1
|
Han M, Liu X, Hailati S, Nurahmat N, Dilimulati D, Baishan A, Aikebaier A, Zhou W. Evaluation of the Efficacy of OSU-2S in the Treatment of Non-Small-Cell Lung Cancer and Screening of Potential Targets of Action. Pharmaceuticals (Basel) 2024; 17:582. [PMID: 38794152 PMCID: PMC11124116 DOI: 10.3390/ph17050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: OSU-2S is a derivative of FTY720 and exhibits significant inhibitory effects on various cancer cells. There is currently no research on the mechanism of the impact of OSU-2S on NSCLC development. We analysed and validated the hub genes and pharmacodynamic effects of OSU-2S to treat NSCLC. (2) Methods: The hub genes of OSU-2S for the treatment of NSCLC were screened in PharmMapper, genecard, and KM Plotter database by survival and expression analysis. The effect of OSU-2S on hub gene expression was verified by Western blot analysis. The ex vivo and in vivo efficacy of OSU-2S on tumour growth was verified using A549 cells and a xenografted animal model. (3) Results: A total of 7 marker genes for OSU-2S treatment of NSCLC were obtained. AURKA and S1PR1 were screened as hub genes. Significant differences in the expression of AURKA and S1PR1 between normal and lung adenocarcinoma (LUAD) tissues were found in the GEPIA2 database; Western blot showed that OSU-2S could affect p-AURKA and S1PR1 protein expression. OSU-2S significantly inhibited tumour growth in A549 cells and xenografted animal models. (4) Conclusions: Our study confirms the inhibitory effect of OSU-2S on NSCLC, screens and demonstrates its potential targets AURKA(p-AURKA) and S1PR1, and provides a research basis for treating NSCLC with OSU-2S.
Collapse
Affiliation(s)
- Mengyuan Han
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Xiangran Liu
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
| | - Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Nurbiya Nurahmat
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Alhar Baishan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Alifeiye Aikebaier
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Wenting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| |
Collapse
|
2
|
Parducci NS, Garnique ADMB, Lima K, Carlos JAEG, Fonseca NP, de Miranda LBL, de Almeida BO, Rego EM, Traina F, Machado-Neto JA. Antineoplastic effects of pharmacological inhibitors of aurora kinases in CSF3R T618I-driven cells. Blood Cells Mol Dis 2024; 104:102799. [PMID: 37839173 DOI: 10.1016/j.bcmd.2023.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Myeloproliferative neoplasms (MPN) are consolidated as a relevant group of diseases derived from the malfunction of the hematopoiesis process and have as a particular attribute the increased proliferation of myeloid lineage. Among these, chronic neutrophilic leukemia (CNL) is distinguished, caused by the T618I mutation of the CSF3R gene, a trait that generates ligand-independent receptor activation and downstream JAK2/STAT signaling. Previous studies reported that mutations in BCR::ABL1 and JAK2V617F increased the expression of the aurora kinase A (AURKA) and B (AURKB) in Ba/F3 cells and their pharmacological inhibition displays antineoplastic effects in human BCR::ABL1 and JAK2V617F positive cells. Delimiting the current scenario, aspects related to the AURKA and AURKB as a potential target in CSF3RT618I-driven models is little known. In the present study, the cellular and molecular effects of pharmacological inhibitors of aurora kinases, such as aurora A inhibitor I, AZD1152-HQPA, and reversine, were evaluated in Ba/F3 expressing the CSF3RT618I mutation. AZD1152-HQPA and reversine demonstrated antineoplastic potential, causing a decrease in cell viability, clonogenicity, and proliferative capacity. At molecular levels, all inhibitors reduced histone H3 phosphorylation, aurora A inhibitor I and reversine reduced STAT5 phosphorylation, and AZD1152-HQPA and reversine induced PARP1 cleavage and γH2AX expression. Reversine more efficiently modulated genes associated with cell cycle and apoptosis compared to other drugs. In summary, our findings shed new insights into the use of AURKB inhibitors in the context of CNL.
Collapse
Affiliation(s)
- Natália Sudan Parducci
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | - Natasha Peixoto Fonseca
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil
| | | | - Bruna Oliveira de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil; Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil
| | - Fabiola Traina
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil
| | - João Agostinho Machado-Neto
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Shi H, Gao L, Zhang W, Jiang M. Long non-coding RNAs regulate treatment outcome in leukemia: What have we learnt recently? Cancer Med 2023. [PMID: 37148556 DOI: 10.1002/cam4.6027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Leukemia is a group of highly heterogeneous and life-threatening blood cancers that originate from abnormal hematopoietic stem cells. Multiple treatments are approved for leukemia, including chemotherapy, targeted therapy, hematopoietic stem cell transplantation, radiation therapy, and immunotherapy. Unfortunately, therapeutic resistance occurs in a substantial proportion of patients and greatly compromises the treatment efficacy of leukemia, resulting in relapse and mortality. The abnormal activity of receptor tyrosine kinases, cell membrane transporters, intracellular signal transducers, transcription factors, and anti-apoptotic proteins have been shown to contribute to the emergence of therapeutic resistance. Despite these findings, the exact mechanisms of treatment resistance are still not fully understood, which limits the development of effective measures to overcome it. Long non-coding RNAs (lncRNA) are a class of regulatory molecules that are gaining increasing attention, and lncRNA-mediated regulation of therapeutic resistance against multiple drugs for leukemia is being revealed. These dysregulated lncRNAs not only serve as potential targets to reduce resistance but also might improve treatment response prediction and individualized treatment decision. Here, we summarize the recent findings on lncRNA-mediated regulation of therapeutic resistance in leukemia and discuss future perspectives on how to make use of the dysregulated lncRNAs in leukemia to improve treatment outcome.
Collapse
Affiliation(s)
- Huiping Shi
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Liang Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Wang X, Liu Y, He J, Wang J, Chen X, Yang R. Regulation of signaling pathways in hair follicle stem cells. BURNS & TRAUMA 2022; 10:tkac022. [PMID: 35795256 PMCID: PMC9250793 DOI: 10.1093/burnst/tkac022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Hair follicle stem cells (HFSCs) reside in the bulge region of the outer root sheath of the hair follicle. They are considered slow-cycling cells that are endowed with multilineage differentiation potential and superior proliferative capacity. The normal morphology and periodic growth of HFSCs play a significant role in normal skin functions, wound repair and skin regeneration. The HFSCs involved in these pathophysiological processes are regulated by a series of cell signal transduction pathways, such as lymphoid enhancer factor/T-cell factor, Wnt/β-catenin, transforming growth factor-β/bone morphogenetic protein, Notch and Hedgehog. The mechanisms of the interactions among these signaling pathways and their regulatory effects on HFSCs have been previously studied, but many mechanisms are still unclear. This article reviews the regulation of hair follicles, HFSCs and related signaling pathways, with the aims of summarizing previous research results, revealing the regulatory mechanisms of HFSC proliferation and differentiation and providing important references and new ideas for treating clinical diseases.
Collapse
Affiliation(s)
| | | | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Xiaodong Chen
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| | - Ronghua Yang
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| |
Collapse
|
5
|
Shah K, Kazi JU. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front Oncol 2022; 12:858782. [PMID: 35359365 PMCID: PMC8964056 DOI: 10.3389/fonc.2022.858782] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
WNT/β-catenin signaling is a highly complex pathway that plays diverse roles in various cellular processes. While WNT ligands usually signal through their dedicated Frizzled receptors, the decision to signal in a β-catenin-dependent or -independent manner rests upon the type of co-receptors used. Canonical WNT signaling is β-catenin-dependent, whereas non-canonical WNT signaling is β-catenin-independent according to the classical definition. This still holds true, albeit with some added complexity, as both the pathways seem to cross-talk with intertwined networks that involve the use of different ligands, receptors, and co-receptors. β-catenin can be directly phosphorylated by various kinases governing its participation in either canonical or non-canonical pathways. Moreover, the co-activators that associate with β-catenin determine the output of the pathway in terms of induction of genes promoting proliferation or differentiation. In this review, we provide an overview of how protein phosphorylation controls WNT/β-catenin signaling, particularly in human cancer.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- *Correspondence: Julhash U. Kazi,
| |
Collapse
|
6
|
Schwarz A, Roeder I, Seifert M. Comparative Gene Expression Analysis Reveals Similarities and Differences of Chronic Myeloid Leukemia Phases. Cancers (Basel) 2022; 14:cancers14010256. [PMID: 35008420 PMCID: PMC8750437 DOI: 10.3390/cancers14010256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a slowly progressing blood cancer that primarily affects elderly people. Without successful treatment, CML progressively develops from the chronic phase through the accelerated phase to the blast crisis, and ultimately to death. Nowadays, the availability of targeted tyrosine kinase inhibitor (TKI) therapies has led to long-term disease control for the vast majority of patients. Nevertheless, there are still patients that do not respond well enough to TKI therapies and available targeted therapies are also less efficient for patients in accelerated phase or blast crises. Thus, a more detailed characterization of molecular alterations that distinguish the different CML phases is still very important. We performed an in-depth bioinformatics analysis of publicly available gene expression profiles of the three CML phases. Pairwise comparisons revealed many differentially expressed genes that formed a characteristic gene expression signature, which clearly distinguished the three CML phases. Signaling pathway expression patterns were very similar between the three phases but differed strongly in the number of affected genes, which increased with the phase. Still, significant alterations of MAPK, VEGF, PI3K-Akt, adherens junction and cytokine receptor interaction signaling distinguished specific phases. Our study also suggests that one can consider the phase-wise CML development as a three rather than a two-step process. This is in accordance with the phase-specific expression behavior of 24 potential major regulators that we predicted by a network-based approach. Several of these genes are known to be involved in the accumulation of additional mutations, alterations of immune responses, deregulation of signaling pathways or may have an impact on treatment response and survival. Importantly, some of these genes have already been reported in relation to CML (e.g., AURKB, AZU1, HLA-B, HLA-DMB, PF4) and others have been found to play important roles in different leukemias (e.g., CDCA3, RPL18A, PRG3, TLX3). In addition, increased expression of BCL2 in the accelerated and blast phase indicates that venetoclax could be a potential treatment option. Moreover, a characteristic signaling pathway signature with increased expression of cytokine and ECM receptor interaction pathway genes distinguished imatinib-resistant patients from each individual CML phase. Overall, our comparative analysis contributes to an in-depth molecular characterization of similarities and differences of the CML phases and provides hints for the identification of patients that may not profit from an imatinib therapy, which could support the development of additional treatment strategies.
Collapse
Affiliation(s)
- Annemarie Schwarz
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany; (A.S.); (I.R.)
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany; (A.S.); (I.R.)
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany: German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany; Helmholtz-Zentrum Dresden—Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany; (A.S.); (I.R.)
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany: German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany; Helmholtz-Zentrum Dresden—Rossendorf (HZDR), D-01328 Dresden, Germany
- Correspondence:
| |
Collapse
|
7
|
Current Views on the Interplay between Tyrosine Kinases and Phosphatases in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13102311. [PMID: 34065882 PMCID: PMC8151247 DOI: 10.3390/cancers13102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The chromosomal alteration t(9;22) generating the BCR-ABL1 fusion protein represents the principal feature that distinguishes some types of leukemia. An increasing number of articles have focused the attention on the relevance of protein phosphatases and their potential role in the control of BCR-ABL1-dependent or -independent signaling in different areas related to the biology of chronic myeloid leukemia. Herein, we discuss how tyrosine and serine/threonine protein phosphatases may interact with protein kinases, in order to regulate proliferative signal cascades, quiescence and self-renewals on leukemic stem cells, and drug-resistance, indicating how BCR-ABL1 can (directly or indirectly) affect these critical cells behaviors. We provide an updated review of the literature on the function of protein phosphatases and their regulation mechanism in chronic myeloid leukemia. Abstract Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by BCR-ABL1 oncogene expression. This dysregulated protein-tyrosine kinase (PTK) is known as the principal driver of the disease and is targeted by tyrosine kinase inhibitors (TKIs). Extensive documentation has elucidated how the transformation of malignant cells is characterized by multiple genetic/epigenetic changes leading to the loss of tumor-suppressor genes function or proto-oncogenes expression. The impairment of adequate levels of substrates phosphorylation, thus affecting the balance PTKs and protein phosphatases (PPs), represents a well-established cellular mechanism to escape from self-limiting signals. In this review, we focus our attention on the characterization of and interactions between PTKs and PPs, emphasizing their biological roles in disease expansion, the regulation of LSCs and TKI resistance. We decided to separate those PPs that have been validated in primary cell models or leukemia mouse models from those whose studies have been performed only in cell lines (and, thus, require validation), as there may be differences in the manner that the associated pathways are modified under these two conditions. This review summarizes the roles of diverse PPs, with hope that better knowledge of the interplay among phosphatases and kinases will eventually result in a better understanding of this disease and contribute to its eradication.
Collapse
|
8
|
Aurora Kinase B Inhibition: A Potential Therapeutic Strategy for Cancer. Molecules 2021; 26:molecules26071981. [PMID: 33915740 PMCID: PMC8037052 DOI: 10.3390/molecules26071981] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Aurora kinase B (AURKB) is a mitotic serine/threonine protein kinase that belongs to the aurora kinase family along with aurora kinase A (AURKA) and aurora kinase C (AURKC). AURKB is a member of the chromosomal passenger protein complex and plays a role in cell cycle progression. Deregulation of AURKB is observed in several tumors and its overexpression is frequently linked to tumor cell invasion, metastasis and drug resistance. AURKB has emerged as an attractive drug target leading to the development of small molecule inhibitors. This review summarizes recent findings pertaining to the role of AURKB in tumor development, therapy related drug resistance, and its inhibition as a potential therapeutic strategy for cancer. We discuss AURKB inhibitors that are in preclinical and clinical development and combination studies of AURKB inhibition with other therapeutic strategies.
Collapse
|
9
|
Berglund A, Amankwah EK, Kim YC, Spiess PE, Sexton WJ, Manley B, Park HY, Wang L, Chahoud J, Chakrabarti R, Yeo CD, Luu HN, Pietro GD, Parker A, Park JY. Influence of gene expression on survival of clear cell renal cell carcinoma. Cancer Med 2020; 9:8662-8675. [PMID: 32986937 PMCID: PMC7666730 DOI: 10.1002/cam4.3475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 10%‐20% of patients with clinically localized clear cell renal cell carcinoma (ccRCC) at time of surgery will subsequently experience metastatic progression. Although considerable progression was seen in the systemic treatment of metastatic ccRCC in last 20 years, once ccRCC spreads beyond the confines of the kidney, 5‐year survival is less than 10%. Therefore, significant clinical advances are urgently needed to improve overall survival and patient care to manage the growing number of patients with localized ccRCC. We comprehensively evaluated expression of 388 candidate genes related with survival of ccRCC by using TCGA RNAseq (n = 515), Total Cancer Care (TCC) expression array data (n = 298), and a well characterized Moffitt RCC cohort (n = 248). We initially evaluated all 388 genes for association with overall survival using TCGA and TCC data. Eighty‐one genes were selected for further analysis and tested on Moffitt RCC cohort using NanoString expression analysis. Expression of nine genes (AURKA, AURKB, BIRC5, CCNE1, MK167, MMP9, PLOD2, SAA1, and TOP2A) was validated as being associated with poor survival. Survival prognostic models showed that expression of the nine genes and clinical factors predicted the survival in ccRCC patients with AUC value: 0.776, 0.821 and 0.873 for TCGA, TCC and Moffitt data set, respectively. Some of these genes have not been previously implicated in ccRCC survival and thus potentially offer insight into novel therapeutic targets. Future studies are warranted to validate these identified genes, determine their biological mechanisms and evaluate their therapeutic potential in preclinical studies.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ernest K Amankwah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
| | - Young-Chul Kim
- Department of Biostatistics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brandon Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hyun Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Chang D Yeo
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hung N Luu
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giuliano D Pietro
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristovao, Brazil
| | - Alexander Parker
- University of Florida College of Medicine, Jacksonville, FL, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
10
|
Bernardo PS, Lemos LGT, de Moraes GN, Maia RC. Unraveling survivin expression in chronic myeloid leukemia: Molecular interactions and clinical implications. Blood Rev 2020; 43:100671. [PMID: 32107072 DOI: 10.1016/j.blre.2020.100671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the BCR-ABL oncoprotein, known to drive leukemogenesis by orchestrating multiple signaling pathways ultimately involved in cell survival. Despite successful response rates of CML patients to tyrosine kinase inhibitors (TKIs), resistance eventually arises due to BCR-ABL-dependent and independent mechanisms. Survivin is an inhibitor of apoptosis protein acting in the interface between apoptosis deregulation and cell cycle progression. In CML, high levels of survivin have been associated with late stages of disease and therapy resistance. In this review, we provide an overview of important aspects concerning survivin subcellular localization and expression pattern in CML patients and cell lines. Moreover, we highlight the relevance of molecular networks involving survivin for disease progression and treatment resistance. Finally, we discuss the mechanisms accounting for survivin overexpression, as well as novel therapeutic interventions that have been designed to counteract survivin-associated malignancy in CML.
Collapse
Affiliation(s)
- Paula Sabbo Bernardo
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Lauana Greicy Tonon Lemos
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Gabriela Nestal de Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Bao L, Zhao Y, Liu C, Cao Q, Huang Y, Chen K, Song Z. The Identification of Key Gene Expression Signature and Biological Pathways in Metastatic Renal Cell Carcinoma. J Cancer 2020; 11:1712-1726. [PMID: 32194783 PMCID: PMC7052876 DOI: 10.7150/jca.38379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: To investigate the potential mechanisms contributing to metastasis of clear cell renal cell carcinoma (ccRCC), screen the hub genes, associated pathways of metastatic ccRCC and identify potential biomarkers. Methods: The ccRCC metastasis gene expression profile GSE47352 was employed to analyze the differentially expressed genes (DEGs). DAVID was performed to assess Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The protein-protein interaction (PPI) network and modules were constructed. The function pathway, prognostic and diagnostic analysis of these hub genes was picked out to estimate their potential effects on metastasis of ccRCC. Results: A total of 873 DEGs were identified (503 upregulated genes and 370 downregulated genes). Meanwhile, top 20 hub genes were displayed. GO analysis showed that the top 20 hub genes were enriched in regulation of phosphatidylinositol 3-kinase signaling, positive regulation of DNA replication, protein autophosphorylation, protein tyrosine kinase activity, etc. KEGG analysis indicated these hub genes were enriched in the Ras signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, Pathways in cancer, etc. The GO and KEGG enrichment analyses for the hub genes disclosed important biological features of metastatic ccRCC. PPI network showed the interaction of top 20 hub genes. Gene Set Enrichment Analysis (GSEA) revealed that some of the hub genes was associated with metastasis, epithelial mesenchymal transition (EMT), hypoxia cancer and adipogenesis of ccRCC. Some top hub genes were distinctive and new discoveries compared with that of the existing associated researches. Conclusions: Our analysis uncovered that changes in signal pathways such as Ras signaling pathway, PI3K-Akt signaling pathway, etc. may be the main signatures of metastatic ccRCC. We identified several candidate biomarkers related with overall survival (OS) and disease-free survival (DFS) of ccRCC patients. Accordingly, they might be novel therapeutic targets and used as potential biomarkers for diagnosis, prognosis of ccRCC.
Collapse
Affiliation(s)
- Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ChenChen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
12
|
lncRNA Expression Reveals the Potential Regulatory Roles in Hepatocyte Proliferation during Rat Liver Regeneration. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8597953. [PMID: 31828136 PMCID: PMC6885160 DOI: 10.1155/2019/8597953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
Liver regeneration is a tissue growth process after loss or injury of liver tissue, which is a compensatory hyperplasia rather than true regeneration, mainly depending on hepatocyte proliferation. Currently, a large number of studies on hepatocyte proliferation have been conducted. However, studies on the regulation of long noncoding RNA (lncRNA) on hepatocyte proliferation are still limited. To identify specially expressed lncRNA during rat liver regeneration, high-throughput sequencing technology was performed, and a total of 2446 lncRNAs and 4091 mRNAs were identified as significantly differentially expressed. Gene ontology (GO) enrichment analysis was performed to analyze the role of differentially expressed mRNAs, and 695 mRNAs were identified to be related to cell proliferation. Then, an lncRNA-mRNA coexpression network based on the differentially expressed lncRNAs and proliferation-related genes was constructed to analyze the potential function of lncRNAs on hepatocyte proliferation, and ten lncRNAs, NONRATT003557.2, NONRATT005357.2, NONRATT003292.2, NONRATT001466.2, NONRATT003289.2, NONRATT001047.2, NONRATT005180.2, NONRATT004419.2, NONRATT005336.2, and NONRATT005335.2, were selected as key regulatory factors, which may play crucial roles in hepatocyte proliferation during rat liver regeneration. Finally, a protein-protein interaction (PPI) network was established to illuminate the interaction between proliferation-related genes, and ten hub genes (Aurkb, Cdk1, Cdc20, Bub1b, Mad2l1, Kif11, Prc1, Ccna2, Top2a, and Ccnb1) were screened with the MCC method in the PPI network, which may be important biomarkers involved in the hepatocyte proliferation during rat liver regeneration. These results may provide clues for a more comprehensive understanding of the molecular mechanism of hepatocyte proliferation during rat liver regeneration.
Collapse
|
13
|
Wu J, Wei B, Shi Y, Lu X, Ding Y, Wang C, Li Y. Homoharringtonine enhances the effect of imatinib on chronic myelogenous leukemia cells by downregulating ZFX. Mol Med Rep 2019; 20:3233-3239. [PMID: 31432109 PMCID: PMC6755169 DOI: 10.3892/mmr.2019.10539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Homoharringtonine (HHT) and imatinib have a synergistic effect in the clinical treatment of chronic myeloid leukemia (CML). The purpose of the present study was to explore the underlying mechanisms by which HHT enhanced imatinib sensitivity. K562 CML cells were treated with HHT and imatinib separately or in combination. Cell viability was detected by Cell Counting Kit-8 assay; apoptotic rates and protein expression levels of phosphorylated-tyrosine (p-Tyr) and p-CRK like proto-oncogene, adaptor protein (p-Crkl) were analyzed by flow cytometry; zinc-finger protein, X-linked (ZFX) overexpression plasmid was transfected to cells using electroporation; western blotting was used to detect the protein expression levels of PI3K, AKT, p-AKT and ZFX; and reverse transcription-quantitative PCR was used to measure ZFX mRNA expression levels. The results demonstrated that HHT and imatinib co-treatment had significant effects of proliferation inhibition and apoptosis induction on K562 CML cells compared with imatinib alone. Co-treatment also significantly downregulated the expression levels of p-Tyr, p-Crkl, PI3K and p-Akt compared with imatinib or HHT treatment. In addition, HHT downregulated ZFX mRNA and protein expression. ZFX overexpression reversed cell sensitivity to imatinib and HHT and also reduced the HHT-induced imatinib sensitization by increasing p-Akt expression. In conclusion, HHT may enhance the effect of imatinib on CML cells by downregulating ZFX.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Hematology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Bin Wei
- Department of Oncology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xueying Lu
- Department of Hematology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yihan Ding
- Department of Hematology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yufeng Li
- Department of Hematology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
14
|
Mancini M, De Santis S, Monaldi C, Bavaro L, Martelli M, Castagnetti F, Gugliotta G, Rosti G, Santucci MA, Martinelli G, Cavo M, Soverini S. Hyper-activation of Aurora kinase a-polo-like kinase 1-FOXM1 axis promotes chronic myeloid leukemia resistance to tyrosine kinase inhibitors. J Exp Clin Cancer Res 2019; 38:216. [PMID: 31122263 PMCID: PMC6533706 DOI: 10.1186/s13046-019-1197-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by the constitutive tyrosine kinase (TK) activity of the BCR-ABL1 fusion protein. Accordingly, TK inhibitors have drastically changed the disease prognosis. However, persistence of the transformed hematopoiesis even in patients who achieved a complete response to TK inhibitors and the disease relapse upon therapy discontinuation represent a major obstacle to CML cure. METHODS Thiostrepton, Danusertib and Volasertib were used to investigate the effects of FOXM1, AKA and Plk1 inhibition in K562-S and K562-R cells. Apoptotic cell death was quantified by annexin V/propidium iodide staining and flow cytometry. Quantitative reverse transcription (RT)-PCR was used to assess BCR-ABL1, FOXM1, PLK1 and AURKA expression. Protein expression and activation was assessed by Western Blotting (WB). Clonogenic assay were performed to confirm K562-R resistance to Imatinib and to evaluate cells sensitivity to the different drugs. RESULTS Here we proved that BCR-ABL1 TK-dependent hyper-activation of Aurora kinase A (AURKA)-Polo-like kinase 1 (PLK1)-FOXM1 axis is associated with the outcome of Imatinib (IM) resistance in an experimental model (K562 cell line) and bone marrow hematopoietic cells. Notably, such a biomolecular trait was detected in the putative leukemic stem cell (LSC) compartment characterized by a CD34+ phenotype. Constitutive phosphorylation of FOXM1 associated with BCR-ABL1 TK lets FOXM1 binding with β-catenin enables β-catenin nuclear import and recruitment to T cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription complex, hence supporting leukemic cell proliferation and survival. Lastly, the inhibition of single components of AURKA-PLK1-FOXM1 axis in response to specific drugs raises the expression of growth factor/DNA damage-inducible gene a (GADD45a), a strong inhibitor of AURKA and, as so, a critical component whose induction may mediate the eradication of leukemic clone. CONCLUSIONS Our conclusion is that AURKA, PLK1 and FOXM1 inhibition may be considered as a promising therapeutic approach to cure CML.
Collapse
MESH Headings
- Aurora Kinase A/genetics
- Benzamides/pharmacology
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/metabolism
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins/genetics
- Pteridines/pharmacology
- Pyrazoles/pharmacology
- Signal Transduction
- Thiostrepton/pharmacology
- Up-Regulation
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- M. Mancini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - S. De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - C. Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - L. Bavaro
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - M. Martelli
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - F. Castagnetti
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - G. Gugliotta
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - G. Rosti
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - M. A. Santucci
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - G. Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) Srl Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), via Piero Maroncelli 40, 47014 Meldola (FC), Italy
| | - M. Cavo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| | - S. Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale – DIMES - Istituto di Ematologia “L. e A. Seràgnoli”, University of Bologna, Medical School, via Massarenti, 9, 40138 Bologna, Italy
| |
Collapse
|
15
|
Guo M, Lu S, Huang H, Wang Y, Yang MQ, Yang Y, Fan Z, Jiang B, Deng Y. Increased AURKA promotes cell proliferation and predicts poor prognosis in bladder cancer. BMC SYSTEMS BIOLOGY 2018; 12:118. [PMID: 30547784 PMCID: PMC6293497 DOI: 10.1186/s12918-018-0634-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Bladder cancer (BC) is the most common cancer of the urinary bladder and upper tract, in which the clinical management is limited. AURKA (aurora kinase A) has been identified as an oncogene in cancer development; however, its potential role and underlying mechanisms in the progression of BC remain unknown. Results In this study, we evaluated Aurora kinase A (AURKA) expression in patient samples by performing gene expression profiling, and found that AURKA expression levels were significantly higher in BC tissues than in normal tissues. Increased AURKA in BC was strongly associated with stage and grade. Moreover, BC patients with elevated AURKA achieved poor overall survival rates. The experiments in vitro comprehensively validated the critical role of AURKA in promoting BC cell proliferation using the methods of gene overexpression and gene silencing. Furthermore, we proved that AURKA inhibitor MLN8237 arrested BC cell growth and induced apoptosis. Conclusions These findings implicate AURKA acting as an effective biomarker for BC detection and prognosis, as well as therapeutic target.
Collapse
Affiliation(s)
- Mengjie Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sicheng Lu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongming Huang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yaohui Wang
- Department of Pathology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, 210029, China
| | - Mary Q Yang
- MidSouth Bioinformatics Center, Department of Information Science, George Washington Donaghey College of Engineering and Information Technology and Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, 72204, USA
| | - Ye Yang
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.,Integrated Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhimin Fan
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| | - Bin Jiang
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| | - Youping Deng
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China. .,Bioinformatics Core, Department of Complementary & Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA.
| |
Collapse
|
16
|
Li M, Gao K, Chu L, Zheng J, Yang J. The role of Aurora-A in cancer stem cells. Int J Biochem Cell Biol 2018; 98:89-92. [DOI: 10.1016/j.biocel.2018.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 01/17/2023]
|
17
|
Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J. Aurora kinases: novel therapy targets in cancers. Oncotarget 2017; 8:23937-23954. [PMID: 28147341 PMCID: PMC5410356 DOI: 10.18632/oncotarget.14893] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Aurora kinases, a family of serine/threonine kinases, consisting of Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are essential kinases for cell division via regulating mitosis especially the process of chromosomal segregation. Besides regulating mitosis, Aurora kinases have been implicated in regulating meiosis. The deletion of Aurora kinases could lead to failure of cell division and impair the embryonic development. Overexpression or gene amplification of Aurora kinases has been clarified in a number of cancers. And a growing number of studies have demonstrated that inhibition of Aurora kinases could potentiate the effect of chemotherapies. For the past decades, a series of Aurora kinases inhibitors (AKIs) developed effectively repress the progression and growth of many cancers both in vivo and in vitro, suggesting that Aurora kinases could be a novel therapeutic target. In this review, we'll first briefly present the structure, localization and physiological functions of Aurora kinases in mitosis, then describe the oncogenic role of Aurora kinases in tumorigenesis, we shall finally discuss the outcomes of AKIs combination with conventional therapy.
Collapse
Affiliation(s)
- Anqun Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Keyu Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Laili Chu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Rui Zhang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Jing Yang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China.,Department of Oncology, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
18
|
Zhong S, Wu B, Dong X, Han Y, Jiang S, Zhang Y, Bai Y, Luo SX, Chen Y, Zhang H, Zhao G. Identification of Driver Genes and Key Pathways of Glioblastoma Shows JNJ-7706621 as a Novel Antiglioblastoma Drug. World Neurosurg 2017; 109:e329-e342. [PMID: 28989042 DOI: 10.1016/j.wneu.2017.09.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study is to identify novel targets of diagnosis, therapy, and prognosis for glioblastoma, as well as to verify the therapeutic effect of JNJ-7706621 regarding glioblastoma. METHODS The gene expression profiles of GSE42656, GSE50161, and GSE86574 were obtained respectively from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified with comparison between gene expression profiles of the glioblastoma tissues and normal tissues. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein-protein interaction (PPI) network analyses were performed. Quantitative reverse transcription polymerase chain reaction and survival curve analysis were also conducted to verify the correlation between expression of hub genes and prognosis. Moreover, in vitro, MTT assay, colony-forming assay, the scratch assay, and flow cytometry were performed to verify the therapeutic effect of JNJ-7706621. RESULTS AURKA, NDC80, KIF4A, and NUSAP1 were identified as hub genes after PPI network analysis. Differential expression of those genes was detected between human normal glial cells and glioblastoma cells by quantitative reverse transcription polymerase chain reaction (P < 0.05), and the survival curve analysis showed that the patients with low expression of gene AURKA, NDC80, KIF4A, and NUSAP1 had a significant favorable prognosis (P < 0.05). In vitro assays showed that JNJ-7706621 inhibited glioblastoma cellular viability, proliferation, and migration via inducing glioblastoma cells apoptosis. CONCLUSIONS AURKA, NDC80, KIF4A, and NUSAP1 were significantly more highly expressed in glioblastoma cells than in human normal glial cell. Patients with low expression of those 4 genes had a favorable prognosis. JNJ-7706621 was a potential drug in treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- Sheng Zhong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China; Clinical College, Jilin University, Changchun, China
| | - Bo Wu
- Clinical College, Jilin University, Changchun, China
| | - Xuechao Dong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yujuan Han
- Clinical College, Jilin University, Changchun, China
| | | | - Ying Zhang
- Clinical College, Jilin University, Changchun, China
| | - Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Sean X Luo
- Department of Vascular, Wake Forest Baptist Health, Winston-Salem, North Carolina, USA
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
Šmahelová J, Kaštánková I, Poláková KM, Klamová H, Zemanová K, Tachezy R, Hamšíková E, Šmahel M. Expression of genes encoding centrosomal proteins and the humoral response against these proteins in chronic myeloid leukemia. Oncol Rep 2016; 37:547-554. [DOI: 10.3892/or.2016.5226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/25/2016] [Indexed: 11/06/2022] Open
|
20
|
Gaboriaud-Kolar N, Myrianthopoulos V, Vougogiannopoulou K, Gerolymatos P, Horne DA, Jove R, Mikros E, Nam S, Skaltsounis AL. Natural-Based Indirubins Display Potent Cytotoxicity toward Wild-Type and T315I-Resistant Leukemia Cell Lines. JOURNAL OF NATURAL PRODUCTS 2016; 79:2464-2471. [PMID: 27726390 PMCID: PMC9132125 DOI: 10.1021/acs.jnatprod.6b00285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Drug resistance in chronic myelogenous leukemia (CML) requires the development of new CML chemotherapeutic drugs. Indirubin, a well-known mutikinase inhibitor, is the major active component of "Danggui Longhui Wan", a Chinese traditional medicine used for the treatment of CML symptoms. An in-house collection of indirubin derivatives was screened at 1 μM on wild-type and imatinib-resistant T315I mutant CML cells. Herein are reported that only 15 analogues of the natural 6-bromoindirubin displayed potent cytotoxicity in the submicromolar range. Kinase assays in vitro show that eight out of the 15 active molecules strongly inhibited both c-Src and Abl oncogenic kinases in the nanomolar range. Most importantly, these eight molecules blocked the activity of T315I mutant Abl kinase at the submicromolar level and with analogue 22 exhibiting inhibitory activity at the low nanomolar range. Docking calculations suggested that active indirubins might inhibit T315I Abl kinase through an unprecedented binding to both active and Src-like inactive conformations. Analogue 22 is the first derivative of a natural product identified as an inhibitor of wild-type and imatinib-resistant T315I mutant Abl kinases.
Collapse
Affiliation(s)
- Nicolas Gaboriaud-Kolar
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Vasillios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Panagiotis Gerolymatos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - David A. Horne
- Molecular Medicine; Beckman Research Institute; City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, United States
| | - Richard Jove
- Cell Therapy Institute, 3301 College Avenue, Fort Lauderdale, Nova Southeastern University, Florida 33314, USA
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Sangkil Nam
- Molecular Medicine; Beckman Research Institute; City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, United States
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| |
Collapse
|
21
|
Yan M, Wang C, He B, Yang M, Tong M, Long Z, Liu B, Peng F, Xu L, Zhang Y, Liang D, Lei H, Subrata S, Kelley KW, Lam EWF, Jin B, Liu Q. Aurora-A Kinase: A Potent Oncogene and Target for Cancer Therapy. Med Res Rev 2016; 36:1036-1079. [PMID: 27406026 DOI: 10.1002/med.21399] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The Aurora kinase family is comprised of three serine/threonine kinases, Aurora-A, Aurora-B, and Aurora-C. Among these, Aurora-A and Aurora-B play central roles in mitosis, whereas Aurora-C executes unique roles in meiosis. Overexpression or gene amplification of Aurora kinases has been reported in a broad range of human malignancies, pointing to their role as potent oncogenes in tumorigenesis. Aurora kinases therefore represent promising targets for anticancer therapeutics. A number of Aurora kinase inhibitors (AKIs) have been generated; some of which are currently undergoing clinical evaluation. Recent studies have unveiled novel unexpected functions of Aurora kinases during cancer development and the mechanisms underlying the anticancer actions of AKIs. In this review, we discuss the most recent advances in Aurora-A kinase research and targeted cancer therapy, focusing on the oncogenic roles and signaling pathways of Aurora-A kinases in promoting tumorigenesis, the recent preclinical and clinical AKI data, and potential alternative routes for Aurora-A kinase inhibition.
Collapse
Affiliation(s)
- Min Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Mengying Tong
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zijie Long
- Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lingzhi Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yan Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sen Subrata
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith W Kelley
- Laboratory of Immunophysiology, Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. .,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China. .,Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Reversine triggers mitotic catastrophe and apoptosis in K562 cells. Leuk Res 2016; 48:26-31. [PMID: 27447890 DOI: 10.1016/j.leukres.2016.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/30/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm of the hematopoietic stem cell characterized by presence of the oncoprotein BCR-ABL1, which have constitutive tyrosine kinase activity. BCR-ABL1 activation induces aurora kinase A (AURKA) and aurora kinase B (AURKB) expression, which are serine-threonine kinases that play an important function in chromosome alignment, segregation and cytokinesis during mitosis. Acquisition of resistance to tyrosine kinase inhibitors has emerged as a problem for CML patients and the identification of novel targets with an important contribution for CML phenotype is of interest. In the present study, we explored the cellular effects of reversine, an AURKA and AURKB inhibitor, in the BCR-ABL1+ K562 cells. Our results indicate that reversine reduces AURKA and AURKB expression, leads to reduction of cell viability and increased apoptosis in a dose- and time-dependent manner, as well as, induces mitotic catastrophe in K562 cells. Our preclinical study establishes that reversine presents an effective antileukemia activity against K562 cells and provide new insights on anticancer opportunities for CML.
Collapse
|
23
|
Durlacher CT, Li ZL, Chen XW, He ZX, Zhou SF. An update on the pharmacokinetics and pharmacodynamics of alisertib, a selective Aurora kinase A inhibitor. Clin Exp Pharmacol Physiol 2016; 43:585-601. [DOI: 10.1111/1440-1681.12571] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Cameron T Durlacher
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| | - Zhi-Ling Li
- Department of Pharmacy; Shanghai Children's Hospital; Shanghai Jiao Tong University; Shanghai China
| | - Xiao-Wu Chen
- Department of General Surgery; The First People's Hospital of Shunde Affiliated to Southern Medical University; Shunde Foshan Guangdong
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine; Stem Cell and Tissue Engineering Research Centre & Sino-US Joint Laboratory for Medical Sciences; Guizhou Medical University; Guiyang Guizhou China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| |
Collapse
|
24
|
Gaboriaud-Kolar N, Vougogiannopoulou K, Skaltsounis AL. Indirubin derivatives: a patent review (2010 - present). Expert Opin Ther Pat 2015; 25:583-93. [PMID: 25887337 DOI: 10.1517/13543776.2015.1019865] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Indirubins are bisindole alkaloids naturally occurring in indigo-bearing plants or in mollusks from the Muricidae family. They belong to the rather small family of indigoids, which has nevertheless found an extreme importance in the fields of dyes and medicinal chemistry. Indirubin has been found to be the active ingredient of a traditional Chinese Medicine used to treat the symptoms of leukemia. Further biological explorations revealed the ability of indirubin to bind cyclin-dependent kinases and 6-bromoindirubin, extracted from mollusks, to bind glycogen synthase kinase-3. The high affinity displayed by the two natural products has opened a vast field of research and triggered the development of hundred of derivatives with biological activities. AREAS COVERED The traditional use of indirubin for the treatment of leukemia has prompted different research groups to study the cytotoxic effect of indirubin derivatives on both solid tumors and leukemia. Moreover, the affinity of indirubins for kinases also allowed the exploration of their activity towards stem cells. EXPERT OPINION The derivatives presented are in accordance with first discoveries and establish the close relation between activity and kinase inhibition. New derivatives have been patented and new interferences in signaling pathways are described. However, few in vivo studies have been performed and more efficient solutions are needed to unravel the major issue of solubility.
Collapse
Affiliation(s)
- Nicolas Gaboriaud-Kolar
- University of Athens, Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , Panepistimiopolis Zografou, GR-15771, Athens , Greece
| | | | | |
Collapse
|
25
|
Vonka V, Petráčková M. Immunology of chronic myeloid leukemia: current concepts and future goals. Expert Rev Clin Immunol 2015; 11:511-22. [PMID: 25728856 DOI: 10.1586/1744666x.2015.1019474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although chronic myeloid leukemia is a rare malignancy, it has developed into a model system for the study of a variety of aspects of cancer biology and immunology. The introduction of tyrosine kinase inhibitors has resulted in a significant prolongation of the survival rates of chronic myeloid leukemia patients but has not resulted in a cure. There is a growing conviction that this aim can be achieved through immunotherapy. For this concept to be successful, a considerable increase in the present understanding of chronic myeloid leukemia immunology is required. The authors attempt to review and evaluate the current findings that demonstrate a number of immunological aberrations in patients prior to the start of any therapy and their normalization after achieving remission. They also discuss the recent clinical trials with experimental therapeutic vaccines and then present their own strategy on how to address the problem.
Collapse
Affiliation(s)
- Vladimír Vonka
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | | |
Collapse
|
26
|
Inhibition of Aurora kinase B is important for biologic activity of the dual inhibitors of BCR-ABL and Aurora kinases R763/AS703569 and PHA-739358 in BCR-ABL transformed cells. PLoS One 2014; 9:e112318. [PMID: 25426931 PMCID: PMC4245092 DOI: 10.1371/journal.pone.0112318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
ABL tyrosine kinase inhibitors (TKI) like Imatinib, Dasatinib and Nilotinib are the gold standard in conventional treatment of CML. However, the emergence of resistance remains a major problem. Alternative therapeutic strategies of ABL TKI-resistant CML are urgently needed. We asked whether dual inhibition of BCR-ABL and Aurora kinases A-C could overcome resistance mediated by ABL kinase mutations. We therefore tested the dual ABL and Aurora kinase inhibitors PHA-739358 and R763/AS703569 in Ba/F3- cells ectopically expressing wild type (wt) or TKI-resistant BCR-ABL mutants. We show that both compounds exhibited strong anti-proliferative and pro-apoptotic activity in ABL TKI resistant cell lines including cells expressing the strongly resistant T315I mutation. Cell cycle analysis indicated polyploidisation, a consequence of continued cell cycle progression in the absence of cell division by Aurora kinase inhibition. Experiments using drug resistant variants of Aurora B indicated that PHA-739358 acts on both, BCR-ABL and Aurora Kinase B, whereas Aurora kinase B inhibition might be sufficient for the anti-proliferative activity observed with R763/AS703569. Taken together, our data demonstrate that dual ABL and Aurora kinase inhibition might be used to overcome ABL TKI resistant CML.
Collapse
|
27
|
Abstract
The BCR-ABL1 oncoprotein is the cause of chronic myeloid leukemia and occurs as a consequence of the translocation t(9;22), a well-defined genetic event that results in the formation of the Philadelphia chromosome. While this genomic aberration is recognized to be the main culprit of the chronic phase of chronic myeloid leukemia, the natural clonal evolution of this myeloproliferative neoplasm involves the accumulation of secondary alterations through genomic instability. Thus, efforts to dissect the frequency and nature of the genomic events at diagnosis and at later stages are producing valuable insights into understanding the mechanisms of blastic transformation and development of resistance in chronic myeloid leukemia. The identification of alternative BCR-ABL1-dependent and BCR-ABL1-independent targets that sustain the survival of leukemic blasts and/or leukemia-initiating cells will facilitate the development of novel viable therapeutic options for patients who become resistant or intolerant to the currently available therapeutic options based on tyrosine kinase inhibitors.
Collapse
|
28
|
Schürch CM, Riether C, Ochsenbein AF. Dendritic cell-based immunotherapy for myeloid leukemias. Front Immunol 2013; 4:496. [PMID: 24427158 PMCID: PMC3876024 DOI: 10.3389/fimmu.2013.00496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023] Open
Abstract
Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.
Collapse
Affiliation(s)
- Christian M Schürch
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Institute of Pathology, University of Bern , Bern , Switzerland
| | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Department of Medical Oncology, Inselspital, University Hospital Bern , Bern , Switzerland
| |
Collapse
|
29
|
Shin SY, Yoon H, Hwang D, Ahn S, Kim DW, Koh D, Lee YH, Lim Y. Benzochalcones bearing pyrazoline moieties show anti-colorectal cancer activities and selective inhibitory effects on aurora kinases. Bioorg Med Chem 2013; 21:7018-24. [PMID: 24095020 DOI: 10.1016/j.bmc.2013.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
|