1
|
El Saftawy EA, Aboulhoda BE, AbdElkhalek MA, Alghamdi MA, AlHariry NS. Non-coding RNAs in urinary bladder cancer microenvironment: Diagnostic, therapeutic, and prognostic perspective. Pathol Res Pract 2025; 266:155815. [PMID: 39824086 DOI: 10.1016/j.prp.2025.155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. Despite the reliance of UBC therapy on definite pathological grading and classifications, the clinical response among patients varies widely. The molecular basis of this type of cancer appeals to considerable research; hence, new diagnostic and therapeutic options are introduced. Convenient keywords were searched in Google Scholar, PubMed, the Egyptian Knowledge Bank (EKB), and Web of Science. The recent era of UBC research is concerned with non-coding RNAs (ncRNAs), predominantly, microRNAs (miRNAs) and long non-coding RNA (lncRNAs). In addition, snoRNAs, PIWI-interacting RNAs, mitochondrial RNAs, circular, and Schistosoma haematobium-related ncRNAs appeared to contribute to the pathogenesis of the UBC. This review underscored the recently studied ncRNAs and their importance in the pathogenesis of UBC. Besides, we introduced the prospectives regarding their diagnostic, therapeutic, and prognostic significance in UBC clinical settings. Conclusion. Oncogenic and oncosuppressor ncRNAs' definite balances and interaction within the TME of UBC are key players in the fate of the tumor. Thus, profiling ncRNA in-depth inspects the TME of the UBC for better clinical insights.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Marwa Ali AbdElkhalek
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mansour A Alghamdi
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia; Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
2
|
Bhattarai S, Sugita BM, Nunes-Souza E, Fonseca AS, Chandrashekar DS, Bhargava M, Cavalli LR, Aneja R. Dysregulated miRNA Expression and Androgen Receptor Loss in Racially Distinct Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13679. [PMID: 39769441 PMCID: PMC11679545 DOI: 10.3390/ijms252413679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Androgen receptor (AR)-negative triple-negative breast cancer (TNBC), often termed quadruple-negative breast cancer (QNBC), disproportionately impacts women of African descent, leading to poorer overall survival (OS). MiRNAs regulate the expression of gene drivers involved in critical signaling pathways in TNBC, such as the AR gene, and their expression varies across races and breast cancer subtypes. This study investigates whether differentially expressed miRNAs influence AR transcription, potentially contributing to the observed disparities between African American (AA) and European American (EA) QNBC patients. Race-annotated TNBC samples (n = 129) were analyzed for AR expression status and revealed the prevalence of QNBC in AA patients compared to EA (76.6% vs. 57.7%) and a significant association of AR loss with poor survival among AAs. The Cancer Genome Atlas (TCGA) RNA-seq data showed that AAs with TNBC (n = 32) had lower AR mRNA levels than EAs (n = 67). Among TCGA patients in the AR-low group, AAs had significantly poorer OS than EAs. In our cohort, 46 miRNAs exhibited differential expression between AAs and EAs with QNBC. Ten of these miRNAs (miR-1185-5p, miR-1305, miR-3161, miR-3690, miR-494-3p, miR-509-3-5p, miR-619-3p, miR-628-3p, miR-873-5p, and miR-877-5p) were predicted to target the AR gene/signaling. The loss of AR expression is linked to poorer prognoses in AA women. The understanding of the specific miRNAs involved and their regulatory mechanisms on AR expression could provide valuable insights into why AA women are more prone to QNBC.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Darshan Shimoga Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Mahak Bhargava
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Azhar NA, Paramanantham Y, B W M Nor WMFS, B M Said NA. MicroRNA-146b-5p/FDFT1 mediates cisplatin sensitivity in bladder cancer by redirecting cholesterol biosynthesis to the non-sterol branch. Int J Biochem Cell Biol 2024; 176:106652. [PMID: 39270927 DOI: 10.1016/j.biocel.2024.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Chemotherapy against muscle-invasive bladder cancer is increasingly challenged by the prevalence of chemoresistance. The cholesterol biosynthesis pathway has garnered attention in studies of chemoresistance, but conflicting clinical and molecular findings necessitate a clearer understanding of its underlying mechanisms. Recently, we identified farnesyl-diphosphate farnesyltransferase 1 (FDFT1)-the first specific gene in this pathway-as a tumor suppressor and chemoresistance modulator. Raman spectroscopy revealed higher levels of FDFT1-related metabolites in chemotherapy-sensitive bladder cancer tissue compared to resistant tissue; however, this observation lacks mechanistic insight. FDFT1 expression was reduced in our cisplatin-resistant bladder cancer cells (T24R) compared to parental cisplatin-sensitive cells (T24). Using functional knockdown and ectopic overexpression in T24/T24R cells, we mechanistically demonstrate the pathway through which FDFT1 mediates cisplatin sensitivity in bladder cancer cells. Bioinformatics analysis and rescue experiments showed that microRNA-146b-5p directly targets and downregulates FDFT1, reducing the cisplatin sensitivity of T24 cells, which can be restored by forced FDFT1 expression. Further investigation into the downstream cholesterol pathway revealed that FDFT1 suppression redirects its substrate toward the non-sterol branch of the pathway, as evidenced by the upregulation of non-sterol branch-associated genes and a reduced total cholesterol level in the sterol branch. Since the non-sterol pathway leads to the prenylation of isoprenoids and activation of Ras and Rho family proteins involved in cancer progression and chemoresistance, our findings suggest that redirection of the cholesterol biosynthesis pathway is a key mechanism underlying FDFT1-mediated cisplatin resistance in bladder cancer. The miR-146b-5p/FDFT1 axis represents a promising target for overcoming chemoresistance in bladder cancer.
Collapse
Affiliation(s)
- Nurul Amniyyah Azhar
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | | | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Zhang W, Guo G, Li X, Lin J, Zheng Z, Huang P, Lin C, Lin Y, Chen X, Lin K, Zheng C, Lin H, Lu Y, Zhang H. A bibliometric analysis of bladder cancer and microRNA research: Trends and advances from 2008 to 2022. Medicine (Baltimore) 2024; 103:e40289. [PMID: 39470484 PMCID: PMC11521070 DOI: 10.1097/md.0000000000040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Bladder cancer (BC) is a significant global health issue with high incidence and mortality rates. MicroRNAs (miRNAs) play a crucial role in regulating gene expression and have been found to be dysregulated in BC. Understanding the role of miRNAs in BC development could lead to targeted therapies and improved patient management. Our study presents a thorough examination of the correlation between BC and miRNA research from 2008 to 2022. With the help of 3 powerful methods, including VOSviewer, Biblioshiny, and CiteSpace software, we analyzed the retrieved documents from "Core Collection databases online" on the Web of Science. In total, 798 articles were extracted from the Web of Science, and the number of published papers showed an upward trend from 2008 to 2019. The total number of citations was 21,233, of which the highest paper was a review article written by Chan Jiajia et al in 2018 with 752 citations. Based on the result of the coauthor analysis, Seki Naohiko was the most productive writer and China had the highest volume of published articles. Co-citation analysis was used to reveal the knowledge structure of the research field. In addition to the keywords "Bladder cancer" and "miRNA," "Proliferation," "Biomarkers," and "Apoptosis" were the high-frequency used keywords. Recently, increasingly researchers have paid more attention to the field about BC and miRNA around the worldwide. Through in-depth communication and close collaboration, the veil of miRNA in BC has gradually been unveiled. Bibliometric analysis helps to identify hotspots in research and areas for future investigation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Gaowei Guo
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Xinji Li
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Jinming Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Zexian Zheng
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Peidong Huang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Chuqi Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Yurong Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Xiaosheng Chen
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Kuncheng Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Changzheng Zheng
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Huirong Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Yong Lu
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Hui Zhang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| |
Collapse
|
5
|
Duquesne I, Abou Chakra M, Hage L, Pinar U, Loriot Y. Liquid biopsies for detection, surveillance, and prognosis of urothelial cancer: a future standard? Expert Rev Anticancer Ther 2023; 23:995-1007. [PMID: 37542214 DOI: 10.1080/14737140.2023.2245144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Liquid biopsies are used for the detection of tumor-specific elements in body fluid. Their application in prognosis and diagnosis of muscle/non-muscle invasive bladder cancer (MIBC/NMIBC) or upper tract urothelial cancer (UTUC) remains poorly known and rarely mentioned in clinical guidelines. AREAS COVERED Herein, we provide an overview of current data regarding the use of liquid biopsies in urothelial tumors. EXPERT OPINION Studies that were included analyzed liquid biopsies using the detection of circulating tumor cells (CTCs), deoxyribonucleic acid (DNA), ribonucleic acid (RNA), exosomes, or metabolomics. The sensitivity of blood CTC detection in patients with localized cancer was 35% and raised to 50% in patients with metastatic cancer. In NMIBC patients, blood CTC was associated with poor prognosis, whereas discrepancies were seen in MIBC patients. Circulating plasma DNA presented a superior sensitivity to urine and was a good indicator for diagnosis, follow-up, and oncological outcome. In urine, specific bladder cancer (BC) microRNA had an overall sensitivity of 85% and a specificity of 86% in the diagnosis of urothelial cancer. These results are in favor of the use of liquid biopsies as biomarkers for in urothelial cancer management.
Collapse
Affiliation(s)
- Igor Duquesne
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Mohamad Abou Chakra
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Lory Hage
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Ugo Pinar
- Department of Urology, Pitie Salpetriere Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Sorbonne, Paris, France
| | - Yohann Loriot
- Department of Cancer Medicine, Gustave Roussy Institute, Cancer Campus, Grand Paris, Universite Paris-Sud, Villejuif, France
| |
Collapse
|
6
|
Jiang L, Sun G, Zou L, Guan Y, Hang Y, Liu Y, Zhou Z, Zhang X, Huang X, Pan H, Rong S, Ma H. Noncoding RNAs as a potential biomarker for the prognosis of bladder cancer: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:325-334. [PMID: 36970945 DOI: 10.1080/14737159.2023.2195554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE The relationship between noncoding RNAs and the prognosis of bladder cancer (BC) is still controversial. The purpose of this study is to evaluate the relationship between noncoding RNAs and prognosis by meta-analysis. METHODS Comprehensive retrieval of PubMed, Embase, the Cochrane Library, the Web of Science, CNKI, and WanFang databases is related to the correlation between noncoding RNAs and the prognosis of BC. Data were extracted, and the literature quality was evaluated. STATA16.0 served for the meta-analysis. RESULTS 1. CircRNAs: High circ-ZFR expression led to poor overall survival (OS) of BC. 2. LncRNAs: Low lnc-GAS5 expression predicted poor OS of BC, high lnc-TUG1 expression predicted poor OS of BC. 3. MiRNAs: High miR-21 expression predicted poor OS of BC, high miR-222 expression led to poor OS of BC, high miR-155 expression predicted poor progression-free survival (PFS) of BC, high miR-143 expression caused poor PFS of BC, low miR-214 expression could result in poor recurrence-free survival (RFS) of BC. CONCLUSIONS High circ-ZFR, lnc-TUG1, miR-222, and miR-21 expressions were correlated with poor OS of BC; high miR-155 and miR-143 expression predicted poor PFS of BC; low lnc-GAS5 expression predicted poor OS of BC; low miR-214 expression predicted poor RFS of BC.
Collapse
|
7
|
Murakami K, Furuya H, Hokutan K, Goodison S, Pagano I, Chen R, Shen CH, Chan MWY, Ng CF, Kobayashi T, Ogawa O, Miyake M, Thornquist M, Shimizu Y, Hayashi K, Wang Z, Yu H, Rosser CJ. Association of SNPs in the PAI1 Gene with Disease Recurrence and Clinical Outcome in Bladder Cancer. Int J Mol Sci 2023; 24:4943. [PMID: 36902377 PMCID: PMC10003630 DOI: 10.3390/ijms24054943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
PURPOSE Bladder cancer (BCa) is one of the most common cancer types worldwide and is characterized by a high rate of recurrence. In previous studies, we and others have described the functional influence of plasminogen activator inhibitor-1 (PAI1) in bladder cancer development. While polymorphisms in PAI1 have been associated with increased risk and worsened prognosis in some cancers, the mutational status of PAI1 in human bladder tumors has not been well defined. METHODS In this study, we evaluated the mutational status of PAI1 in a series of independent cohorts, comprised of a total of 660 subjects. RESULTS Sequencing analyses identified two clinically relevant 3' untranslated region (UTR) single nucleotide polymorphisms (SNPs) in PAI1 (rs7242; rs1050813). Somatic SNP rs7242 was present in human BCa cohorts (overall incidence of 72%; 62% in Caucasians and 72% in Asians). In contrast, the overall incidence of germline SNP rs1050813 was 18% (39% in Caucasians and 6% in Asians). Furthermore, Caucasian patients with at least one of the described SNPs had worse recurrence-free survival and overall survival (p = 0.03 and p = 0.03, respectively). In vitro functional studies demonstrated that SNP rs7242 increased the anti-apoptotic effect of PAI1, and SNP rs1050813 was related to a loss of contact inhibition associated with cellular proliferation when compared to wild type. CONCLUSION Further investigation of the prevalence and potential downstream influence of these SNPs in bladder cancer is warranted.
Collapse
Affiliation(s)
- Kaoru Murakami
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hideki Furuya
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kanani Hokutan
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Steve Goodison
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ian Pagano
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Runpu Chen
- Department of Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Michael W. Y. Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chi Fai Ng
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Nara 6348522, Japan
| | - Mark Thornquist
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yoshiko Shimizu
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Kazukuni Hayashi
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Zhangwei Wang
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Herbert Yu
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Charles J. Rosser
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
8
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
9
|
Xv Y, Qiu M, Liu Z, Xiao M, Wang F. Development of a 7-miRNA prognostic signature for patients with bladder cancer. Aging (Albany NY) 2022; 14:10093-10106. [PMID: 36566019 PMCID: PMC9831742 DOI: 10.18632/aging.204447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder carcinoma (BC) represents one of the most prevalent malignant cancers, while predicting its clinical outcomes using traditional indicators is difficult. This study aimed to develop a miRNA signature for the prognostic prediction of patients with BC. MATERIALS AND METHODS MiRNAs that expressed differentially were identified between 413 BC and 19 non-tumor patients, whose prognostic values were evaluated using univariate and multivariate Cox regression analyses. The independent prognostic factors were screened out and were used to establish a signature. The risk score of the signature was calculated. Receiver operating characteristic (ROC) curves and Kaplan-Meier curves were used to verify the predictive performance of the miRNA signature and the risk score. A nomogram was constructed which integrated with the miRNA signature and clinical parameters. Experiments were performed. RESULTS 7 prognosis related miRNAs were selected as independent risk factors, and a 7-miRNA signature was constructed, with an area under ROC (AUC) of 0.721. The 7-miRNA-signature based risk score acts as an independent prognostic factor, with satisfactory predictive performance (AUC = 0.744). Increased miR-337-3p expressions were detected in tumor samples and BC cell lines than in non-tumorigenic tissues and cell lines. Experiments suggested that miR-337-3p induces the proliferation, migration, and invasion of BC cells. CONCLUSION The constructed 7-miRNA signature is a promising biomarker for predicting the prognosis of patients with BC, and miR-337-3p may act as a candidate therapeutic target in BC treatments.
Collapse
Affiliation(s)
- Yingjie Xv
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Yuzhong 400016, China
| | - Ming Qiu
- Department of Urology, The People’s Hospital of Dazu, Chongqing, Dazu 402360, China
| | - Zhaojun Liu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Yuzhong 400016, China
| | - Mingzhao Xiao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Yuzhong 400016, China
| | - Fen Wang
- Department of Pathology, The People’s Hospital of Dazu, Chongqing, Dazu 402360, China
| |
Collapse
|
10
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
11
|
circRNA CRIM1 regulates the migration and invasion of bladder cancer by targeting miR182/Foxo3a axis. Clin Transl Oncol 2022; 24:1195-1203. [PMID: 34994952 DOI: 10.1007/s12094-021-02768-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To explore the molecular mechanism of circRNA CRIM1 in the regulation of bladder cancer by targeting the miR182/Foxo3a axis. METHODS 50 pairs of cancer tissues and para-cancerous tissues of patients with bladder cancer were collected. RT-PCR method was used to detect the expression of CRIM1 and miR-182. The association between circRNA CRIM1 and clinical data was analyzed. qPCR was used to measure the expression of circRNA CRIM1 and miR-182 in bladder cancer cell UMUC3 and endothelial cell line HUVEC. CRIM1 genes and miR-182 in UMUC3 cell lines were overexpressed and silenced, respectively, to investigate their effects on invasion and migration of bladder cancer, and to detect the changes of miR182/Foxo3a expression. The association between circRNA CRIM1 and miR182/Foxo3a was determined by bioinformatics analysis. RESULTS The results showed that there was a significant association between the expression of circRNA CRIM1 and distal migration. The expression of CRIM1 in adjacent tissues was significantly down-regulated and negatively correlated with distal migration. The overexpression of circRNA CRIM1 reduced migration and invasion processes in bladder cancer cells. After circRNA CRIM1 was overexpressed, the miR-182 was significantly down-regulated. The expression levels of Foxo3a mRNA and proteins were up-regulated after miR-182 silencing of bladder cancer cell line UMUC3. miR-182 silencing inhibited invasion and migration of cancer cells to some extent. In bladder cancer cells and tissues, CRIM1 and Foxo3a were significantly down-regulated, miR-182 was significantly up-regulated. CONCLUSION circRNA CRIM1 regulated the migration and invasion of bladder cancer by targeting the miR182/Foxo3a axis.
Collapse
|
12
|
Lv H, Zhou D, Liu G. LncRNA LINC00963 promotes colorectal cancer cell proliferation and metastasis by regulating miR‑1281 and TRIM65. Mol Med Rep 2021; 24:781. [PMID: 34498706 PMCID: PMC8436205 DOI: 10.3892/mmr.2021.12421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Reportedly, long-chain non-coding RNA LINC00963 features prominently in cancer biology. However, functional details of LINC00963 in colorectal cancer (CRC) remain to be elucidated. Reverse transcription-quantitative (RT-q)PCR was performed to examine LINC00963 and microRNA (miR)-1281 expression levels in 53 matched pairs of cancerous and non-cancerous tissues from patients with CRC. Tripartite motif-containing 65 (TRIM65) protein expression in CRC cells was detected via western blot analysis. Furthermore, LINC00963 overexpression plasmid, LINC00963 small interfering RNA, miR-1281 mimics or miR-1281 inhibitors were transfected into CRC cells, and Cell Counting Kit-8, colony formation and Transwell assays were adopted to study the effects of LINC00963 and miR-1281 on the malignant phenotypes of CRC cells. Bioinformatics analysis, dual-luciferase, RNA pull-down and immunoprecipitation assays, RT-qPCR and western blot analysis were performed to investigate the regulatory relationship between LINC00963, miR-1281 and TRIM65. LINC00963 was highly expressed in CRC tissues and cells, while miR-1281 was downregulated. Functionally, LINC00963 facilitated the proliferation, colony formation, migration and invasion of CRC cells, and increased the expression levels of Ki67, matrix metalloproteinase (MMP)2 and MMP9, while miR-1281 had the opposite biological functions. Mechanistically, LINC00963 sponged miR-1281 and repressed its expression in CRC cells, resulting in the upregulation of TRIM65. LINC00963 positively regulates TRIM65 in CRC progression by repressing miR-1281 expression, showing potential as a therapeutic target for treating CRC.
Collapse
Affiliation(s)
- Haidong Lv
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Dixia Zhou
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Guoqing Liu
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
13
|
Soliman SE, Elabd NS, El-Kousy SM, Awad MF. Down regulation of miR-30a-5p and miR-182-5p in gastric cancer: Clinical impact and survival analysis. Biochem Biophys Rep 2021; 27:101079. [PMID: 34355069 PMCID: PMC8321916 DOI: 10.1016/j.bbrep.2021.101079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
Background and aim Gastric Cancer (GC) is a leading cause of morbidity and mortality worldwide, particularly in developing nations, only a few suitable gastric cancer serum biomarkers with acceptable sensitivity and specificity exist. This work aims to highlight and uncover miR-30a-5p and miR-182-5p's diagnostic roles regarding gastric cancer and their roles in predicting prognosis. Methods 148 patients participated in this study. Groups I, II, and III had 47 patients with GC, 54 patients with benign gastric lesions, and 47 apparently healthy subjects of coincided age and gender as controls, respectively. All participants were clinically evaluated and subjected to CBC, serum CEA, and CA19-9 by ELISA, and real-time PCR tests of miR-30a-5p and miR-182-5p. Results MiR30a-5p and miR-182-5p were down regulated in gastric cancer patients in Group I more than Groups II and III (P < 0.001). ROC curve analysis revealed that miR30a-5p had better AUC, sensitivity, and specificity (0.961%, 93.62%, and 90.74%respectively). When miR-182-5p was gathered with CEA and CA19-9, specificity raised to 98.15% and PPV to 97.6%. Lower miR-30a-5p levels are linked with the presence of distant metastases, advanced TNM stage, and degree of pathological differentiation of tumors in GC patients (p = 0.034, 0.019, 0.049) respectively. According to the multivariate analysis, miR30a-5p expression level could be an independent predictor of GC. Conclusion Our results exhibited that miRNAs, miR-30a-5p and miR182-5p, gene expression have a diagnostic power and can identify patients with GC. MiR-30a-5p displayed the highest diagnostic specificity and sensitivity. Besides other known tumor markers, they could offer simple noninvasive biomarkers that predict gastric cancer.
Collapse
Affiliation(s)
- Shimaa E Soliman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Naglaa S Elabd
- Tropical Medicine Department, Faculty of Medicine - Menoufia University, Egypt
| | - Salah M El-Kousy
- Department of Organic Chemistry, Faculty of Science - Menoufia University, Egypt
| | - Mohamed F Awad
- Chemist at Faculty of Science - Menoufia University, Egypt Organic Chemistry, Egypt
| |
Collapse
|
14
|
Du Y, Zhang X, Zhang H, Chen Y, Zhu S, Shu J, Pan H. Propofol modulates the proliferation, invasion and migration of bladder cancer cells through the miR‑145‑5p/TOP2A axis. Mol Med Rep 2021; 23:439. [PMID: 33846791 PMCID: PMC8060790 DOI: 10.3892/mmr.2021.12078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Propofol‑based anesthesia has been reported to reduce the recurrence and metastasis of a number of cancer types following surgical resection. However, the effects of propofol in bladder cancer (BC) are yet to be fully elucidated. The aim of the present study was to investigate the functions of propofol in BC and their underlying mechanisms. In the study, the expression of microRNA (miR)‑145‑5p in BC tissues and cell lines was evaluated using reverse transcription‑quantitative PCR, and the effects of propofol on BC cells were determined using cell viability, wound healing and Transwell cell invasion assays, bioinformatics analysis, western blotting, immunohistochemistry and in vivo tumor xenograft models. It was found that propofol significantly suppressed the proliferation, migration and invasion of BC cells in vitro. In addition, propofol induced miR‑145‑5p expression in a time‑dependent manner, and miR‑145‑5p knockdown attenuated the inhibitory effects of propofol on the proliferation, migration and invasion of BC cells. Topoisomerase II α (TOP2A) was a direct target of miR‑145‑5p, and silencing TOP2A reversed the effects of miR‑145‑5p knockdown in propofol‑treated cells. Furthermore, propofol suppressed tumor xenograft growth, which was partially attenuated by miR‑145‑5p knockdown. The present study provided novel insight into the advantages of surgical intervention with propofol anesthesia in patients with BC.
Collapse
Affiliation(s)
- Yi Du
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xudong Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Hongwei Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yiding Chen
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shuying Zhu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jinjun Shu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Hui Pan
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Research Progress of Urine Biomarkers in the Diagnosis, Treatment, and Prognosis of Bladder Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33959906 DOI: 10.1007/978-3-030-63908-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bladder cancer (BC) is one of the most common tumor with high incidence. Relative to other cancers, BC has a high rate of recurrence, which results in increased mortality. As a result, early diagnosis and life-long monitoring are clinically significant for improving the long-term survival rate of BC patients. At present, the main methods of BC detection are cystoscopy and biopsy; however, these procedures can be invasive and expensive. This can lead to patient refusal and reluctance for monitoring. There are several BC biomarkers that have been approved by the FDA, but their sensitivity, specificity, and diagnostic accuracy are not ideal. More research is needed to identify suitable biomarkers that can be used for early detection, evaluation, and observation. There has been heavy research in the proteomics and genomics of BC and many potential biomarkers have been found. Although the advent of metabonomics came late, with the recent development of advanced analytical technology and bioinformatics, metabonomics has become a widely used diagnostic tool in clinical and biomedical research. It should be emphasized that despite progress in new biomarkers for BC diagnosis, there remains challenges and limitations in metabonomics research that affects its translation into clinical practice. In this chapter, the latest literature on BC biomarkers was reviewed.
Collapse
|
16
|
Guo Q, Ni P, Dai Y, Hu J, Yao Y. Long-Chain Noncoding RNA ADAMTS9-AS2 Regulates Proliferation, Migration, and Apoptosis in Bladder Cancer Cells Through Regulating miR-182-5p. J Interferon Cytokine Res 2021; 41:60-71. [PMID: 33621133 DOI: 10.1089/jir.2020.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The long-chain noncoding RNA ADAMTS9-AS2 functions as a tumor suppressor gene in many cancers. However, the underlying mechanism remains to be fully elucidated in bladder cancer (BC). ADAMTS9-AS2 exhibited a lower expression level in BC samples and cell lines. In addition, overexpression of ADAMTS9-AS2 obviously suppressed proliferation and migration, and induced apoptosis of T24 cells, while transfection with the ADAMTS9-AS2 inhibitor had opposite results in 5637 cells. Furthermore, miR-182-5p was the target microRNA of ADAMTS9-AS2 and was negatively correlated with ADAMTS9-AS2 expression. Upregulation of miR-182-5p reversed the effects of ADAMTS9-AS2 overexpression on biological function in T24 cells. ADAMTS9-AS2 was a tumor suppressor that inhibited BC cell proliferation and induced cellular apoptosis by targeting miR-182-5p, and it could be a promising target for BC treatment.
Collapse
Affiliation(s)
- Qing Guo
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Pinghua Ni
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Yi Dai
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Jianming Hu
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Yizhe Yao
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| |
Collapse
|
17
|
Xu C, Yu H, Yin X, Zhang J, Liu C, Qi H, Liu P. Circular RNA circNINL promotes breast cancer progression through activating β-catenin signaling via miR-921/ADAM9 axis. J Biochem 2021; 169:693-700. [PMID: 33479730 DOI: 10.1093/jb/mvab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023] Open
Abstract
We investigated the expression and functions of circular RNA (circRNA) circNINL and miR-921 in breast cancer (BC) in this study. We found that the expression of circNINL increased while the expression of miR-921 decreased in BC tissues and cell lines, and their anomalous expressions were associated with malignant features and poor prognostic of BC. Then, we demonstrated that circNINL could interact with miR-921 and facilitate BC cells malignant process including proliferation acceleration, migration enhancement and apoptosis evasion via sponging miR-921 in vitro. Further investigations revealed that circNINL/miR-921 axis could mediate the expression of ADAM9 which was a direct target of miR-921. In addition, we exhibited that ADAM9 may activate β-catenin signaling by interacting with E-cadherin. We presented the vital roles of circNINL/miR-921/ADAM9/β-catenin signaling in the progression of BC.
Collapse
Affiliation(s)
- Chuanbo Xu
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Haitao Yu
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Xianghua Yin
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Jishi Zhang
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Chunlin Liu
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| | - Hong Qi
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Peng Liu
- Department of General Surgery, The Huangdao District People's Hospital, Qingdao, Shandong, China
| |
Collapse
|
18
|
Awadalla A, Mortada WI, Abol-Enein H, Shokeir AA. Correlation between blood levels of cadmium and lead and the expression of microRNA-21 in Egyptian bladder cancer patients. Heliyon 2020; 6:e05642. [PMID: 33313435 PMCID: PMC7721616 DOI: 10.1016/j.heliyon.2020.e05642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 12/28/2022] Open
Abstract
Objective To investigate the relationship between blood levels of cadmium (Cd) and lead (Pb) and the expression of miRNA-21 among bladder cancer (BC) patients. Material and methods The blood concentrations of Cd and Pb in 268 BC patients and 132 controls were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The blood concentrations of Cd and Pb were interpreted according to the type and stage of the carcinoma. The expression of miRNA-21 was assessed by quantitative reverse transcription polymerase chain reaction in cancerous and adjacent non-cancerous bladder tissues among the patient groups. Results The blood concentrations of Cd and Pb were statistically elevated in BC patients compared to those of the controls. This elevation is more prevalent in groups with muscle-invasive bladder cancer (MIBC) than those with non-muscle invasive bladder cancer (NMIBC). Among the BC group, miRNA-21 was upregulated in cancerous tissues relative to adjacent non-cancerous tissues. Moreover, the expression was significantly higher in patients with MIBC compared to those with NMIBC. The expression of miRNA-21 in cancerous tissues was significantly associated with blood concentration of Cd and Pb among BC patients. Conclusion There is a relationship between Cd and Pb body burden and the tissue expression of miRNA-21 among BC patients. This indicates the role of miRNA-21 in Cd and Pb induced BC.
Collapse
Affiliation(s)
- Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Wael I Mortada
- Clinical Chemistry Laboratory, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Hassan Abol-Enein
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A Shokeir
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
19
|
Parizi PK, Yarahmadi F, Tabar HM, Hosseini Z, Sarli A, Kia N, Tafazoli A, Esmaeili SA. MicroRNAs and target molecules in bladder cancer. Med Oncol 2020; 37:118. [PMID: 33216248 DOI: 10.1007/s12032-020-01435-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Bladder cancer (BC) is considered as one of the most common malignant tumors in humans with complex pathogenesis including gene expression variation, protein degradation, and changes in signaling pathways. Many studies on involved miRNAs in BC have demonstrated that they could be used as potential biomarkers in the prognosis, response to treatment, and screening before the cancerous phenotype onset. MicroRNAs (miRNAs) regulate many cellular processes through their different effects on special targets along with modifying signaling pathways, apoptosis, cell growth, and differentiation. The diverse expression of miRNAs in cancerous tissues could mediate procedures leading to the oncogenic or suppressor behavior of certain genes in cancer cells. Since a specific miRNA may have multiple targets, an mRNA could also be regulated by multiple miRNAs which further demonstrates the actual role of miRNAs in cancer. In addition, miRNAs can be utilized as biomarkers in some cancers that cannot be screened in the early stages. Hence, finding blood, urine, or tissue miRNA biomarkers by novel or routine gene expression method could be an essential step in the prognosis and control of cancer. In the present review, we have thoroughly evaluated the recent findings on different miRNAs in BC which can provide comprehensive information on better understanding the role of diverse miRNAs and better decision making regarding the new approaches in the diagnosis, prognosis, prevention, and treatment of BC.
Collapse
Affiliation(s)
- Payam Kheirmand Parizi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Genome Medical Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Zohreh Hosseini
- Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - Abdolazim Sarli
- Department of Medical Genetic, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Nadia Kia
- Agostino Gemelli University Hospital, Torvergata University of Medical Sciences, Rome, Italy
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy With the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland.,Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Setti Boubaker N, Gurtner A, Trabelsi N, Manni I, Ayed H, Saadi A, Naimi Z, Ksontini M, Ayadi M, Blel A, Rammeh S, Chebil M, Piaggio G, Ouerhani S. Uncovering the expression patterns and the clinical significance of miR-182, miR-205, miR-27a and miR-369 in patients with urinary bladder cancer. Mol Biol Rep 2020; 47:8819-8830. [PMID: 33128684 DOI: 10.1007/s11033-020-05932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/17/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Given the high recurrence and progression rates and the absence of reliable markers for early detection and prognosis prediction of patients with urothelial bladder cancer (BCa), the exploration of new biomarkers with high specificity is imperative. Mainly, microRNAs (miRNAs), which are involved in the initiation and the progression of BCa. Herein, the expression patterns of miR-182, miR-205, miR-27a and miR-369 were evaluated in patients with urothelial BCa. METHODS AND RESULTS The expression levels of the miRNAs were investigated in 90 FFPE tissue samples (23 LG NMIBC, 44 HG NMIBC, 23 MIBC) and 10 non tumoral bladder tissues using TaqMan based RT-qPCR. Data analysis was performed using 2-ΔΔCT method. Correlation to clinical characteristics of the patients was performed using descriptive statistics and the receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic value of all miRNAs. MiR-27a, miR-205 and miR-369 were down-regulated whereas miR-182 was up-regulated in patients compared to controls (p < 0.001). MiR-205 and miR-182 positively segregate between NMIBC and MIBC (p = 0.002 and p = 0.000 respectively) whereas the distribution of miR-27a's expression among these tumor groups was almost significant (p = 0.05) and that of miR-369's expression was irrelevant (p = 0.618). Interestingly, miR-182 was discriminative between LG NMIBC and HG NMIBC (p < 0.001) and Ta/T1 tumors (p = 0.000). Furthermore, high levels of miR-182 were potentially predictive of progression in NMIBC patients (p = 0.01). CONCLUSION Collectively, a selection of miRNAs was found to be aberrantly expressed in BCa suggesting a potential diagnostic value in BCa. In addition, the clinical value of miR-182 and miR-205 as potential prognosis biomarkers was highlighted. Indeed, our data provide additional insights into cancer biology. Further functional or target studies are mandatory to strengthen these findings.
Collapse
Affiliation(s)
- Nouha Setti Boubaker
- Laboratory of proteins engineering and bioactive molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia.
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Aymone Gurtner
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Nesrine Trabelsi
- Laboratory of proteins engineering and bioactive molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia
| | - Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Haroun Ayed
- Laboratory of proteins engineering and bioactive molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Ahmed Saadi
- Laboratory of proteins engineering and bioactive molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Zeineb Naimi
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Meriem Ksontini
- Pathology Department, Charles Nicolle Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Mouna Ayadi
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Ahlem Blel
- Pathology Department, Charles Nicolle Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Soumaya Rammeh
- Pathology Department, Charles Nicolle Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Mohamed Chebil
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Slah Ouerhani
- Laboratory of proteins engineering and bioactive molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia
| |
Collapse
|
21
|
Taheri M, Shirvani-Farsani Z, Ghafouri-Fard S, Omrani MD. Expression profile of microRNAs in bladder cancer and their application as biomarkers. Biomed Pharmacother 2020; 131:110703. [PMID: 32890965 DOI: 10.1016/j.biopha.2020.110703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) comprises 3% of all cancers and is particularly common in the developed countries. Early diagnosis is an important necessity in improvement of BC prognosis, as patients' outcome is significantly different between muscle invasive BC (MIBC) and non-muscle invasive BC cases. This cancer is resulted from an intricate interaction between genetic and environmental factors. Recent studies have identified microRNAs (miRNAs) as potential modulators of carcinogenic potential of BC cells. These small transcripts regulate expression of target genes mostly through binding with their 3' untranslated regions. Expression of several oncomiRs has been increased in BC tissues, peripheral blood or urine samples of these patients. These miRNAs promote oncogenic potential of BC through modulation of epithelial-mesenchymal transition or PI3K/AKT, JAK/STAT and NF-κB/Snail signaling pathways. Besides, a number of tumor suppressive miRNAs have been down-regulated in BC samples leading to enhanced proliferation, invasiveness and metastasis of these cells. TGFβ1, Akt, MAPK, MET/SMAD3/SNAIL, MAPK1/Slug/vimentin and Wnt7a/β-catenin pathways and axes are among molecular targets of these miRNAs. Aberrant expressions of miRNAs in biofluids of patients with BC have potentiated them as molecular markers for prediction of disease course. In the current review, we provided a summary of studies which reported aberrant expression of miRNAs and their implications in the diagnosis or prognosis of patients with BC.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
The Microrna-143/145 Cluster in Tumors: A Matter of Where and When. Cancers (Basel) 2020; 12:cancers12030708. [PMID: 32192092 PMCID: PMC7140083 DOI: 10.3390/cancers12030708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/06/2023] Open
Abstract
The establishment and spreading of cancer involve the acquirement of many biological functions including resistance to apoptosis, enhanced proliferation and the ability to invade the surrounding tissue, extravasate from the primary site, survive in circulating blood, and finally extravasate and colonize distant organs giving origin to metastatic lesions, the major cause of cancer deaths. Dramatic changes in the expression of protein coding genes due to altered transcription factors activity or to epigenetic modifications orchestrate these events, intertwining with a microRNA regulatory network that is often disrupted in cancer cells. microRNAs-143 and -145 represent puzzling players of this game, with apparently contradictory functions. They were at first classified as tumor suppressive due to their frequently reduced levels in tumors, correlating with cell survival, proliferation, and migration. More recently, pro-oncogenic roles of these microRNAs have been described, challenging their simplistic definition as merely tumor-suppressive. Here we review their known activities in tumors, whether oncogenic or onco-suppressive, and highlight how their expression and functions are strongly dependent on their complex regulation downstream and upstream of cytokines and growth factors, on the cell type of expression and on the specific tumor stage.
Collapse
|
23
|
Screening and Functional Analysis of Hub MicroRNAs Related to Tumor Development in Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3981931. [PMID: 32090086 PMCID: PMC6998761 DOI: 10.1155/2020/3981931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022]
Abstract
Various microRNAs (miRNAs) are of importance in the development of colon cancer, but most of the mechanisms of the miRNAs are still unclear. In order to clarify the hub miRNAs and their roles in colon cancer development, GSE98406 was used to screen hub miRNAs by bioinformatics analysis. 46 DE-miRNAs (14 were upregulated and 32 were downregulated) and 1738 target genes of DE-miRNAs were ascertained. miRNAs-gene-networks and miRNAs-GO-networks were built to get more knowledge about the function of candidate miRNAs. After validation, three miRNAs (miR-17-5p, miR-182-5p and miR-200a-3p) were recognized to be hub miRNAs associated with the progression of colon cancer. More importantly, the hub miRNAs and the putative targets genes might be new diagnostic and therapeutic targets for colon cancer in the future.
Collapse
|
24
|
Boubaker NS, Spagnuolo M, Trabelsi N, Said R, Gurtner A, Regazzo G, Ayed H, Blel A, Karray O, Saadi A, Rammeh S, Chebil M, Rizzo MG, Piaggio G, Ouerhani S. miR-143 expression profiles in urinary bladder cancer: correlation with clinical and epidemiological parameters. Mol Biol Rep 2019; 47:1283-1292. [PMID: 31863330 DOI: 10.1007/s11033-019-05228-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023]
Abstract
Hsa-mir-143 and hsa-let-7c have been reported to be deregulated in multiple neoplasms. The main purpose of this study was to investigate the expression of these miRNAs in bladder cancer (BCa) and to analyze the association between their expression profiles and clinical and epidemiological parameters. Ninety BCa specimens were included. Expression patterns of miR-143 and let-7c were assessed by qRT-PCR using Taqman specific probes. Validated and predicted targets of these miRNA's were identified using CSmiRTar and DAVID tools, respectively. miR-143 was downregulated in tumors compared to controls (mean fold-change (FC) = 0.076). Its expression was significantly higher in MIBC compared to NMIBC (p = 0,001). Its value as a potential biomarker discriminating non invasive tumors from the invasive ones was confirmed by ROC curve (AUC = 0.768; p = 0.0001). Also, this down-regulation positively correlates with frequency of tobacco use (p = 0,04) and chronic alcohol consumption (p = 0,04). Let-7c was overexpressed in BCa samples (mean (FC = 9.92) compared to non tumoral ones but was not associated to clinical and epidemiological parameters. A comprehensive overview of miR-143 targets and pathways implicated in BCa initiation, diagnosis or prognosis using bioinformatical analysis, was conducted. While both deregulated miRNAs may contribute to urothelial tumorigenesis, the deregulation of miR-143 was significantly correlated to epidemiological and clinical parameters.
Collapse
Affiliation(s)
- Nouha Setti Boubaker
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia.,Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, UOSD SAFU, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Manuela Spagnuolo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Nesrine Trabelsi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia
| | - Rahma Said
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia
| | - Aymone Gurtner
- Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, UOSD SAFU, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giulia Regazzo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Haroun Ayed
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia.,Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahlem Blel
- Pathology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Omar Karray
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahmed Saadi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia.,Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Soumaya Rammeh
- Pathology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Mohamed Chebil
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Maria Giulia Rizzo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, UOSD SAFU, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Slah Ouerhani
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia.
| |
Collapse
|
25
|
Lopez-Beltran A, Cheng L, Gevaert T, Blanca A, Cimadamore A, Santoni M, Massari F, Scarpelli M, Raspollini MR, Montironi R. Current and emerging bladder cancer biomarkers with an emphasis on urine biomarkers. Expert Rev Mol Diagn 2019; 20:231-243. [DOI: 10.1080/14737159.2020.1699791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas Gevaert
- Laboratory of Experimental Urology, Organ Systems, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Ana Blanca
- Unit of Experimental Urology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Alessia Cimadamore
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| | | | | | - Marina Scarpelli
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| | - Maria R. Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| |
Collapse
|
26
|
Lara OD, Wang Y, Asare A, Xu T, Chiu HS, Liu Y, Hu W, Sumazin P, Uppal S, Zhang L, Rauh-Hain JA, Sood AK. Pan-cancer clinical and molecular analysis of racial disparities. Cancer 2019; 126:800-807. [PMID: 31730714 DOI: 10.1002/cncr.32598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Racial disparities in cancer outcomes are increasingly recognized, but comprehensive analyses, including molecular studies, are limited. The objective of the current study was to perform a pan-cancer clinical and epigenetic molecular analysis of outcomes in African American (AA) and European American (EA) patients. METHODS Cross-platform analyses using cancer databases (the Surveillance, Epidemiology, and End Results program database and the National Cancer Data Base) and a molecular database (The Cancer Genome Ancestry Atlas) were performed to evaluate clinical and epigenetic molecular differences between AA and EA patients based on genetic ancestry. RESULTS In the primary pan-cancer survival analysis using the Surveillance, Epidemiology, and End Results database (2,045,839 patients; 87.5% EA and 12.5% AA), AA patients had higher mortality rates for 28 of 42 cancer types analyzed (hazard ratio, >1.0). AAs continued to have higher mortality in 13 cancer types after adjustment for socioeconomic variables using the National Cancer Database (5,150,023 patients; 11.6% AA and 88.4% EA). Then, molecular features of 5,283 tumors were analyzed in patients who had genetic ancestry data available (87.2% EA and 12.8% AA). Genes were identified with altered DNA methylation along with increased microRNA expression levels unique to AA patients that are associated with cancer drug resistance. Increased miRNAs (miR-15a, miR-17, miR-130-3p, miR-181a) were noted in common among AAs with breast, kidney, thyroid, or prostate carcinomas. CONCLUSIONS The current results identified epigenetic features in AA patients who have cancer that may contribute to higher mortality rates compared with EA patients who have cancer. Therefore, a focus on molecular signatures unique to AAs may identify actionable molecular abnormalities.
Collapse
Affiliation(s)
- Olivia D Lara
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amma Asare
- Baylor College of Medicine, Houston, Texas
| | - Tao Xu
- Department of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Shitanshu Uppal
- Department of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Alejandro Rauh-Hain
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
27
|
Brînzan C, Aşchie M, Matei E, Mitroi A, Cozaru G. Molecular expression profiles of selected microRNAs in colorectal adenocarcinoma in patients from south-eastern part of Romania. Medicine (Baltimore) 2019; 98:e18122. [PMID: 31764853 PMCID: PMC6882641 DOI: 10.1097/md.0000000000018122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding class of RNAs with functions in the regulation of genes expressions. Dysregulated expressions of miRNAs play important roles in carcinogenesis and cancer progression by targeting various oncogenes and tumor-suppressor genes. miRNAs represent a new field for molecular diagnosis and prognosis of colorectal cancer (CRC) due to their high tissue specificity, their stability, and their dysregulated expression in tumor development.This study aimed to investigate using the qRT-PCR method the expression profile and prognostic value of 11 mature miRNAs in a cohort of 82 Romanian patients diagnosed with CRC. The relationship between the expression levels of selected miRNAs and clinicopathologic features were evaluated using ANOVA and Pearson test. In addition, the receiver operating characteristic (ROC) and area under the curve (AUC) were used to assess the diagnostic values of the miRNAs to discriminate cancerous from non-cancerous states of the samples.The expression levels of miR-30c, miR-144, miR-375, miR-214, and miR-195 in CRC tissue were significantly downregulated (all P < .05; Paired T-Test) than that in normal adjacent tissue sample (NATS), while the expression of miR-141, miR-182, miR-183, miR-21, and miR-370 in CRC tissue were significantly upregulated (all P < .001) than that in NATS. Moreover, the expression levels of miR-182, miR-183, miR-141, and miR-21 were demonstrated to be associated with a gradual increase in fold change expression with depth of tumor invasion (all P < .05), lymph node invasion (all P < .001), and maximal increase with distant metastasis (all P < .001). Moreover, the analysis of ROC curves revealed that AUC (95% CI) of miR-182, miR-183, miR-141, and miR-21 in diagnosis of CRC was 0.76 (0.66-0.87), 0.85 (0.78-0.94), 0.77 (0.62-0.92), 0.83 (0.73-0.90), respectively. The univariate and multivariate Cox-proportional hazard regression for all variables revealed that the nodal status, distant metastasis, miR-21, miR-141, miR-182, and miR-183 were independent prognostic markers of CRC.In conclusion, altered expressions of miR-21, miR-141, miR-182, and miR-183 in CRC varies at different stages of CRC development and may serve as potential diagnosis molecular biomarkers in Romanian patients with CRC. Further investigations are needed to confirm our findings.
Collapse
Affiliation(s)
- Costel Brînzan
- Pathology Department, Sf. Apostol Andrei Clinical Emergency County Hospital Constanta
- CEDMOG Center, Ovidius University, Constanta, Romania
| | - Mariana Aşchie
- Pathology Department, Sf. Apostol Andrei Clinical Emergency County Hospital Constanta
- CEDMOG Center, Ovidius University, Constanta, Romania
| | - Elena Matei
- CEDMOG Center, Ovidius University, Constanta, Romania
| | - Anca Mitroi
- Pathology Department, Sf. Apostol Andrei Clinical Emergency County Hospital Constanta
- CEDMOG Center, Ovidius University, Constanta, Romania
| | - Georgeta Cozaru
- Pathology Department, Sf. Apostol Andrei Clinical Emergency County Hospital Constanta
- CEDMOG Center, Ovidius University, Constanta, Romania
| |
Collapse
|
28
|
Baumgart S, Meschkat P, Edelmann P, Heinzelmann J, Pryalukhin A, Bohle R, Heinzelbecker J, Stöckle M, Junker K. MicroRNAs in tumor samples and urinary extracellular vesicles as a putative diagnostic tool for muscle-invasive bladder cancer. J Cancer Res Clin Oncol 2019; 145:2725-2736. [PMID: 31552489 DOI: 10.1007/s00432-019-03035-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The identification of biomarkers characterizing the invasive potential of bladder cancer could enhance the clinical management of individual patients and therefore improve prognosis. The aim of this study was to define a miRNA panel in tumor tissues as well as in urinary extracellular vesicles (EVs) for discriminating muscle-invasive bladder cancer (MIBC) from non-muscle-invasive bladder cancer (NMIBC). METHODS miRNA expression was analyzed in 24 formalin-fixed, paraffin-embedded (FFPE) tumor samples by microarray analysis and was further validated by qRT-PCR in 56 FFPE tumor samples as well as in 37 urinary EV samples. RESULTS Microarray analysis revealed 63 miRNAs that were significantly differentially expressed (P < 0.05) between tissues from MIBC and NMIBC tumors. Five selected miRNAs (miR-146b-5p, miR-155-5p, miR-138-5p, miR-144-5p, and miR-200a-3p) were validated by qRT-PCR. The expression of all except miR-144-5p was significantly associated with high tumor grade. In urinary EVs, a different expression was verified for miR-146b-5p (P = 0.004) and miR-155-5p (P = 0.036), which exhibited significantly higher expression in urinary EVs from patients with MIBC. CONCLUSIONS miRNAs are promising biomarkers for the identification of invasive bladder carcinomas. Tissue samples as well as urinary EVs may serve as sources for miRNA analysis. This method, in addition to histopathology, could provide a new diagnostic tool and facilitate individual therapeutic decisions to select patients for early cystectomy.
Collapse
Affiliation(s)
- Sophie Baumgart
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Str 100, 66424, Homburg, Germany
| | - Pascal Meschkat
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Str 100, 66424, Homburg, Germany
| | - Philipp Edelmann
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Str 100, 66424, Homburg, Germany
| | - Joana Heinzelmann
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Str 100, 66424, Homburg, Germany
- Department of Ophthalmology, Martin-Luther University Halle-Wittenberg, University Hospital Halle (Saale), Halle (Saale), Germany
| | | | - Rainer Bohle
- Institute of Pathology, Saarland University, Homburg, Germany
| | - Julia Heinzelbecker
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Str 100, 66424, Homburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Str 100, 66424, Homburg, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Str 100, 66424, Homburg, Germany.
| |
Collapse
|
29
|
MicroRNAs Which Can Prognosticate Aggressiveness of Bladder Cancer. Cancers (Basel) 2019; 11:cancers11101551. [PMID: 31615011 PMCID: PMC6826751 DOI: 10.3390/cancers11101551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer (BC) is still characterized by a very high death rate in patients with this disease. One of the reasons for this is the lack of adequate markers which could help determine the biological potential of the tumor to develop into its invasive stage. It has been found that some microRNAs (miRNAs) correlate with disease progression. The purpose of this study was to identify which miRNAs can accurately predict the presence of BC and can differentiate low grade (LG) tumors from high grade (HG) tumors. The study included 55 patients with diagnosed bladder cancer and 30 persons belonging to the control group. The expression of seven selected miRNAs was estimated with the real-time PCR technique according to miR-103-5p (for the normalization of the results). Receiver operating characteristics (ROC) curves and the area under the curve (AUC) were used to evaluate the feasibility of using selected markers as biomarkers for detecting BC and discriminating non-muscle invasive BC (NMIBC) from muscle invasive BC (MIBC). For HG tumors, the relevant classifiers are miR-205-5p and miR-20a-5p, whereas miR-205-5p and miR-182-5p are for LG (AUC = 0.964 and AUC = 0.992, respectively). NMIBC patients with LG disease are characterized by significantly higher miR-130b-3p expression values compared to patients in HG tumors.
Collapse
|
30
|
Cai H, Yang X, Gao Y, Xu Z, Yu B, Xu T, Li X, Xu W, Wang X, Hua L. Exosomal MicroRNA-9-3p Secreted from BMSCs Downregulates ESM1 to Suppress the Development of Bladder Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:787-800. [PMID: 31734559 PMCID: PMC6861677 DOI: 10.1016/j.omtn.2019.09.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022]
Abstract
Exosomes, carriers to transfer endogenous molecules, derived from bone marrow-derived mesenchymal stem cells (BMSCs) have been reported to play a role in the progression of bladder cancer. Here we aimed to test the functional mechanism of microRNA-9-3p (miR-9-3p)-containing exosomes derived from BMSCs in bladder cancer. BMSCs were cocultured with bladder cancer cells, and exosomes secreted from BMSCs were identified. Next, the expression of miR-9-3p and endothelial cell-specific molecule 1 (ESM1) in bladder cancer tissues and cells was determined. Then effects of miR-9-3p and ESM1 via BMSC-derived exosomes on bladder cancer cell viability, migration, invasion, and apoptosis were determined by loss- and gain-of-function experiments and on in vivo tumor growth, and metastasis was assessed in nude mice. miR-9-3p expression was decreased and ESM1 was increased in bladder cancer. BMSCs inhibited bladder cancer cell viability, migration, and invasion, and induced apoptosis, whereas the addition of exosome secretion inhibitor GW4869 achieved the opposite effects. Moreover, exosomal miR-9-3p upregulation or ESM1 silencing suppressed bladder cancer cell viability, migration, and invasion; induced cell apoptosis; and inhibited in vivo tumor growth and metastasis. Taken together, BMSC-derived exosomal miR-9-3p suppressed the progression of bladder cancer through ESM1 downregulation, offering a potential novel therapeutic target for bladder cancer therapy.
Collapse
Affiliation(s)
- Hongzhou Cai
- Department of Urology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, P.R. China
| | - Xuejian Yang
- Department of Urology, Suqian First Hospital, Suqian 223800, P.R. China
| | - Yang Gao
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, P.R. China
| | - Zicheng Xu
- Department of Urology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, P.R. China
| | - Bin Yu
- Department of Urology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, P.R. China
| | - Ting Xu
- Department of Urology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, P.R. China
| | - Xiao Li
- Department of Urology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, P.R. China
| | - Weizhang Xu
- Department of Urology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, P.R. China
| | - Xinwei Wang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, P.R. China.
| | - Lixin Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China.
| |
Collapse
|
31
|
Zeuschner P, Linxweiler J, Junker K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev Mol Diagn 2019; 20:151-167. [DOI: 10.1080/14737159.2019.1665998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| |
Collapse
|
32
|
Blanca A, Sanchez‐Gonzalez A, Requena MJ, Carrasco‐Valiente J, Gomez‐Gomez E, Cheng L, Cimadamore A, Montironi R, Lopez‐Beltran A. Expression of miR‐100 and miR‐138 as prognostic biomarkers in non‐muscle‐invasive bladder cancer. APMIS 2019; 127:545-553. [DOI: 10.1111/apm.12973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/11/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Ana Blanca
- Urology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital University of Córdoba Córdoba Spain
| | - Alvaro Sanchez‐Gonzalez
- Urology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital University of Córdoba Córdoba Spain
| | - Maria J. Requena
- Urology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital University of Córdoba Córdoba Spain
| | - Julia Carrasco‐Valiente
- Urology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital University of Córdoba Córdoba Spain
| | - Enrique Gomez‐Gomez
- Urology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital University of Córdoba Córdoba Spain
| | - Liang Cheng
- Departments of Pathology and Laboratory Medicine, and Urology Indiana University School of Medicine Indianapolis IN USA
| | - Alessia Cimadamore
- Institute of Pathological Anatomy and Histopathology Polytechnic University of the Marche Region Ancona Italy
| | - Rodolfo Montironi
- Institute of Pathological Anatomy and Histopathology Polytechnic University of the Marche Region Ancona Italy
| | | |
Collapse
|
33
|
|
34
|
The clinical and prognostic value of miR-9 gene expression in Tunisian patients with bladder cancer. Mol Biol Rep 2019; 46:4743-4750. [DOI: 10.1007/s11033-019-04920-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/14/2019] [Indexed: 01/03/2023]
|
35
|
Peng WX, Gao CH, Huang GB. High throughput analysis to identify key gene molecules that inhibit adipogenic differentiation and promote osteogenic differentiation of human mesenchymal stem cells. Exp Ther Med 2019; 17:3021-3028. [PMID: 30936973 PMCID: PMC6434248 DOI: 10.3892/etm.2019.7287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the key genes, which cause switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells (hMSCs). The transcriptomic profile of hMSCs samples were collected from Array Express database. Differential expression network was constructed by calculating the Pearson's correlation coefficient and ranked according to their topological features. The top 5% genes with degree ≥2 were selected as ego genes. Following the KEGG pathway enrichment analysis and the relevant miRNAs prediction, the miRNA-mRNA-pathway networks were constructed by combining the miRNA-mRNA pairs and mRNA-pathway pairs together. In total, we obtained 84, 119, 94 and 97 ego-genes in B, BI, BT and BTI groups, and DLGAP5, DLGAP5, NUSAP1 and NDC80 were the ego-genes with the highest z-score of each group, respectively. Beginning from each ego-gene, we identified 2 significant ego-modules with gene size ≥4 in group BI, and the ego-genes were PBK and NCOA3, respectively. Through KEGG pathway analysis, we found that most of the pathways enriched by ego-genes were associated with gene replication and repair, and cell proliferation. According to the miRNA prediction results, we found that some of the predicted miRNAs have been validated to be the regulatory miRNAs of these corresponding mRNAs. Finally we constructed a miRNA-mRNA-pathway network by integrating the miRNA-mRNA and mRNA-pathway pairs together. The constructed network gives us a more comprehensive understanding of the mechanism of osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Wu-Xun Peng
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chang-Hong Gao
- Department of Orthopedics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Guo-Bao Huang
- Department of Burn and Plastic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
36
|
Palangi A, Shakhssalim N, Parvin M, Bayat S, Allameh A. Differential expression of S1P receptor subtypes in human bladder transitional cell carcinoma. Clin Transl Oncol 2019; 21:1240-1249. [PMID: 30712233 DOI: 10.1007/s12094-019-02049-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Sphingosine 1 phosphate (S1P), S1P receptors (S1PRs) and their signaling pathways play an important role in the fate of cancer cells. The expression pattern of S1PR subtypes (S1PR1-S1PR5) may alter in cancer development stages, depending on the origin and the pathologic features of tumors. The present study aimed to examine the relationship between plasma S1P levels and the expression of S1PR subtypes in bladder tumors. METHODS/PATIENTS These changes were evaluated in terms of the pathologic grades and stages of human bladder cancer samples. For this, tumor biopsies from 41 new bladder cancer patients as well as 26 normal-looking bladder tissues were collected and processed for immunohistochemistry (IHC) and quantitative real-time RT-PCR of S1PR subtypes. Plasma S1P level was measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The results show that tissue S1PR1, S1PR2 and S1PR3 are over-expressed in all tumors regardless of their pathological grade (~ 3, ~ 6 and ~ 104 folds, respectively). These results were corroborated by IHC data showing accumulation of S1PR subtypes 1 and 2 in the tissues. Plasma S1P in the plasma samples from patients was in the range of control samples (Controls; 256 ± 47; patients, 270 ± 41). CONCLUSIONS Overexpression of S1PR1, S1PR2 and S1PR3 in bladder tumor biopsies which were corroborated with the pathological grades and stages may suggest that S1PR profile in tumor biopsies is a promising marker in the diagnosis of bladder carcinoma.
Collapse
Affiliation(s)
- A Palangi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - N Shakhssalim
- Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Parvin
- Department of Pathology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Bayat
- Department of Biochemistry, Faculty of Science, Payam Noor University Tehran Unit, Tehran, Iran
| | - A Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
37
|
Ghorbanmehr N, Gharbi S, Korsching E, Tavallaei M, Einollahi B, Mowla SJ. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate 2019; 79:88-95. [PMID: 30194772 DOI: 10.1002/pros.23714] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Early detection of cancers improves patients' survival and decreases the treatment cost. Unfortunately, the current methods for diagnosis of bladder and prostate cancers, two most common urothelial malignancies, suffer from a low sensitivity and specificity. MicroRNAs, as a group of endogenously produced non-coding RNAs, regulate gene expression and their expression is observed to be altered in many cancers and cancer progression phenomena. The remarkable stability of microRNAs in biofluids and their unique expression pattern in different pathological conditions make them an appealing, noninvasive diagnostic method in cancer diagnosis. Our objective is to identify microRNAs as biomarkers in urine samples of bladder and prostate cancers to improve the existing diagnostic methods in this field. MATERIALS AND METHODS In this study, urine samples from 110 men with either bladder (n = 45) or prostate (n = 23) cancer, benign prostatic hyperplasia (n = 22) and healthy controls (n = 20) were collected. qPCR was used to evaluate the expression level of miR-21-5p, miR-141-3p, and miR-205-5p in these samples. The sensitivity and specificity of these microRNAs were determined using ROC curve analysis. RESULTS The analysis of the data revealed that miR-21-5p, miR-141-3p, and miR-205-5p are differentially expressed in urine of bladder and prostate cancer patients. All these three microRNAs were upregulated in these samples and they were also able to differentiate benign prostatic hyperplasia from malignant cases. The statistical analyses revealed a good specificity for each individual microRNA. CONCLUSION The results show that these three urine-based microRNAs might be a good choice to implement a specific and non-invasive diagnostic tool for bladder and prostate cancer. The expression pattern of all three microRNAs was particularly useful to distinguish benign and invasive tumors in prostate cases. From the patients' perspective the improvement of the diagnostic situation is awaited eagerly.
Collapse
Affiliation(s)
- Nassim Ghorbanmehr
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sedigheh Gharbi
- Department of Biology, Faculty of Basic Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Eberhard Korsching
- Institute of Bioinformatics, University Hospital of Münster, University of Münster, Münster, Germany
| | - Mahmood Tavallaei
- Genetic Research Center, Baqiyatallah Medical Sciences University, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
38
|
Liu Y, Liu T, Jin H, Yin L, Yu H, Bi J. MiR-411 suppresses the development of bladder cancer by regulating ZnT1. Onco Targets Ther 2018; 11:8695-8704. [PMID: 30584327 PMCID: PMC6287661 DOI: 10.2147/ott.s173750] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background At present, the molecular genetics of the development and progression of bladder cancer are still unclear. In recent years, the pathological relevance and significance of microRNAs (miRNAs) in bladder cancer have attracted increasing attention. Methods The expressions of miR-411 and zinc transporter 1 (ZnT1) in bladder cancer were determined by western blot and real-time PCR. Biological software, luciferase reporter gene, Western blot and real-time PCR were used to determine the regulatory effect of miR-411 on ZnT1. MTT and transwell were used to confirm the regulatory effect of miR-411 on bladder cancer cells. MTT and transwell were used to find how miR-411 modulated the biological activity of bladder cancer cells by regulating ZnT1. Results The expression of miR-411 was low in bladder cancer and was negatively correlated with ZnT1. MiR-411 can inhibit the activity and the expression of ZnT1. MiR-411 can inhibit the growth and metastasis of bladder cancer cells. MiR-411 inhibited the growth and metastasis of bladder cancer cells by targeting ZnT1. Conclusion The miR-411 target ZnT1 may provide a potential therapeutic target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Yang Liu
- Urology Surgery, First Affiliated Hospital of China Medical University, Shenyang, China,
| | - Tao Liu
- Urology Surgery, First Affiliated Hospital of China Medical University, Shenyang, China,
| | - Hongwei Jin
- Urology Surgery, First Affiliated Hospital of China Medical University, Shenyang, China,
| | - Lei Yin
- Urology Surgery, First Affiliated Hospital of China Medical University, Shenyang, China,
| | - Hongyuan Yu
- Urology Surgery, First Affiliated Hospital of China Medical University, Shenyang, China,
| | - Jianbin Bi
- Urology Surgery, First Affiliated Hospital of China Medical University, Shenyang, China,
| |
Collapse
|
39
|
Hofbauer SL, de Martino M, Lucca I, Haitel A, Susani M, Shariat SF, Klatte T. A urinary microRNA (miR) signature for diagnosis of bladder cancer. Urol Oncol 2018; 36:531.e1-531.e8. [PMID: 30322728 DOI: 10.1016/j.urolonc.2018.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bladder cancer (BC) is diagnosed by cystoscopy, which is invasive, costly and causes considerable patient discomfort. MicroRNAs (miR) are dysregulated in BC and may serve as non-invasive urine markers for primary diagnostics and monitoring. The purpose of this study was to identify a urinary miR signature that predicts the presence of BC. METHODS For the detection of potential urinary miR markers, expression of 384 different miRs was analyzed in 16 urine samples from BC patients and controls using a Taqman™ Human MicroRNA Array (training set). The identified candidate gene signature was subsequently validated in an independent cohort of 202 urine samples of patients with BC and controls with microscopic hematuria. The final miR signature was developed from a multivariable logistic regression model. RESULTS Analysis of the training set identified 14 candidate miRs for further analysis within the validation set. Using backward stepwise elimination, we identified a subset of 6 miRs (let-7c, miR-135a, miR-135b, miR-148a, miR-204, miR-345) that distinguished BC from controls with an area under the curve of 88.3%. The signature was most accurate in diagnosing high-grade non-muscle invasive BC (area under the curve = 92.9%), but was capable to identify both low-grade and high-grade disease as well as non-muscle and muscle-invasive BC with high accuracies. CONCLUSIONS We identified a 6-gene miR signature that can accurately predict the presence of BC from urine samples, independent of stage and grade. This signature represents a simple urine assay that may help reducing costs and morbidity associated with invasive diagnostics.
Collapse
Affiliation(s)
- Sebastian L Hofbauer
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Michela de Martino
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Ilaria Lucca
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Andrea Haitel
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Martin Susani
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Tobias Klatte
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
40
|
Zhang S, Chang Y, Gong Y, Gao Y, Guo Q, Wang Y, Zhao Y, Wang Z. Comprehensive analysis of microRNA‐messenger RNA regulatory network in gemcitabine‐resistant bladder cancer cells. J Cell Biochem 2018; 120:6347-6360. [PMID: 30304549 DOI: 10.1002/jcb.27922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Su Zhang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yong‐Yan Chang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yu‐Wen Gong
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yan‐Jun Gao
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Qi Guo
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yu‐Han Wang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - You‐Li Zhao
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Zhi‐Ping Wang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| |
Collapse
|
41
|
Santoni G, Morelli MB, Amantini C, Battelli N. Urinary Markers in Bladder Cancer: An Update. Front Oncol 2018; 8:362. [PMID: 30245975 PMCID: PMC6137202 DOI: 10.3389/fonc.2018.00362] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is ones of the most common cancer worldwide. It is classified in muscle invasive (MIBC) and muscle non-invasive (NMIBC) BC. NMIBCs frequently recur and progress to MIBCs with a reduced survival rate and frequent distant metastasis. BC detection require unpleasant and expensive cystoscopy and biopsy, which are often accompanied by several adverse effects. Thus, there is an urgent need to develop novel diagnostic methods for initial detection and surveillance in both MIBCs and NMIBCs. Multiple urine-based tests approved by FDA for BC detection and surveillance are commercially available. However, at present, sensitivity, specificity and diagnostic accuracy of these urine-based assays are still suboptimal and, in the attend to improve them, novel molecular markers as well as multiple-assays must to be translated in clinic. Now there are growing evidence toward the use of minimally invasive “liquid biopsy” to identify biomarkers in urologic malignancy. DNA- and RNA-based markers in body fluids such as blood and urine are promising potential markers in diagnostic, prognostic, predictive and monitoring urological malignancies. Thus, circulating cell-free DNA, DNA methylation and mutations, circulating tumor cells, miRNA, IncRNA and mRNAs, cell-free proteins and peptides, and exosomes have been assessed in urine specimens. However, proteomic and genomic data must to be validated in well-designed multicenter clinical studies, before to be employed in clinic oncology.
Collapse
Affiliation(s)
- Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maria B Morelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Immunopathology Laboratory, School of Biosciences, Biotechnology and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences, Biotechnology and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | |
Collapse
|
42
|
Kim JY, Lee WJ, Park HY, Kim A, Shin DH, Lee CH. Differential MicroRNA Expression between EGFR T790M and L858R Mutated Lung Cancer. J Pathol Transl Med 2018; 52:275-282. [PMID: 30114862 PMCID: PMC6166019 DOI: 10.4132/jptm.2018.07.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/29/2018] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are short, non-coding RNAs that mediate post-transcriptional gene regulation. They are commonly deregulated in human malignancies, including non-small cell lung cancer (NSCLC). The aim of this study is to investigate miRNA expression in T790M-mutated NSCLC resistant to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Methods Six cases of resected NSCLC harboring the T790M mutation were examined. We performed miRNA time polymerase chain reaction (PCR) array profiling using EGFR T790M-mutated NSCLC and L858R-mutated NSCLC. Once identified, miRNAs that were differentially expressed between the two groups were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results miRNA PCR array profiling revealed three up-regulated miRNAs whose expression levels were altered 4.0-fold or more in the EGFR T790M mutation group than in the L858R group: miR-1 (fold change, 4.384), miR-196a (fold change, 4.138), and miR-124 (fold change, 4.132). The three differentially expressed miRNAs were validated by qRT-PCR, and they were found to be overexpressed in the T790M group relative to L858R group. In particular, expression levels of miR-1 and miR-124 were significantly higher in the T790M group (p-value of miR-1 = .004, miR-124 = .007, miR-196a = .096). Conclusions MiR-1, miR-124, and miR-196a are overexpressed in EGFR T790M mutated NSCLC.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Department of Pathology, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Woo Jeong Lee
- Pusan National University School of Medicine, Yangsan, Korea
| | - Ha Young Park
- Department of Pathology, Inje University Busan Paik Hospital, Busan, Korea
| | - Ahrong Kim
- Department of Pathology, Pusan National University Hospital, Busan, Korea
| | - Dong Hoon Shin
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Chang Hun Lee
- Department of Pathology, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
43
|
Tang Y, Pan J, Huang S, Peng X, Zou X, Luo Y, Ren D, Zhang X, Li R, He P, Wa Q. Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating PI3K/AKT signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:160. [PMID: 30021600 PMCID: PMC6052526 DOI: 10.1186/s13046-018-0813-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bone metastasis is a leading cause of morbidity and mortality in advanced prostate cancer (PCa). Downexpression of miR-133a-3p has been found to contribute to the progression, recurrence and distant metastasis in PCa. However, clinical significance of miR-133a-3p in bone metastasis of PCa, and the biological role of miR-133a-3p and its molecular mechanisms underlying bone metastasis of PCa remain unclear. METHODS miR-133a-3p expression was evaluated in 245 clinical PCa tissues by real-time PCR. Statistical analysis was performed to evaluate the clinical correlation between miR-133a-3p expression and clinicopathological features, and overall and bone metastasis-free survival in PCa patients. The biological roles of miR-133a-3p in the bone metastasis of PCa were investigated both in vitro and in vivo. Bioinformatics analysis, real-time PCR, western blot and luciferase reporter analysis were applied to demonstrate the relationship between miR-133a-3p and its potential targets. Western blotting and luciferase assays were examined to identify the underlying pathway involved in the anti-tumor role of miR-133a-3p. Clinical correlation of miR-133a-3p with its targets was verified in human PCa tissues. RESULTS miR-133a-3p expression is reduced in PCa tissues compared with the adjacent normal tissues and benign prostate lesion tissues, particularly in bone metastatic PCa tissues. Low expression of miR-133a-3p is significantly correlated with advanced clinicopathological characteristics and shorter bone metastasis-free survival in PCa patients by statistical analysis. Moreover, upregulating miR-133a-3p inhibits cancer stem cell-like phenotypes in vitro and in vivo, as well as attenuates anoikis resistance in vitro in PCa cells. Importantly, administration of agomir-133a-3p greatly suppresses the incidence of PCa bone metastasis in vivo. Our results further demonstrate that miR-133a-3p suppresses bone metastasis of PCa via inhibiting PI3K/AKT signaling by directly targeting multiple cytokine receptors, including EGFR, FGFR1, IGF1R and MET. The negative clinical correlation of miR-133a-3p with EGFR, FGFR1, IGF1R, MET and PI3K/AKT signaling activity is determined in clinical PCa tissues. CONCLUSION Our results unveil a novel mechanism by which miR-133a-3p inhibits bone metastasis of PCa, providing the evidence that miR-133a-3p may serve as a potential bone metastasis marker in PCa, and delivery of agomir-133a-3p may be an effective anti-bone metastasis therapeutic strategy in PCa.
Collapse
Affiliation(s)
- Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jincheng Pan
- Department of Urology Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China
| | - Yongxiang Luo
- Department of biomedical engineering, health science center, Shenzhen University, Shenzhen, 518060, China
| | - Dong Ren
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China
| | - Xin Zhang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Peiheng He
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China.
| | - Qingde Wa
- Department of Orthopaedic Surgery, the Affiliated Hospital of Zunyi Medical college, 149 Dalian Road, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
44
|
Liu X, Yao B, Wu Z. miRNA-199a-5p suppresses proliferation and invasion by directly targeting NF-κB1 in human ovarian cancer cells. Oncol Lett 2018; 16:4543-4550. [PMID: 30214589 DOI: 10.3892/ol.2018.9170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of microRNA (miRNA)-199a-5p has been frequently reported in a number of cancer types, but to the best of our knowledge, this has not been reported in ovarian cancer (OC). The role and the molecular mechanism of miR-199a-5p in OC have not been reported. Therefore, the present study investigated the effects of miR-199a-5p overexpression on the proliferation and invasion of OC cells. The level of miR-199a-5p in OC cell lines was determined by reverse transcription-quantitative polymerase chain reaction. The miR-199a-5p mimic was transiently transfected into OC cells using Lipofectamine™ 2000 reagent. Subsequently, the BrdU-ELISA results indicated that the exogenous expression of miR-199a-5p inhibited cell proliferation. In addition, miR-199a-5p overexpression was able to inhibit the invasion of HO-8910 and ES-2 cells. RT-qPCR was performed to determine the expression of matrix metalloproteinase (MMP)-2 and -9 in OC cells. NF-κB1 expression was reduced by upregulation of miR-199a-5p. Bioinformatics analysis predicted that NF-κB1 was a potential target of miR-199a-5p. Luciferase reporter assay further confirmed that miR-199a-5p was able to directly target the 3'UTR of NF-κB1. In conclusion, miRNA-199a-5p may suppress the proliferation and invasion of human ovarian cancer cells by directly targeting NF-κB1.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Internal Medicine-Oncology, Xinchang People's Hospital of Zhejiang, Shaoxing, Zhejiang 312500, P.R. China
| | - Baofeng Yao
- Department of Intensive Care Unit, Putuo Hospital of Zhejiang, Zhoushan, Zhejiang 316100, P.R. China
| | - Zhiming Wu
- Department of General Surgery, Shaoxing Hospital of China Medical University, Shaoxing, Zhejiang 312030, P.R. China
| |
Collapse
|
45
|
Huang S, Wa Q, Pan J, Peng X, Ren D, Li Q, Dai Y, Yang Q, Huang Y, Zhang X, Zhou W, Yuan D, Cao J, Li Y, He P, Tang Y. Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling. Cell Death Dis 2018; 9:779. [PMID: 30006541 PMCID: PMC6045651 DOI: 10.1038/s41419-018-0807-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
High avidity of bone metastasis is an important characteristic in prostate cancer (PCa). Downexpression of miR-133b has been reported to be implicated in the development, progression and recurrence in PCa. However, clinical significance and biological roles of miR-133b in bone metastasis of PCa remain unclear. Here we report that miR-133b is downregulated in PCa tissues and further decreased in bone metastatic PCa tissues. Downexpression of miR-133b positively correlates with advanced clinicopathological characteristics and shorter bone metastasis-free survival in PCa patients. Upregulating miR-133b inhibits invasion, migration in vitro and bone metastasis in vivo in PCa cells. Mechanistically, we find that miR-133b suppresses activity of TGF-β signaling via directly targeting TGF-β receptor I and II, which further inhibits bone metastasis of PCa cells. Our results further reveal that overexpression of REST contributes to miR-133b downexpression via transcriptional repression in PCa tissues. Importantly, silencing miR-133b enhances invasion and migration abilities in vitro and bone metastasis ability in vivo in REST-silenced PCa cells. The clinical correlation of miR-133b with TGFBRI, TGFBRII, REST and TGF-β signaling activity is verified in PCa tissues. Therefore, our results uncover a novel mechanism of miR-133b downexpression that REST transcriptionally inhibits miR-133b expression in PCa cells, and meanwhile support the notion that administration of miR-133b may serve as a rational regimen in the treatment of PCa bone metastasis.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qingde Wa
- Department of Orthopaedic Surgery, the Affiliated Hospital of Zunyi Medical college, 563003, Zunyi, China
| | - Jincheng Pan
- Department of Urology Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Dong Ren
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qiji Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qing Yang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yan Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Xin Zhang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Wei Zhou
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Dan Yuan
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Jiazheng Cao
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Yuming Li
- Department of Orthopaedic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Peiheng He
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China.
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
46
|
Tölle A, Blobel CC, Jung K. Circulating miRNAs in blood and urine as diagnostic and prognostic biomarkers for bladder cancer: an update in 2017. Biomark Med 2018; 12:667-676. [PMID: 29896971 DOI: 10.2217/bmm-2017-0392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study presents a critical appraisal of previously published study data of miRNAs in blood, urine and exosomes as biomarkers of bladder cancer (BC). The evaluation included 39 articles published from the beginning of 2010 until September 2017 and searched in PubMed. The heterogeneity of studies, due to their clinicopathological variability, including insufficient consideration of diagnostic and prognostic biomarker guidelines and missing internal and external validation of data, do not currently allow the recommending of a useful miRNA marker as diagnostic or prognostic tool in BC. Future multi-institutional studies are necessary to overcome the deficiencies in these studies in order to prove the usefulness of circulating miRNAs as robust biomarkers for BC.
Collapse
Affiliation(s)
- Angelika Tölle
- Department of Urology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,CONGEN Biotechnology GmbH, 13125 Berlin, Germany
| | - Conrad C Blobel
- Department of Urology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Klaus Jung
- Berlin Institute for Urologic Research, 10117 Berlin, Germany
| |
Collapse
|
47
|
miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget 2018; 8:50193-50208. [PMID: 28422730 PMCID: PMC5564843 DOI: 10.18632/oncotarget.16745] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs, a family of single-stranded and non-coding RNAs, play a crucial role in regulating gene expression at posttranscriptional level, by which it can mediate various types of physiological and pathological process in normal developmental progress and human disease, including cancer. The microRNA-133b originally defined as canonical muscle-specific microRNAs considering their function to the development and health of mammalian skeletal and cardiac muscles, but new findings coming from our group and others revealed that miR-133b have frequently abnormal expression in various kinds of human cancer and its complex complicated regulatory networks affects the tumorigenicity and development of malignant tumors. Very few existing reviews on miR-133b, until now, are principally about its role in homologous cluster (miR-1, −133 and -206s), however, most of constantly emerging new researches now are focused mainly on one of them, so In this article, to highlight the unique pathological role of miR-133b playing in tumor, we conduct a review to summarize the current understanding about one of the muscle-specific microRNAs, namely miR-133b, acting in human cancer. The review focused on the following four aspects: the overview of miR-133b, the target genes of miR-133b involved in human cancer, the expression of miR-133b and regulatory mechanisms leading to abnormal expression of miR-133b.
Collapse
|
48
|
Hufbauer M, Maltseva M, Meinrath J, Lechner A, Beutner D, Huebbers CU, Akgül B. HPV16 increases the number of migratory cancer stem cells and modulates their miRNA expression profile in oropharyngeal cancer. Int J Cancer 2018; 143:1426-1439. [PMID: 29663357 DOI: 10.1002/ijc.31538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
Human papillomavirus type 16 (HPV16) is a major risk for development of oropharyngeal squamous-cell-carcinoma (OPSCC). Although HPV+ OPSCC metastasize faster than HPV- tumors, they have a better prognosis. The molecular and cellular alterations underlying this pathobiology of HPV+ OPSCC remain elusive. In this study, we examined whether expression of HPV16-E6E7 targets the number of migratory and stationary cancer stem cells (CSC). Furthermore, we wanted to elucidate if aberrantly expressed miRNAs in migratory CSC may be responsible for progression of OPSCCs and whether they may serve as potential novel biomarkers for increased potential of metastasis. Our studies revealed that HPV16-E6E7 expression leads to an increase in the number of stationary (CD44high /EpCAMhigh ) stem cells in primary keratinocyte cultures. Most importantly, expression of E6E7 in the cell line H357 increased the migratory (CD44high /EpCAMlow ) CSC pool. This increase in migratory CSCs could also be confirmed in HPV+ OPSCC. Differentially expressed miRNAs from HPV16-E6E7 positive CD44high /EpCAMlow CSCs were validated by RT-qPCR and in situ hybridization on HPV16+ OPSCCs. These experiments led to the identification of miR-3194-5p, which is upregulated in primary HPV16+ OPSCC and matched metastasis. MiR-1281 was also found to be highly expressed in HPV+ and HPV- metastasis. As inhibition of this miRNA led to a markedly reduction of CD44high /EpCAMlow cells, it may prove to be a promising drug target. Taken together, our findings highlight the capability of HPV16 to modify the phenotype of infected stem cells and that miR-1281 and miR3194-5p may represent promising targets to block metastatic spread of OPSCC.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Margaret Maltseva
- Institute of Virology, University of Cologne, Cologne, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | | | - Axel Lechner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany.,Cologne Interventional Immunology, Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | - Christian U Huebbers
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
49
|
Jiang G, Huang C, Li J, Huang H, Wang J, Li Y, Xie F, Jin H, Zhu J, Huang C. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells. Carcinogenesis 2018; 39:482-492. [PMID: 29409027 PMCID: PMC5862297 DOI: 10.1093/carcin/bgy015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.
Collapse
Affiliation(s)
- Guosong Jiang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Haishan Huang
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yawei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Xie
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Honglei Jin
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
50
|
Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure. Oncotarget 2018; 8:27547-27568. [PMID: 28187437 PMCID: PMC5432357 DOI: 10.18632/oncotarget.15173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease.
Collapse
|