1
|
Wang N, Fang Y, Hou Y, Cheng D, Dressler EV, Wang H, Wang J, Wang G, Li Y, Liu H, Xiang R, Yang S, Sun P. Senescent cells promote breast cancer cells motility by secreting GM-CSF and bFGF that activate the JNK signaling pathway. Cell Commun Signal 2024; 22:478. [PMID: 39375718 PMCID: PMC11457416 DOI: 10.1186/s12964-024-01861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Cellular senescence can be induced in mammalian tissues by multiple stimuli, including aging, oncogene activation and loss of tumor suppressor genes, and various types of stresses. While senescence is a tumor suppressing mechanism when induced within premalignant or malignant tumor cells, senescent cells can promote cancer development through increased secretion of growth factors, cytokines, chemokines, extracellular matrix, and degradative enzymes, collectively known as senescence-associated secretory phenotype (SASP). Previous studies indicated that senescent cells, through SASP factors, stimulate tumor cell invasion that is a critical step in cancer cell metastasis. METHODS In the current study, we investigated the effect of senescent cells on the motility of breast cancer cells, which is another key step in cancer cell metastasis. We analyzed the motility of breast cancer cells co-cultured with senescent cells in vitro and metastasis of the breast cancer cells co-injected with senescent cells in orthotopic xenograft models. We also delineated the signaling pathway mediating the effect of senescent cells on cancer cell motility. RESULTS Our results indicate that senescent cells stimulated the migration of breast cancer cells through secretion of GM-CSF and bFGF, which in turn induced activation of the JNK pathway in cancer cells. More importantly, senescent cells promoted breast cancer metastasis, with a minimum effect on the primary tumor growth, in orthotopic xenograft mouse models. CONCLUSIONS These results have revealed an additional mechanism by which senescent cells promote tumor cell metastasis and tumor progression, and will potentially lead to identification of novel targets for cancer therapies that suppress metastasis, the major cause of cancer mortality.
Collapse
Affiliation(s)
- Nan Wang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Yan Fang
- School of Medicine, Nankai University, Tianjin, China
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yigong Hou
- School of Medicine, Nankai University, Tianjin, China
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Dongmei Cheng
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Emily V Dressler
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hao Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Juan Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Guanwen Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin, China.
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Kang W, Wang C, Wang M, Liu M, Hu W, Liang X, Zhang Y. The CXCR2 chemokine receptor: A new target for gastric cancer therapy. Cytokine 2024; 181:156675. [PMID: 38896956 DOI: 10.1016/j.cyto.2024.156675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world, and current treatments are still based on surgery and drug therapy. However, due to the complexity of immunosuppression and drug resistance, the treatment of gastric cancer still faces great challenges. Chemokine receptor 2 (CXCR2) is one of the most common therapeutic targets in targeted therapy. As a G protein-coupled receptor, CXCR2 and its ligands play important roles in tumorigenesis and progression. The abnormal expression of these genes in cancer plays a decisive role in the recruitment and activation of white blood cells, angiogenesis, and cancer cell proliferation, and CXCR2 is involved in various stages of tumor development. Therefore, interfering with the interaction between CXCR2 and its ligands is considered a possible target for the treatment of various tumors, including gastric cancer.
Collapse
Affiliation(s)
- Wenyan Kang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Meiqi Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| |
Collapse
|
3
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Nakanishi M, Ibe A, Morishita K, Shinagawa K, Yamamoto Y, Takahashi H, Ikemori K, Muragaki Y, Ehata S. Acid-sensing receptor GPR4 plays a crucial role in lymphatic cancer metastasis. Cancer Sci 2024; 115:1551-1563. [PMID: 38410865 PMCID: PMC11093208 DOI: 10.1111/cas.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cancer tissues exhibit an acidic microenvironment owing to the accumulation of protons and lactic acid produced by cancer and inflammatory cells. To examine the role of an acidic microenvironment in lymphatic cancer metastasis, gene expression profiling was conducted using human dermal lymphatic endothelial cells (HDLECs) treated with a low pH medium. Microarray and gene set enrichment analysis revealed that acid treatment induced the expression of inflammation-related genes in HDLECs, including genes encoding chemokines and adhesion molecules. Acid treatment-induced chemokines C-X3-C motif chemokine ligand 1 (CX3CL1) and C-X-C motif chemokine ligand 6 (CXCL6) autocrinally promoted the growth and tube formation of HDLECs. The expression of vascular cell adhesion molecule 1 (VCAM-1) increased in HDLECs after acid treatment in a time-dependent manner, which, in turn, enhanced their adhesion to melanoma cells. Among various acid-sensing receptors, HDLECs basally expressed G protein-coupled receptor 4 (GPR4), which was augmented under the acidic microenvironment. The induction of chemokines or VCAM-1 under acidic conditions was attenuated by GPR4 knockdown in HDLECs. In addition, lymph node metastases in a mouse melanoma model were suppressed by administering an anti-VCAM-1 antibody or a GPR4 antagonist. These results suggest that an acidic microenvironment modifies the function of lymphatic endothelial cells via GPR4, thereby promoting lymphatic cancer metastasis. Acid-sensing receptors and their downstream molecules might serve as preventive or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Masako Nakanishi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Akiya Ibe
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kiyoto Morishita
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazutaka Shinagawa
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yushi Yamamoto
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hibiki Takahashi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kyoka Ikemori
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yasuteru Muragaki
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
5
|
Kahm YJ, Kim IG, Kim RK. Regulation of cancer stem cells by CXCL1, a chemokine whose secretion is controlled by MCM2. BMC Cancer 2024; 24:319. [PMID: 38454443 PMCID: PMC10921750 DOI: 10.1186/s12885-024-12085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND A high expression pattern of minichromosome maintenance 2 (MCM2) has been observed in various cancers. MCM2 is a protein involved in the cell cycle and plays a role in cancer growth and differentiation by binding to six members of the MCM subfamily. The MCM protein family includes MCM2 through MCM7. METHODS MCM2 has shown high expression in both lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). We investigated the characteristics of CSCs and the regulation of the epithelial-to-mesenchymal transition (EMT) phenomenon in LCSCs and GSCs by MCM2. Additionally, we explored secreted factors regulated by MCM2. RESULTS There was a significant difference in survival rates between lung cancer patients and brain cancer patients based on MCM2 expression. MCM2 was found to regulate both markers and regulatory proteins in LCSCs. Moreover, MCM2 is thought to be involved in cancer metastasis by regulating cell migration and invasion, not limited to lung cancer but also identified in glioma. Among chemokines, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be regulated by MCM2. CONCLUSIONS MCM2 not only participates in the cell cycle but also affects cancer cell growth by regulating the external microenvironment to create a favorable environment for cells. MCM2 is highly expressed in malignant carcinomas, including CSCs, and contributes to the malignancy of various cancers. Therefore, MCM2 may represent a crucial target for cancer therapeutics.
Collapse
Affiliation(s)
- Yeon-Jee Kahm
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, 34057, Daejeon, Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-Gu, 34113, Daejeon, Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, 34057, Daejeon, Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-Gu, 34113, Daejeon, Korea
| | - Rae-Kwon Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, 34057, Daejeon, Korea.
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-Gu, 34113, Daejeon, Korea.
| |
Collapse
|
6
|
Ullah A, Zhao J, Li J, Singla RK, Shen B. Involvement of CXC chemokines (CXCL1-CXCL17) in gastric cancer: Prognosis and therapeutic molecules. Life Sci 2024; 336:122277. [PMID: 37995936 DOI: 10.1016/j.lfs.2023.122277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Gastric cancer (GC) is the fifth-most prevalent and second-most deadly cancer worldwide. Due to the late onset of symptoms, GC is frequently treated at a mature stage. In order to improve the diagnostic and clinical decision-making processes, it is necessary to establish more specific and sensitive indicators valuable in the early detection of the disease whenever a cancer is asymptomatic. In this work, we gathered information about CXC chemokines and GC by using scientific search engines including Google Scholar, PubMed, SciFinder, and Web of Science. Researchers believe that GC chemokines, small proteins, class CXC chemokines, and chemokine receptors promote GC inflammation, initiation, and progression by facilitating angiogenesis, tumor transformation, invasion, survival, metastatic spread, host response safeguards, and inter-cell interaction. With our absolute best professionalism, the role of CXC chemokines and their respective receptors in GC diagnosis and prognosis has not been fully explained. This review article updates the general characteristics of CXC chemokines, their unique receptors, their function in the pathological process of GC, and their potential application as possible indicators for GC. Although there have only recently been a few studies focusing on the therapeutic efficacy of CXC chemokine inhibitors in GC, growing experimental evidence points to the inhibition of CXC chemokines as a promising targeted therapy. Therefore, further translational studies are warranted to determine whether specific antagonists or antibodies designed to target CXC chemokines alone or in combination with chemotherapy are useful for diagnosing advanced GC.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Zhao
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rajeev K Singla
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Meadows V, Gao N. New Kids on the Block: Immature Myeloid Cells in Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2023; 17:499-500. [PMID: 38052416 PMCID: PMC10884553 DOI: 10.1016/j.jcmgh.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Affiliation(s)
- Vik Meadows
- Department of Biological Sciences, Rutgers University, Newark, New Jersey; Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey; Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, Newark, New Jersey.
| |
Collapse
|
8
|
Zha L, Guo X, Liang X, Chen Y, Gan D, Li W, Wang Z, Zhang H. Transcriptomic analysis reveals the promotion of lymph node metastasis by Helicobacter pylori infection via upregulating chemokine (C-X-C motif) receptor 2 expression in gastric carcinoma. Genes Dis 2023; 10:2614-2621. [PMID: 37554183 PMCID: PMC10404868 DOI: 10.1016/j.gendis.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 10/23/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric carcinoma (GC) progression is mainly caused by local aggression and lymph node metastasis. However, some patients with early T-stage disease have lymph node metastasis, whereas some patients with late T-stage disease do not have lymph node metastasis, which indicates that invasion and metastasis are not always sequential in some GC patients. In the present study, the data of 101 GC cases were acquired from TCGA and divided into T-late-N-negative and T-early-N-positive groups according to pathological stages. A total of 338 genes were identified as differential genes between the T-late-N-negative and T-early-N-positive groups. GSEA showed that epithelial cell signaling in the Helicobacter pylori (HP) infection pathway was enriched in the T-early-N-positive group. MB staining indicated that the HP infection rate was 63% (39/62) in N-positive patients compared to 42% (16/38) in N-negative patients. To investigate the potential mechanism, we focused on the gene chemokine (C-X-C motif) receptor 2 (CXCR2), which was not only clustered in the gene set of epithelial cells signaling in the HP infection pathway but also significantly upregulated in T-early-N-positive GC by the analysis of the different genes based on the TCGA dataset. A meta-analysis showed that CXCR2 expression was positively correlated with N-stage but not with T-stage in GC. This study indicated that invasion and metastasis could be independent processes driven by different molecular mechanisms in some GC patients. HP infection was a potential factor that promoted lymph node metastasis by upregulating CXCR2 expression.
Collapse
Affiliation(s)
- Lang Zha
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuedong Chen
- Department of Gastrointestinal Surgery, The Tongliang Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Deyong Gan
- Department of Gastrointestinal Surgery, The Tongliang Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hongyu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
9
|
Jiang Z, Waterbury QT, Malagola E, Fu N, Kim W, Ochiai Y, Wu F, Guha C, Shawber CJ, Yan KS, Wang TC. Microbial-Dependent Recruitment of Immature Myeloid Cells Promotes Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2023; 17:321-346. [PMID: 37898454 PMCID: PMC10821484 DOI: 10.1016/j.jcmgh.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND & AIMS The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by Hdc, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated. METHODS By using male and female histidine decarboxylase (Hdc) green fluorescent reporter (GFP) mice, we investigated the role of Hdc+ IMCs in intestinal regeneration after exposure to 12 Gy whole-body irradiation. The movement of IMCs was analyzed using flow cytometry and immunostaining. Ablation of Hdc+ cells using the HdcCreERT2 tamoxifen-inducible recombinase Cre system, conditional knockout of Prostaglandin-endoperoxidase synthase 2 (Ptgs2) in Hdc+ cells using HdcCre; Ptgs2 floxed mice, and visualization of LECs using Prox1tdTomato mice also was performed. The role of microbial signals was investigated by knocking down mice gut microbiomes using antibiotic cocktail gavages. RESULTS We found that Hdc+ IMCs infiltrate the injured intestine after irradiation injury and promote epithelial regeneration in part by modulating LEC activity. Hdc+ IMCs express Ptgs2 (encoding cyclooxygenase-2/COX-2), and enables them to produce prostaglandin E2. Prostaglandin E2 acts on the prostaglandin E2 receptor 4 receptor (EP4) on LECs to promote lymphangiogenesis and induce the expression of proregenerative factors including R-spondin 3. Depletion of gut microbes leads to reduced intestinal regeneration by impaired recruitment of IMCs. CONCLUSIONS Altogether, our results unveil a critical role for IMCs in intestinal repair by modulating LEC activity and implicate gut microbes as mediators of intestinal regeneration.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Quin T Waterbury
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Institute of Human Nutrition, Columbia University Medical Center, New York, New York
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Na Fu
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Woosook Kim
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Feijing Wu
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Kelley S Yan
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Columbia Center for Human Development, Columbia University, New York, NY, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
10
|
Oria VO, Erler JT. Tumor Angiocrine Signaling: Novel Targeting Opportunity in Cancer. Cells 2023; 12:2510. [PMID: 37887354 PMCID: PMC10605017 DOI: 10.3390/cells12202510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The vascular endothelium supplies nutrients and oxygen to different body organs and supports the progression of diseases such as cancer through angiogenesis. Pathological angiogenesis remains a challenge as most patients develop resistance to the approved anti-angiogenic therapies. Therefore, a better understanding of endothelium signaling will support the development of more effective treatments. Over the past two decades, the emerging consensus suggests that the role of endothelial cells in tumor development has gone beyond angiogenesis. Instead, endothelial cells are now considered active participants in the tumor microenvironment, secreting angiocrine factors such as cytokines, growth factors, and chemokines, which instruct their proximate microenvironments. The function of angiocrine signaling is being uncovered in different fields, such as tissue homeostasis, early development, organogenesis, organ regeneration post-injury, and tumorigenesis. In this review, we elucidate the intricate role of angiocrine signaling in cancer progression, including distant metastasis, tumor dormancy, pre-metastatic niche formation, immune evasion, and therapy resistance.
Collapse
Affiliation(s)
- Victor Oginga Oria
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark;
| | | |
Collapse
|
11
|
Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L, Zhao Q. Lymphangiogenesis in gastric cancer: function and mechanism. Eur J Med Res 2023; 28:405. [PMID: 37803421 PMCID: PMC10559534 DOI: 10.1186/s40001-023-01298-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/18/2023] [Indexed: 10/08/2023] Open
Abstract
Increased lymphangiogenesis and lymph node (LN) metastasis are thought to be important steps in cancer metastasis, and are associated with patient's poor prognosis. There is increasing evidence that the lymphatic system may play a crucial role in regulating tumor immune response and limiting tumor metastasis, since tumor lymphangiogenesis is more prominent in tumor metastasis and diffusion. Lymphangiogenesis takes place in embryonic development, wound healing, and a variety of pathological conditions, including tumors. Tumor cells and tumor microenvironment cells generate growth factors (such as lymphangiogenesis factor VEGF-C/D), which can promote lymphangiogenesis, thereby inducing the metastasis and diffusion of tumor cells. Nevertheless, the current research on lymphangiogenesis in gastric cancer is relatively scattered and lacks a comprehensive understanding. Therefore, in this review, we aim to provide a detailed perspective on molecules and signal transduction pathways that regulate gastric cancer lymphogenesis, which may provide new insights for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Shuya Chen
- Newham University Hospital, Glen Road, Plaistow, London, E13 8SL, England, UK
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
12
|
Viúdez-Pareja C, Kreft E, García-Caballero M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front Immunol 2023; 14:1235812. [PMID: 37744339 PMCID: PMC10512957 DOI: 10.3389/fimmu.2023.1235812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.
Collapse
Affiliation(s)
- Cristina Viúdez-Pareja
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Ewa Kreft
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
13
|
Dwivedi NV, Datta S, El-Kersh K, Sadikot RT, Ganti AK, Batra SK, Jain M. GPCRs and fibroblast heterogeneity in fibroblast-associated diseases. FASEB J 2023; 37:e23101. [PMID: 37486603 PMCID: PMC10916681 DOI: 10.1096/fj.202301091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.
Collapse
Affiliation(s)
- Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Souvik Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karim El-Kersh
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska Western Iowa Health Care System
| | - Apar K. Ganti
- VA Nebraska Western Iowa Health Care System
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
14
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
15
|
Jiang Z, Waterbury QT, Fu N, Kim W, Malagola E, Guha C, Shawber CJ, Yan KS, Wang TC. Immature myeloid cells are indispensable for intestinal regeneration post irradiation injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530500. [PMID: 36909592 PMCID: PMC10002743 DOI: 10.1101/2023.02.28.530500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. Following injury to the intestine, multiple different cell populations cooperate to drive regeneration of the mucosa. Immature myeloid cells (IMCs), marked by histidine decarboxylase ( Hdc ), participate in regeneration of multiple organs such as the colon and central nervous system. Here, we found that IMCs infiltrate the injured intestine and promote epithelial regeneration and modulate LEC activity. IMCs produce prostaglandin E2 (PGE2), which promotes LEC lymphangiogenesis and upregulation of pro-regenerative factors including RSPO3. Moreover, we found that IMC recruitment into the intestine is driven by invading microbial signals. Accordingly, antibiotic eradication of the intestinal microbiome prior to WB-IR inhibits IMC recruitment, and consequently, intestinal recovery. We propose that IMCs play a critical role in intestinal repair and implicate gut microbes as mediators of intestinal regeneration.
Collapse
|
16
|
Zhang S, Dong Y, Zhao S, Bi F, Xuan M, Zhu G, Guo W, Zhang Z. CXCL1 promoted the migration and invasion abilities of oral cancer cells and might serve as a promising marker of prognosis in tongue cancer. J Oral Pathol Med 2023. [PMID: 36829264 DOI: 10.1111/jop.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 02/26/2023]
Abstract
BACKGROUND Oral tongue squamous cell carcinoma tends to metastasize to cervical lymphatic nodes early which leads to a 50% drop of survival rate. CXCL1 could be secreted by LNMTca8113 cell induced lymphatic endothelial cells and promoted LNMTca8113 cell migration. The current study aimed to further explore the effect of CXCL1 on the proliferation and migration abilities of tongue cancer cells and the prognostic value of serum CXCL1 in oral tongue squamous cell carcinoma. METHODS Cell proliferation and migration ability were analysed by CCK8 assays and transwell migration assays. Immunofluorescence technique was used to show cytoskeleton. GST pull-down assay was applied to quantify the activation of GTPases. Blood samples of patients were collected and clinicopathological characteristics were analysed. RESULTS CXCL1 could promote cancer cell proliferation in appropriate concentration by PI3K/AKT pathway. It also regulated the activation of Rho GTPases to mediate the rearrangements of cytoskeleton to promote tumour cell migration. Level of plasma CXCL1 could predict the possibility of early lymphatic metastasis and had a predictive value in progression-free survival and overall survival. CONCLUSIONS CXCL1 could promote oral cancer cell proliferation, migration and invasion in vitro and contributed theoretical knowledge for the target selection in molecular targeted therapy. Level of plasma CXCL1 might serve as a biomarker for prognosis in oral tongue squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Shuning Zhang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Dong
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuangyuan Zhao
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Bi
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming Xuan
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guiquan Zhu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuang Zhang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Wu T, Yang W, Sun A, Wei Z, Lin Q. The Role of CXC Chemokines in Cancer Progression. Cancers (Basel) 2022; 15:cancers15010167. [PMID: 36612163 PMCID: PMC9818145 DOI: 10.3390/cancers15010167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
CXC chemokines are small chemotactic and secreted cytokines. Studies have shown that CXC chemokines are dysregulated in multiple types of cancer and are closely correlated with tumor progression. The CXC chemokine family has a dual function in tumor development, either tumor-promoting or tumor-suppressive depending on the context of cellular signaling. Recent evidence highlights the pro-tumorigenic properties of CXC chemokines in most human cancers. CXC chemokines were found to play pivotal roles in promoting angiogenesis, stimulating inflammatory responses, and facilitating tumor metastases. Enhanced expression of CXC chemokines is always signatured with inferior survival and prognosis. The levels of CXC chemokines in cancer patients are in dynamic change according to the tumor contexts (e.g., chemotherapy resistance and tumor recurrence after surgery). Thus, CXC chemokines have great potential to be used as diagnostic and prognostic biomarkers and therapeutic targets. Currently, the molecular mechanisms underlying the effect of CXC chemokines on tumor inflammation and metastasis remain unclear and application of antagonists and neutralizing antibodies of CXC chemokines signaling for cancer therapy is still not fully established. This article will review the roles of CXC chemokines in promoting tumorigenesis and progression and address the future research directions of CXC chemokines for cancer treatment.
Collapse
|
18
|
Motyka J, Gacuta E, Kicman A, Kulesza M, Ławicki P, Ławicki S. Plasma Levels of CXC Motif Chemokine 1 (CXCL1) and Chemokine 8 (CXCL8) as Diagnostic Biomarkers in Luminal A and B Breast Cancer. J Clin Med 2022; 11:jcm11226694. [PMID: 36431173 PMCID: PMC9693547 DOI: 10.3390/jcm11226694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokines are involved in the regulation of immune balance and in triggering an immune response. CXCL1 and CXCL8 belong to the ELR-motif-containing group of CXC chemokines, which, in breast cancer (BC), stimulate angiogenesis and increase migration and invasiveness of tumor cells. The aim of this study was to evaluate CXCL1, CXCL8 and comparative marker CA 15-3 plasma concentrations in BC patients with luminal subtypes A and B. The study group consisted of 100 patients with BC, and the control group of 50 subjects with benign breast lesions and 50 healthy women. Chemokines concentrations were determined by ELISA method; CA15-3-by CMIA. Concentrations of CXCL8 and CA15-3 were significantly higher in BC total group and luminal B (for CA15-3 also in luminal A) subtype of BC than in healthy controls and subjects with benign lesions. In the total BC group, the highest SE, PPV and NPV were observed for CXCL8 (70%, 77.78%, 50%, resp.). A combined analysis of tested chemokines with CA 15-3 increased SE and NPV values (96%, 69.23%, resp.). The diagnostic power of the test (measured by area under ROC curve (AUC)) showed the highest value for CXCL8 in the total BC group (0.6410), luminal A (0.6120) and B subgroup of BC (0.6700). For the combined parameter, the AUC was increasing and reached the highest value for CXCL1 + CXCL8 + CA15-3 combination (0.7024). In light of these results, we suggest that CXCL8 could be used as an additional diagnostic marker that would positively influence the diagnostic utility of CA 15-3, especially in luminal B subtype of BC.
Collapse
Affiliation(s)
- Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence:
| | - Ewa Gacuta
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland
| | - Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Paweł Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
19
|
CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer. Int J Mol Sci 2022; 23:ijms23042168. [PMID: 35216283 PMCID: PMC8878198 DOI: 10.3390/ijms23042168] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells.
Collapse
|
20
|
Zhou X, Fang D, Liu H, Ou X, Zhang C, Zhao Z, Zhao S, Peng J, Cai S, He Y, Xu J. PMN-MDSCs accumulation induced by CXCL1 promotes CD8 + T cells exhaustion in gastric cancer. Cancer Lett 2022; 532:215598. [PMID: 35176418 DOI: 10.1016/j.canlet.2022.215598] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) accumulation in multiple tumor is associated with immune checkpoint inhibitors (ICIs) resistance. However, mechanisms of MDSCs in ICIs resistance of gastric cancer (GC) have not been thoroughly explored. In this study, we found that the PMN-MDSCs frequency rather than the M-MDSCs frequency was correlated with the survival of GC patients and CXCL1 induced PMN-MDSCs accumulation in GC. S100A8/A9 heterodimer, a hallmark of MDSCs, upregulated the CXCL1 expression in GC cells through the TLR4/p38 MAPK/NF-κB pathway. Notably, PMN-MDSCs exerted immunosuppressive effect through S100A8/A9. Mechanically, S100A8/A9 led to CD8+ T cells exhaustion including inhibiting CD8+ T cells glycolysis, proliferation and TNF-α and IFN-γ production, which was dependent on TLR4/AKT/mTOR pathway. In tumor-bearing mice, the CXCR2 antagonist SB225002 decreased PMN-MDSCs accumulation, increased CD8+ T cells infiltration in GC and further enhanced anti-tumor efficacy of anti-PD-1. Taken together, our study identified that CXCL1 induced PMN-MDSCs accumulation in GC, and unveiled how PMN-MDSCs promoted CD8+ T cells exhaustion, which may provide a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Laboratory of General Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Deliang Fang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Laboratory of General Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Laboratory of General Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Xinde Ou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Laboratory of General Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Chaoyue Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Zirui Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoji Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Gastric Cancer Center of Sun-Yat-Sen University, Guangzhou, Guangdong, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Gastric Cancer Center of Sun-Yat-Sen University, Guangzhou, Guangdong, China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Gastric Cancer Center of Sun-Yat-Sen University, Guangzhou, Guangdong, China; Center for Digestive Disease, The Seventh Affiliated Hospital of Sun-Yat-sen University, Shenzhen, Guangdong, China
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China; Gastric Cancer Center of Sun-Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Lee CW, Chiang YC, Yu PA, Peng KT, Chi MC, Lee MH, Fang ML, Lee KH, Hsu LF, Liu JF. A Role of CXCL1 Drives Osteosarcoma Lung Metastasis via VCAM-1 Production. Front Oncol 2021; 11:735277. [PMID: 34760697 PMCID: PMC8573405 DOI: 10.3389/fonc.2021.735277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma, a common aggressive and malignant cancer, appears in the musculoskeletal system among young adults. The major cause of mortality in osteosarcoma was the recurrence of lung metastases. However, the molecular mechanisms of metastasis involved in osteosarcomas remain unclear. Recently, CXCL1 and CXCR2 have been crucial indicators for lung metastasis in osteosarcoma by paracrine releases, suggesting the involvement of directing neutrophils into tumor microenvironment. In this study, overexpression of CXCL1 has a positive correlation with the migratory and invasive activities in osteosarcoma cell lines. Furthermore, the signaling pathway, CXCR2/FAK/PI3K/Akt, is activated through CXCL1 by promoting vascular cell adhesion molecule 1 (VCAM-1) via upregulation of nuclear factor-kappa B (NF-κB) expression and nuclear translocation. The in vivo animal model further demonstrated that CXCL1 serves as a critical promoter in osteosarcoma metastasis to the lung. The correlated expression of CXCL1 and VCAM-1 was observed in the immunohistochemistry staining from human osteosarcoma specimens. Our findings demonstrate the cascade mechanism regulating the network in lung metastasis osteosarcoma, therefore indicating that the CXCL1/CXCR2 pathway is a worthwhile candidate to further develop treatment schemas.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Yao-Chang Chiang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Pei-An Yu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Sports Medicine Center, Chang Gung Memorial Hospital at Chia Yi, Chiayi, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Miao-Ching Chi
- Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hsueh Lee
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan.,Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| | - Kuan-Han Lee
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Bisht VS, Giri K, Kumar D, Ambatipudi K. Oxygen and metabolic reprogramming in the tumor microenvironment influences metastasis homing. Cancer Biol Ther 2021; 22:493-512. [PMID: 34696706 DOI: 10.1080/15384047.2021.1992233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Tumor metastasis is the leading cause of cancer mortality, often characterized by abnormal cell growth and invasion to distant organs. The cancer invasion due to epithelial to mesenchymal transition is affected by metabolic and oxygen availability in the tumor-associated micro-environment. A precise alteration in oxygen and metabolic signaling between healthy and metastatic cells is a substantial probe for understanding tumor progression and metastasis. Molecular heterogeneity in the tumor microenvironment help to sustain the metastatic cell growth during their survival shift from low to high metabolic-oxygen-rich sites and reinforces the metastatic events. This review highlighted the crucial role of oxygen and metabolites in metastatic progression and exemplified the role of metabolic rewiring and oxygen availability in cancer cell adaptation. Furthermore, we have also addressed potential applications of altered oxygen and metabolic networking with tumor type that could be a signature pattern to assess tumor growth and chemotherapeutics efficacy in managing cancer metastasis.
Collapse
Affiliation(s)
- Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepak Kumar
- Department of Cancer Biology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research, New Delhi, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
23
|
Han XL, Du J, Zheng YD, Dai JJ, Lin SW, Zhang BY, Zhong FB, Lin ZG, Jiang SQ, Wei W, Fang ZY. CXCL1 Clone Evolution Induced by the HDAC Inhibitor Belinostat Might Be a Favorable Prognostic Indicator in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5089371. [PMID: 33959656 PMCID: PMC8075662 DOI: 10.1155/2021/5089371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer due to its lack of treatment options. Patients with TNBC frequently develop resistance to chemotherapy. As epigenetic-based antineoplastic drugs, histone deacetylase inhibitors (HDACis) have achieved particular efficacy in lymphoma but are less efficacious in solid tumors, and the resistance mechanism remains poorly understood. In this study, the GSE129944 microarray dataset from the Gene Expression Omnibus database was downloaded, and fold changes at the transcriptome level of a TNBC line (MDA-MB-231) after treatment with belinostat were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to identify the critical biological processes. Construction and analysis of the protein-protein interaction (PPI) network were performed to screen candidate genes related to cancer prognosis. A total of 465 DEGs were identified, including 240 downregulated and 225 upregulated genes. The cytokine-cytokine receptor pathway was identified as being significantly changed. Furthermore, the expression of CXCL1 was implicated as a favorable factor in the overall survival of breast cancer patients. With in vitro approaches, we also showed that belinostat could induce the expression of CXCL1 in another 2 TNBC cell lines (BT-549 and HCC-1937). We speculate that belinostat-induced CXCL1 expression could be one of the results of the stress clone evolution of cells after HDACi treatment. These findings provide new insights into clone evolution during HDACi treatment, which might guide us to a novel perspective that various mutation-targeted treatments should be implemented during the whole treatment cycle.
Collapse
Affiliation(s)
- Xin-le Han
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Jun Du
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Ya-dan Zheng
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Jia-jing Dai
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Su-wen Lin
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Bing-yue Zhang
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Fu-bo Zhong
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Zhe-guang Lin
- Department of Biobank, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Shu-qi Jiang
- Department of Biobank, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Zheng-yu Fang
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
- Department of Biobank, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| |
Collapse
|
24
|
Progression of Metastasis through Lymphatic System. Cells 2021; 10:cells10030627. [PMID: 33808959 PMCID: PMC7999434 DOI: 10.3390/cells10030627] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Lymph nodes are the most common sites of metastasis in cancer patients. Nodal disease status provides great prognostic power, but how lymph node metastases should be treated is under debate. Thus, it is important to understand the mechanisms by which lymph node metastases progress and how they can be targeted to provide therapeutic benefits. In this review, we focus on delineating the process of cancer cell migration to and through lymphatic vessels, survival in draining lymph nodes and further spread to other distant organs. In addition, emerging molecular targets and potential strategies to inhibit lymph node metastasis are discussed.
Collapse
|
25
|
Mendonca P, Alghamdi S, Messeha S, Soliman KFA. Pentagalloyl glucose inhibits TNF-α-activated CXCL1/GRO-α expression and induces apoptosis-related genes in triple-negative breast cancer cells. Sci Rep 2021; 11:5649. [PMID: 33707603 PMCID: PMC7952910 DOI: 10.1038/s41598-021-85090-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
In triple-negative breast cancer (TNBC), the tumor microenvironment is associated with increased proliferation, suppressing apoptotic mechanisms, an altered immune response, and drug resistance. The current investigation was designed to examine the natural compound pentagalloyl glucose (PGG) effects on TNF-α activated TNBC cell lines, MDA-MB-231 and MDA-MB-468. The results obtained showed that PGG reduced the expression of the cytokine GRO-α/CXCL1. PGG also inhibited IƙBKE and MAPK1 genes and the protein expression of IƙBKE and MAPK, indicating that GRO-α downregulation is possibly through NFƙB and MAPK signaling pathway. PGG also inhibited cell proliferation in both cell lines. Moreover, PGG induced apoptosis, modulating caspases, and TNF superfamily receptor genes. It also augmented mRNA of receptors DR4 and DR5 expression, which binds to TNF-related apoptosis-induced ligand, a potent and specific stimulator of apoptosis in tumors. Remarkably, PGG induced a 154-fold increase in TNF expression in MDA-MB-468 compared to a 14.6-fold increase in MDA-MB-231 cells. These findings indicate PGG anti-cancer ability in inhibiting tumor cell proliferation and GRO-α release and inducing apoptosis by increasing TNF and TNF family receptors' expression. Thus, PGG use may be recommended as an adjunct therapy for TNBC to increase chemotherapy effectiveness and prevent cancer progression.
Collapse
Affiliation(s)
- Patricia Mendonca
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Room G134 H Pharmacy Building, 1415 ML King Blvd, Tallahassee, FL, 32307, USA
| | - Sumaih Alghamdi
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Room G134 H Pharmacy Building, 1415 ML King Blvd, Tallahassee, FL, 32307, USA
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Room G134 H Pharmacy Building, 1415 ML King Blvd, Tallahassee, FL, 32307, USA
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Room G134 H Pharmacy Building, 1415 ML King Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
26
|
Lopez-Bergami P, Barbero G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev 2021; 39:933-952. [PMID: 32435939 DOI: 10.1007/s10555-020-09878-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt5a is the prototypical activator of the non-canonical Wnt pathways, and its overexpression has been implicated in the progression of several tumor types by promoting cell motility, invasion, EMT, and metastasis. Recent evidences have revealed a novel role of Wnt5a in the phosphorylation of the NF-κB subunit p65 and the activation of the NF-κB pathway in cancer cells. In this article, we review the molecular mechanisms and mediators defining a Wnt5a/NF-κB signaling pathway and propose that the aberrant expression of Wnt5a in some tumors drives a Wnt5a/NF-κB/IL-6/STAT3 positive feedback loop that amplifies the effects of Wnt5a. The evidences discussed here suggest that Wnt5a has a double effect on the tumor microenvironment. First, it activates an autocrine ROR1/Akt/p65 pathway that promotes inflammation and chemotaxis of immune cells. Then, Wnt5a activates a TLR/MyD88/p50 pathway exclusively in myelomonocytic cells promoting the synthesis of the anti-inflammatory cytokine IL-10 and a tolerogenic phenotype. As a result of these mechanisms, Wnt5a plays a negative role on immune cell function that contributes to an immunosuppressive tumor microenvironment and would contribute to resistance to immunotherapy. Finally, we summarized the development of different strategies targeting either Wnt5a or the Wnt5a receptor ROR1 that can be helpful for cancer therapy by contributing to generate a more immunostimulatory tumor microenvironment.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
27
|
Lee S, Kang H, Park D, Yu J, Koh SK, Cho D, Kim D, Kang K, Jeon NL. Modeling 3D Human Tumor Lymphatic Vessel Network Using High‐Throughput Platform. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.202000195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Somin Lee
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Habin Kang
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Dohyun Park
- Department of Mechanical Engineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - James Yu
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Seung Kwon Koh
- Department of Health Sciences and Technology SAIHST Sungkyunkwan University 115, Irwon‐ro, Gangnam‐gu Seoul 06355 Republic of Korea
| | - Duck Cho
- Department of Health Sciences and Technology SAIHST Sungkyunkwan University 115, Irwon‐ro, Gangnam‐gu Seoul 06355 Republic of Korea
- Department of Laboratory Medicine and Genetics Samsung Medical Center Sungkyunkwan University School of Medicine 115, Irwon‐ro, Gangnam‐gu Seoul 06355 Republic of Korea
| | - Da‐Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science College of Veterinary Medicine Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Kyung‐Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science College of Veterinary Medicine Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Department of Mechanical Engineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Institute of Advanced Machinery and Design Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Institute of BioEngineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
28
|
Xu J, Ou X, Li J, Cai Q, Sun K, Ye J, Peng J. Overexpression of TC2N is associated with poor prognosis in gastric cancer. J Cancer 2021; 12:807-817. [PMID: 33403038 PMCID: PMC7778556 DOI: 10.7150/jca.50653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Tac2-N (TC2N) is a tandem C2 domain-containing protein, acting as a novel oncogene or suppressor in different kinds of cancers. However, the status of TC2N expression and its significance in gastric cancer (GC) is still unclear. The present study is aimed to elucidate the clinicopathological significance and prognostic value of TC2N level in GC. Methods: We used sequencing data from the Cancer Genome Atlas (TCGA) database to analyze TC2N expression in GC by UALCAN database and Gene Expression Profiling Interactive Analysis tools (GEPIA). TC2N expression level in 12 pairs of fresh GC tissues and adjacent nontumorous tissues was detected by quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) and Western blot (WB) assays. Immunohistochemical (IHC) staining was used to detect TC2N protein expression in Paraffin-embedded tissues in our center. In vitro proliferation, migration and invasion assays were used to evaluate the effect of TC2N on functional capability of gastric cancer cells. LinkedOmics was used to identify gene expressions associated with TC2N. Results: The mRNA and protein expression of TC2N in gastric cancer were both significantly higher than normal gastric mucosa. It was also elevated in gastric cancer cells compared with normal gastric epithelium cell. In vitro assays suggested that TC2N facilitated proliferation, migration and invasion of gastric cancer cells. Bioinformatic analysis showed a widespread impact of TC2N on the transcriptome and a strong interaction with tumor associated genes. We also found that TC2N was an independent prognostic factor for long-term survival in GC patients and its high expression was evidently associated with poor overall survival and recurrence-free survival. Conclusions: Our results show that high level of TC2N correlates with poor prognosis in patients with gastric cancer and promotes the development of gastric cancer. Thus, TC2N expression can serve as a prognostic biomarker for patients with gastric cancer.
Collapse
Affiliation(s)
- Jianbo Xu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xinde Ou
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China.,Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jin Li
- Digestive Disease Center, the Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen 518000, China.,Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Qinbo Cai
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China.,Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jingning Ye
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| |
Collapse
|
29
|
Lee BS, Jang JY, Seo C, Kim CH. Crosstalk between head and neck cancer cells and lymphatic endothelial cells promotes tumor metastasis via CXCL5-CXCR2 signaling. FASEB J 2020; 35:e21181. [PMID: 33231340 DOI: 10.1096/fj.202001455r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) metastasizes to the locoregional lymph nodes at high rates and is related to poor clinical outcomes. However, the mechanism by which cancer cells migrate to the lymph nodes is unclear. To address this, we established a conditioned medium culture system for HNSCC cells and lymphatic endothelial cells (LECs) and investigated their crosstalk. Stimulation with tumor-conditioned medium (TCM) activated LECs, resulting in a robust increase in cell proliferation to induce lymphatic hyperplasia. Further, stimulation of HNSCC cells with activated LEC Conditioned media (TCM-LEC CM) induced cell invasion. Among various chemokines, CXCL5 promoted the invasion of TCM-LEC CM-treated HNSCC cells. The level of CXCL5 protein was higher in cancer tissues than those in normal tissues from HNSCC patients. Furthermore, treatment with SB225002, a CXCR2 (CXCL5 receptor) inhibitor, resulted in decreased lymph node metastasis in vivo. In conclusion, inhibition of CXCL5-CXCR2 signaling between cancer cells and LECs suppresses cancer cell invasion and metastasis in vitro and in vivo. This novel therapeutic strategy might be a practical approach to the clinical management of HNSCC.
Collapse
Affiliation(s)
- Bok-Soon Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Chorong Seo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
30
|
Johnson SC, Chakraborty S, Drosou A, Cunnea P, Tzovaras D, Nixon K, Zawieja DC, Muthuchamy M, Fotopoulou C, Moore JE. Inflammatory state of lymphatic vessels and miRNA profiles associated with relapse in ovarian cancer patients. PLoS One 2020; 15:e0230092. [PMID: 32716937 PMCID: PMC7384632 DOI: 10.1371/journal.pone.0230092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/05/2020] [Indexed: 01/20/2023] Open
Abstract
Lymphogenic spread is associated with poor prognosis in epithelial ovarian cancer (EOC), yet little is known regarding roles of non-peri-tumoural lymphatic vessels (LVs) outside the tumour microenvironment that may impact relapse. The aim of this feasibility study was to assess whether inflammatory status of the LVs and/or changes in the miRNA profile of the LVs have potential prognostic and predictive value for overall outcome and risk of relapse. Samples of macroscopically normal human lymph LVs (n = 10) were isolated from the external iliac vessels draining the pelvic region of patients undergoing debulking surgery. This was followed by quantification of the inflammatory state (low, medium and high) and presence of cancer-infiltration of each LV using immunohistochemistry. LV miRNA expression profiling was also performed, and analysed in the context of high versus low inflammation, and cancer-infiltrated versus non-cancer-infiltrated. Results were correlated with clinical outcome data including relapse with an average follow-up time of 13.3 months. The presence of a high degree of inflammation correlated significantly with patient relapse (p = 0.033). Cancer-infiltrated LVs showed a moderate but non-significant association with relapse (p = 0.07). Differential miRNA profiles were identified in cancer-infiltrated LVs and those with high versus low inflammation. In particular, several members of the let-7 family were consistently down-regulated in highly inflamed LVs (>1.8-fold, p<0.05) compared to the less inflamed ones. Down-regulation of the let-7 family appears to be associated with inflammation, but whether inflammation contributes to or is an effect of cancer-infiltration requires further investigation.
Collapse
Affiliation(s)
- Sarah C. Johnson
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Anastasios Drosou
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Paula Cunnea
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Dimitrios Tzovaras
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Katherine Nixon
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - David C. Zawieja
- College of Medicine, Texas A&M University, TX, United States of America
| | | | - Christina Fotopoulou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Chao CC, Lee CW, Chang TM, Chen PC, Liu JF. CXCL1/CXCR2 Paracrine Axis Contributes to Lung Metastasis in Osteosarcoma. Cancers (Basel) 2020; 12:cancers12020459. [PMID: 32079335 PMCID: PMC7072404 DOI: 10.3390/cancers12020459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, the most common of all bone malignancies, has a high likelihood of lung metastasis. Up until now, the molecular mechanisms involved in osteosarcomas with lung metastases are not clearly understood. Recent observations have shown that the chemokine CXCL1 and its receptor CXCR2 assist with the homing of neutrophils into the tumor microenvironment. Here, we show that the CXCL1/CXCR2 paracrine axis is crucial for lung metastasis in osteosarcoma. In an in vivo lung metastasis model of osteosarcoma, lung blood vessels expressed CXCL1 and osteosarcoma cells expressed the CXCR2 receptor. CXCR2 expression was higher in osteosarcoma cell lines than in normal osteoblast cells. Immunohistochemistry staining of clinical osteosarcoma specimens revealed positive correlations between CXCR2 expression and pathology stage and also vascular cell adhesion molecule 1 (VCAM-1) expression. High levels of CXCL1 secreted by human pulmonary artery endothelial cells (HPAECs) promoted osteosarcoma cell mobility, which was mediated by the upregulation of VCAM-1 expression. When HPAECs-conditioned media was incubated in osteosarcoma cells, we observed that the CXCR2 receptor and FAK/PI3K/Akt/NF-κB signaling cascade were required for VCAM-1 expression. Our findings illustrate a molecular mechanism of lung metastasis in osteosarcoma and indicate that CXCL1/CXCR2 is worth targeting in treatment schemas.
Collapse
Affiliation(s)
- Chia-Chia Chao
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan;
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan
| | - Tsung-Ming Chang
- School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City 11221, Taiwan;
| | - Po-Chun Chen
- Translational medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan;
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Ju-Fang Liu
- Translational medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: or ; Tel.: +(886)-2-2833-2211 (ext. 9420)
| |
Collapse
|
32
|
Usman S, Khawer M, Rafique S, Naz Z, Saleem K. The current status of anti-GPCR drugs against different cancers. J Pharm Anal 2020; 10:517-521. [PMID: 33425448 PMCID: PMC7775845 DOI: 10.1016/j.jpha.2020.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
G protein coupled receptors (GPCRs) have emerged as the most potential target for a number of drug discovery programs ranging from control of blood pressure, diabetes, cure for genetic diseases to treatment of cancer. A panel of different ligands including hormones, peptides, ions and small molecules is responsible for activation of these receptors. Molecular genetics has identified key GPCRs, whose mutations or altered expressions are linked with tumorgenicity. In this review, we discussed recent advances regarding the involvement of GPCRs in the development of cancers and approaches to manipulating the mechanism behind GPCRs involved tumor growth and metastasis to treat different types of human cancer. This review provides an insight into the current scenario of GPCR-targeted therapy, progress to date and the challenges in the development of anticancer drugs.
Collapse
Affiliation(s)
- Sana Usman
- Centre for Applied Molecular Biology, 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Maria Khawer
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zara Naz
- Centre for Applied Molecular Biology, 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Komal Saleem
- Centre for Applied Molecular Biology, 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
33
|
Zhang Z, Chen Y, Jiang Y, Luo Y, Zhang H, Zhan Y. Prognostic and clinicopathological significance of CXCL1 in cancers: a systematic review and meta-analysis. Cancer Biol Ther 2019; 20:1380-1388. [PMID: 31387444 DOI: 10.1080/15384047.2019.1647056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The prognostic value of Chemokine (C-X-C motif) ligand 1 (CXCL1) in various types of cancer remains controversial. Here we aimed to evaluate the prognostic role of CXCL1 for cancer. Methods A comprehensively search of the PubMed, Embase, Web of Science, Wanfang and China National Knowledge Internet databases was conducted to retrieve eligible studies meeting the inclusion criteria. Overall survival (OS), progression-free survival (PFS) and various clinicopathological parameters were defined as endpoints. Stata SE12.0 software was used for quantitative meta-analysis. Results A total of 17 studies encompassing 2265 cancer patients were included. Our meta-analysis showed that patients with higher CXCL1 expression had significantly shorter OS, according to both multivariate (HR 1.51, 95% CI 1.19-1.83, P < .01) and univariate analysis (HR 2.08, 95% CI 1.62-2.54, P < .01). Furthermore, higher CXCL1 expression was significantly correlated with advanced TNM stage and lymph node metastasis (both P < .05). Conclusions High CXCL1 expression is a risk factor for cancer prognosis indicating a poor OS, and advanced TNM stage and lymph node metastasis, demonstrating that it may be a promising prognostic biomarker for different cancers.
Collapse
Affiliation(s)
- Zulei Zhang
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China.,Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yuting Chen
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China.,Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yaofei Jiang
- Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China.,Wuhan University , Wuhan , Hubei , People's Republic of China.,Department of Radiology, Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Yan Luo
- Department of Radiology, Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Hao Zhang
- Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yakun Zhan
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| |
Collapse
|
34
|
Yang C, Yu H, Chen R, Tao K, Jian L, Peng M, Li X, Liu M, Liu S. CXCL1 stimulates migration and invasion in ER‑negative breast cancer cells via activation of the ERK/MMP2/9 signaling axis. Int J Oncol 2019; 55:684-696. [PMID: 31322183 PMCID: PMC6685590 DOI: 10.3892/ijo.2019.4840] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Chemokine (C‑X‑C motif) ligand 1 (CXCL1), a member of the CXC chemokine family, has been reported to be a critical factor in inflammatory diseases and tumor progression; however, its functions and molecular mechanisms in estrogen receptor α (ER)‑negative breast cancer (BC) remain largely unknown. The present study demonstrated that CXCL1 was upregulated in ER‑negative BC tissues and cell lines compared with ER‑positive tissues and cell lines. Treatment with recombinant human CXCL1 protein promoted ER‑negative BC cell migration and invasion in a dose‑dependent manner, and stimulated the activation of phosphorylated (p)‑ extracellular signal‑regulated kinase (ERK)1/2, but not p‑STAT3 or p‑AKT. Conversely, knockdown of CXCL1 in BC cells attenuated these effects. Additionally, CXCL1 increased the expression of matrix metalloproteinase (MMP)2/9 via the ERK1/2 pathway. Inhibition of MEK1/2 by its antagonist U0126 reversed the effects of CXCL1 on MMP2/9 expression. Furthermore, immunohistochemical analysis revealed a strong positive association between CXCL1 and p‑ERK1/2 expression levels in BC tissues. In conclusion, the present study demonstrated that CXCL1 is highly expressed in ER‑negative BC, and stimulates BC cell migration and invasion via the ERK/MMP2/9 pathway. Therefore, CXCL1 may serve as a potential therapeutic target in ER‑negative BC.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haochen Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rui Chen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kai Tao
- Department of the Second of Gynecology Oncology, Shanxi Provincial Tumor Hospital, The Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Lei Jian
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaotian Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
35
|
Farnsworth RH, Karnezis T, Maciburko SJ, Mueller SN, Stacker SA. The Interplay Between Lymphatic Vessels and Chemokines. Front Immunol 2019; 10:518. [PMID: 31105685 PMCID: PMC6499173 DOI: 10.3389/fimmu.2019.00518] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.
Collapse
Affiliation(s)
- Rae H Farnsworth
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Tara Karnezis
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Simon J Maciburko
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
36
|
Zhou Z, Xia G, Xiang Z, Liu M, Wei Z, Yan J, Chen W, Zhu J, Awasthi N, Sun X, Fung KM, He Y, Li M, Zhang C. A C-X-C Chemokine Receptor Type 2-Dominated Cross-talk between Tumor Cells and Macrophages Drives Gastric Cancer Metastasis. Clin Cancer Res 2019; 25:3317-3328. [PMID: 30796034 DOI: 10.1158/1078-0432.ccr-18-3567] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 12/09/2022]
Abstract
PURPOSE C-X-C chemokine receptor type 2 (CXCR2) is a key regulator that drives immune suppression and inflammation in tumor microenvironment. CXCR2-targeted therapy has shown promising results in several solid tumors. However, the underlying mechanism of CXCR2-mediated cross-talk between gastric cancer cells and macrophages still remains unclear.Experimental Design: The expression of CXCR2 and its ligands in 155 human gastric cancer tissues was analyzed via immunohistochemistry, and the correlations with clinical characteristics were evaluated. A coculture system was established, and functional assays, including ELISA, transwell, cell viability assay, and qPCR, were performed to determine the role of the CXCR2 signaling axis in promoting gastric cancer growth and metastasis. A xenograft gastric cancer model and a lymph node metastasis model were established to study the function of CXCR2 in vivo. RESULTS CXCR2 expression is associated with the prognosis of patients with gastric cancer (P = 0.002). Of all the CXCR2 ligands, CXCL1 and CXCL5 can significantly promote migration of gastric cancer cells. Macrophages are the major sources of CXCL1 and CXCL5 in the gastric cancer microenvironment, and promote migration of gastric cancer cells through activating a CXCR2/STAT3 feed-forward loop. Gastric cancer cells secrete TNF-α to induce release of CXCL1 and CXCL5 from macrophages. Inhibiting CXCR2 pathway of gastric cancer cells can suppress migration and metastasis of gastric cancer in vitro and in vivo. CONCLUSIONS Our study suggested a previously uncharacterized mechanism through which gastric cancer cells interact with macrophages to promote tumor growth and metastasis, suggesting that CXCR2 may serve as a promising therapeutic target to treat gastric cancer.
Collapse
Affiliation(s)
- Zhijun Zhou
- Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Guanggai Xia
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Xiang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingyang Liu
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhewei Wei
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Yan
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wei Chen
- Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jintao Zhu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Niranjan Awasthi
- Indiana University School of Medicine, South Bend, and IU Health Goshen Center for Cancer Care, Goshen, Indiana
| | - Xiaotian Sun
- Department of Internal Medicine, Clinic of August First Film Studio, Beijing, China
| | - Kar-Ming Fung
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yulong He
- Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Li
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Changhua Zhang
- Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
He M, Jiang Z, Wang C, Hao Z, An J, Shen J. Diagnostic value of near‐infrared or fluorescent indocyanine green guided sentinel lymph node mapping in gastric cancer: A systematic review and meta‐analysis. J Surg Oncol 2018; 118:1243-1256. [DOI: 10.1002/jso.25285] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Meifeng He
- Chengde Medical UniversityChengde Hebei China
| | - Zhanwu Jiang
- Baoding First Central HospitalBaoding Hebei China
| | | | - Zhiwei Hao
- Baoding First Central HospitalBaoding Hebei China
| | - Jie An
- Baoding First Central HospitalBaoding Hebei China
| | - Jiankai Shen
- Baoding First Central HospitalBaoding Hebei China
| |
Collapse
|
38
|
Hara Y, Torii R, Ueda S, Kurimoto E, Ueda E, Okura H, Tatano Y, Yagi H, Ohno Y, Tanaka T, Masuko K, Masuko T. Inhibition of tumor formation and metastasis by a monoclonal antibody against lymphatic vessel endothelial hyaluronan receptor 1. Cancer Sci 2018; 109:3171-3182. [PMID: 30058195 PMCID: PMC6172044 DOI: 10.1111/cas.13755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Although cancer metastasis is associated with poor prognosis, the mechanisms of this event, especially via lymphatic vessels, remain unclear. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE‐1) is expressed on lymphatic vessel endothelium and is considered to be a specific marker of lymphatic vessels, but it is unknown how LYVE‐1 is involved in the growth and metastasis of cancer cells. We produced rat monoclonal antibodies (mAb) recognizing the extracellular domain of mouse LYVE‐1, and investigated the roles of LYVE‐1 in tumor formation and metastasis. The mAb 38M and 64R were selected from hybridoma clones created by cell fusion between spleen cells of rats immunized with RH7777 rat hepatoma cells expressing green fluorescent protein (GFP)‐fused mouse LYVE‐1 proteins and mouse myeloma cells. Two mAb reacted with RH7777 and HEK293F human embryonic kidney cells expressing GFP‐fused mouse LYVE‐1 proteins in a GFP expression‐dependent manner, and each recognized a distinct epitope. On immunohistology, the 38M mAb specifically stained lymphatic vessels in several mouse tissues. In the wound healing assay, the 64R mAb inhibited cell migration of HEK293F cells expressing LYVE‐1 and mouse lymphatic endothelial cells (LEC), as well as tube formation by LEC. Furthermore, this mAb inhibited primary tumor formation and metastasis to lymph nodes in metastatic MDA‐MB‐231 xenograft models. This shows that LYVE‐1 is involved in primary tumor formation and metastasis, and it may be a promising molecular target for cancer therapy.
Collapse
Affiliation(s)
- Yuta Hara
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Ryota Torii
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Shiho Ueda
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Erina Kurimoto
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Eri Ueda
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Hiroshi Okura
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Yutaka Tatano
- Department of Pharmaceuticals, Faculty of Pharmacy, International University of Health and Welfare, Otawara, Tochigi, Japan
| | - Hideki Yagi
- Department of Pharmaceuticals, Faculty of Pharmacy, International University of Health and Welfare, Otawara, Tochigi, Japan
| | - Yoshiya Ohno
- Laboratory of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Toshiyuki Tanaka
- Laboratory of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Kazue Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| |
Collapse
|
39
|
Harris AR, Perez MJ, Munson JM. Docetaxel facilitates lymphatic-tumor crosstalk to promote lymphangiogenesis and cancer progression. BMC Cancer 2018; 18:718. [PMID: 29976154 PMCID: PMC6034223 DOI: 10.1186/s12885-018-4619-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background Infiltration into lymphatic vessels is a critical step in breast cancer metastasis. Lymphatics undergo changes that facilitate metastasis as a result of activation of the cells lining lymphatic vessels, lymphatic endothelial cells (LECs). Inhibition of activation by targeting VEGFR3 can reduce invasion toward lymphatics. To best benefit patients, this approach should be coupled with standard of care that slows tumor growth, such as chemotherapy. Little is known about how chemotherapies, like docetaxel, may influence lymphatics and conversely, how lymphatics can alter responses to therapy. Methods A novel 3D in vitro co-culture model of the human breast tumor microenvironment was employed to examine the contribution of LECs to tumor invasion and viability with docetaxel and anti-VEGFR3, using three cell lines, MDA-MB-231, HCC38, and HCC1806. In vivo, the 4T1 mouse model of breast carcinoma was used to examine the efficacy of combinatorial therapy with docetaxel and anti-VEGFR3 on lymph node metastasis and tumor growth. Lymphangiogenesis in these mice was analyzed by immunohistochemistry and flow cytometry. Luminex analysis was used to measure expression of lymphangiogenic cytokines. Results In vitro, tumor cell invasion significantly increased with docetaxel when LECs were present; this effect was attenuated by inhibition of VEGFR3. LECs reduced docetaxel-induced cell death independent of VEGFR3. In vivo, docetaxel significantly increased breast cancer metastasis to the lymph node. Docetaxel and anti-VEGFR3 combination therapy reduced lymph node and lung metastasis in 4T1 and synergized to reduce tumor growth. Docetaxel induced VEGFR3-dependent vessel enlargement, lymphangiogenesis, and expansion of the LEC population in the peritumoral microenvironment, but not tumor-free stroma. Docetaxel caused an upregulation in pro-lymphangiogenic factors including VEGFC and TNF-α in the tumor microenvironment in vivo. Conclusions Here we present a counter-therapeutic effect of docetaxel chemotherapy that triggers cancer cells to elicit lymphangiogenesis. In turn, lymphatics reduce cancer response to docetaxel by altering the cytokine milieu in breast cancer. These changes lead to an increase in tumor cell invasion and survival under docetaxel treatment, ultimately reducing docetaxel efficacy. These docetaxel-induced effects can be mitigated by anti-VEGFR3 therapy, resulting in a synergism between these treatments that reduces tumor growth and metastasis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4619-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra R Harris
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Matthew J Perez
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jennifer M Munson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Biomedical Engineering & Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
40
|
The evolving role of lymphatics in cancer metastasis. Curr Opin Immunol 2018; 53:64-73. [PMID: 29698919 DOI: 10.1016/j.coi.2018.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/17/2023]
Abstract
While the link between the lymphatic system and the metastatic spread of cancer is centuries old, understanding of the underlying mechanisms is still evolving. Lymphatic vessels provide a route for tumour cells to reach regional lymph nodes (LNs), which is prognostic of distant organ metastasis and poor survival. However, genomic analyses of metastatic cancer now reveal complex patterns of dissemination. The lymphatic endothelial cells lining lymphatics respond to molecular cues from the tumour microenvironment, mediating growth and remodelling of lymphatic vessels at the primary tumour, draining LNs and distant premetastatic niches. Recent studies emphasise that this not only supports metastasis but also influences antitumour immunity. Understanding the complex interactions between tumour cells, the immune system and lymphatics will be essential to inform developing therapeutic and prognostic approaches to cancer.
Collapse
|
41
|
Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci 2018; 25:20. [PMID: 29506506 PMCID: PMC5838954 DOI: 10.1186/s12929-018-0426-4] [Citation(s) in RCA: 550] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are subpopulations of cancer cells sharing similar characteristics as normal stem or progenitor cells such as self-renewal ability and multi-lineage differentiation to drive tumour growth and heterogeneity. Throughout the cancer progression, CSC can further be induced from differentiated cancer cells via the adaptation and cross-talks with the tumour microenvironment as well as a response from therapeutic pressures, therefore contributes to their heterogeneous phenotypes. Challengingly, conventional cancer treatments target the bulk of the tumour and are unable to target CSCs due to their highly resistance nature, leading to metastasis and tumour recurrence. MAIN BODY This review highlights the roles of CSCs in tumour initiation, progression and metastasis with a focus on the cellular and molecular regulators that influence their phenotypical changes and behaviours in the different stages of cancer progression. We delineate the cross-talks between CSCs with the tumour microenvironment that support their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation in response to therapeutic pressure. An insight into the distinct roles of CSCs in promoting angiogenesis and metastasis has been captured based on in vitro and in vivo evidences. CONCLUSION Given dynamic cellular events along the cancer progression and contributions of resistance nature by CSCs, understanding their molecular and cellular regulatory mechanism in a heterogeneous nature, provides significant cornerstone for the development of CSC-specific therapeutics.
Collapse
Affiliation(s)
- Ain Zubaidah Ayob
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
- Cell and Molecular Laboratory (CMBL), The Dean’s Office, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Wang Z, Wang Z, Li G, Wu H, Sun K, Chen J, Feng Y, Chen C, Cai S, Xu J, He Y. CXCL1 from tumor-associated lymphatic endothelial cells drives gastric cancer cell into lymphatic system via activating integrin β1/FAK/AKT signaling. Cancer Lett 2016; 385:28-38. [PMID: 27832972 DOI: 10.1016/j.canlet.2016.10.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/16/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Crosstalk between lymphatic endothelial cells (LECs) and tumor cells in the tumor microenvironment plays a crucial role in tumor metastasis. Our previous study indicated chemokine (C-X-C motif) ligand 1 (CXCL1) from LECs stimulates the metastasis of gastric cancer. However, the mechanism is still unclear. Here, we successfully isolated tumor-associated LECs (T-LECs) and normal LECs (N-LECs) from clinical samples by magnetic-activated cell sorting system (MACS) and proved that CXCL1 expression was elevated in T-LECs compared with N-LECs in situ and vitro. Besides, we demonstrated that CXCL1 secreted by T-LECs promoted the migration, invasion, and adhesion of gastric cancer cells by upregulating integrin β1, MMP2, and MMP9. Furthermore, CXCL1 induced MMP2/9 expression by activating integrin β1-FAK-AKT signaling. In the animal model, CXCL1 overexpressed in LECs increased the lymph node metastasis of gastric cancer. In conclusion, CXCL1 expression in T-LECs was upregulated, and CXCL1 secreted by T-LECs promoted the lymph node metastasis of gastric cancer through integrin β1/FAK/AKT signaling, leading to MMP2 and MMP9 expression. Therefore, CXCL1 produced in T-LECs represents a potentially promising target for treating gastric cancer.
Collapse
Affiliation(s)
- Zhixiong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Zhao Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Guanghua Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Hui Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Jianhui Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Yun Feng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Chuangqi Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Yulong He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
43
|
Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils. J Immunol Res 2016; 2016:6530410. [PMID: 27446967 PMCID: PMC4942661 DOI: 10.1155/2016/6530410] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/10/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs) play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.
Collapse
|
44
|
An overlooked tumor promoting immunoregulation by non-hematopoietic stromal cells. Immunol Lett 2016; 176:114-21. [PMID: 27311851 DOI: 10.1016/j.imlet.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/26/2016] [Accepted: 06/10/2016] [Indexed: 01/14/2023]
Abstract
Multidirectional complex communication between tumor-residing hematopoietic and non-hematopoietic stromal cells (NHSCs) decisively regulates cancer development, progression and therapeutic responses. HSCs predominantly participate in the immune regulations, while, NHSCs, provide parenchymal support or serve as a conduit for other cells or support angiogenesis. However, recent reports suggest NHSCs can additionally participate in ongoing tumor promoting immune reactions within tumor-microenvironment (TME). In this review, based on the state-of-art knowledge and accumulated evidence by us, we discuss the role of quite a few NHSCs in tumor from immunological perspectives. Understanding such consequence of NHSCs will surely pave the way in crafting effective cancer management.
Collapse
|
45
|
Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells. Exp Cell Res 2016; 345:180-9. [PMID: 27312995 DOI: 10.1016/j.yexcr.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023]
Abstract
Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growth and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5'-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis.
Collapse
|
46
|
Stachura J, Wachowska M, Kilarski WW, Güç E, Golab J, Muchowicz A. The dual role of tumor lymphatic vessels in dissemination of metastases and immune response development. Oncoimmunology 2016; 5:e1182278. [PMID: 27622039 PMCID: PMC5006909 DOI: 10.1080/2162402x.2016.1182278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Lymphatic vasculature plays a crucial role in the immune response, enabling transport of dendritic cells (DCs) and antigens (Ags) into the lymph nodes. Unfortunately, the lymphatic system has also a negative role in the progression of cancer diseases, by facilitating the metastatic spread of many carcinomas to the draining lymph nodes. The lymphatics can promote antitumor immune response as well as tumor tolerance. Here, we review the role of lymphatic endothelial cells (LECs) in tumor progression and immunity and mechanism of action in the newest anti-lymphatic therapies, including photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Joanna Stachura
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Wachowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Witold W Kilarski
- Institute for Molecular Engineering, University of Chicago , Chicago, IL, USA
| | - Esra Güç
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh , Edinburgh, UK
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw , Warsaw, Poland
| | | |
Collapse
|
47
|
Adipose-derived stem cells promote proliferation, migration, and tube formation of lymphatic endothelial cells in vitro by secreting lymphangiogenic factors. Ann Plast Surg 2016; 74:728-36. [PMID: 24401810 DOI: 10.1097/sap.0000000000000084] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose-derived stem cells (ADSCs) are a promising new therapeutic modality for several diseases and have been applied to various clinical fields because of their multidifferentiation potential and capacity for growth-factor secretion. Recently, 2 in vivo studies showed ADSCs to have potential applications in lymphedema therapy. However, it remains unclear whether ADSCs have direct effects on lymphatic endothelial cells (LECs). In this study, human LECs were treated with murine ADSC-derived conditioned media. Changes in LEC proliferation, migration, and tube formation were assessed by WST-8 assay, transwell chamber assay, and Matrigel-based tube formation assay, respectively, with recombinant human vascular endothelial growth factor-C used as a positive control. Additionally, the expression of several lymphangiogenic factors in ADSCs was examined by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Factors secreted by ADSCs induced LEC proliferation, migration, and tube formation more potently than recombinant human vascular endothelial growth factor-C. We confirmed by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay that some of the lymphangiogenic factors of ADSCs were dramatically up-regulated under serum-starved conditions. These data indicate that ADSCs could directly contribute to lymphangiogenesis via secretory factors in vitro and may thus provide a therapeutic modality for patients with lymphedema.
Collapse
|
48
|
Tokumoto MW, Tanaka H, Tauchi Y, Kasashima H, Kurata K, Yashiro M, Sakurai K, Toyokawa T, Kubo N, Amano R, Kimura K, Muguruma K, Maeda K, Ohira M, Hirakawa K. Identification of tumour-reactive lymphatic endothelial cells capable of inducing progression of gastric cancer. Br J Cancer 2015; 113:1046-54. [PMID: 26355233 PMCID: PMC4651131 DOI: 10.1038/bjc.2015.282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/26/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
Background: Tumour cells and stromal cells interact in the tumour microenvironment; moreover, stromal cells can acquire abnormalities that contribute to tumour progression. However, interactions between lymphatic endothelial cells (LECs) and tumour cells are largely unexamined. In this study, we aimed to determine whether tumour-specific LECs inhabit the tumour microenvironment and examine their influence on this microenvironment. Methods: We isolated normal LECs (NLECs) from a non-metastatic lymph node and tumour-associated LECs (TLECs) from cancerous lymph nodes. We examined proliferative and migratory potency, growth factor production, and gene expression of each type of LEC. Moreover, we developed a co-culture system to investigate the interactions between gastric cancer cells and LECs. Results: When compared with NLEC, TLECs had an abnormal shape, high proliferative and migratory abilities, and elevated expression of genes associated with inflammation, cell growth, and cell migration. NLECs co-cultured with gastric cancer cells from the OCUM12 cell line acquired TLEC-like phenotypes. Also, OCUM12 cells co-cultured with TLECs expressed high levels of genes responsible for metastasis. Conclusions: Our results demonstrated that LECs interacted with tumour cells and obtained abnormal phenotypes that could have important roles in tumour progression.
Collapse
Affiliation(s)
- Mao Watanabe Tokumoto
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Yukie Tauchi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kento Kurata
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Katsunobu Sakurai
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Naoshi Kubo
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Ryosuke Amano
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kenjiro Kimura
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kazuya Muguruma
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
49
|
Zhou Y, Yu F, Wu L, Ye F, Zhang L, Li Y. Survival after Gastrectomy in Node-Negative Gastric Cancer: A Review and Meta-Analysis of Prognostic Factors. Med Sci Monit 2015; 21:1911-9. [PMID: 26134762 PMCID: PMC4500595 DOI: 10.12659/msm.893856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Lymph node metastasis is one of the most important prognostic factors for survival of patients with gastric cancer (GC) after surgical resection. Nevertheless, a considerable number of patients have node-negative disease. We performed the present systematic review to evaluate survival and identify prognostic factors in node-negative GC patients undergoing curative intent resection. Material/Methods Relevant studies published between January 2000 and January 2015 were identified by searching the PubMed database and reviewed systematically. Summary relative risks (RR) and 95% confidence intervals (95% CI) were estimated using random-effects models. Results Thirty observational studies involving 12 504 patients were included in the review. Median 5-year overall survival was 84.3% (range, 53–96.3%). Pooled analysis showed that old age (RR, 1.26; 95%CI, 1.13–1.42), <D2 lymph node dissection (1.28; 1.05–1.55), larger tumor (1.18; 1.10–1.26), serosal invasion (2.03; 1.68–2.44), lymphatic invasion (1.25; 1.00–1.57), vascular invasion (1.67; 1.19–2.34), and lymphovascular invasion (1.93; 1.20–3.10) were significant association with decreased survival. Conclusions Surgical resection offers good overall survival for patients with node-negative GC. Tumor-related factors seem to have most prognostic significance.
Collapse
Affiliation(s)
- Yanming Zhou
- Department of Hepato-Biliary-Pancreato-Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| | - Feng Yu
- Department of Hepatobiliary Surgery, The 101th Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Lupeng Wu
- Department of Hepato-Biliary-Pancreato-Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| | - Feng Ye
- Department of Hepato-Biliary-Pancreato-Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| | - Leilei Zhang
- Department of Anaesthesiology, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
50
|
Wei ZW, Xia GK, Wu Y, Chen W, Xiang Z, Schwarz RE, Brekken RA, Awasthi N, He YL, Zhang CH. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett 2015; 359:335-43. [DOI: 10.1016/j.canlet.2015.01.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/22/2015] [Accepted: 01/24/2015] [Indexed: 02/07/2023]
|