1
|
Ma RY, Yang J, Wu JJ, Zhu HY. Exploiting the chemical diversity space of phosphopeptide binding to nasopharyngeal carcinoma PLK1 PBD domain with unnatural amino acid building blocks by using QSAR-based genetic optimization. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:899-918. [PMID: 39556013 DOI: 10.1080/1062936x.2024.2418355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024]
Abstract
Human polo-like kinase 1 (PLK1) has been recognized as an attractive therapeutic target against nasopharyngeal carcinoma (NPC). The kinase contains a conserved polo-box domain (PBD) that exhibits a wide specificity across various substrates. Previously, we explored natural amino acid preference in PLK1 PBD-binding phosphopeptides. However, limited to the short sequence only natural amino acids cannot guarantee the sufficient exploitation of chemical and structural diversity of the phosphopeptides. Here, we described a genetic optimization (GO) strategy to systematically optimize a 104-sized 6-mer phosphopeptide array towards increasing affinity to PLK1 PBD domain by using 20 natural plus 34 unnatural amino acids as basic building blocks. A QSAR predictor was created to guide the GO optimization and then evaluated rigorously at molecular and cellular levels. Three unnatural phosphopeptides uPP8, uPP15 and uPP20 were designed as potent binders with Kd = 0.18, 0.42 and 0.08 μM, respectively, in which the uPP20 also possessed a good anti-tumor activity against human NPC cells when fused with cell permeation sequence. In addition, we defined a relaxed 6-mer motif for the preferential PLK1 PBD-binding phosphosites, namely [Φ/П]-3-[ζ]-2-[ζ]-1-[pT/pS]0-[Φ/П]+1-[Φ]+2, where the symbols Φ, ζ and П represent hydrophobic, polar and aromatic amino acid types, respectively. .
Collapse
Affiliation(s)
- R Y Ma
- Department of Otorhinolaryngology, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - J Yang
- Department of Otorhinolaryngology, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - J J Wu
- Department of Otorhinolaryngology, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - H Y Zhu
- Department of Otorhinolaryngology, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
2
|
Wu Q, Ge XL, Geng ZK, Wu H, Yang JY, Cao SR, Yang AL. HuaChanSu suppresses the growth of hepatocellular carcinoma cells by interfering with pentose phosphate pathway through down-regulation of G6PD enzyme activity and expression. Heliyon 2024; 10:e25144. [PMID: 38322888 PMCID: PMC10844274 DOI: 10.1016/j.heliyon.2024.e25144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
HuaChanSu is active water extracts from the skin of Bufo bufo gargarizans Cantor. It has been already used to treat clinical cancers including HCC (Hepatocellular carcinoma, HCC), however, the molecular mechanisms under HuaChanSu's anti-cancer effects remain unclear. PPP (Pentose phosphate pathway, PPP), the major source of ribose and NADPH (Nicotinamide adenine dinucleotide phosphate, NADPH), is always over-activated and particularly critical for tumor cells growth. In this study, firstly, we illustrate that HuaChanSu restrains the growth of human hepatoma cells. More importantly, we demonstrate that the expression of G6PD (Glucose-6-phosphate dehydrogenase, G6PD), the first rate-limiting enzyme of the PPP, is restrained in human hepatoma cells after treatment with HuaChanSu. Additionally, our results show that G6PD enzyme activity and dimer formation are inhibited by HuaChanSu. Furthermore, we find that HuaChanSu could inhibit NADPH production and nucleotide level. In addition, we identify that expression of PLK1 (Polo-like kinase 1, PLK1) is also reduced in response to HuaChanSu, and knockdown of PLK1 restrains enzyme activity and dimer formation of G6PD, but has no effect on G6PD protein level. Subsequently, we demonstrate that inhibition of G6PD could restrain the proliferation of tumor cells and enhance the inhibitory effect of HuaChanSu on cell proliferation of human hepatoma cells. In conclusion, for the first time, our study reveals that HuaChanSu interferes with PPP via suppression of G6PD expression and enzyme activity to restrain growth of tumor cells, and these results provide a novel insight for the anti-hepatoma mechanisms of HuaChanSu and promote the innovation of the research model of TCM. Moreover, the development of drugs targeting abnormal tumor metabolism is currently a hot topic, our works provide theoretical support for further drug development from HuaChanSu, meanwhile, the revelation of the new molecular mechanism also provides a new perspective for the study of the pathogenesis of liver cancer. Short abstract HuaChanSu suppresses expression of G6PD, the first rate-limiting enzyme of the PPP, restrains G6PD enzyme activity and dimer formation via inhibition of PLK1, knockdown of G6PD could impair the growth of human hepatoma cells and increase the blocking effect of HuaChanSu on cell proliferation of cancer cells. In addition, HuaChanSu restrains NADPH production and nucleotide level, implying the suppression of PPP flux. Our study suggests that HuaChanSu interferes with PPP via G6PD inhibition to exert anti-hepatoma effects.
Collapse
Affiliation(s)
| | | | | | - Hao Wu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jing-yi Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shi-rong Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ai-lin Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
3
|
Doghish AS, Elshaer SS, Fathi D, Rizk NI, Elrebehy MA, Al-Noshokaty TM, Elballal MS, Abdelmaksoud NM, Abdel-Reheim MA, Abdel Mageed SS, Zaki MB, Mohammed OA, Tabaa MME, Elballal AS, Saber S, El-Husseiny HM, Abulsoud AI. Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of oral cancer. Pathol Res Pract 2024; 253:155027. [PMID: 38101159 DOI: 10.1016/j.prp.2023.155027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ahmed S Elballal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cairo University, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| |
Collapse
|
4
|
Zeng Y, Ren X, Jin P, Zhang Y, Zhuo M, Wang J. Development of MPS1 Inhibitors: Recent Advances and Perspectives. J Med Chem 2023; 66:16484-16514. [PMID: 38095579 DOI: 10.1021/acs.jmedchem.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1) plays a pivotal role as a dual-specificity kinase governing spindle assembly checkpoint activation and sister chromatid separation in mitosis. Its overexpression has been observed in various human malignancies. MPS1 reduces spindle assembly checkpoint sensitivity, allowing tumor cells with a high degree of aneuploidy to complete mitosis and survive. Thus, MPS1 has emerged as a promising candidate for cancer therapy. Despite the identification of numerous MPS1 inhibitors, only five have advanced to clinical trials with none securing FDA approval for cancer treatment. In this perspective, we provide a concise overview of the structural and functional characteristics of MPS1 by highlighting its relevance to cancer. Additionally, we explore the structure-activity relationships, selectivity, and pharmacokinetics of MPS1 inhibitors featuring diverse scaffolds. Moreover, we review the reported work on enhancing MPS1 inhibitor selectivity, offering valuable insights into the discovery of novel, highly potent small-molecule MPS1 inhibitors.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yali Zhang
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
5
|
Liao Z, Zhang Q, Yang L, Li H, Mo W, Song Z, Huang X, Wen S, Cheng X, He M. Increased hsa-miR-100-5p Expression Improves Hepatocellular Carcinoma Prognosis in the Asian Population with PLK1 Variant rs27770A>G. Cancers (Basel) 2023; 16:129. [PMID: 38201556 PMCID: PMC10778516 DOI: 10.3390/cancers16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has the highest incidence and mortality in the Asian population, and race is an independent risk factor affecting survival time in liver cancer. Micro RNAs (miRNAs) are remarkably dysregulated in HCC and closely associated with HCC prognosis. Recent studies show that genetic variability between ethnic groups may result in differences in the specificity of HCC miRNA biomarkers. Here, we reveal a high expression level of hsa-miR-100-5p, an HCC prognosis-related miRNA, which improves HCC prognosis in the Asian Population with Polo-like kinase 1 (PLK1) variant rs27770A>G. In this study, we discovered that hsa-miR-100-5p was downregulated in various HCC cell lines. While mimics transient transfection and mouse liver cancer model confirmed the interaction between hsa-miR-100-5p and PLK1, a stratified analysis based on the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) data suggest both low hsa-miR-100-5p expression level and high PLK1 expression level associated with poor HCC prognosis, especially in the Asian population. According to the 1000 Genomes Project database, the SNP rs27770 located in 3'UTR of PLK1 had a significantly higher G allele frequency in the East Asian population. Bioinformatics analysis suggested that rs27770 A>G affects PLK1 mRNA secondary structure and alters the hsa-miR-100-5p/PLK1 interaction by forming an additional seedless binding site. This racial variation caused PLK1 to be more vulnerable to hsa-miR-100-5p inhibition, resulting in hsa-miR-100-5p being more favorable for HCC prognosis in the Asian population.
Collapse
Affiliation(s)
- Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Qi Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Lichao Yang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Wanling Mo
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Zhenyu Song
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning 530021, China
| |
Collapse
|
6
|
Han Y, Chang J, Lin L, Zhou C, Zhu J, Wu H, He J, Fu W. miR-100 rs1834306 a > G polymorphism decreases neuroblastoma risk in Chinese children. Cancer Rep (Hoboken) 2023; 6:e1875. [PMID: 37503828 PMCID: PMC10598254 DOI: 10.1002/cnr2.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Neuroblastoma is a common malignant tumor stemming from the sympathetic nervous system in children, which is often life-threatening. The genetics of neuroblastoma remains unclear. Studies have shown that miRNAs participate in the regulation of a broad spectrum of biological pathways. The abnormity in the miRNA is associated with the risk of various cancers, including neuroblastoma. However, research on the relationship of miRNA polymorphisms with neuroblastoma susceptibility is still in the initial stage. METHODS In this research, a retrospective case-control study was conducted to explore whether miR-100 rs1834306 A > G polymorphism is associated with neuroblastoma susceptibility. We enrolled 402 cases and 473 controls for the study. The logistic regression analysis was adopted to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between miR-100 rs1834306 A > G and neuroblastoma risk. RESULTS Our results elucidated that the miR-100 rs1834306 A > G polymorphism was associated with the decreased risk of neuroblastoma (AG versus AA: adjusted OR = 0.72, 95% CI = 0.53-0.98, and P = 0.038). The subsequent stratified analysis further found that rs1834306 AG/GG genotype reduced the risk of neuroblastoma in the subgroup with tumors of the mediastinum origin (adjusted OR = 0.63, 95% CI = 0.41-0.95, and P = 0.029). CONCLUSIONS In summary, miR-100 rs1834306 A > G polymorphism was shown to associate with decreased neuroblastoma risk in Chinese children, especially for neuroblastoma of mediastinum origin. This conclusion needs to be verified in additional large-size case-control studies.
Collapse
Affiliation(s)
- Yufeng Han
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Jiaming Chang
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Lei Lin
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Chunlei Zhou
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinhong Zhu
- Department of Clinical Laboratory, BiobankHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Haiyan Wu
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Wen Fu
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| |
Collapse
|
7
|
Detomas M, Pivonello C, Pellegrini B, Landwehr LS, Sbiera S, Pivonello R, Ronchi CL, Colao A, Altieri B, De Martino MC. MicroRNAs and Long Non-Coding RNAs in Adrenocortical Carcinoma. Cells 2022; 11:2234. [PMID: 35883677 PMCID: PMC9324008 DOI: 10.3390/cells11142234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a type of genetic material that do not encode proteins but regulate the gene expression at an epigenetic level, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The role played by ncRNAs in many physiological and pathological processes has gained attention during the last few decades, as they might be useful in the diagnosis, treatment and management of several human disorders, including endocrine and oncological diseases. Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine cancer, still characterized by high mortality and morbidity due to both endocrine and oncological complications. Despite the rarity of this disease, recently, the role of ncRNA has been quite extensively evaluated in ACC. In order to better explore the role of the ncRNA in human ACC, this review summarizes the current knowledge on ncRNA dysregulation in ACC and its potential role in the diagnosis, treatment, and management of this tumor.
Collapse
Affiliation(s)
- Mario Detomas
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| | - Bianca Pellegrini
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| | - Laura-Sophie Landwehr
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Cristina L. Ronchi
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
- Institute of Metabolism and System Research, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Maria Cristina De Martino
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| |
Collapse
|
8
|
Petrelli A, Bellomo SE, Sarotto I, Kubatzki F, Sgandurra P, Maggiorotto F, Di Virgilio MR, Ponzone R, Geuna E, Galizia D, Nuzzo AM, Medico E, Miglio U, Berrino E, Venesio T, Ribisi S, Provero P, Sapino A, Giordano S, Montemurro F. MiR-100 is a predictor of endocrine responsiveness and prognosis in patients with operable luminal breast cancer. ESMO Open 2021; 5:e000937. [PMID: 33122354 PMCID: PMC7597498 DOI: 10.1136/esmoopen-2020-000937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Overexpression of miR-100 in stem cells derived from basal-like breast cancers causes loss of stemness, induction of luminal breast cancer markers and response to endocrine therapy. We, therefore, explored miR-100 as a novel biomarker in patients with luminal breast cancer. METHODS miR-100 expression was studied in 90 patients with oestrogen-receptor-positive/human-epidermal growth factor receptor 2-negative breast cancer enrolled in a prospective study of endocrine therapy given either preoperatively, or for the treatment of de novo metastatic disease. Response was defined as a Ki67 ≤2.7% after 21±3 days of treatment. The prognostic role of miR-100 expression was evaluated in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) breast cancer datasets. Additionally, we explored the correlation between miR-100 and the expression its targets reported as being associated with endocrine resistance. Finally, we evaluated whether a signature based on miR-100 and its target genes could predict the luminal A molecular subtype. RESULTS Baseline miR-100 was significantly anticorrelated with baseline and post-treatment Ki67 (p<0.001 and 0.004, respectively), and independently associated with response to treatment (OR 3.329, p=0.047). In the METABRIC dataset, high expression of miR-100 identified women with luminal A tumours treated with adjuvant endocrine therapy with improved overall survival (HR 0.55, p<0.001). miR-100 was negatively correlated with PLK1, FOXA1, mTOR and IGF1R expression, potentially explaining its prognostic effect. Finally, a miR-100-based signature developed in patients enrolled in the prospective study outperformed Ki67 alone in predicting the luminal A phenotype. CONCLUSIONS Our findings suggest that miR-100 should be further explored as a biomarker in patients with luminal breast cancer.
Collapse
Affiliation(s)
- Annalisa Petrelli
- Cancer Molecular Biology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Ivana Sarotto
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Franziska Kubatzki
- Gynaecological Oncology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Paola Sgandurra
- Gynaecological Oncology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Furio Maggiorotto
- Gynaecological Oncology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Riccardo Ponzone
- Gynaecological Oncology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Elena Geuna
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Danilo Galizia
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Anna Maria Nuzzo
- Clinical Research Office, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Enzo Medico
- Department of Oncology, University of Turin, Torino, Italy; Oncogenomics Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Umberto Miglio
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Enrico Berrino
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Medical Sciences, University of Turin, Torino, Italy
| | - Tiziana Venesio
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Salvatore Ribisi
- Cancer Molecular Biology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Anna Sapino
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Medical Sciences, University of Turin, Torino, Italy
| | - Silvia Giordano
- Cancer Molecular Biology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Oncology, University of Turin, Torino, Italy
| | - Filippo Montemurro
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
9
|
Yamanaka Z, Sasaki T, Yamanaka A, Kato K, Nishi H. Circulating and tissue miR-100 acts as a potential diagnostic biomarker for cervical cancer. Cancer Biomark 2021; 32:551-558. [PMID: 34334379 DOI: 10.3233/cbm-201021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND MicroRNAs (miRNA) are promising biomarkers for cancer diagnosis and prognosis; miR-100 expression is decreased in cervical cancer tissues. OBJECTIVE To determine whether miR-100 is a useful biomarker for early cervical cancer diagnosis. METHODS Total RNA was extracted from the sera of 34 healthy controls (HC), 64 cervical intraepithelial neoplasia patients (CIN), and 46 cervical cancer patients (CC). miR-100 expression levels were measured with quantitative real-time PCR. Correlations between clinicopathological factors and miR-100 expression levels were also assessed. The cut-off value for miR-100 was calculated from the Receiver Operating Characteristic (ROC) curve. RESULTS Relative expression levels of miR-100 in serum were 1.84 ± 1.72, 3.93 ± 2.52, and 5.32 ± 3.39 in CC, CIN, and HC, respectively; it was significantly lower in CC (p< 0.001). The area under the ROC curve was 0.879 and the cut-off value was 2.451. miR-100 expression levels were significantly higher in metastasis cases that were lymph node negative than positive (p< 0.05). CC patients with miR-100 expression levels below the cut-off value tended to have a poor prognosis. CONCLUSIONS Serum miR-100 may be a useful diagnostic biomarker for CC, and for predicting lymph node metastasis and disease free survival in CC patients.
Collapse
|
10
|
Fasoulakis Z, Daskalakis G, Diakosavvas M, Papapanagiotou I, Theodora M, Bourazan A, Alatzidou D, Pagkalos A, Kontomanolis EN. MicroRNAs Determining Carcinogenesis by Regulating Oncogenes and Tumor Suppressor Genes During Cell Cycle. Microrna 2021; 9:82-92. [PMID: 31538910 PMCID: PMC7366009 DOI: 10.2174/2211536608666190919161849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/21/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023]
Abstract
AIM To provide a review considering microRNAs regulating oncogenes and tumor suppressor genes during the different stages of cell cycle, controlling carcinogenesis. METHODS The role of microRNAs involved as oncogenes' and tumor suppressor genes' regulators in cancer was searched in the relevant available literature in MEDLINE, including terms such as "microRNA", "oncogenes", "tumor suppressor genes", "metastasis", "cancer" and others. RESULTS MicroRNAs determine the expression levels of multiple cell cycle regulators, such as cyclins, cyclin dependent kinases and other major cell cycle activators including retinoblastoma 1 (RB- 1) and p53, resulting in alteration and promotion/inhibition of the cell cycle. CONCLUSION MicroRNAs are proven to have a key role in cancer pathophysiology by altering the expression profile of different regulator proteins during cell division cycle and DNA replication. Thus, by acting as oncogenes and tumor suppressor genes, they can either promote or inhibit cancer development and formation, revealing their innovative role as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Diakosavvas
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Papapanagiotou
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Arzou Bourazan
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitra Alatzidou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Athanasios Pagkalos
- Department of Obstetrics and Gynecology, General Hospital of Xanthi, Thrace, Greece
| | - Emmanuel N Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
11
|
MicroRNA-100 Mediates Hydrogen Peroxide-Induced Apoptosis of Human Retinal Pigment Epithelium ARPE-19 Cells. Pharmaceuticals (Basel) 2021; 14:ph14040314. [PMID: 33915898 PMCID: PMC8067261 DOI: 10.3390/ph14040314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
This study investigated the regulatory role of microRNA 100 (miR-100) in hydrogen peroxide (H2O2)-induced apoptosis of human retinal pigment epithelial ARPE-19 cells. H2O2 induced oxidative cell death of cultured ARPE-19 cells was measured by cytotoxicity assay. qRT-PCR was used to quantify cytosolic and extracellular contents of miR-100. Kinase and miR-100 inhibition treatments were applied to determine the regulatory signaling pathways involved in cell death regulation. H2O2 dose-dependently reduced viability of ARPE-19 cells and simultaneously upregulated miR-100 levels in both cytosolic and extracellular compartments. Western blotting detection indicated that H2O2 elicited hyperphosphorylation of PI3K/Akt, ERK1/2, JNK, p38 MAPK, and p65 NF-κB. Further kinase inhibition experiments demonstrated that PI3K, p38 MAPK, and NF-κB activities were involved in oxidative-stress-induced miR-100 upregulation in ARPE-19 cells, while blockade of PI3K, JNK, and NF-κB signaling significantly attenuated the oxidative cell death. Intriguingly, MiR-100 antagomir treatment exerted a cytoprotective effect against the H2O2-induced oxidative cell death through attenuating the oxidation-induced AMPK hyperphosphorylation, restoring cellular mTOR and p62/SQSTM1 levels and upregulating heme oxygenase-1 expression. These findings support that miR-100 at least in part mediates H2O2-induced cell death of ARPE-19 cells and can be regarded as a preventive and therapeutic target for retinal degenerative disease.
Collapse
|
12
|
Liu K, Zheng M, Lu R, Du J, Zhao Q, Li Z, Li Y, Zhang S. The role of CDC25C in cell cycle regulation and clinical cancer therapy: a systematic review. Cancer Cell Int 2020; 20:213. [PMID: 32518522 PMCID: PMC7268735 DOI: 10.1186/s12935-020-01304-w] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
One of the most prominent features of tumor cells is uncontrolled cell proliferation caused by an abnormal cell cycle, and the abnormal expression of cell cycle-related proteins gives tumor cells their invasive, metastatic, drug-resistance, and anti-apoptotic abilities. Recently, an increasing number of cell cycle-associated proteins have become the candidate biomarkers for early diagnosis of malignant tumors and potential targets for cancer therapies. As an important cell cycle regulatory protein, Cell Division Cycle 25C (CDC25C) participates in regulating G2/M progression and in mediating DNA damage repair. CDC25C is a cyclin of the specific phosphatase family that activates the cyclin B1/CDK1 complex in cells for entering mitosis and regulates G2/M progression and plays an important role in checkpoint protein regulation in case of DNA damage, which can ensure accurate DNA information transmission to the daughter cells. The regulation of CDC25C in the cell cycle is affected by multiple signaling pathways, such as cyclin B1/CDK1, PLK1/Aurora A, ATR/CHK1, ATM/CHK2, CHK2/ERK, Wee1/Myt1, p53/Pin1, and ASK1/JNK-/38. Recently, it has evident that changes in the expression of CDC25C are closely related to tumorigenesis and tumor development and can be used as a potential target for cancer treatment. This review summarizes the role of CDC25C phosphatase in regulating cell cycle. Based on the role of CDC25 family proteins in the development of tumors, it will become a hot target for a new generation of cancer treatments.
Collapse
Affiliation(s)
- Kai Liu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Rui Lu
- Department of Pathology, Tianjin Nankai Hospital, Tianjin, People's Republic of China
| | - Jiaxing Du
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Yuwei Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| |
Collapse
|
13
|
Takebayashi K, Nasu K, Okamoto M, Aoyagi Y, Hirakawa T, Narahara H. hsa-miR-100-5p, an overexpressed miRNA in human ovarian endometriotic stromal cells, promotes invasion through attenuation of SMARCD1 expression. Reprod Biol Endocrinol 2020; 18:31. [PMID: 32299427 PMCID: PMC7161200 DOI: 10.1186/s12958-020-00590-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A number of microRNAs are aberrantly expressed in endometriosis and are involved in its pathogenesis. Our previous study demonstrated that has-miR-100-5p expression is enhanced in human endometriotic cyst stromal cells (ECSCs). The present study aimed to elucidate the roles of has-miR-100-5p in the pathogenesis of endometriosis. METHODS Normal endometrial stromal cells (NESCs) were isolated from normal eutopic endometrium without endometriosis. Using hsa-miR-100-5p-transfected NESCs, we evaluated the effect of hsa-miR-100-5p on the invasiveness of these cells by Transwell invasion assay and in-vitro wound repair assay. We also investigated the downstream signal pathways of hsa-miR-100-5p by microarray analysis and Ingenuity pathways analysis. RESULTS hsa-miR-100-5p transfection enhanced the invasion and motility of NESCs. After hsa-miR-100-5p transfection, mRNA expression of SWItch/sucrose non-fermentable-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1 (SMARCD1) was significantly attenuated. Whereas, the expression of matrix metallopeptidase 1 (MMP1) mRNA and active MMP1 protein levels was upregulated. CONCLUSION We found that SMARCD1/MMP-1 is a downstream pathway of hsa-miR-100-5p. hsa-miR-100-5p transfection enhanced the motility of NESCs by inhibiting SMARCD1 expression and MMP1 activation. These findings suggest that enhanced hsa-miR-100-5p expression in endometriosis is involved in promoting the acquisition of endometriosis-specific characteristics during endometriosis development. Our present findings on the roles of hsa-miR-100-5p may thus contribute to understand the epigenetic mechanisms involved in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Kanetoshi Takebayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan.
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita, Japan.
| | - Mamiko Okamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Tomoko Hirakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
14
|
Abstract
Cell division is a highly regulated and carefully orchestrated process. Understanding the mechanisms that promote proper cell division is an important step toward unraveling important questions in cell biology and human health. Early studies seeking to dissect the mechanisms of cell division used classical genetics approaches to identify genes involved in mitosis and deployed biochemical approaches to isolate and identify proteins critical for cell division. These studies underscored that post-translational modifications and cyclin-kinase complexes play roles at the heart of the cell division program. Modern approaches for examining the mechanisms of cell division, including the use of high-throughput methods to study the effects of RNAi, cDNA, and chemical libraries, have evolved to encompass a larger biological and chemical space. Here, we outline some of the classical studies that established a foundation for the field and provide an overview of recent approaches that have advanced the study of cell division.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 .,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
15
|
Unger L, Gerber V, Pacholewska A, Leeb T, Jagannathan V. MicroRNA fingerprints in serum and whole blood of sarcoid‐affected horses as potential non‐invasive diagnostic biomarkers. Vet Comp Oncol 2018; 17:107-117. [DOI: 10.1111/vco.12451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Unger
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of Bern, and Agroscope Bern Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of Bern, and Agroscope Bern Switzerland
| | - Alicja Pacholewska
- Institute of Genetics, Vetsuisse FacultyUniversity of Bern Bern Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse FacultyUniversity of Bern Bern Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse FacultyUniversity of Bern Bern Switzerland
| |
Collapse
|
16
|
Sun Q, Tripathi V, Yoon JH, Singh D, Hao Q, Min KW, Davila S, Zealy R, Li X, Polycarpou-Schwarz M, Lehrmann E, Zhang Y, Becker K, Freier S, Zhu Y, Diederichs S, Prasanth S, Lal A, Gorospe M, Prasanth K. MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. Nucleic Acids Res 2018; 46:10405-10416. [PMID: 30102375 PMCID: PMC6212728 DOI: 10.1093/nar/gky696] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate vital biological processes, including cell proliferation, differentiation and development. A subclass of lncRNAs is synthesized from microRNA (miRNA) host genes (MIRHGs) due to pre-miRNA processing, and are categorized as miRNA-host gene lncRNAs (lnc-miRHGs). Presently, the cellular function of most lnc-miRHGs is not well understood. We demonstrate a miRNA-independent role for a nuclear-enriched lnc-miRHG in cell cycle progression. MIR100HG produces spliced and stable lncRNAs that display elevated levels during the G1 phase of the cell cycle. Depletion of MIR100HG-encoded lncRNAs in human cells results in aberrant cell cycle progression without altering the levels of miRNA encoded within MIR100HG. Notably, MIR100HG interacts with HuR/ELAVL1 as well as with several HuR-target mRNAs. Further, MIR100HG-depleted cells show reduced interaction between HuR and three of its target mRNAs, indicating that MIR100HG facilitates interaction between HuR and target mRNAs. Our studies have unearthed novel roles played by a MIRHG-encoded lncRNA in regulating RNA binding protein activity, thereby underscoring the importance of determining the function of several hundreds of lnc-miRHGs that are present in human genome.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Davila
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Richard W Zealy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maria Polycarpou-Schwarz
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | | | - Yuelin Zhu
- Molecular Genetics Section, CCR, NCI, NIH, Bethesda, MD, USA
| | - Sven Diederichs
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115, 79106 Freiburg & German Cancer Consortium (DKTK), Freiburg, Germany
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Liao G, Wang R, Rezey AC, Gerlach BD, Tang DD. MicroRNA miR-509 Regulates ERK1/2, the Vimentin Network, and Focal Adhesions by Targeting Plk1. Sci Rep 2018; 8:12635. [PMID: 30135525 PMCID: PMC6105636 DOI: 10.1038/s41598-018-30895-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Polo-like kinase 1 (Plk1) has been implicated in mitosis, cytokinesis, and proliferation. The mechanisms that regulate Plk1 expression remain to be elucidated. It is reported that miR-100 targets Plk1 in certain cancer cells. Here, treatment with miR-100 did not affect Plk1 protein expression in human airway smooth muscle cells. In contrast, treatment with miR-509 inhibited the expression of Plk1 in airway smooth muscle cells. Exposure to miR-509 inhibitor enhanced Plk1 expression in cells. Introduction of miR-509 reduced luciferase activity of a Plk1 3'UTR reporter. Mutation of miR-509 targeting sequence in Plk1 3'UTR resisted the reduction of the luciferase activity. Furthermore, miR-509 inhibited the PDGF-induced phosphorylation of MEK1/2 and ERK1/2, and cell proliferation without affecting the expression of c-Abl, a tyrosine kinase implicated in cell proliferation. Moreover, we unexpectedly found that vimentin filaments contacted paxillin-positive focal adhesions. miR-509 exposure inhibited vimentin phosphorylation at Ser-56, vimentin network reorganization, focal adhesion formation, and cell migration. The effects of miR-509 on ERK1/2 and vimentin were diminished in RNAi-resistant Plk1 expressing cells treated with miR-509. Taken together, these findings unveil previously unknown mechanisms that miR-509 regulates ERK1/2 and proliferation by targeting Plk1. miR-509 controls vimentin cytoskeleton reorganization, focal adhesion assembly, and cell migration through Plk1.
Collapse
Affiliation(s)
- Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
18
|
Daniel SG, Russ AD, Guthridge KM, Raina AI, Estes PS, Parsons LM, Richardson HE, Schroeder JA, Zarnescu DC. miR-9a mediates the role of Lethal giant larvae as an epithelial growth inhibitor in Drosophila. Biol Open 2018; 7:bio.027391. [PMID: 29361610 PMCID: PMC5829493 DOI: 10.1242/bio.027391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drosophila lethal giant larvae (lgl) encodes a conserved tumor suppressor with established roles in cell polarity, asymmetric division, and proliferation control. Lgl's human orthologs, HUGL1 and HUGL2, are altered in human cancers, however, its mechanistic role as a tumor suppressor remains poorly understood. Based on a previously established connection between Lgl and Fragile X protein (FMRP), a miRNA-associated translational regulator, we hypothesized that Lgl may exert its role as a tumor suppressor by interacting with the miRNA pathway. Consistent with this model, we found that lgl is a dominant modifier of Argonaute1 overexpression in the eye neuroepithelium. Using microarray profiling we identified a core set of ten miRNAs that are altered throughout tumorigenesis in Drosophila lgl mutants. Among these are several miRNAs previously linked to human cancers including miR-9a, which we found to be downregulated in lgl neuroepithelial tissues. To determine whether miR-9a can act as an effector of Lgl in vivo, we overexpressed it in the context of lgl knock-down by RNAi and found it able to reduce the overgrowth phenotype caused by Lgl loss in epithelia. Furthermore, cross-comparisons between miRNA and mRNA profiling in lgl mutant tissues and human breast cancer cells identified thrombospondin (tsp) as a common factor altered in both fly and human breast cancer tumorigenesis models. Our work provides the first evidence of a functional connection between Lgl and the miRNA pathway, demonstrates that miR-9a mediates Lgl's role in restricting epithelial proliferation, and provides novel insights into pathways controlled by Lgl during tumor progression. Summary: Mir-9a overexpression can suppress the overgrowth phenotype caused by Lgl knock-down in epithelia. Gene profiling identifies pathways dysregulated in lgl mutants and shared features between flies and human cancer cells.
Collapse
Affiliation(s)
- Scott G Daniel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Atlantis D Russ
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Kathryn M Guthridge
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia
| | - Ammad I Raina
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Patricia S Estes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Linda M Parsons
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Department of Genetics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3000, Australia.,Department of Biochemistry & Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Joyce A Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA .,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
19
|
The role of exosomal non-coding RNAs in cancer metastasis. Oncotarget 2017; 9:12487-12502. [PMID: 29552328 PMCID: PMC5844764 DOI: 10.18632/oncotarget.23552] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/28/2017] [Indexed: 02/07/2023] Open
Abstract
An increasing number of studies has confirmed that many cells can secrete vesicles or exosomes in eukaryotes, which contain important nucleic acids, proteins and lipids and play important roles in cell communication and tumor metastasis. This paper summarizes the comprehensive function of exosomal non-coding RNAs. Although some studies have shown that exosomes mediate tumor signal transduction, the functional mechanism of the tumor metastasis remains to be elucidated. In this paper, we reviewed the role of exosomal non-coding RNAs in mediating cancer metastasis in the tumor microenvironment to provide new ideas for the study of tumor pathophysiology.
Collapse
|
20
|
Shin CH, Lee H, Kim HR, Choi KH, Joung JG, Kim HH. Regulation of PLK1 through competition between hnRNPK, miR-149-3p and miR-193b-5p. Cell Death Differ 2017; 24:1861-1871. [PMID: 28708135 PMCID: PMC5635212 DOI: 10.1038/cdd.2017.106] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/19/2017] [Accepted: 05/29/2017] [Indexed: 11/09/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a critical regulator of cell cycle progression and apoptosis. However, its regulation remains poorly understood. In the present study, we investigated the molecular mechanism underlying the post-transcriptional regulation of PLK1. We observed that heterogeneous nuclear ribonucleoprotein K (hnRNPK) and PLK1 were positively associated in several different cancers and high expression levels of them correlated with poor prognosis in patients with cancer. Knockdown of hnRNPK resulted in reduced expression of PLK1, whereas conversely, PLK1 expression was increased in hnRNPK-overexpressing cells. We found that hnRNPK regulated PLK1 expression through KH1- and KH2-dependent interactions with the 3'UTR of PLK1 mRNA. In addition, microRNA-149-3p (miR-149-3p) and miR-193b-5p suppressed PLK1 expression by targeting the 3'UTR of PLK1 mRNA. MicroRNA-elicited enrichment of PLK1 mRNA in Ago2 immunoprecipitation was altered by the presence or absence of hnRNPK. Furthermore, the deletion of the cytosine (C)-rich sequences of the 3'UTR of PLK1 mRNA abolished the decreased PLK1 expression observed via hnRNPK silencing and administration of miRNAs, a finding that suggests that hnRNPK shares this C-rich motif with miR-149-3p and miR-193b-5p. We also found that downregulation of PLK1 by either silencing hnRNPK or overexpression of miR-149-3p and miR-193b-5p decreased clonogenicity and induced apoptosis. Our findings from this study demonstrate that hnRNPK regulates PLK1 expression by competing with the PLK1-targeting miRNAs, miR-149-3p and miR-193b-5p.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hong Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hye Ree Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Kyung Hee Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
21
|
Pezuk JA, Brassesco MS, de Oliveira RS, Machado HR, Neder L, Scrideli CA, Tone LG. PLK1-associated microRNAs are correlated with pediatric medulloblastoma prognosis. Childs Nerv Syst 2017; 33:609-615. [PMID: 28283778 DOI: 10.1007/s00381-017-3366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Medulloblastoma (MB) is the most common malignant tumor of the central nervous system (CNS) in children. Despite its relative good survival rates, treatment can cause long time sequels and may impair patients' lifespan and quality, making the search for new treatment options still necessary. Polo like kinases (PLKs) constitute a five-member serine/threonine kinases family (PLK 1-5) that regulates different stages during cell cycle. Abnormal PLKs expression has been observed in several cancer types, including MB. As gene regulators, miRNAs have also been described with variable expression in cancer. METHODS We evaluated gene expression profiles of all PLK family members and related miRNAs (miR-100, miR-126, miR-219, and miR-593*) in MB cell lines and tumor samples. RESULTS RT-qPCR analysis revealed increased levels of PLK1-4 in all cell lines and in most MB samples, while PLK5 was found underexpressed. In parallel, miR-100 was also found upregulated while miR-129, miR-216, and miR-593* were decreased in MB cell lines. Variable miRNAs expression patterns were observed in MB samples. However, a correlation between miR-100 and PLK4 expression was observed, and associations between miR-100, miR-126, and miR-219 expression and overall and event free survival were also evinced in our cohort. Moreover, despite the lack of association with clinico-pathological features, when comparing primary tumors to those relapsed, we found a consistent decrease on PLK2, miR-219, and miR-598* and an increase on miR-100 and miR-126. CONCLUSION Specific dysregulation on PLKs and associated miRNAs may be important in MB and can be used to predict prognosis. Although miRNAs sequences are fundamental to predict its target, the cell type may also be consider once that mRNA repertoire can define different roles for specific miRNA in a given cell.
Collapse
Affiliation(s)
- Julia Alejandra Pezuk
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil.
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | - Luciano Neder
- Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Carlos Alberto Scrideli
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Wang J, Yu M, Guan S, Zhang G, Wang J, Cheng Y. Prognostic significance of microRNA-100 in solid tumors: an updated meta-analysis. Onco Targets Ther 2017; 10:493-502. [PMID: 28176958 PMCID: PMC5271396 DOI: 10.2147/ott.s122774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to identify prognostic significance of microRNA-100 (miR-100) in solid tumor. Methods Literature search was conducted in databases such as PubMed, Embase, and Web of Science, using the following words “(microRNA-100 OR miR-100 OR mir100) AND (tumor OR neoplasm OR cancer OR carcinoma OR malignancy).” The search was updated up until July 10, 2016. Newcastle–Ottawa scale was used to evaluate the quality of studies. Pooled hazard ratio (HR) with 95% confidence interval (CI) for patients’ survival was calculated by using a fixed-effects or a random-effects model on the basis of heterogeneity. Subgroup analysis, sensitive analysis, and meta-regression were used to investigate the sources of heterogeneity. Publication bias was evaluated by using Begg’s and Egger’s tests. Results A total of 16 articles with 1,501 patients were included in the present meta-analysis. It was demonstrated that a lower expression of miR-100 plays a negative role in the overall survival (OS) of patients with solid tumor (HR =1.92; 95% CI =1.25–2.94). In addition, the association between miR-100 and prognosis was also revealed in the following subgroups: non-small-cell lung cancer (NSCLC; HR =2.46; 95% CI =1.98–3.06), epithelial ovarian cancer (EOC; HR =2.29, 95% CI =1.72–3.04), and bladder cancer (BC; HR =4.14, 95% CI =1.85–9.27). Conclusion This meta-analysis indicates that lower expression of miR-100 is related to poorer OS in patients with solid tumor, especially in those with NSCLC, EOC, and BC. MiR-100 is a promising prognosis predictor and may be a potential target for therapy in the future.
Collapse
Affiliation(s)
- Jiangfeng Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Miao Yu
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Guangyu Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
23
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
miR-100 antagonism triggers apoptosis by inhibiting ubiquitination-mediated p53 degradation. Oncogene 2016; 36:1023-1037. [PMID: 27524417 DOI: 10.1038/onc.2016.270] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 06/13/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022]
Abstract
During tumourigenesis, p53 functions as 'the guardian of the genome' because p53-dependent apoptosis strongly regulates the fate of cancer cells. Therefore, p53 regulation must be sensitive and accurate. p53 activity is regulated through its ubiquitination and deubiquitination. However, the role of microRNA in ubiquitin-mediated p53 degradation has not been previously studied. Our previous studies indicated that miR-100 is required for apoptosis. In the current study, the mechanism of p53 protein ubiquitination mediated by miR-100 was characterized. An analysis of primary tumour samples from gastric cancer patients showed a significant correlation between miR-100 upregulation and primary human gastric tumourigenesis and progression. The in vivo and in vitro data indicated that miR-100 antagonism specifically induced the apoptosis of poorly differentiated gastric cancer cells but not non-cancerous gastric cells, indicating that miR-100 has a crucial role in regulating the progression of gastric tumours. In the regulation of p53-dependent apoptosis, miR-100 antagonism inhibited ubiquitin-mediated p53 protein degradation by activating RNF144B, an E3 ubiquitination ligase. Consequently, the miR-100-RNF144B-pirh2-p53-dependent pathway was initiated. Our findings highlight a novel mechanism of ubiquitin-mediated p53 protein degradation in apoptosis.
Collapse
|
25
|
Zhao L, Tang M, Hu Z, Yan B, Pi W, Li Z, Zhang J, Zhang L, Jiang W, Li G, Qiu Y, Hu F, Liu F, Lu J, Chen X, Xiao L, Xu Z, Tao Y, Yang L, Bode AM, Dong Z, Zhou J, Fan J, Sun L, Cao Y. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget 2016. [PMID: 26201446 PMCID: PMC4599252 DOI: 10.18632/oncotarget.4138] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
microRNAs (miRNAs) are involved in the various processes of DNA damage repair and play crucial roles in regulating response of tumors to radiation therapy. Here, we used nasopharyngeal carcinoma (NPC) radio-resistant cell lines as models and found that the expression of miR-504 was significantly up-regulated. In contrast, the expression of nuclear respiratory factor 1 (NRF1) and other mitochondrial metabolism factors, including mitochondrial transcription factor A (TFAM) and oxidative phosphorylation (OXPHOS) complex III were down-regulated in these cell lines. At the same time, the Seahorse cell mitochondrial stress test results indicated that the mitochondrial respiratory capacity was impaired in NPC radio-resistant cell lines and in a miR-504 over-expressing cell line. We also conducted dual luciferase reporter assays and verified that miR-504 could directly target NRF1. Additionally, miR-504 could down-regulate the expression of TFAM and OXPHOS complexes I, III, and IV and impaired the mitochondrial respiratory function of NPC cells. Furthermore, serum from NPC patients showed that miR-504 was up-regulated during different weeks of radiotherapy and correlated with tumor, lymph nodes and metastasis (TNM) stages and total tumor volume. The radio-therapeutic effect at three months after radiotherapy was evaluated. Results indicated that patients with high expression of miR-504 exhibited a relatively lower therapeutic effect ratio of complete response (CR), but a higher ratio of partial response (PR), compared to patients with low expression of miR-504. Taken together, these results demonstrated that miR-504 affected the radio-resistance of NPC by down-regulating the expression of NRF1 and disturbing mitochondrial respiratory function. Thus, miR-504 might become a promising biomarker of NPC radio-resistance and targeting miR-504 might improve tumor radiation response.
Collapse
Affiliation(s)
- Luqing Zhao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Min Tang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zheyu Hu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yan
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Pi
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqin Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wuzhong Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Hu
- Metabolism Endocrinology Research Institute, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Liu
- Metabolism Endocrinology Research Institute, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingchen Lu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Chen
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lanbo Xiao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lifang Yang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jian Zhou
- Department of Live Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Live Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lunquan Sun
- Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China.,Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Huang YH, Tseng YH, Lin WR, Hung G, Chen TC, Wang TH, Lee WC, Yeh CT. HBV polymerase overexpression due to large core gene deletion enhances hepatoma cell growth by binding inhibition of microRNA-100. Oncotarget 2016; 7:9448-61. [PMID: 26824500 PMCID: PMC4891051 DOI: 10.18632/oncotarget.7021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/17/2016] [Indexed: 01/04/2023] Open
Abstract
Different types of hepatitis B virus (HBV) core gene deletion mutants were identified in chronic hepatitis B patients. However, their clinical roles in different stages of natural chronic HBV infection remained unclear. To address this issue, HBV core genes were sequenced in three gender- and age-matched patient groups diagnosed as chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC), respectively. Functional analysis of the identified mutants was performed. A novel type of large-fragment core gene deletion (LFCD) was identified exclusively in HCC patients and significantly associated with unfavorable postoperative survival. The presence of LFCDs resulted in generation of precore-polymerase fusion protein or brought the polymerase reading frame under direct control of HBV precore/core promoter, leading to its over-expression. Enhanced cell proliferation and increased tumorigenicity in nude mice were found in hepatoma cells expressing LFCDs. Because of the epsilon-binding ability of HBV polymerase, we hypothesized that the over-expressed polymerase carrying aberrant amino-terminal sequence could bind to cellular microRNAs. Screening of a panel of microRNAs revealed physical association of a precore-polymerase fusion protein with microRNA-100. A binding inhibition effect on microRNA-100 by the precore-polymerase fusion protein with up-regulation of its target, polo-like kinase 1 (PLK1), was discovered. The binding inhibition and growth promoting effects could be reversed by overexpressing microRNA-100. Together, HCC patients carrying hepatitis B large-fragment core gene deletion mutants had an unfavorable postoperative prognosis. The growth promoting effect was partly due to polymerase overexpression, leading to binding inhibition of microRNA-100 and up-regulation of PLK1.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Base Sequence
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/genetics
- DNA, Viral/genetics
- Female
- Gene Deletion
- Gene Products, pol/biosynthesis
- Gene Products, pol/genetics
- Hep G2 Cells
- Hepatitis B virus/enzymology
- Hepatitis B virus/genetics
- Hepatitis B, Chronic/virology
- Humans
- Liver Cirrhosis/virology
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Transplantation
- Prognosis
- Protein Binding/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Sequence Analysis, DNA
- Transplantation, Heterologous
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Hsin Tseng
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Wey-Ran Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - George Hung
- Department of Molecular Biology, Princeton University, NJ, USA
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tong-Hong Wang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Chen Lee
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
27
|
Jin HY, Qiu XG, Yang B. The MicroRNA3686 Inhibits the Proliferation of Pancreas Carcinoma Cell Line by Targeting the Polo-Like Kinase 1. BIOMED RESEARCH INTERNATIONAL 2015; 2015:954870. [PMID: 26090465 PMCID: PMC4454736 DOI: 10.1155/2015/954870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 12/18/2022]
Abstract
The Polo-like kinase 1 (PLK1) is one member of the so-called Polo-like kinase family which plays an important role in tumorigenesis. By analyzing the potential complementary microRNA (miRNA) targeting sequence of PLK1, we identified that miRNA-3686 (hereby and thereafter mir3696) could be the potential regulator for PLK1. Real-time PCR demonstrated that the mir3686 has a relatively higher expression in the immortalized pancreas cell HPDE6C7 than pancreas carcinoma derived cell line PANC1. The upregulation of mir3686 in HPDE6C7 cell corresponded with the low expression of PLK1 as well. Both luciferase based reporter assay and evaluation of endogenous PLK1 expression demonstrated that mir3686 regulated PLK1, which confirms our speculation. Moreover, we found that transfection of mir3686 in PANC1 cell could lead to proliferation inhibition and promote apoptosis. Further analysis demonstrated that mir3686 transfection in PANC1 cell also inhibited cell invasion, and clone formation in cell invasion assay and clonogenic cell survival assay, respectively. In contrast, inhibition of mir3686 expression in HPDE6C7 cell enhanced the capability of proliferation, cell invasion and clone formation. Taken together, our results indicated that mir3686 could target PLK1 to inhibit the cell proliferation in pancreas cancer derived cell line and mir3686 could be a new therapeutic target for pancreas cancer treatment.
Collapse
Affiliation(s)
- Hong-Yi Jin
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
- Department of Emergency, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin-Guang Qiu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Yang
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang 455000, China
| |
Collapse
|
28
|
Zhu H, Zhu X, Cheng G, Zhou M, Lou W. Downregulation of microRNA-21 enhances radiosensitivity in nasopharyngeal carcinoma. Exp Ther Med 2015; 9:2185-2189. [PMID: 26136957 DOI: 10.3892/etm.2015.2403] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Radioresistance severely restricts the clinical treatment of nasopharyngeal carcinoma (NPC). microRNAs (miRs) have been demonstrated to affect cancer progression and radiosensitivity. Thus, the aim of the present study was to identify miRs associated with radioresistance in NPC. A radioresistant NPC cell line (CNE-2-1) was established by continuously exposing CNE-2 cells to radiation. Subsequently, high-throughput sequencing technology was used to detect the regulation of miRs in radioresistant CNE-2-1 cells, and it was observed that miR-21 was among the three most upregulated miRs in CNE-2-1 cells. Therefore, the expression levels of miR-21 were quantified using reverse transcription-quantitative polymerase chain reaction. Finally, the function of miR-21 was investigated by downregulating the expression in the CNE-2-1 cells. The results indicated that the expression of miR-21 was significantly increased in the CNE-2-1 cells, as compared with the CNE-2 cells. In addition, downregulation of miR-21 resulted in enhanced radiosensitivity in the CNE-2-1 cells, as demonstrated by the inhibition in cell viability of these radioresistant cells. Further analysis indicated that miR-21 was able to inhibit the proliferation of CNE-2-1 cells at the G1 phase of the cell cycle. Therefore, these results indicated that miR-21 was able to regulate radioresistance in NPC cells; however, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Honghai Zhu
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaoyuan Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Minghui Zhou
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Weihua Lou
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
29
|
Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 2015; 21:223-32. [PMID: 25656384 PMCID: PMC4385479 DOI: 10.1016/j.molmed.2015.01.001] [Citation(s) in RCA: 481] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
Abstract
The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of a variety of diseases, including cancer. The unique properties of nanoparticles, such as large surface-to volume ratio, small size, the ability to encapsulate a variety of drugs, and tunable surface chemistry, gives them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make nanoparticles a mode of treatment potentially superior to conventional cancer therapies. This article highlights the most recent developments in cancer treatment using nanoparticles as drug-delivery vehicles, including promising opportunities in targeted and combination therapy.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - William Ho
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Zhang
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicolas Bertrand
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omid Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Nath S, Ghatak D, Das P, Roychoudhury S. Transcriptional control of mitosis: deregulation and cancer. Front Endocrinol (Lausanne) 2015; 6:60. [PMID: 25999914 PMCID: PMC4419714 DOI: 10.3389/fendo.2015.00060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022] Open
Abstract
Research over the past few decades has well established the molecular functioning of mitosis. Deregulation of these functions has also been attributed to the generation of aneuploidy in different tumor types. Numerous studies have given insight into the regulation of mitosis by cell cycle specific proteins. Optimum abundance of these proteins is pivotal to timely execution of mitosis. Aberrant expressions of these mitotic proteins have been reported in different cancer types. Several post-transcriptional mechanisms and their interplay have subsequently been identified that control the level of mitotic proteins. However, to date, infrequent incidences of cancer-associated mutations have been reported for the genes expressing these proteins. Therefore, altered expression of these mitotic regulators in tumor samples can largely be attributed to transcriptional deregulation. This review discusses the biology of transcriptional control for mitosis and evaluates its role in the generation of aneuploidy and tumorigenesis.
Collapse
Affiliation(s)
- Somsubhra Nath
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Present address: Somsubhra Nath, Genetics, Cell Biology and Anatomy Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Susanta Roychoudhury, Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India, ;
| |
Collapse
|
31
|
Morais DR, Reis ST, Viana N, Piantino CB, Massoco C, Moura C, Dip N, Silva IA, Srougi M, Leite KR. The involvement of miR-100 in bladder urothelial carcinogenesis changing the expression levels of mRNA and proteins of genes related to cell proliferation, survival, apoptosis and chromosomal stability. Cancer Cell Int 2014; 14:119. [PMID: 25493074 PMCID: PMC4260205 DOI: 10.1186/s12935-014-0119-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022] Open
Abstract
Introduction MicroRNAs (miRNA) are small non-coding RNAs that play an important role in the control of gene expression by inhibiting protein translation or promoting messenger RNA degradation. Today, miRNAs have been shown to be involved in various physiological and pathological cellular processes, including cancer, where they can act as oncogenes or tumor suppressor genes. Recently, lowered expression of miR-100, resulting in upregulation of FGFR3, has been correlated with low-grade, non-invasive bladder urothelial cancer, as an alternative oncogenesis pathway to the typical FGFR3 gene mutation. Our aim is to analyze the role of miR-100 in bladder cancer cell lines in controlling the expression of some of its possible target genes, including FGFR3 and its relationship with proliferation, apoptosis and DNA ploidy. Methods The bladder cancer cell lines RT4 and T24 were transfected with pre-miR 100, anti-miR 100 and their respective controls using a lipid-based formulation. After transfection mRNA and protein levels of its supposed target genes THAP2, BAZ2A, mTOR, SMARCA5 and FGFR3 were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and western blotting. Cell proliferation, apoptosis and DNA ploidy were analyzed by flow cytometry. For statistical analysis, a t-test was applied, p < 0.05 was considered significant. Results After miR-100 transfection, there was a significant reduction in the mRNA of mTOR (p = 0.006), SMARCA5 (p = 0.007) and BAZ2A (p = 0.029) in RT4, mTOR (p = 0.023) and SMARCA5 (p = 0.015) in T24. There was a reduction in the expression of all proteins, variable from 22.5% to 57.1% in both cell lines. In T24 miR-100 promoted an increase in cell proliferation and anti-miR 100 promoted apoptosis characterizing miR-100 as an oncomiR in this cell line representative of a high-grade urothelial carcinoma. Conclusion miR-100 transfection reduces expression of BAZ2A, mTOR and SMARCA5 mRNA and protein in BC cell lines. miR-100 would be classified as an oncomiR in T24 cells representative of high grade urothelial carcinoma promoting increase in cell proliferation and reduction in apoptosis. The knowledge of miRNA role in tumors will allow their use as tumor markers and targets for new therapies.
Collapse
Affiliation(s)
- Denis R Morais
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil ; Department of Pathology, University of Sao Paulo Veterinary Medicine and Zootechnics School, Sao Paulo, Brazil
| | - Sabrina T Reis
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nayara Viana
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Camila Berfort Piantino
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Cristina Massoco
- Department of Pathology, University of Sao Paulo Veterinary Medicine and Zootechnics School, Sao Paulo, Brazil
| | - Caio Moura
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nelson Dip
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Iran A Silva
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Miguel Srougi
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Katia Rm Leite
- Laboratory of Medical Research, Department of Urology - LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
32
|
Kong N, Lu X, Li B. Downregulation of microRNA-100 protects apoptosis and promotes neuronal growth in retinal ganglion cells. BMC Mol Biol 2014; 15:25. [PMID: 25406880 PMCID: PMC4271342 DOI: 10.1186/s12867-014-0025-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/22/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs) are preferentially lost in glaucoma or optic neuritis. In the present study, we investigated the protective effect of mircoRNA 100 (miR-100) against oxidative stress induced apoptosis in RGC-5 cells. RESULTS Rat RGC-5 cells were cultured in plates and H2O2 was added to induce oxidative stress. TUNEL assay and qRT-PCR showed H2O2 induced apoptosis and up-regulated miR-100 in a dose-dependent manner in RGC-5 cells. Conversely, lentiviral-mediated miR-100 down-regulation protected H2O2 induced apoptosis, promoted neurite growth and activated AKT/ERK and TrkB pathways through phosphorylation. Luciferase assay confirmed that IGF1R was directly regulated by miR-100 in RGC-5 cells, and siRNA-mediated IGF1R knockdown activated AKT protein through phosphorylation, down-regulated miR-100, therefore exerted a protective effect on RGC-5 apoptosis. CONCLUSION Down-regulating miR-100 is an effective method to protect H2O2 induced apoptosis in RGC-5 cells, possible associated with IGF1R regulation.
Collapse
Affiliation(s)
- Ning Kong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China. .,Department of Ophthalmology, Guangzhou Panyu Central Hospital, Guangzhou, 510280, Guangdong Province, China.
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China.
| | - Bin Li
- Department of Ophthalmology, Guangzhou Panyu Central Hospital, Guangzhou, 510280, Guangdong Province, China.
| |
Collapse
|
33
|
Chen P, Xi Q, Wang Q, Wei P. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in colorectal cancer. Med Oncol 2014; 31:235. [PMID: 25216869 DOI: 10.1007/s12032-014-0235-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
Dysregulation of microRNA-100 (miR-100) has been shown to be involved in cancer tumorigenesis and progression of several cancer types. However, its expression patterns in tumors are controversial. The aim of this study was to investigate the expression and clinical significance of miR-100 in colorectal cancer (CRC). Quantitative real-time PCR was used to analyze the expression of miR-100 in 138 pairs of human CRC and adjacent normal tissues. The prognostic values of miR-100 in CRC were also analyzed. The results showed that the miR-100 expression was significantly downregulated in CRC tissues when compared to adjacent normal tissues (P<0.001). Also, low miR-100 expression was observed to be significantly correlated with larger tumor size (P=0.023), higher incidence of lymph node metastasis (P=0.009), and advanced TNM stage (P=0.016). More importantly, Kaplan-Meier analysis showed that CRC patients with low miR-100 expression tended to have shorter overall survival. In multivariate analysis stratified for known prognostic variables, low miR-100 expression was identified as an independent prognostic factor for overall survival. In conclusion, our data indicated for the first time that the downregulation of miR-100 was associated with advanced clinical features and poor prognosis of CRC patients, suggesting that miR-100 downregulation may serve as an unfavorable prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Peng Chen
- Department of Gastroenterology, Zaozhuang Mining Group Central Hospital, Qilianshan Road, Zaozhuang, 277800, China,
| | | | | | | |
Collapse
|
34
|
MicroRNAs, genomic instability and cancer. Int J Mol Sci 2014; 15:14475-91. [PMID: 25141103 PMCID: PMC4159863 DOI: 10.3390/ijms150814475] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA transcripts approximately 20 nucleotides in length that regulate expression of protein-coding genes via complementary binding mechanisms. The last decade has seen an exponential increase of publications on miRNAs, ranging from every aspect of basic cancer biology to diagnostic and therapeutic explorations. In this review, we summarize findings of miRNA involvement in genomic instability, an interesting but largely neglected topic to date. We discuss the potential mechanisms by which miRNAs induce genomic instability, considered to be one of the most important driving forces of cancer initiation and progression, though its precise mechanisms remain elusive. We classify genomic instability mechanisms into defects in cell cycle regulation, DNA damage response, and mitotic separation, and review the findings demonstrating the participation of specific miRNAs in such mechanisms.
Collapse
|
35
|
Depletion of intermediate filament protein Nestin, a target of microRNA-940, suppresses tumorigenesis by inducing spontaneous DNA damage accumulation in human nasopharyngeal carcinoma. Cell Death Dis 2014; 5:e1377. [PMID: 25118937 PMCID: PMC4454294 DOI: 10.1038/cddis.2014.293] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/26/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a major malignant tumor of the head and neck region in southern China. The understanding of its underlying etiology is essential for the development of novel effective therapies. We report for the first time that microRNA-940 (miR-940) significantly suppresses the proliferation of a variety of cancer cell lines, arrests cells cycle, induces caspase-3/7-dependent apoptosis and inhibits the formation of NPC xenograft tumors in mice. We further show that miR-940 directly binds to the 3′-untranslated regions of Nestin mRNA and promotes its degradation. Likewise, depletion of Nestin inhibits tumor cell proliferation, arrest cells at G2/M, induces apoptosis and suppresses xenograft tumor formation in vivo. These functions of miR-940 can be reversed by ectopic expression of Nestin, suggesting that miR-940 regulates cell proliferation and survival through Nestin. Notably, we observed reduced miR-940 and increased Nestin levels in NPC patient samples. Protein microarray revealed that knockdown of Nestin in 5-8F NPC cells alters the phosphorylation of proteins involved in the DNA damage response, suggesting a mechanism for the miR-940/Nestin axis. Consistently, depletion of Nestin induced spontaneous DNA damage accumulation, delayed the DNA damage repair process and increased the sensitivity to irradiation and the chemotherapeutic agent doxorubicin. Collectively, our findings indicate that Nestin, which is downregulated by miR-940, can promote tumorigenesis in NPC cells through involvement in the DNA damage response. The levels of microRNA-940 and Nestin may serve as indicators of cancer status and prognosis.
Collapse
|
36
|
Qu YL, Yu H, Chen YZ, Zhao YX, Chen GJ, Bai L, Liu D, Su HX, Wang HT. Relationships between genetic polymorphisms in inflammation-related factor gene and the pathogenesis of nasopharyngeal cancer. Tumour Biol 2014; 35:9411-8. [PMID: 24952889 DOI: 10.1007/s13277-014-2123-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/20/2014] [Indexed: 11/24/2022] Open
Abstract
Our study aims to discuss the association between inflammation-related factors such as single nucleotide polymorphisms (SNPs) with susceptibility and recurrence in nasopharyngeal carcinoma. We used Taqman real-time polymerase chain reaction (PCR) to characterize the genetic variation of five SNPs in 194 nasopharyngeal carcinoma patients and 231 healthy subjects. All statistical analysis is performed with statistical product and service solutions v13.0; odds ratio (OR) value and 95 % confidence interval (CI) were calculated. There is no relationship between TGFβ1 -869 T/C, IL-6 -634C/G, TGFβ1 -509C/T, IL1 -511C/T and nasopharyngeal carcinoma susceptibility. Both single factor and multiple factors analysis showed that IL1a -889 T/T genotype is significantly associated with nasopharyngeal carcinoma in decreasing the risk of nasopharyngeal carcinoma. A highly significant association was found between IL1a -889 T/T genotype and protective genotype as defined by various pathological types. This is more obvious in the protective genotype of the non-keratin-type squamous carcinoma undifferentiated type. We also discovered that genotype G/G and C/G + G/G of IL6 -634 gene are associated with reduced recurrence of nasopharyngeal carcinoma. IL1a -889 gene polymorphism and susceptibility is related to nasopharyngeal carcinoma and can potentially decrease the risk of nasopharyngeal carcinoma in the Han Chinese population in north China. IL1-889 TT genotype is protective genotype for nasopharyngeal carcinoma. We have provided evidence that the GG genotype of the IL6 -634 gene is associated with recurrent risk of nasopharyngeal carcinoma. The G allele is the protective gene of nasopharyngeal carcinoma recurrence.
Collapse
Affiliation(s)
- Yan-Li Qu
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Chongshan Earth Street Number 4, Huanggu District, Shenyang, 110032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Akdeli N, Riemann K, Westphal J, Hess J, Siffert W, Bachmann HS. A 3'UTR polymorphism modulates mRNA stability of the oncogene and drug target Polo-like Kinase 1. Mol Cancer 2014; 13:87. [PMID: 24767679 PMCID: PMC4020576 DOI: 10.1186/1476-4598-13-87] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Polo-like Kinase 1 (PLK1) protein regulates cell cycle progression and is overexpressed in many malignant tissues. Overexpression is associated with poor prognosis in several cancer entities, whereby expression of PLK1 shows high inter-individual variability. Although PLK1 is extensively studied, not much is known about the genetic variability of the PLK1 gene. The function of PLK1 and the expression of the corresponding gene could be influenced by genomic variations. Hence, we investigated the gene for functional polymorphisms. Such polymorphisms could be useful to investigate whether PLK1 alters the risk for and the course of cancer and they could have an impact on the response to PLK1 inhibitors. METHODS The coding region, the 5' and 3'UTRs and the regulatory regions of PLK1 were systematically sequenced. We determined the allele frequencies and genotype distributions of putatively functional SNPs in 120 Caucasians and analyzed the linkage and haplotype structure using Haploview. The functional analysis included electrophoretic mobility shift assay (EMSA) for detected variants of the silencer and promoter regions and reporter assays for a 3'UTR polymorphism. RESULTS Four putatively functional polymorphisms were detected and further analyzed, one in the silencer region (rs57973275), one in the core promoter region (rs16972787), one in intron 3 (rs40076) and one polymorphism in the 3'untranslated region (3'UTR) of PLK1 (rs27770). Alleles of rs27770 display different secondary mRNA structures and showed a distinct allele-dependent difference in mRNA stability with a significantly higher reporter activity of the A allele (p < 0.01). CONCLUSION The present study provides evidence that at least one genomic variant of PLK1 has functional properties and influences expression of PLK1. This suggests polymorphisms of the PLK1 gene as an interesting target for further studies that might affect cancer risk, tumor progression as well as the response to PLK1 inhibitors.
Collapse
Affiliation(s)
- Neval Akdeli
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Kathrin Riemann
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jana Westphal
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jochen Hess
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
- Department of Urology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Hagen S Bachmann
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
38
|
Plieskatt JL, Rinaldi G, Feng Y, Levine PH, Easley S, Martinez E, Hashmi S, Sadeghi N, Brindley PJ, Bethony JM, Mulvenna JP. Methods and matrices: approaches to identifying miRNAs for nasopharyngeal carcinoma. J Transl Med 2014; 12:3. [PMID: 24393330 PMCID: PMC3895762 DOI: 10.1186/1479-5876-12-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/22/2013] [Indexed: 12/15/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a solid tumor of the head and neck. Multimodal therapy is highly effective when NPC is detected early. However, due to the location of the tumor and the absence of clinical signs, early detection is difficult, making a biomarker for the early detection of NPC a priority. The dysregulation of small non-coding RNAs (miRNAs) during carcinogenesis is the focus of much current biomarker research. Herein, we examine several miRNA discovery methods using two sample matrices to identify circulating miRNAs (c-miRNAs) associated with NPC. Methods We tested two miRNA discovery workflows on two sample sources for miRNAs associated with NPC. In the first workflow, we assumed that NPC tumor tissue would be enriched for miRNAs, so we compared miRNA expression in FFPE from NPC cases and controls using microarray and RNA-Seq technologies. Candidate miRNAs from both technologies were verified by qPCR in FFPE and sera from an independent NPC sample set. In a second workflow, we directly interrogated NPC case and control sera by RNA-Seq for c-miRNAs associated with NPC, with candidate c-miRNAs verified by qPCR in the sera from the same independent NPC sample set. Results Both microarray and RNA-Seq narrowed the miRNA signature to 1-5% of the known mature human miRNAs. Moreover, these two methods produced similar results when applied to the same sample type (FFPE), with RNA-Seq additionally indicating “unknown” miRNAs associated with NPC. However, we found different miRNA profiles in NPC sera compared to FFPE using RNA-Seq, with the few overlapping miRNAs found to be significantly up-regulated in FFPE significantly down-regulated in sera (and vice versa). Despite the different miRNA profiles found in FFPE and sera, both profiles strongly associated with NPC, providing two potential sources for biomarker signatures for NPC. Conclusions We determined that the direct interrogation of sera by RNA-Seq was the most informative method for identifying a c-miRNA signature associated with NPC. We also showed that there are different miRNA expression profiles associated with NPC for tumor tissue and sera. These results reflect on the methods and meaning of miRNA biomarkers for NPC in tissue and peripheral blood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jeffrey M Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Science, George Washington University, Washington, DC, USA.
| | | |
Collapse
|
39
|
Prognostic role of microRNA-100 in various carcinomas: evidence from six studies. Tumour Biol 2013; 35:3067-71. [PMID: 24258109 DOI: 10.1007/s13277-013-1398-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that microRNAs (miRNA) exhibit altered expression levels in cancers, and they may be considered as valuable prognostic biomarkers for patients with cancers. We performed this meta-analysis to provide a comprehensive evaluation of the role of miRNA-100 expression on the overall survival rate by calculating the pooled hazard ratio (HR) for overall survival (OS), which compared the high and low expression levels of miR-100 in patients of the available studies. Finally, a total of six studies dealing with various carcinomas were involved for this meta-analysis. The results indicated that lower expression of miR-100 in cancerous tissue could significantly predict poorer survival in various carcinomas with the pooled HR of 2.19 (95% CI 1.49-3.24, P = 0.0007). In conclusion, the findings from this present meta-analysis suggest that miR-100 expression is associated with OS in cancer patients and could be a useful clinical prognostic factor for those patients.
Collapse
|
40
|
Ma J, Jiang Z, He S, Liu Y, Chen L, Long K, Jin L, Jiang A, Zhu L, Wang J, Li M, Li X. Intrinsic features in microRNA transcriptomes link porcine visceral rather than subcutaneous adipose tissues to metabolic risk. PLoS One 2013; 8:e80041. [PMID: 24223210 PMCID: PMC3819305 DOI: 10.1371/journal.pone.0080041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/27/2013] [Indexed: 12/05/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNA ∼22 nucleotides in length that can regulate the expression of a wide range of coding genes at the post-transcriptional level. Visceral adipose tissues (VATs) and subcutaneous adipose tissues (SATs), the two main fat compartments in mammals, are anatomically, physiologically, metabolically, and clinically distinct. Various studies of adipose tissues have focused mainly on DNA methylation, and mRNA and protein expression, nonetheless little research sheds directly light on the miRNA transcriptome differences between these two distinct adipose tissue types. Here, we present a comprehensive investigation of miRNA transcriptomes across six variant porcine adipose tissues by small RNA-sequencing. We identified 219 known porcine miRNAs, 97 novel miRNA*s, and 124 miRNAs that are conserved to other mammals. A set of universally abundant miRNAs (i.e., miR-148a-3p, miR-143-3p, miR-27b-3p, miR-let-7a-1-5p, and miR-let-7f-5p) across the distinct adipose tissues was found. This set of miRNAs may play important housekeeping roles that are involved in adipogenesis. Clustering analysis indicated significant variations in miRNA expression between the VATs and SATs, and highlighted the role of the greater omentum in responding to potential metabolic risk because of the observed enrichment in this tissue of the immune- and inflammation-related miRNAs, such as the members of miR-17-92 cluster and miR-181 family. Differential expression of the miRNAs between the VATs and SATs, and miRNA target prediction analysis revealed that the VATs-specific enriched miRNAs were associated mainly with immune and inflammation responses. In summary, the differences of miRNA expression between the VATs and SATs revealed some of their intrinsic differences and indicated that the VATs might be closely associated with increased risk of metabolic disorders.
Collapse
Affiliation(s)
- Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Shen He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yingkai Liu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Lei Chen
- Chongqing Academy of Animal Science, Chongqing, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - An'an Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Li Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
- * E-mail: (ML); (XL)
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
- * E-mail: (ML); (XL)
| |
Collapse
|
41
|
Chen P, Zhao X, Ma L. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem 2013; 383:49-58. [PMID: 23842624 DOI: 10.1007/s11010-013-1753-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that dysregulation of microRNAs is correlated with malignant transformation and tumor development. miR-100, a potential tumor suppressor, is downregulated by many human cancers. However, the expression and functions of miR-100 in hepatocellular carcinoma (HCC) are still unclear. The aim of this study was to detect the expression of miR-100 in HCC tissues and investigate its clinicopathological and prognostic significance. Also, the effects of miR-100 on growth and apoptosis of HCC cells and its potential molecular mechanisms were analyzed. Results showed that the expression level of miR-100 in HCC tissues was significantly lower than that in matched non-cancerous liver tissues. Also, low-miR-100 expression was observed to be significantly correlated with higher tumor grade, higher incidence of lymph node metastasis, advanced TNM stage and higher incidence of tumor recurrence in HCC patients. Multivariate survival analyses suggested that low-miR-100 expression was an independent prognostic factor for HCC patients (HR = 1.66, 95 % CI 1.32-2.82, P = 0.019). In addition, we found that upregulation of miR-100 could inhibit growth and increase apoptosis of HCC cells by downregulating polo-like kinase 1 (plk1). In HCC tissues, miR-100 expression was inversely correlated with the expression of plk1 protein (r = -0.418; P = 0.029). Therefore, downregulation of miR-100 was correlated with progressive pathological feature and poor prognosis in HCC patients, and miR-100 could function as a tumor suppressor by targeting plk1. miR-100 may serve as a prognostic marker and molecular therapeutic target in HCC.
Collapse
Affiliation(s)
- Ping Chen
- Department of Medical Oncology, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital, Medical School of Nantong University, No. 14 Yuehe Road, Tinghu District, Yancheng, 224001, Jiangsu, People's Republic of China,
| | | | | |
Collapse
|
42
|
Cui SY, Wang R, Chen LB. MicroRNAs: key players of taxane resistance and their therapeutic potential in human cancers. J Cell Mol Med 2013; 17:1207-17. [PMID: 24106980 PMCID: PMC4159023 DOI: 10.1111/jcmm.12131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/15/2013] [Indexed: 01/01/2023] Open
Abstract
The successful long-term use of taxane for cancer therapy is often prevented by the development of drug resistance in clinic. Thus, exploring the mechanisms involved is a first step towards rational strategies to overcome taxane resistance. Taxane resistance-related microRNA (miRNAs) are under investigation and miRNAs could induce the taxane resistance of tumour cells by regulating cell cycle distribution, survival and/or apoptosis pathways, drug transports, epithelial–mesenchymal transition and cancer stem cell. This article summarizes current research involving miRNAs as regulators of key target genes for tanxanxe chemoresistance and discusses the complex regulatory networks of miRNAs. Also, the authors will envisage future developments towards the potential use of targeting miRNAs as a novel strategy for improving response of tumour patients to taxane. miRNAs play critical roles in taxane chemoresistance and the miRNA-based therapies will be helpful for overcoming drug resistance and developing more effective personalized anti-cancer treatment strategies. Further research studies should be performed to promote therapeutic–clinical use of taxane resistance-related miRNAs in cancer patients, especially in those patients with taxane-resistant cancers.
Collapse
Affiliation(s)
- Shi-Yun Cui
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, China
| | | | | |
Collapse
|
43
|
Alajez NM, Shi W, Wong D, Lenarduzzi M, Waldron J, Weinreb I, Liu FF. Lin28b promotes head and neck cancer progression via modulation of the insulin-like growth factor survival pathway. Oncotarget 2013; 3:1641-52. [PMID: 23482325 PMCID: PMC3681501 DOI: 10.18632/oncotarget.785] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lin28 is a developmentally regulated RNA binding protein which has recently emerged as key regulator in the biogenesis of the let-7 micro-RNA family. While the expression of Lin28b has been linked to advanced tumor stage, the precise molecular mechanism(s) by which Lin28b drives disease progression is still being unraveled. Herein, we generated a let-7-resistant Lin28b ORF, stably expressed in the FaDu head and neck cancer (HNC) cell line. FaDu-Lin28b cells exhibited enhanced tumor growth in vitro and in vivo. Global gene and micro-RNA expression analyses revealed significant enrichment in several pathways involved in cell migration, chromatin remodeling, and cellular stress response. Direct regulation of selected genes (HMGA2, CCND2, IGF1R, and IGF2BP2) via a let-7-Lin28b mechanism was validated. Notably, up-regulation of several genes in the IGF pathway in Lin28b-expressing cells was observed. Functional studies revealed significant increase in the survival of Lin28b-expressing cells when cultured under stress conditions, which was dependent on the presence of IGF1. Therefore, our data identified several novel gene targets for Lin28b-let7, and revealed a novel mechanism by which Lin28b promote tumorigenesis. Concordantly, clinical examinations of Lin28b, IGF2BP2 and IGF2 revealed a significant association between the expression of these genes with disease relapse, thereby corroborating the potential relevance for the Lin28b/IGF axis in HNC progression.
Collapse
Affiliation(s)
- Nehad M Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
44
|
Louwen F, Yuan J. Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget 2013; 4:958-71. [PMID: 23948487 PMCID: PMC3759674 DOI: 10.18632/oncotarget.1096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023] Open
Abstract
Polo-like kinase 1, a pivotal regulator of mitosis and cytokinesis, is highly expressed in a broad spectrum of tumors and its expression correlates often with poor prognosis, suggesting its potential as a therapeutic target. p53, the guardian of the genome, is the most important tumor suppressor. In this review, we address the intertwined relationship of these two key molecules by fighting each other as eternal rivals in many signaling pathways. p53 represses the promoter of Polo-like kinase 1, whereas Polo-like kinase 1 inhibits p53 and its family members p63 and p73 in cancer cells lacking functional p53. Plk1 inhibitors target all rapidly dividing cells irrespective of tumor cells or non-transformed normal but proliferating cells. Upon treatment with Plk1 inhibitors, p53 in tumor cells is activated and induces strong apoptosis, whereas tumor cells with inactive p53 arrest in mitosis with DNA damage. Thus, inactive p53 is not associated with a susceptible cytotoxicity of Polo-like kinase 1 inhibition and could rather foster the induction of polyploidy/aneuploidy in surviving cells. In addition, compared to the mono-treatment, combination of Polo-like kinase 1 inhibition with anti-mitotic or DNA damaging agents boosts more severe mitotic defects, effectually triggers apoptosis and strongly inhibits proliferation of cancer cells with functional p53. In this regard, restoration of p53 in tumor cells with loss or mutation of p53 will reinforce the cytotoxicity of combined Polo-like kinase 1 therapy and provide a proficient strategy for combating relapse and metastasis of cancer.
Collapse
Affiliation(s)
- Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
45
|
Jin Y, Tymen SD, Chen D, Fang ZJ, Zhao Y, Dragas D, Dai Y, Marucha PT, Zhou X. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS One 2013; 8:e64434. [PMID: 23724047 PMCID: PMC3665798 DOI: 10.1371/journal.pone.0064434] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/15/2013] [Indexed: 11/25/2022] Open
Abstract
Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3′-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling.
Collapse
Affiliation(s)
- Yi Jin
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Stéphanie D. Tymen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dan Chen
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zong Juan Fang
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dragan Dragas
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Phillip T. Marucha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PTM); (XZ)
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PTM); (XZ)
| |
Collapse
|
46
|
Liu J, Lu KH, Liu ZL, Sun M, De W, Wang ZX. MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer 2012; 12:519. [PMID: 23151088 PMCID: PMC3521172 DOI: 10.1186/1471-2407-12-519] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/12/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Polo-like kinase 1 (PLK1) is highly expressed in many human cancers and regulates critical steps in mitotic progression. Previously, we have reported that PLK1 was overexpressed in non-small cell lung cancer (NSCLC), but the underlying molecular mechanisms are not well understood. By using microRNA (miR) target prediction algorithms, we identified miR-100 that might potentially bind the 3'-untranslated region of PLK1 transcripts. The purpose of this study was to investigate the roles of miR-100 and its association with PLK1 in NSCLC development. METHODS Taqman real-time quantitative RT-PCR assay was performed to detect miR-100 expression 10 NSCLC tissues and corresponding nontumor tissues. Additionally, the expression of miR-100 in 110 NSCLC tissues and its correlation with clinicopathological factors or prognosis of patients was analyzed. Finally, the effects of miR-100 expression on growth, apoptosis and cell cycle of NSCLC cells by posttranscriptionally regulating PLK1 expression were determined. RESULTS MiR-100 was significantly downregulated in NSCLC tissues, and low miR-100 expression was found to be closely correlated with higher clinical stage, advanced tumor classification and lymph node metastasis of patients. The overall survival of NSCLC patients with low miR-100 was significantly lower than that of those patients with high miR-100, and univariate and multivariate analyses indicated that low miR-100 expression might be a poor prognostic factor. Also, miR-100 mimics could lead to growth inhibition, G2/M cell cycle arrest and apoptosis enhancement in NSCLC cells. Meanwhile, miR-100 mimics could significantly inhibit PLK1 mRNA and protein expression and reduce the luciferase activity of a PLK1 3' untranslated region-based reporter construct in A549 cells. Furthermore, small interfering RNA (siRNA)-mediated PLK1 downregulation could mimic the effects of miR-100 mimics while PLK1 overexpression could partially rescue the phenotypical changes of NSCLC cells induced by miR-100 mimics. CONCLUSIONS Our findings indicate that low miR-100 may be a poor prognostic factor for NSCLC patients and functions as a tumor suppressor by posttranscriptionally regulating PLK1 expression.
Collapse
MESH Headings
- 3' Untranslated Regions
- Apoptosis/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Cycle Checkpoints
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Division/genetics
- Cell Growth Processes/genetics
- Cell Line, Tumor
- Down-Regulation
- G2 Phase/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphatic Metastasis
- MicroRNAs/genetics
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Jing Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210011, Peoples Republic of China
| | - Kai-Hua Lu
- Immunology and Reproductive Biology Lab of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, Peoples Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, Peoples Republic of China
| | - Zhi-Li Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210011, Peoples Republic of China
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, Peoples Republic of China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, Peoples Republic of China
| | - Zhao-Xia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210011, Peoples Republic of China
| |
Collapse
|
47
|
Bhattacharjya S, Nath S, Ghose J, Maiti GP, Biswas N, Bandyopadhyay S, Panda CK, Bhattacharyya NP, Roychoudhury S. miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression. Cell Death Differ 2012; 20:430-42. [PMID: 23099851 DOI: 10.1038/cdd.2012.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The spindle assembly checkpoint (SAC) is a 'wait-anaphase' mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome-spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 - which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b.
Collapse
Affiliation(s)
- S Bhattacharjya
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja SC Mullick Road, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bai J, Guo A, Hong Z, Kuai W. Upregulation of microRNA-100 predicts poor prognosis in patients with pediatric acute myeloid leukemia. Onco Targets Ther 2012; 5:213-9. [PMID: 23055746 PMCID: PMC3457676 DOI: 10.2147/ott.s36017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Indexed: 11/23/2022] Open
Abstract
Objective: MicroRNA-100 (miR-100), a small noncoding RNA molecule, acts as a tumor suppressor or an oncogene in different cancers. The aberrant expression of this microRNA has been demonstrated as a frequent event in adult patients with acute myeloid leukemia (AML), but little is known for pediatric AML. The aim of this study was to investigate the expression and clinical significance of miR-100 in pediatric AML. Methods: The expression levels of miR-100 in bone marrow mononuclear cells were detected by real-time quantitative polymerase chain reaction in a cohort of 106 patients with de novo pediatric AML. The prognostic values of miR-100 in pediatric AML were also analyzed. Results: Compared with normal controls, upregulation of miR-100 in the bone marrow of pediatric AML patients with statistically significant differences (P < 0.001) was found. The expression levels of miR-100 were found to be significantly higher in pediatric AML patients with extramedullary disease, with the French–American–British classification subtype M7, and with unfavorable day 7 response to induction chemotherapy (P = 0.008, 0.001 and 0.01, respectively). Moreover, both univariate and multivariate analyses revealed that miR-100 upregulation was associated with poorer relapse-free and overall survival in pediatric AML patients. Conclusion: This is the first report demonstrating the upregulation of miR-100 in pediatric AML, and its association with poor relapse-free and overall survival. These results suggest that miR-100 upregulation may be used as an unfavorable prognostic marker in pediatric AML.
Collapse
Affiliation(s)
- Jin Bai
- Department of Pediatrics, Huai'an Hospital to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, China
| | | | | | | |
Collapse
|
49
|
Zhao L, Bode AM, Cao Y, Dong Z. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis 2012; 33:2220-7. [PMID: 22798379 PMCID: PMC3483015 DOI: 10.1093/carcin/bgs235] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNA (miRNA) influences carcinogenesis at multiple stages and it can effectively control tumor radiosensitivity by affecting DNA damage repair, cell cycle checkpoint, apoptosis, radio-related signal transduction pathways and tumor microenvironment. MiRNA also efficiently modulates tumor radiosensitivity at multiple levels by blocking the two essential non-homologous end-joining repair and homologous recombination repair pathways in the DNA damage response. It interferes with four radio-related pathways in ionizing radiation, including the PI3-K/Akt, NF-κB, MAPK and TGFβ signaling pathways. Moreover, the regulatory effect of miRNA in radiosensitivity can be enhanced when interacting with various key molecules, including H2AX, BRCA1, ATM, DNA-PK, RAD51, Chk1, Cdc25A, p53, PLK1, HIF-1 and VEGF, which are involved in these processes. Therefore, thoroughly understanding the mechanism of miRNA in tumor radiosensitivity could assist in finding novel targets to improve the radiotherapeutic effects and provide new clinical perspectives and insights for developing effective cancer treatments.
Collapse
Affiliation(s)
- Luqing Zhao
- Cancer Research Institute, Xiangya School of Medicine, Central South University Changsha 410078, China
| | | | | | | |
Collapse
|
50
|
Biomarkers for use in monitoring responses of nasopharyngeal carcinoma cells to ionizing radiation. SENSORS 2012; 12:8832-46. [PMID: 23012520 PMCID: PMC3444078 DOI: 10.3390/s120708832] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/06/2012] [Accepted: 06/06/2012] [Indexed: 02/05/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a common head and neck cancer. The incidence rate is higher in southern China and Southeast Asia in comparison with the Western countries. Radiotherapy is the standard treatment of NPC as the cancer cells are sensitive to ionizing radiation. Radiation treatment has good local control to patients with early NPC. It is essential to monitor the response of the NPC cells to radiation treatment in advance in order to select suitable treatment choice for the patients. This review aims to discuss the potential use of biomarkers in monitoring the responsiveness of NPC cells to radiation treatment.
Collapse
|