1
|
Wong K, Liu Y, Wong M, Liu J. Cornea-SELEX for aptamers targeting the surface of eyes and liposomal drug delivery. EXPLORATION (BEIJING, CHINA) 2024; 4:20230008. [PMID: 39175889 PMCID: PMC11335462 DOI: 10.1002/exp.20230008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
Cornea is the major barrier to drug delivery to the eye, which results in low bioavailability and poor efficacy of topical eye treatment. In this work, we first select cornea-binding aptamers using tissue-SELEX on pig cornea. The top two abundant aptamers, Cornea-S1 and Cornea-S2, could bind to pig cornea, and their K d values to human corneal epithelial cells (HCECs) were 361 and 174 nм, respectively. Aptamer-functionalized liposomes loaded with cyclosporine A (CsA) were developed as a treatment for dry eye diseases. The K d of Cornea-S1- or Cornea-S2-functionalized liposomes reduces to 1.2 and 15.1 nм, respectively, due to polyvalent binding. In HCECs, Cornea-S1 or Cornea-S2 enhanced liposome uptake within 15 min and extended retention to 24 h. Aptamer CsA liposomes achieved similar anti-inflammatory and tight junction modulation effects with ten times less CsA than a free drug. In a rabbit dry eye disease model, Cornea-S1 CsA liposomes demonstrated equivalence in sustaining corneal integrity and tear break-up time when compared to commercial CsA eye drops while utilizing a lower dosage of CsA. The aptamers obtained from cornea-SELEX can serve as a general ligand for ocular drug delivery, suggesting a promising avenue for the treatment of various eye diseases and even other diseases.
Collapse
Affiliation(s)
- Ka‐Ying Wong
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong KongHong Kong
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong KongHong Kong
| | - Man‐Sau Wong
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong KongHong Kong
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong
- Research Center for Chinese Medicine InnovationThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong SARP. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong KongHong Kong
| |
Collapse
|
2
|
Nafo W. Polymer-based nanosystems and their applications in bone anticancer therapy. Front Chem 2023; 11:1218511. [PMID: 37483271 PMCID: PMC10361662 DOI: 10.3389/fchem.2023.1218511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
The mortality rate of bone cancer has witnessed a substantial reduction in recent years, all thanks to the advent of advanced cancer treatment modalities such as surgical intervention, radiation, and chemotherapy. Nevertheless, these popular modalities come with a set of clinical challenges, including non-specificity, side effects, and drug intolerance. In recent years, polymer-based nanosystems have emerged as a promising solution in bone anti-cancer therapy by virtue of their unique physical and chemical properties. These nanosystems can be tailored for use in different drug release mechanisms for therapeutic implementations. This review delves into the efficacy of these therapy applications in bone cancer (with a focus on one of the most common types of cancers, Osteosarcoma) treatment and their correlation with the properties of polymer-based nanosystems, in addition to their interaction with the tumor microenvironment and the biological milieu.
Collapse
|
3
|
Liu X, Hu J, Ning Y, Xu H, Cai H, Yang A, Shi Z, Li Z. Aptamer Technology and Its Applications in Bone Diseases. Cell Transplant 2023; 32:9636897221144949. [PMID: 36591965 PMCID: PMC9811309 DOI: 10.1177/09636897221144949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aptamers are single-stranded nucleic acids (DNA, short RNA, or other artificial molecules) produced by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology, which can be tightly and specifically combined with desired targets. As a comparable alternative to antibodies, aptamers have many advantages over traditional antibodies such as a strong chemical stability and rapid bulk production. In addition, aptamers can bind targets in various ways, and are not limited like the antigen-antibody combination. Studies have shown that aptamers have tremendous potential to diagnose and treat clinical diseases. However, only a few aptamer-based drugs have been used because of limitations of the aptamers and SELEX technology. To promote the development and applications of aptamers, we present a review of the methods optimizing the SELEX technology and modifying aptamers to boost the selection success rate and improve aptamer characteristics. In addition, we review the application of aptamers to treat bone diseases.
Collapse
Affiliation(s)
- Xiangzhong Liu
- Department of Orthopaedics, Wuhan Third
Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Jing Hu
- Wuhan Children’s Hospital, Tongji
Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yu Ning
- Department of Orthopaedics, Xiangyang
Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese
Medicine, Xiangyang, China
| | - Haijia Xu
- Department of Orthopaedics, Wuhan Third
Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Hantao Cai
- Department of Orthopaedics, Wenling
First People’s Hospital, Taizhou, China
| | - Aofei Yang
- Department of Orthopaedics, Hubei
Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhengshuai Shi
- Department of Orthopaedics, Wuhan
Sports University, Wuhan, China
| | - Zhanghua Li
- Department of Orthopaedics, Wuhan Third
Hospital, Tongren Hospital of Wuhan University, Wuhan, China,Zhanghua Li, Department of Orthopaedics,
Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 216, Guanshan
Avenue, Hongshan District, Wuhan 430074, Hubei Province, China.
| |
Collapse
|
4
|
Aptamer Targets Triple-Negative Breast Cancer through Specific Binding to Surface CD49c. Cancers (Basel) 2022; 14:cancers14061570. [PMID: 35326720 PMCID: PMC8946172 DOI: 10.3390/cancers14061570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Targeted therapy directed against many biomarkers has not shown significant improvement in outcome in TNBC, and therefore it is urgent to discover more biomarker candidates. Here, we found a DNA aptamer that bound to TNBC cells and identified CD49c as a specific surface marker for TNBC cells using the aptamer-facilitated biomarker discovery technology. The findings suggest that this DNA aptamer can be a drug delivery vehicle and CD49c is a potential target of targeted therapy for TNBC. Abstract Although targeted cancer therapy can induce higher therapeutic efficacy and cause fewer side effects in patients, the lack of targetable biomarkers on triple-negative breast cancer (TNBC) cells limits the development of targeted therapies by antibody technology. Therefore, we investigated an alternative approach to target TNBC by using the PDGC21T aptamer, which selectively binds to poorly differentiated carcinoma cells and tumor tissues, although the cellular target is still unknown. We found that synthetic aptamer probes specifically bound cultured TNBC cells in vitro and selectively targeted TNBC xenografts in vivo. Subsequently, to identify the target molecule on TNBC cells, we performed aptamer-mediated immunoprecipitation in lysed cell membranes followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Sequencing analysis revealed a highly conserved peptide sequence consistent with the cell surface protein CD49c (integrin α3). For target validation, we stained cultured TNBC and non-TNBC cells with an aptamer probe or a CD49c antibody and found similar cell staining patterns. Finally, competition cell-binding assays using both aptamer and anti-CD49c antibody revealed that CD49c is the biomarker targeted by the PDGC21T aptamer on TNBC cells. Our findings provide a molecular foundation for the development of targeted TNBC therapy using the PDGC21T aptamer as a targeting ligand.
Collapse
|
5
|
Qian S, Chang D, He S, Li Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal Chim Acta 2022; 1196:339511. [DOI: 10.1016/j.aca.2022.339511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
|
6
|
Shigdar S, Agnello L, Fedele M, Camorani S, Cerchia L. Profiling Cancer Cells by Cell-SELEX: Use of Aptamers for Discovery of Actionable Biomarkers and Therapeutic Applications Thereof. Pharmaceutics 2021; 14:28. [PMID: 35056924 PMCID: PMC8781458 DOI: 10.3390/pharmaceutics14010028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The identification of tumor cell-specific surface markers is a key step towards personalized cancer medicine, allowing early assessment and accurate diagnosis, and development of efficacious targeted therapies. Despite significant efforts, currently the spectrum of cell membrane targets associated with approved treatments is still limited, causing an inability to treat a large number of cancers. What mainly limits the number of ideal clinical biomarkers is the high complexity and heterogeneity of several human cancers and still-limited methods for molecular profiling of specific cancer types. Thanks to the simplicity, versatility and effectiveness of its application, cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology is a valid complement to the present strategies for biomarkers' discovery. We and other researchers worldwide are attempting to apply cell-SELEX to the generation of oligonucleotide aptamers as tools for both identifying new cancer biomarkers and targeting them by innovative therapeutic strategies. In this review, we discuss the potential of cell-SELEX for increasing the currently limited repertoire of actionable cancer cell-surface biomarkers and focus on the use of the selected aptamers as components of innovative conjugates and nano-formulations for cancer therapy.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Geelong 3220, Australia;
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, S. Andrea Delle Dame-Via L. De Crecchio 7, 80138 Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
| |
Collapse
|
7
|
Qriouet Z, Cherrah Y, Sefrioui H, Qmichou Z. Monoclonal Antibodies Application in Lateral Flow Immunochromatographic Assays for Drugs of Abuse Detection. Molecules 2021; 26:1058. [PMID: 33670468 PMCID: PMC7922373 DOI: 10.3390/molecules26041058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/23/2022] Open
Abstract
Lateral flow assays (lateral flow immunoassays and nucleic acid lateral flow assays) have experienced a great boom in a wide variety of early diagnostic and screening applications. As opposed to conventional examinations (High Performance Liquid Chromatography, Polymerase Chain Reaction, Gas chromatography-Mass Spectrometry, etc.), they obtain the results of a sample's analysis within a short period. In resource-limited areas, these tests must be simple, reliable, and inexpensive. In this review, we outline the production process of antibodies against drugs of abuse (such as heroin, amphetamine, benzodiazepines, cannabis, etc.), used in lateral flow immunoassays as revelation or detection molecules, with a focus on the components, the principles, the formats, and the mechanisms of reaction of these assays. Further, we report the monoclonal antibody advantages over the polyclonal ones used against drugs of abuse. The perspective on aptamer use for lateral flow assay development was also discussed as a possible alternative to antibodies in view of improving the limit of detection, sensitivity, and specificity of lateral flow assays.
Collapse
Affiliation(s)
- Zidane Qriouet
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco; (Z.Q.); (H.S.)
- Laboratoire de Pharmacologie et Toxicologie, Faculté de Médecine et de Pharmacie, Université Mohammed V-Souissi, Rabat 10100, Morocco;
| | - Yahia Cherrah
- Laboratoire de Pharmacologie et Toxicologie, Faculté de Médecine et de Pharmacie, Université Mohammed V-Souissi, Rabat 10100, Morocco;
| | - Hassan Sefrioui
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco; (Z.Q.); (H.S.)
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco; (Z.Q.); (H.S.)
| |
Collapse
|
8
|
Han L, Wang JN, Cao XQ, Sun CX, Du X. An-te-xiao capsule inhibits tumor growth in non-small cell lung cancer by targeting angiogenesis. Biomed Pharmacother 2018; 108:941-951. [PMID: 30372906 DOI: 10.1016/j.biopha.2018.09.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
An-te-xiao capsule consists of total alkaloids from the dried whole plantof Solanum lyratum, and showed antitumor effects in our previous study. However, its inhibitory effect on multiple non-small cell lung cancer (NSCLC) cell lines and the underlying mechanisms have not been elucidated clearly. This study sought to investigate the inhibitory effects of An-te-xiao capsule on three main types of NSCLC cell lines (A549, NCI-H460, and NCI-H520) in vitro and in vivo and the underlying mechanisms of action including its potential anti-angiogenesis effects. An-te-xiao capsule showed no acute oral toxicity in mice, and significantly prolonged survival time in a mouse model of Lewis tumor xenograft. The inhibition of A549, NCI-H460, and NCI-H520 cells by An-te-xiao capsule was reflected in its effects on tumor growth, histopathological changes, tumor microvessel density (MVD), cell cycle regulatory proteins, and cell apoptosis. In vitro, An-te-xiao capsule repressed migration, invasion, and tube formation of tumor-derived vascular endothelial cells (Td-ECs), which were obtained using a co-culture system, in the presence or absence of vascular endothelial growth factor (VEGF) at safe concentrations selected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, An-te-xiao capsule inhibited the secretion of VEGF by A549 cells in the co-culture system and suppressed the phosphorylation of VEGF receptor 2 (VEGFR2). Taken together, An-te-xiao capsule has potential for treating NSCLC.
Collapse
Affiliation(s)
- Lin Han
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China
| | - Jian-Nong Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China.
| | - Xiao-Qiang Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China
| | - Cai-Xia Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China
| | - Xiao Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China
| |
Collapse
|
9
|
Wang L, Li P, Xiao X, Li J, Li J, Yang HH, Tan W. Generating lung-metastatic osteosarcoma targeting aptamers for in vivo and clinical tissue imaging. Talanta 2018; 188:66-73. [PMID: 30029428 DOI: 10.1016/j.talanta.2018.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Osteosarcoma (OS) is one of most malignant bone tumors in early adolescence, which is a highly metastatic cancer and pulmonary metastasis is the most common cause of death. Thus, the development of efficient approaches to discover potential compounds that target metastasis of OS remains a topic of considerable interest. In this study, subtractive Cell-SELEX was performed to screen OS metastasis specific DNA aptamers by using cell lines with similar tumorigenic potentials but opposite metastatic aggressiveness (highly metastatic 143B cells and non-metastatic U-2 OS cells as the target and negative cells, respectively). This in vitro selection generated an ssDNA aptamer LP-16 that exhibited high binding affinity to 143B cells with an equilibrium dissociation constant (Kd) of 56.73 ± 7.750 nM. However, the aptamer LP-16 did not bind to the non-metastatic U-2 OS and normal hFOB 1.19 cells. We further preliminarily presumed the target molecules of aptamer LP-16 was a membrane protein on the cell surface by proteinase treatment. Furthermore, both in vivo fluorescence imaging and clinical tissue imaging also clearly demonstrated that LP-16 could achieve prominently targeting efficiency. Therefore, the ssDNA aptamer LP-16 generated here could be a promising molecular probe for OS metastasis diagnosis. We have developed subtractive Cell-SELEX to screen osteosarcoma metastasis specific DNA aptamers by using cell lines with similar tumorigenic potentials but opposite metastatic aggressiveness (highly metastatic 143B cells and non-metastatic U-2 OS cells as the target and negative cells, respectively).
Collapse
Affiliation(s)
- Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Peipei Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Xue Xiao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
10
|
Selection of Aptamers Against Whole Living Cells: From Cell-SELEX to Identification of Biomarkers. Methods Mol Biol 2018; 1575:253-272. [PMID: 28255886 DOI: 10.1007/978-1-4939-6857-2_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aptamer selection protocols, named cell-SELEX, have been developed to target trans-membrane proteins using whole living cells as target. This technique presents several advantages. (1) It does not necessitate the use of purified proteins. (2) Aptamers are selected against membrane proteins in their native conformation. (3) Cell-SELEX can be performed to identify aptamers against biomarkers differentially expressed between different cell lines without prior knowledge of the targets. (4) Aptamers identified by cell-SELEX can be further used to purify their targets and to identify new biomarkers. Here, we provide a protocol of cell-SELEX including the preparation of an oligonucleotide library, next-generation sequencing and radioactive binding assays. Furthermore, we also provide a protocol to purify and identify the target of these aptamers. These protocols could be useful for the discovery of lead therapeutic compounds and diagnostic cell-surface biomarkers.
Collapse
|
11
|
Civit L, Taghdisi SM, Jonczyk A, Haßel SK, Gröber C, Blank M, Stunden HJ, Beyer M, Schultze J, Latz E, Mayer G. Systematic evaluation of cell-SELEX enriched aptamers binding to breast cancer cells. Biochimie 2017; 145:53-62. [PMID: 29054799 DOI: 10.1016/j.biochi.2017.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
The sensitive and specific detection of pathogenic cells is essential in clinical diagnostics. To achieve this, molecular tools are required that unequivocally recognise appropriate cell surface molecules, such as biomarkers that come along with disease onset and progression. Aptamers are short single-stranded oligonucleotides that interact with cognate target molecules with high affinity and specificity. Within the last years they have gained an increased attention as cell-recognition tools. Here, we report a systematic analysis of a cell-SELEX procedure, for the identification of aptamers that recognise breast cancer cells. Besides a comparison of conventional (Sanger) with high-throughput sequencing techniques (next-generation sequencing), three different screening techniques have been applied to characterise the binding properties of selected aptamer candidates. This method has been found to be beneficial in finding DNA aptamers, rarely enriched in the libraries. Finally, four DNA aptamers were identified that exhibit broad-spectrum interaction patterns to different cancer cell lines derived from solid tumours.
Collapse
Affiliation(s)
- Laia Civit
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Seyed Mohammad Taghdisi
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Anna Jonczyk
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Silvana K Haßel
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Carsten Gröber
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg-Martinsried, Germany
| | - Michael Blank
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg-Martinsried, Germany
| | - H James Stunden
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Joachim Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany; Center of Aptamer Research and Development (CARD), University of Bonn, Gerhard-Domagk Str. 1, 53121, Bonn, Germany.
| |
Collapse
|
12
|
Ranches G, Lukasser M, Schramek H, Ploner A, Stasyk T, Mayer G, Mayer G, Hüttenhofer A. In Vitro Selection of Cell-Internalizing DNA Aptamers in a Model System of Inflammatory Kidney Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:198-210. [PMID: 28918021 PMCID: PMC5504087 DOI: 10.1016/j.omtn.2017.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 12/29/2022]
Abstract
Chronic kidney disease (CKD) is a progressive pathological condition marked by a gradual loss of kidney function. Treatment of CKD is most effective when diagnosed at an early stage and patients are still asymptomatic. However, current diagnostic biomarkers (e.g., serum creatinine and urine albumin) are insufficient for prediction of the pathogenesis of the disease. To address this need, we applied a cell-SELEX (systematic evolution of ligands by exponential enrichment) approach and identified a series of DNA aptamers, which exhibit high affinity and selectivity for cytokine-stimulated cells, resembling some aspects of a CKD phenotype. The cell-SELEX approach was driven toward the enrichment of aptamers that internalize via the endosomal pathway by isolating the endosomal fractions in each selection cycle. Indeed, we demonstrated co-localization of selected aptamers with lysosomal-associated membrane protein 1 (LAMP-1), a late endosomal and lysosomal marker protein, by fluorescence in situ hybridization. These findings are consistent with binding and subsequent internalization of the aptamers into cytokine-stimulated cells. Thus, our study sets the stage for applying selected DNA aptamers as theragnostic reagents for the development of targeted therapies to combat CKD.
Collapse
Affiliation(s)
- Glory Ranches
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria; Division of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Melanie Lukasser
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Herbert Schramek
- Division of Nephrology and Hypertension, Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Andreas Ploner
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria; Sandoz GmbH, Biochemiestrasse 10, Kundl 6250, Austria
| | - Taras Stasyk
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Gert Mayer
- Division of Nephrology and Hypertension, Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Günter Mayer
- Life and Medical Sciences Institute, Chemical Biology and Chemical Genetics, University of Bonn, Bonn 53115, Germany; Centre of Aptamer Research and Development, University of Bonn, Bonn 53115, Germany
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
13
|
Abstract
Aptamers are nucleic acids referred to as chemical antibodies as they bind to their specific targets with high affinity and selectivity. They are selected via an iterative process known as ‘selective evolution of ligands by exponential enrichment’ (SELEX). Aptamers have been developed against numerous cancer targets and among them, many tumor cell-membrane protein biomarkers. The identification of aptamers targeting cell-surface proteins has mainly been performed by two different strategies: protein- and cell-based SELEX, when the targets used for selection were proteins and cells, respectively. This review aims to update the literature on aptamers targeting tumor cell surface protein biomarkers, highlighting potentials, pitfalls of protein- and cell-based selection processes and applications of such selected molecules. Aptamers as promising agents for diagnosis and therapeutic approaches in oncology are documented, as well as aptamers in clinical development.
Collapse
|
14
|
Sakurai Y, Kajimoto K, Harashima H. Anti-angiogenic nanotherapy via active targeting systems to tumors and adipose tissue vasculature. Biomater Sci 2017; 3:1253-65. [PMID: 26261854 DOI: 10.1039/c5bm00113g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sophisticated drug delivery systems (DDS) are required for delivering drugs, especially macromolecules such as nucleic acids or proteins, to their sites of action. Therefore it is a prerequisite that future DDS are designed to selectively target a tissue. In this review, we focus on systems that actively target the vasculature in tumors or adipose tissues. For targeting tumor vasculatur, a new strategy referred to as dual-targeting is proposed that uses a combination of a receptor specific ligand and a cell penetrating peptide, which can induce the synergistic enhancement of tissue selectivity under in vivo conditions. A novel pH-sensitive cationic lipid was designed to enhance the endosomal release of encapsulated compounds such as siRNA as well as to improve the stability in blood circulation after intravenous administration. A cyclic RGD peptide is used as an active targeting ligand. For targeting adipose vasculature, prohibitin, which is expressed on the surface of adipose endothelial cells, was targeted with KGGRAKD peptides on the surface of PEGylated nanoparticles. Prohibitin targeted nanoparticles (PTNP) encapsulating Cytochrome c (CytC) can selectively target adipose vasculature by optimizing the lengths of the PEG linkers and can deliver CytC to adipose endothelial cells. PTNP can successfully induce anti-obese effects as well as apoptosis by delivering CytC to the cytosol in endothelial cells. Unexpectedly, the EPR (enhanced permeability and retention) effect, which is usually observed in tumor tissue, was also observed in the adipose vasculature, especially in obese mice, where PEGylated nanoparticles can pass through the endothelial barriers in adipose tissue. We believe that these achievements in active targeting will allow a greatly expanded use of DDS for nanomedicines.
Collapse
Affiliation(s)
- Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| | | | | |
Collapse
|
15
|
Rong Y, Chen H, Zhou XF, Yin CQ, Wang BC, Peng CW, Liu SP, Wang FB. Identification of an aptamer through whole cell-SELEX for targeting high metastatic liver cancers. Oncotarget 2016; 7:8282-94. [PMID: 26882565 PMCID: PMC4884992 DOI: 10.18632/oncotarget.6988] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/13/2016] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly human cancers due to its ability of invasion and metastasis. Thus, the approaches to identify potential compounds that inhibit invasion and metastasis of HCC are critical for treatment of this disease. In the present study, we used HCCLM9 cells with high metastatic potential and MHCC97L with low metastatic potential as a model system to study the molecular mechanisms of HCC metastasis. By applying cell- Systematic Evolution of Ligands by Exponential enrichment (SELEX) against living cells, we used HCCLM9 as target cells and MHCC97L cells as control to screen a group of HCC metastasis- and cell-specific DNA aptamers. One of selected aptamers, LY-1, could specifically bind to metastatic HCC with a dissociation constant (Kd) in nanomolar range. In vitro studies demonstrated that LY-1 can recognize and bind to membrane protein of metastatic HCC cells. Furthermore, QD605 labeled LY-1 aptamer could recognize HCC cells in both local liver cancer tissues and pulmonary metastatic sites in a xenograft model of HCC with pulmonary metastasis. Further biochemical and immunostaining studies showed that LY-1 could selectively bind to a subpopulation of more metastatic cells in HCCLM9 cells, which express more CK19 and vimentin. Finally, treatment of highly metastatic cells with LY-1 led to reduced migration and invasiveness of HCCLM9 cells in vitro and suppression of xenograft growth in vivo. Taken together, the present study demonstrated the tumor targeting and tumor suppressive effects of LY-1, which could be a promising molecular probe for metastatic HCC and a potential candidate of chemotherapy for metastatic HCC.
Collapse
Affiliation(s)
- Yuan Rong
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Hao Chen
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Xue-Feng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Chang-Qing Yin
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Bi-Cheng Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Chun-Wei Peng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Shao-Ping Liu
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuchang, Wuhan 430071, P.R. China
| | - Fu-Bing Wang
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| |
Collapse
|
16
|
Fortenberry YM, Brandal SM, Carpentier G, Hemani M, Pathak AP. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis. PLoS One 2016; 11:e0164288. [PMID: 27755560 PMCID: PMC5068744 DOI: 10.1371/journal.pone.0164288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential.
Collapse
Affiliation(s)
- Yolanda M Fortenberry
- Department of Pediatric Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.,Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stephanie M Brandal
- Department of Pediatric Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gilles Carpentier
- Laboratoire CRRET, Faculté des Sciences et Technologie, Université Paris-Est Créteil, 61 avenue du général De Gaulle, 94010 Créteil, France
| | - Malvi Hemani
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
17
|
Abstract
Fluorescence imaging techniques could be used in different ways to study the interaction of aptamers with biological systems from cell culture to animal models. Here, we present the methods developed in our laboratory for fluorescently labeled aptamers, study their internalization inside living cells using time-lapse microscopy, and monitor their biodistribution in mice bearing subcutaneous xenograft tumors using planar fluorescence imaging and fluorescence diffuse optical tomography (fDOT).
Collapse
|
18
|
Li X, An Y, Jin J, Zhu Z, Hao L, Liu L, Shi Y, Fan D, Ji T, Yang CJ. Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. Anal Chem 2015; 87:4941-8. [PMID: 25867099 DOI: 10.1021/acs.analchem.5b00637] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metastasis, the capability of tumor cells to spread and grow at distant sites, is the primary factor in cancer mortality. Because metastasis in sentinel lymph nodes suggests the original spread of tumors from a primary site, the detection of lymph node involvement with cancer serves as an important prognostic and treatment parameter. Here we have developed a panel of DNA aptamers specifically binding to colon cancer cell SW620 derived from metastatic site lymph node, with high affinity after 14 rounds of selection by the cell-SELEX (systematic evolution of ligands by exponential enrichment) method. The binding affinities of selected aptamers were evaluated by flow cytometry. Aptamer XL-33 with the best binding affinity (0.7 nM) and its truncated sequence XL-33-1 with 45 nt showed excellent selectivity for recognizing target cell SW620. The binding entity of the selected aptamer has been preliminarily determined as a membrane protein on the cell surface. Tissue imaging results showed that XL-33-1 was highly specific to the metastatic tumor tissue or lymph node tissue with corresponding cancer metastasis and displayed an 81.7% detection rate against colon cancer tissue with metastasis in regional lymph nodes. These results suggest that XL-33-1 has great potential to become a molecular imaging agent for early detection of lymph node tissue with colon cancer metastasis. More importantly, this study clearly demonstrates that DNA ligands selectively recognizing metastatic cancer cells can be readily generated by metastatic-cell-based SELEX for potential applications in metastatic cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xilan Li
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuan An
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiang Jin
- ‡State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Zhi Zhu
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361005, People's Republic of China
| | - Linlin Hao
- §State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Lu Liu
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yongquan Shi
- ‡State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Daiming Fan
- ‡State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Tianhai Ji
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chaoyong James Yang
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
19
|
Barman J. Targeting cancer cells using aptamers: cell-SELEX approach and recent advancements. RSC Adv 2015. [DOI: 10.1039/c4ra12407c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aptamers are short single stranded nucleic acid based therapeutic and diagnostic molecules which can be isolated from a random pool of oligonucleotides by Systematic Evolution of Ligands by EXponential Enrichment (SELEX).
Collapse
Affiliation(s)
- Jharna Barman
- Agricultural and Ecological Research Unit
- Biological Science Division
- Indian Statistical Institute
- Kolkata
- India
| |
Collapse
|
20
|
Wiraja C, Yeo D, Lio D, Labanieh L, Lu M, Zhao W, Xu C. Aptamer technology for tracking cells' status & function. MOLECULAR AND CELLULAR THERAPIES 2014; 2:33. [PMID: 26056599 PMCID: PMC4452066 DOI: 10.1186/2052-8426-2-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023]
Abstract
In fields such as cancer biology and regenerative medicine, obtaining information regarding cell bio-distribution, tropism, status, and other cellular functions are highly desired. Understanding cancer behaviors including metastasis is important for developing effective cancer treatments, while assessing the fate of therapeutic cells following implantation is critical to validate the efficacy and efficiency of the therapy. For visualization purposes with medical imaging modalities (e.g. magnetic resonance imaging), cells can be labeled with contrast agents (e.g. iron-oxide nanoparticles), which allows their identification from the surrounding environment. Despite the success of revealing cell biodistribution in vivo, most of the existing agents do not provide information about the status and functions of cells following transplantation. The emergence of aptamers, single-stranded RNA or DNA oligonucleotides of 15 to 60 bases in length, is a promising solution to address this need. When aptamers bind specifically to their cognate molecules, they undergo conformational changes which can be transduced into a change of imaging contrast (e.g. optical, magnetic resonance). Thus by monitoring this signal change, researchers can obtain information about the expression of the target molecules (e.g. mRNA, surface markers, cell metabolites), which offer clues regarding cell status/function in a non-invasive manner. In this review, we summarize recent efforts to utilize aptamers as biosensors for monitoring the status and function of transplanted cells. We focus on cancer cell tracking for cancer study, stem cell tracking for regenerative medicine, and immune cell (e.g. dendritic cells) tracking for immune therapy.
Collapse
Affiliation(s)
- Christian Wiraja
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| | - David Yeo
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| | - Daniel Lio
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| | - Louai Labanieh
- />Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697 USA
- />Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92697 USA
| | - Mengrou Lu
- />Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697 USA
- />Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92697 USA
| | - Weian Zhao
- />Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697 USA
- />Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92697 USA
| | - Chenjie Xu
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| |
Collapse
|
21
|
Cao HY, Yuan AH, Chen W, Shi XS, Miao Y. A DNA aptamer with high affinity and specificity for molecular recognition and targeting therapy of gastric cancer. BMC Cancer 2014; 14:699. [PMID: 25248985 PMCID: PMC4242496 DOI: 10.1186/1471-2407-14-699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aptamers have emerged as excellent molecular probes for cancer diagnosis and therapy. The aim of the current study was to determine the feasibility of using DNA aptamer cy-apt 20 developed by live cell-SELEX for detecting and targeting gastric cancer. METHODS The specificity, sensitivity and biostability of cy-apt 20 in detecting gastric cancer were assessed by binding assay, cell fluorescence imaging, and in vivo tumor imaging in animal model in comparison with non-gastric cancers. RESULTS Flow cytometric analysis showed that cy-apt 20 had higher than 78% of maximal binding rate to gastric cancer cells, much higher than that of non-gastric cancer cells. Cell fluorescence imaging and in vivo tumor imaging showed that the targeting recognition could be visualized by using minimal dose of fluorochrome labeled cy-apt 20. Meanwhile, strong fluorescence signals were detected and lasted for a period of time longer than 50 min in vitro and 240 min in vivo. The fluorescence intensities of gastric cancer were about seven folds in vitro and five folds of that of non-gastric cancers in vivo. CONCLUSION Our study demonstrated that cy-apt 20 was an excellent molecular probe with high specificity and sensitivity and a certain degree of biostability for molecular recognition and targeting therapy of gastric cancer.
Collapse
Affiliation(s)
- Hong-Yong Cao
- />Department of General Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, P. R. China
- />Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Ai-Hua Yuan
- />Department of General Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, P. R. China
| | - Wei Chen
- />Department of General Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, P. R. China
| | - Xue-Song Shi
- />Department of General Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, P. R. China
| | - Yi Miao
- />Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
22
|
Cao HY, Yuan AH, Shi XS, Chen W, Miao Y. Evolution of a gastric carcinoma cell-specific DNA aptamer by live cell-SELEX. Oncol Rep 2014; 32:2054-60. [PMID: 25175855 DOI: 10.3892/or.2014.3411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/12/2014] [Indexed: 11/06/2022] Open
Abstract
Aptamers have emerged as promising molecular probes for disease diagnosis and therapy. In the present study, the entire live cell-SELEX method was used to generate gastric cancer cell‑specific aptamers. Human gastric carcinoma AGS cells were used as target cells for positive selections and human normal gastric epithelial GES-1 cells as the negative cells for counter selections. The selection procedure was monitored by gel electrophoresis and flow cytometric analysis. By successive in vitro evolutions and subsequent cloning and sequencing, a gastric carcinoma cell‑specific DNA aptamer termed cy-apt 20 with minimal recognition to the controls was identified from the final enriched ssDNA pool. Flow cytometry binding assays revealed that cy-apt 20 had a >70% binding rate to AGS cells and <30% binding affinity to non-gastric cancer cells. Furthermore, the targeting recognition of AGS cells was established by using minimal doses of FITC-cy-apt 20 that continued for a long period of time. As visualized by fluorescence imaging, the majority of AGS cells were stained by FITC-cy-apt 20. The fluorescence intensity of AGS cells was ~6-fold over that of non-AGS cells. The present study demonstrated that the entire live cell-SELEX was simple, but effective in generating gastric cancer cell‑specific aptamers, and that the aptamer cy-apt 20 has great potential to be used for the study and diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Hong-Yong Cao
- Department of General Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ai-Hua Yuan
- Department of General Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xue-Song Shi
- Department of General Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wei Chen
- Department of General Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yi Miao
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
23
|
Van Simaeys D, Turek D, Champanhac C, Vaizer J, Sefah K, Zhen J, Sutphen R, Tan W. Identification of cell membrane protein stress-induced phosphoprotein 1 as a potential ovarian cancer biomarker using aptamers selected by cell systematic evolution of ligands by exponential enrichment. Anal Chem 2014; 86:4521-7. [PMID: 24654750 PMCID: PMC4018121 DOI: 10.1021/ac500466x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/21/2014] [Indexed: 02/01/2023]
Abstract
In this paper, we describe the elucidation of the target of an aptamer against ovarian cancer previously obtained by cell-SELEX (SELEX = systematic evolution of ligands by exponential enrichment). The target's identity, stress-induced phosphoprotein 1 (STIP1), was determined by mass spectrometry and validated by flow cytometry, using siRNA silencing and protein blotting. Initial oncologic studies show that the aptamer inhibits cell invasion, indicating that STIP1, which is currently under investigation as a potential biomarker for ovarian cancer, plays a critical role in this process. These results serve as an excellent example of how protein target identification of aptamers obtained by cell-SELEX can serve as a means to identify promising biomarker candidates and can promote the development of aptamers as a new drug class to block important oncological processes.
Collapse
Affiliation(s)
- Dimitri Van Simaeys
- Center
for Research at Bio/Nano Interface, Departments of Chemistry and of
Physiology and Functional Genomics, Shands Cancer Center, UF Genetics
Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Diane Turek
- Center
for Research at Bio/Nano Interface, Departments of Chemistry and of
Physiology and Functional Genomics, Shands Cancer Center, UF Genetics
Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Carole Champanhac
- Center
for Research at Bio/Nano Interface, Departments of Chemistry and of
Physiology and Functional Genomics, Shands Cancer Center, UF Genetics
Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Julia Vaizer
- Center
for Research at Bio/Nano Interface, Departments of Chemistry and of
Physiology and Functional Genomics, Shands Cancer Center, UF Genetics
Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Kwame Sefah
- Center
for Research at Bio/Nano Interface, Departments of Chemistry and of
Physiology and Functional Genomics, Shands Cancer Center, UF Genetics
Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jing Zhen
- Center
for Research at Bio/Nano Interface, Departments of Chemistry and of
Physiology and Functional Genomics, Shands Cancer Center, UF Genetics
Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, Colleges of Chemistry and Chemical Engineering and
of Biology, Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| | - Rebecca Sutphen
- Morsani
School of Medicine, University of South
Florida, Tampa, Florida 33612, United
States
| | - Weihong Tan
- Center
for Research at Bio/Nano Interface, Departments of Chemistry and of
Physiology and Functional Genomics, Shands Cancer Center, UF Genetics
Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, Colleges of Chemistry and Chemical Engineering and
of Biology, Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| |
Collapse
|
24
|
Cibiel A, Nguyen Quang N, Gombert K, Thézé B, Garofalakis A, Ducongé F. From ugly duckling to swan: unexpected identification from cell-SELEX of an anti-Annexin A2 aptamer targeting tumors. PLoS One 2014; 9:e87002. [PMID: 24489826 PMCID: PMC3906106 DOI: 10.1371/journal.pone.0087002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022] Open
Abstract
Background Cell-SELEX is now widely used for the selection of aptamers against cell surface biomarkers. However, despite negative selection steps using mock cells, this method sometimes results in aptamers against undesirable targets that are expressed both on mock and targeted cells. Studying these junk aptamers might be useful for further applications than those originally envisaged. Methodology/Principal Findings Cell-SELEX was performed to identify aptamers against CHO-K1 cells expressing human Endothelin type B receptor (ETBR). CHO-K1 cells were used for negative selection of aptamers. Several aptamers were identified but no one could discriminate between both cell lines. We decided to study one of these aptamers, named ACE4, and we identified that it binds to the Annexin A2, a protein overexpressed in many cancers. Radioactive binding assays and flow cytometry demonstrated that the aptamer was able to bind several cancer cell lines from different origins, particularly the MCF-7 cells. Fluorescence microscopy revealed it could be completely internalized in cells in 2 hours. Finally, the tumor targeting of the aptamer was evaluated in vivo in nude mice xenograft with MCF-7 cells using fluorescence diffuse optical tomography (fDOT) imaging. Three hours after intravenous injection, the aptamer demonstrated a significantly higher uptake in the tumor compared to a scramble sequence. Conclusions/Significance Although aptamers could be selected during cell-SELEX against other targets than those initially intended, they represent a potential source of ligands for basic research, diagnoses and therapy. Here, studying such aptamers, we identify one with high affinity for Annexin A2 that could be a promising tool for biomedical application.
Collapse
Affiliation(s)
- Agnes Cibiel
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Nam Nguyen Quang
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Karine Gombert
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Benoit Thézé
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Anikitos Garofalakis
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
| | - Frédéric Ducongé
- Commissariat à l′Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Intitut d’imagerie Biomédicale (I BM)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1023, Laboratoire d’Imagerie Moléculaire Expérimentale, Orsay, France
- Université Paris Sud, Orsay, France
- * E-mail:
| |
Collapse
|
25
|
Ray P, Viles KD, Soule EE, Woodruff RS. Application of aptamers for targeted therapeutics. Arch Immunol Ther Exp (Warsz) 2013; 61:255-71. [PMID: 23563807 DOI: 10.1007/s00005-013-0227-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/25/2013] [Indexed: 12/30/2022]
Abstract
Aptamers are short, single-stranded oligonucleotides that are isolated through a process termed systematic evolution of ligands by exponential enrichment. With the advent of cell-based selection technology, aptamers can be selected to bind protein targets that are expressed on the cell surface. These aptamers demonstrate excellent specificity and high affinity toward their target proteins and are often internalized upon binding to their targets. This has opened up the possibility of using aptamers for cell-specific targeted drug delivery. In this review, we will discuss cell-surface protein targets, the aptamers that bind them, and their applications for targeted therapeutics.
Collapse
Affiliation(s)
- Partha Ray
- Department of Surgery, Duke University Medical Center, DUMC Box 103035, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
26
|
Zhu C, Liu J, Ling Y, Yang H, Liu Z, Zheng R, Qin L, Hu Z. Evaluation of the clinical value of ELISA based on MPT64 antibody aptamer for serological diagnosis of pulmonary tuberculosis. BMC Infect Dis 2012; 12:96. [PMID: 22520654 PMCID: PMC3410803 DOI: 10.1186/1471-2334-12-96] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/20/2012] [Indexed: 12/16/2022] Open
Abstract
Background Presently, tuberculosis (TB) poses a global threat to human health. The development of reliable laboratory tools is vital to the diagnosis and treatment of TB. MPT64, a protein secreted by Mycobacterium tuberculosis complex, is highly specific for TB, making antibody to MPT64 a reagent specific for the diagnosis of TB. Method Antibody to MPT64 was obtained by a combination of genetic engineering and immunization by the system evolution of ligands by exponential enrichment. A high-affinity aptamer of antibody to MPT64 was selected from a random single-stranded DNA library, and a sandwich ELISA method based on this aptamer was developed. This ELISA method was used to detect TB in 328 serum samples, 160 from patients with pulmonary TB (PTB) and 168 from non-tuberculous controls. Results The minimum limit of detection of the ELISA method was 2.5 mg/L, and its linear range varied from 10 mg/L to 800 mg/L. Its sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and area under the curve, with 95 % confidence intervals, were 64.4 % (56.7 %–71.4 %), 99.4 % (96.7 %–99.9 %), 108.2 (15.3–765.9), 0.350 (0.291–0.442) and 0.819 (0.770–0.868), respectively. No significant difference in sensitivity was observed between sputum smear positive (73/112, 65.2 %) and negative (30/48, 62.5 %) individuals. Conclusions This sandwich ELISA based on an MPT64 antibody aptamer may be useful for the serological diagnosis of PTB, both in sputum smear positive and negative patients.
Collapse
Affiliation(s)
- Changtai Zhu
- Department of Medical Laboratory, Changzhou Tumor Hospital Soochow University, Changzhou 213001, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Generating aptamers by cell-SELEX for applications in molecular medicine. Int J Mol Sci 2012; 13:3341-3353. [PMID: 22489154 PMCID: PMC3317715 DOI: 10.3390/ijms13033341] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/01/2012] [Accepted: 03/01/2012] [Indexed: 11/17/2022] Open
Abstract
Aptamers are single-stranded oligonucleotides of DNA or RNA that bind to target molecules with high affinity and specificity. Typically, aptamers are generated by an iterative selection process, called systematic evolution of ligands by exponential enrichment (SELEX). Recent advancements in SELEX technology have extended aptamer selection from comparatively simple mixtures of purified proteins to whole living cells, and now cell-based SELEX (or cell-SELEX) can isolate aptamers that bind to specific target cells. Combined with nanotechnology, microchips, microfluidic devices, RNAi and other advanced technologies, cell-SELEX represents an integrated platform providing ultrasensitive and highly specific tools for clinical medicine. In this review, we describe the recent progress made in the application of cell-SELEX for diagnosis, therapy and biomarker discovery.
Collapse
|
28
|
Advances in binder identification and characterisation: the case of oligonucleotide aptamers. N Biotechnol 2011; 29:550-4. [PMID: 22178698 DOI: 10.1016/j.nbt.2011.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 02/07/2023]
Abstract
Aptamers represent an important class of synthetic protein binders useful for proteome-wide applications. The identification and characterisation of such molecules have been greatly facilitated by the development of Systematic Evolution of Ligands by Exponential Amplification (SELEX). Since then numerous advances and alternatives to improve efficient aptamer discovery have been reported. In the present manuscript we discuss the recent advances performed around the SELEX approach that may help to expand the availability of new aptamers and the subsequent applications that may be developed.
Collapse
|
29
|
Cibiel A, Dupont DM, Ducongé F. Methods To Identify Aptamers against Cell Surface Biomarkers. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058655 DOI: 10.3390/ph4091216] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment). During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.
Collapse
Affiliation(s)
- Agnes Cibiel
- CEA, DSV, IBM, Service Hospitalier Frédéric Joliot (SHFJ), 4 place du général Leclerc, 91401 Orsay, France; E-Mail: (A.C.)
- INSERM U1023, 4 place du général Leclerc, 91401 Orsay, France
- Université Paris Sud, 4 place du général Leclerc, 91401 Orsay, France
| | - Daniel Miotto Dupont
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark; E-Mail: (D.M.D.)
| | - Frédéric Ducongé
- CEA, DSV, IBM, Service Hospitalier Frédéric Joliot (SHFJ), 4 place du général Leclerc, 91401 Orsay, France; E-Mail: (A.C.)
- INSERM U1023, 4 place du général Leclerc, 91401 Orsay, France
- Université Paris Sud, 4 place du général Leclerc, 91401 Orsay, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-169-867-766; Fax: +33-169-867-786
| |
Collapse
|
30
|
Rybko VA, Knizhnik AV, Komelkov AV, Aushev VN, Trukhanova LS, Tchevkina EM. Different metastasis promotive potency of small G-proteins RalA and RalB in in vivo hamster tumor model. Cancer Cell Int 2011; 11:22. [PMID: 21714887 PMCID: PMC3135494 DOI: 10.1186/1475-2867-11-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/29/2011] [Indexed: 01/28/2023] Open
Abstract
Background Previously we have shown that oncogenic Ha-Ras stimulated in vivo metastasis through RalGEF-Ral signaling. RalA and RalB are highly homologous small G proteins belonging to Ras superfamily. They can be activated by Ras-RalGEF signaling pathway and influence cellular growth and survival, motility, vesicular transport and tumor progression in humans and in animal models. Here we first time compared the influence of RalA and RalB on tumorigenic, invasive and metastatic properties of RSV transformed hamster fibroblasts. Methods Retroviral vectors encoding activated forms or effector mutants of RalA or RalB proteins were introduced into the low metastatic HET-SR cell line. Tumor growth and spontaneous metastatic activity (SMA) were evaluated on immunocompetent hamsters after subcutaneous injection of cells. The biological properties of cells, including proliferation, clonogenicity, migration and invasion were determined using MTT, wound healing, colony formation and Boyden chamber assays respectively. Protein expression and phosphorylation was detected by Westen blot analysis. Extracellular proteinases activity was assessed by substrate-specific zymography. Results We have showed that although both Ral proteins stimulated SMA, RalB was more effective in metastasis stimulation in vivo as well as in potentiating of directed movement and invasion in vitro. Simultaneous expression of active RalA and RalB didn't give synergetic effect on metastasis formation. RalB activity decreased expression of Caveolin-1, while active RalA stimulated MMP-1 and uPA proteolytic activity, as well as CD24 expression. Both Ral proteins were capable of Cyclin D1 upregulation, JNK1 kinase activation, and stimulation of colony growth and motility. Among three main RalB effectors (RalBP1, exocyst complex and PLD1), PLD1 was essential for RalB-dependent metastasis stimulation. Conclusions Presented results are the first data on direct comparison of RalA and RalB impact as well as of RalA/RalB simultaneous expression influence on in vivo cell metastatic activity. We showed that RalB activation significantly more than RalA stimulates SMA. This property correlates with the ability of RalB to stimulate in vitro invasion and serum directed cell movement. We also found that RalB-PLD1 interaction is necessary for the acquisition of RalB-dependent high metastatic cell phenotype. These findings contribute to the identification of molecular mechanisms of metastasis and tumor progression.
Collapse
Affiliation(s)
- Vera A Rybko
- Department of Oncogenes Regulation, Institute of Carcinogenesis, Russian N,N, Blokhin Cancer Research Center, Kashirskoye shosse 24, 115478, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
31
|
Durand E, Chaumet-Riffaud P, Grenier N. Functional renal imaging: new trends in radiology and nuclear medicine. Semin Nucl Med 2011; 41:61-72. [PMID: 21111860 DOI: 10.1053/j.semnuclmed.2010.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this work is to compare the characteristics of various techniques for functional renal imaging, with a focus on nuclear medicine and magnetic resonance imaging. Even with low spatial resolution and rather poor signal-to-noise ratio, classical nuclear medicine has the advantage of linearity and good sensitivity. It remains the gold standard technique for renal relative functional assessment. Technetium-99m ((99m)Tc)-labeled diethylenetriamine penta-acetate remains the reference glomerular tracer. Tubular tracers have been improved: (123)I- or (131)I-hippuran, (99m)Tc-MAG3 and, recently, (99m)Tc-nitrilotriacetic acid. However, advancement in molecular imaging has not produced a groundbreaking tracer. Renal magnetic resonance imaging with classical gadolinated tracers probably has potential in this domain but has a lack of linearity and, therefore, its value still needs evaluation. Moreover, the advent of nephrogenic systemic fibrosis has delayed its expansion. Other developments, such as diffusion or blood oxygen level-dependent imaging, may have a role in the future. The other modalities have a limited role in clinical practice for functional renal imaging.
Collapse
Affiliation(s)
- Emmanuel Durand
- Biophysics and Nuclear Medicine, University Paris Sud, 78 Rue du Général Leclerc, Le Kremlin-Bicêtre Cedex, France.
| | | | | |
Collapse
|
32
|
Abstract
Aptamers that target a specific cell subpopulation within composite mixtures represent invaluable tools in biomedical research and in the development of cell-specific therapeutics. Here we describe a detailed protocol for a modular and generally applicable scheme to select aptamers that target the subpopulations of cells in which you are interested. A fluorescence-activated cell-sorting device is used to simultaneously differentiate and separate those subpopulations of cells having bound and unbound aptamers. There are fewer false positives when using this approach in comparison with other cell-selection approaches in which unspecific binding of nucleic acids to cells with reduced membrane integrity or their unselective uptake by dead cells occurs more often. The protocol provides a state-of-the-art approach for identifying aptamers that selectively target virtually any cell type under investigation. As an example, we provide the step-by-step protocol targeting CD19(+) Burkitt's lymphoma cells, starting from the pre-SELEX (systematic evolution of ligands by exponential amplification) measurements to establish suitable SELEX conditions and ending at completion of the SELEX procedure, which reveals the enriched single-stranded DNA library.
Collapse
|