezrin mediates invasion via mTOR. In the present study we used the mTOR inhibitor rapamycin to assess the role of the ezrin-mTOR pathway on the invasive properties of FLS. FLS were isolated from synovial tissues from arthritic DA rats, and from RA patients. FLS were treated with rapamycin or dimethyl sulfoxide (DMSO) for 24 h and then studied in a Matrigel-invasion assay. Supernatants were assayed for matrix metalloproteinase (MMP) activity, and cell lysates were used for quantification of mTOR, p70S6K1, 4EBP1 and FAK, as well as their respective phosphorylated subsets. Actin filament and FAK localization were determined by immunofluorescence. Rapamycin decreased FLS invasion in DA and RA tissues by 93% and 82%, respectively. Rapamycin treatment reduced the phosphorylation of mTOR and its substrates, p70S6K1 and 4EBP1, confirming mTOR inhibition. In conclusion, rapamycin prevented actin reorganization in both DA and RA FLS, and inhibited the directional formation of lamellipodia. Phosphorylation of the lamellipodia marker FAK was also reduced by rapamycin. MMPs were not significantly affected by rapamycin. Rapamycin significantly reduced RA and DA rat FLS invasion via the suppression of the mTOR signaling pathway. This discovery suggests that rapamycin could have a role in RA therapy aimed at reducing the articular damage and erosive changes mediated by FLS.
Collapse
Affiliation(s)
- Teresina Laragione
- Laboratory of Experimental Rheumatology, Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | | |
Collapse
|
47
|
Lalou C, Scamuffa N, Mourah S, Plassa F, Podgorniak MP, Soufir N, Dumaz N, Calvo F, Basset-Seguin N, Khatib AM. Inhibition of the proprotein convertases represses the invasiveness of human primary melanoma cells with altered p53, CDKN2A and N-Ras genes. PLoS One 2010; 5:e9992. [PMID: 20404912 PMCID: PMC2852400 DOI: 10.1371/journal.pone.0009992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 03/05/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Altered tumor suppressor p53 and/or CDKN2A as well as Ras genes are frequently found in primary and metastatic melanomas. These alterations were found to be responsible for acquisition of invasive and metastatic potential through their defective regulatory control of metalloproteinases and urokinase genes. METHODOLOGY/PRINCIPAL FINDINGS Using primary human melanoma M10 cells with altered p53, CDKN2A and N-Ras genes, we found that inhibition of the proprotein convertases (PCs), enzymes involved in the proteolytic activation of various cancer-related protein precursors resulted in significantly reduced invasiveness. Analysis of M10 cells and their gastric and lymph node derived metastatic cells revealed the presence of all the PCs found in the secretory pathway. Expression of the general PCs inhibitor alpha1-PDX in these cells in a stable manner (M10/PDX) had no effect on the mRNA expression levels of these PCs. Whereas, in vitro digestion assays and cell transfection experiments, revealed that M10/PDX cells display reduced PCs activity and are unable to process the PCs substrates proIGF-1R and proPDGF-A. These cells showed reduced migration and invasion that paralleled decreased gelatinase MMP-2 activity and increased expression and secretion of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Furthermore, these cells showed decreased levels of urokinase-type plasminogen activator receptor (uPAR) and increased levels of plasminogen activator inhibitor-1 (PAI-1). CONCLUSIONS Taken together, these data suggest that inhibition of PCs activity results in decreased invasiveness of primary human melanoma cells despite their altered p53, CDKN2A and N-Ras genes, suggesting that PCs may serve as novel therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Claude Lalou
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Nathalie Scamuffa
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Samia Mourah
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Francois Plassa
- Laboratoire de Biochimie, Hôpital Saint-Louis, Paris, France
| | - Marie-Pierre Podgorniak
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Nadem Soufir
- Laboratoire de Biochimie Hormonale et Génétique, Hôpital Bichat, Paris, France
| | | | - Fabien Calvo
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Nicole Basset-Seguin
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Abdel-Majid Khatib
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
- * E-mail:
| |
Collapse
|
48
|
MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol 2010; 130:2062-70. [PMID: 20357817 DOI: 10.1038/jid.2010.63] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malignant cutaneous melanoma is a highly aggressive form of skin cancer. Despite improvements in early melanoma diagnosis, the 5-year survival rate remains low in advanced disease. Therefore, novel biomarkers are urgently needed to devise new means of detection and treatment. In this study, we aimed to improve our understanding of microRNA (miRNA) deregulation in melanoma development and their impact on patient survival. Global miRNA expression profiles of a set of melanoma lymph node metastases, melanoma cell lines, and melanocyte cultures were determined using Agilent array. Deregulated miRNAs were evaluated in relation with clinical characteristics, patient survival, and mutational status for BRAF and NRAS. Several miRNAs were differentially expressed between melanocytes and melanomas as well as melanoma cell lines. In melanomas, miR-193a, miR-338, and miR-565 were underexpressed in cases with a BRAF mutation. Furthermore, low expression of miR-191 and high expression of miR-193b were associated with poor melanoma-specific survival. In conclusion, our findings show miRNA dysregulation in malignant melanoma and its relation to established molecular backgrounds of BRAF and NRAS oncogenic mutations. The identification of an miRNA classifier for poor survival may lead to the development of miRNA detection as a complementary prognostic tool in clinical practice.
Collapse
|
49
|
Caldon CE, Musgrove EA. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div 2010; 5:2. [PMID: 20180967 PMCID: PMC2835679 DOI: 10.1186/1747-1028-5-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/17/2010] [Indexed: 02/07/2023] Open
Abstract
The highly conserved E-type cyclins are core components of the cell cycle machinery, facilitating the transition into S phase through activation of the cyclin dependent kinases, and assembly of pre-replication complexes on DNA. Cyclin E1 and cyclin E2 are assumed to be functionally redundant, as cyclin E1-/- E2-/- mice are embryonic lethal while cyclin E1-/- and E2-/- single knockout mice have primarily normal phenotypes. However more detailed studies of the functions and regulation of the E-cyclins have unveiled potential additional roles for these proteins, such as in endoreplication and meiosis, which are more closely associated with either cyclin E1 or cyclin E2. Moreover, expression of each E-cyclin can be independently regulated by distinct transcription factors and microRNAs, allowing for context-specific expression. Furthermore, cyclins E1 and E2 are frequently expressed independently of one another in human cancer, with unique associations to signatures of poor prognosis. These data imply an absence of co-regulation of cyclins E1 and E2 during tumorigenesis and possibly different contributions to cancer progression. This is supported by in vitro data identifying divergent regulation of the two genes, as well as potentially different roles in vivo.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
50
|
Species-Specific In vivo Engraftment of the Human BL Melanoma Cell Line Results in an Invasive Dedifferentiated Phenotype Not Present in Xenografts. Cancer Res 2009; 69:3746-54. [DOI: 10.1158/0008-5472.can-08-3746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|