1
|
Kumar S, Kumar BH, Nayak R, Pandey S, Kumar N, Pai KSR. Computational screening and molecular dynamics of natural compounds targeting the SH2 domain of STAT3: a multitarget approach using network pharmacology. Mol Divers 2025:10.1007/s11030-024-11075-5. [PMID: 39786519 DOI: 10.1007/s11030-024-11075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
SH2 (Src Homology 2) domains play a crucial role in phosphotyrosine-mediated signaling and have emerged as promising drug targets, particularly in cancer therapy. STAT3 (Signal Transducer and Activator of Transcription 3), which contains an SH2 domain, plays a pivotal role in cancer progression and immune evasion because it facilitates the dimerization of STAT3, which is essential for their activation and subsequent nuclear translocation. SH2 domain-mediated STAT3 inhibition disrupts this binding, reduces phosphorylation of STAT3, and impairs dimerization. This study employed an in silico approach to screen potential natural compounds that could target the SH2 domain of STAT3 and inhibit its function. The phytomolecules (182455) were retrieved from the ZINC 15 database and were docked using various modes like HTVS, SP, and XP. The phytomolecules exhibiting higher binding affinity were selected. MM-GBSA was performed to determine binding free energy, and the QikProp tool was utilized to assess the pharmacokinetic properties of potential hit compounds, narrowing down the list of candidates. Molecular dynamics simulations, thermal MM-GBSA, and WaterMap analysis were performed on compounds that exhibited favorable binding affinities and pharmacokinetic characteristics. Based on docking scores and binding interactions, ZINC255200449, ZINC299817570, ZINC31167114, and ZINC67910988 were identified as potential STAT3 inhibitors. ZINC67910988 demonstrated superior stability in molecular dynamics simulation and WaterMap analysis. Furthermore, DFT was performed to determine energetic and electronic properties, and HOMO and LUMO sites were predicted for electronic structure calculation. Additionally, network pharmacology was performed to map the compounds' interactions within biological networks, highlighting their multitarget potential. Compound-target networks elucidate the relationships between compounds and multiple targets, along with their associated pathways and help to minimize off-target effects. The identified lead compound showed strong potential as a STAT3 inhibitor, warranting further validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - B Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|
2
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Zhang B, Liu M, Mai F, Li X, Wang W, Huang Q, Du X, Ding W, Li Y, Barwick BG, Ni JJ, Osunkoya AO, Chen Y, Zhou W, Xia S, Dong JT. Interruption of KLF5 acetylation promotes PTEN-deficient prostate cancer progression by reprogramming cancer-associated fibroblasts. J Clin Invest 2024; 134:e175949. [PMID: 38781024 PMCID: PMC11245161 DOI: 10.1172/jci175949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Inactivation of phosphatase and tensin homolog (PTEN) is prevalent in human prostate cancer and causes high-grade adenocarcinoma with a long latency. Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor progression, but it remains elusive whether and how PTEN-deficient prostate cancers reprogram CAFs to overcome the barriers for tumor progression. Here, we report that PTEN deficiency induced Krüppel-like factor 5 (KLF5) acetylation and that interruption of KLF5 acetylation orchestrated intricate interactions between cancer cells and CAFs that enhance FGF receptor 1 (FGFR1) signaling and promote tumor growth. Deacetylated KLF5 promoted tumor cells to secrete TNF-α, which stimulated inflammatory CAFs to release FGF9. CX3CR1 inhibition blocked FGFR1 activation triggered by FGF9 and sensitized PTEN-deficient prostate cancer to the AKT inhibitor capivasertib. This study reveals the role of KLF5 acetylation in reprogramming CAFs and provides a rationale for combined therapies using inhibitors of AKT and CX3CR1.
Collapse
Affiliation(s)
- Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Fengyi Mai
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiawei Li
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Inner Mongolia Institute of Quality and Standardization, Inner Mongolia Administration for Market Regulation, Hohhot, China
| | - Wenzhou Wang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Qingqing Huang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiancai Du
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Weijian Ding
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jianping Jenny Ni
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Adeboye O. Osunkoya
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Departments of Pathology and Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Jha K, Kumar A, Bhatnagar K, Patra A, Bhavesh NS, Singh B, Chaudhary S. Modulation of Krüppel-like factors (KLFs) interaction with their binding partners in cancers through acetylation and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195003. [PMID: 37992989 DOI: 10.1016/j.bbagrm.2023.195003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Post-translational modifications (PTMs) of transcription factors regulate transcriptional activity and play a key role in essentially all biological processes and generate indispensable insight towards biological function including activity state, subcellular localization, protein solubility, protein folding, substrate trafficking, and protein-protein interactions. Amino acids modified chemically via PTMs, function as molecular switches and affect the protein function and characterization and increase the proteome complexity. Krüppel-like transcription factors (KLFs) control essential cellular processes including proliferation, differentiation, migration, programmed cell death and various cancer-relevant processes. We investigated the interactions of KLF group-2 members with their binding partners to assess the role of acetylation and phosphorylation in KLFs on their binding affinity. It was observed that acetylation and phosphorylation at different positions in KLFs have a variable effect on binding with specific partners. KLF2-EP300, KLF4-SP1, KLF6-ATF3, KLF6-JUN, and KLF7-JUN show stabilization upon acetylation or phosphorylation at variable positions. On the other hand, KLF4-CBP, KLF4-EP300, KLF5-CBP, KLF5-WWP1, KLF6-SP1, and KLF7-ATF3 show stabilization or destabilization due to acetylation or phosphorylation at variable positions in KLFs. This provides a molecular explanation of the experimentally observed dual role of KLF group-2 members as a suppressor or activator of cancers in a PTM-dependent manner.
Collapse
Affiliation(s)
- Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Bipin Singh
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India; Centre for Life Sciences, Mahindra University, Bahadurpally, Jeedimetla, Hyderabad, Telangana 500043, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
5
|
Wu Q, Liu Z, Gao Z, Luo Y, Li F, Yang C, Wang T, Meng X, Chen H, Li J, Kong Y, Dong C, Sun S, Chen C. KLF5 inhibition potentiates anti-PD1 efficacy by enhancing CD8 + T-cell-dependent antitumor immunity. Theranostics 2023; 13:1381-1400. [PMID: 36923542 PMCID: PMC10008740 DOI: 10.7150/thno.82182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Immune checkpoint blockers (ICBs) are revolutionized therapeutic strategies for cancer, but most patients with solid neoplasms remain resistant to ICBs, partly because of the difficulty in reversing the highly immunosuppressive tumor microenvironment (TME). Exploring the strategies for tumor immunotherapy is highly dependent on the discovery of molecular mechanisms of tumor immune escape and potential therapeutic target. Krüppel-like Factor 5 (KLF5) is a cell-intrinsic oncogene to promote tumorigenesis. However, the cell-extrinsic effects of KLF5 on suppressing the immune response to cancer remain unclear. Methods: We analyzed the immunosuppressive role of KLF5 in mice models transplanted with KLF5-deleted/overexpressing tumor cells. We performed RNA sequencing, immunohistochemistry, western blotting, real time-PCR, ELISA, luciferase assay, chromatin immunoprecipitation (ChIP), and flow cytometry to demonstrate the effects of KLF5 on CD8+ T cell infiltration and related molecular mechanism. Single-cell RNA sequencing and spatial transcriptomics analysis were applied to further decipher the association between KLF5 expression and infiltrating immune cells. The efficacy of KLF5/COX2 inhibitors combined with anti-programmed cell death protein 1 (anti-PD1) therapy were explored in pre-clinical models. Finally, a gene-expression signature depending on KLF5/COX2 axis and associated immune markers was created to predict patient survival. Results: KLF5 inactivation decelerated basal-like breast tumor growth in a CD8+ T-cell-dependent manner. Transcriptomic profiling revealed that KLF5 loss in tumors increases the number and activated function of T lymphocytes. Mechanistically, KLF5 binds to the promoter of the COX2 gene and promotes COX2 transcription; subsequently, KLF5 deficiency decreases prostaglandin E2 (PGE2) release from tumor cells by reducing COX2 expression. Inhibition of the KLF5/COX2 axis increases the number and functionality of intratumoral antitumor T cells to synergize the antitumorigenic effects of anti-PD1 therapy. Analysis of patient datasets at single-cell and spatial resolution shows that low expression of KLF5 is associated with an immune-supportive TME. Finally, we generate a KLF5/COX2-associated immune score (KC-IS) to predict patient survival. Conclusions: Our results identified a novel mechanism responsible for KLF5-mediated immunosuppression in TME, and targeting the KLF5/COX2/PGE2 axis is a critical immunotherapy sensitizer.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China
| | - Fubing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - ChuanYu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tiantian Wang
- School of Life Science, University of Science & Technology of China, Hefei, 230027, Anhui, China
| | - Xiangyu Meng
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanjie Kong
- Pathology department, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| |
Collapse
|
6
|
Safi S, Badshah Y, Shabbir M, Zahra K, Khan K, Dilshad E, Afsar T, Almajwal A, Alruwaili NW, Al-disi D, Abulmeaty M, Razak S. Predicting 3D Structure, Cross Talks, and Prognostic Significance of KLF9 in Cervical Cancer. Front Oncol 2022; 11:797007. [PMID: 35047407 PMCID: PMC8761731 DOI: 10.3389/fonc.2021.797007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Our study aimed to identify the new blood-based biomarkers for the diagnosis and prognosis of cervical cancer. Moreover, the three-dimensional (3D) structure of Kruppel-like factor 9 (KLF9) was also determined in order to better understand its function, and a signaling pathway was constructed to identity its upstream and downstream targets. In the current study, the co-expressions of tumor protein D52 (TPD52), KLF9, microRNA 223 (miR-223), and protein kinase C epsilon (PKCϵ) were evaluated in cervical cancer patients and a possible relation with disease outcome was revealed. The expressions of TPD52, KLF9, miR-223, and PKCϵ were studied in the blood of 100 cervical cancer patients and 100 healthy controls using real-time PCR. The 3D structure of KLF9 was determined through homology modeling via the SWISS-MODEL and assessed using the Ramachandran plot. The predicted 3D structure of KLF9 had a similarity index of 62% with its template (KLF4) with no bad bonds in it. In order to construct a genetic pathway, depicting the crosstalk between understudied genes, STRING analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and DAVID software were used. The constructed genetic pathway showed that all the understudied genes are linked to each other and involved in the PI3K/Akt signaling pathway. There was a 23-fold increase in TPD52 expression, a 2-fold increase in miR-223 expression, a 0.14-fold decrease in KLF9 expression, and a 0.05-fold decrease of PKCϵ expression in cervical cancer. In the present study, we observed an association of the expressions of TPD52, KLF9, miR-223, and PKCϵ with tumor stage, metastasis, and treatment status of cervical cancer patients. Elevated expressions of TPD52 and miR-223 and reduced expressions of KLF9 and PKCϵ in peripheral blood of cervical cancer patients may serve as predictors of disease diagnosis and prognosis. Nevertheless, further in vitro and tissue-level studies are required to strengthen their role as potential diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Sadia Safi
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W. Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dara Al-disi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, Li X, Wu D, Xia S, Chen J, Qian WP, Yang L, Osunkoya AO, Boise L, Vertino PM, Zhao Y, Li M, Chen HR, Kowalski J, Kucuk O, Zhou W, Dong JT. Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun 2021; 12:1714. [PMID: 33731701 PMCID: PMC7969754 DOI: 10.1038/s41467-021-21976-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Advanced prostate cancer (PCa) often develops bone metastasis, for which therapies are very limited and the underlying mechanisms are poorly understood. We report that bone-borne TGF-β induces the acetylation of transcription factor KLF5 in PCa bone metastases, and acetylated KLF5 (Ac-KLF5) causes osteoclastogenesis and bone metastatic lesions by activating CXCR4, which leads to IL-11 secretion, and stimulating SHH/IL-6 paracrine signaling. While essential for maintaining the mesenchymal phenotype and tumorigenicity, Ac-KLF5 also causes resistance to docetaxel in tumors and bone metastases, which is overcome by targeting CXCR4 with FDA-approved plerixafor. Establishing a mechanism for bone metastasis and chemoresistance in PCa, these findings provide a rationale for treating chemoresistant bone metastasis of PCa with inhibitors of Ac-KLF5/CXCR4 signaling.
Collapse
Affiliation(s)
- Baotong Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Qiao Wu
- Department of Genetics and Cell Biology, Nankai University College of Life Sciences, Tianjin, China
| | - Lin Xie
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming, China
| | - Benjamin Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Changying Fu
- Department of Genetics and Cell Biology, Nankai University College of Life Sciences, Tianjin, China
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xin Li
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daqing Wu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Wei Ping Qian
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Lily Yang
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Adeboye O Osunkoya
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Pathology and Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lawrence Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Paula M Vertino
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yichao Zhao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Menglin Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Hsiao-Rong Chen
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeanne Kowalski
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| |
Collapse
|
9
|
Li J, Liu L, Zhou W, Cai L, Xu Z, Rane MJ. Roles of Krüppel-like factor 5 in kidney disease. J Cell Mol Med 2021; 25:2342-2355. [PMID: 33523554 PMCID: PMC7933973 DOI: 10.1111/jcmm.16332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Transcription factor Krüppel-like factor 5 (KLF5) is a member of the Krüppel-like factors' (KLFs) family. KLF5 regulates a number of cellular functions, such as apoptosis, proliferation and differentiation. Therefore, KLF5 can play a role in many diseases, including, cancer, cardiovascular disease and gastrointestinal disorders. An important role for KLF5 in the kidney was recently reported, such that KLF5 regulated podocyte apoptosis, renal cell proliferation, tubulointerstitial inflammation and renal fibrosis. In this review, we have summarized the available information in the literature with a brief description on how transcriptional, post-transcriptional and post-translational modifications of KLF5 modulate its function in a variety of organs including the kidney with a focus of its importance on the pathogenesis of various kidney diseases. Furthermore, we also have outlined the current and possible mechanisms of KLF5 activation in kidney diseases. These studies suggest a need for more systemic investigations, particularly for generation of animal models with renal cell-specific deletion or overexpression of KLF5 gene to examine direct contributions of KLF5 to various kidney diseases. This will promote further experimentation in the development of therapies to prevent or treat various kidney diseases.
Collapse
Affiliation(s)
- Jia Li
- Department of NephrologyThe First Hospital of Jilin UniversityChangchunChina
- Department of PediatricsPediatric Research InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Liang Liu
- Department of RadiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Wen‐Qian Zhou
- Department of PediatricsPediatric Research InstituteUniversity of LouisvilleLouisvilleKYUSA
- The Center of Cardiovascular DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Lu Cai
- Department of PediatricsPediatric Research InstituteUniversity of LouisvilleLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Zhong‐Gao Xu
- Department of NephrologyThe First Hospital of Jilin UniversityChangchunChina
| | - Madhavi J. Rane
- Department of MedicineDivision of NephrologyDepartment of Biochemistry and Molecular GeneticsUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
10
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Liao Q, Chen L, Zhang N, Xi Y, Hu S, Ng DM, Ahmed FYH, Zhao G, Fan X, Xie Y, Dai X, Jin Y, Ge J, Dong C, Zhang X, Guo J. Network analysis of KLF5 targets showing the potential oncogenic role of SNHG12 in colorectal cancer. Cancer Cell Int 2020; 20:439. [PMID: 32943987 PMCID: PMC7487661 DOI: 10.1186/s12935-020-01527-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/29/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND KLF5 is a member of the Kruppel-like factor, subfamily of zinc finger proteins that are involved in cancers. KLF5 functions as a transcription factor and regulates the diverse protein-coding genes (PCGs) in colorectal cancer (CRC). However, the long non-coding RNAs (lncRNAs) regulated by KLF5 in CRC are currently unknown. METHODS In this study, we first designed a computational pipeline to determine the PCG and lncRNA targets of KLF5 in CRC. Then we analyzed the motif pattern of the binding regions for the lncRNA targets. The regulatory co-factors of KLF5 were then searched for through bioinformatics analysis. We also constructed a regulatory network for KLF5 and annotated its functions. Finally, one of the KLF5 lncRNA targets, SNHG12, was selected to further explore its expression pattern and functions in CRC. RESULTS We were able to identify 19 lncRNA targets of KLF5 and found that the motifs of the lncRNA binding sites were GC-enriched. Next, we pinpointed the transcription factors AR and HSF1 as the regulatory co-factors of KLF5 through bioinformatics analysis. Then, through the analysis of the regulatory network, we found that KLF5 may be involved in DNA replication, DNA repair, and the cell cycle. Furthermore, in the cell cycle module, the SNHG12 up-regulating expression pattern was verified in the CRC cell lines and tissues, associating it to CRC invasion and distal metastasis. This indicates that SNHG12 may play a critical part in CRC tumorigenesis and progression. Additionally, expression of SNHG12 was found to be down-regulated in CRC cell lines when KLF5 expression was knocked-down by siRNA; and a strong correlation was observed between the expression levels of SNHG12 and KLF5, further alluding to their regulatory relationship. CONCLUSIONS In conclusion, the network analysis of KLF5 targets indicates that SNHG12 may be a significant lncRNA in CRC.
Collapse
Affiliation(s)
- Qi Liao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211 Zhejiang China
| | - Linbo Chen
- Department of Gastroenterology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040 Zhejiang China
| | - Ning Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211 Zhejiang China
| | - Shiyun Hu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211 Zhejiang China
| | - Derry Minyao Ng
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211 Zhejiang China
| | - Fatma Yislam Hadi Ahmed
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211 Zhejiang China
| | - Guofang Zhao
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, 315000 China
| | - Xiaoxiang Fan
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, 315000 China
| | - Yangyang Xie
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, 315000 China
| | - Xiaoyu Dai
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, 315000 China
| | - Yanping Jin
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, 315020 China
| | - Jiaxin Ge
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, 315020 China
| | - Changzheng Dong
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211 Zhejiang China
| | - Xinjun Zhang
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, 315020 China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211 Zhejiang China
| |
Collapse
|
12
|
Li Y, Zhang B, Xiang L, Xia S, Kucuk O, Deng X, Boise LH, Dong JT. TGF-β causes Docetaxel resistance in Prostate Cancer via the induction of Bcl-2 by acetylated KLF5 and Protein Stabilization. Am J Cancer Res 2020; 10:7656-7670. [PMID: 32685011 PMCID: PMC7359077 DOI: 10.7150/thno.44567] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in the United States. As a first line treatment for hormone-refractory prostate cancer, docetaxel (DTX) treatment leads to suboptimal effect since almost all patients eventually develop DTX resistance. In this study, we investigated whether and how TGF-β affects DTX resistance of prostate cancer. Methods: Cytotoxicity of DTX in DU 145 and PC-3 cells was measured by CCK-8 and Matrigel colony formation assays. Resistance to DTX in DU 145 cells was examined in a xenograft tumorigenesis model. A luciferase reporter system was used to determine transcriptional activities. Gene expression was analyzed by RT-qPCR and Western blotting. Results: We found that KLF5 is indispensable in TGF-β-induced DTX resistance. Moreover, KLF5 acetylation at lysine 369 mediates DTX resistance in vitro and in vivo. We showed that the TGF-β/acetylated KLF5 signaling axis activates Bcl-2 expression transcriptionally. Furthermore, DTX-induced Bcl-2 degradation depends on a proteasome pathway, and TGF-β inhibits DTX-induced Bcl-2 ubiquitination. Conclusion: Our study demonstrated that the TGF-β-acetylated KLF5-Bcl-2 signaling axis mediates DTX resistance in prostate cancer and blockade of this pathway could provide clinical insights into chemoresistance of prostate cancer.
Collapse
|
13
|
Li J, Zhang B, Liu M, Fu X, Ci X, A J, Fu C, Dong G, Wu R, Zhang Z, Fu L, Dong JT. KLF5 Is Crucial for Androgen-AR Signaling to Transactivate Genes and Promote Cell Proliferation in Prostate Cancer Cells. Cancers (Basel) 2020; 12:cancers12030748. [PMID: 32245249 PMCID: PMC7140031 DOI: 10.3390/cancers12030748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/08/2023] Open
Abstract
Androgen/androgen receptor (AR) signaling drives both the normal prostate development and prostatic carcinogenesis, and patients with advanced prostate cancer often develop resistance to androgen deprivation therapy. The transcription factor Krüppel-like factor 5 (KLF5) also regulates both normal and cancerous development of the prostate. In this study, we tested whether and how KLF5 plays a role in the function of AR signaling in prostate cancer cells. We found that KLF5 is upregulated by androgen depending on AR in LNCaP and C4-2B cells. Silencing KLF5, in turn, reduced AR transcriptional activity and inhibited androgen-induced cell proliferation and tumor growth in vitro and in vivo. Mechanistically, KLF5 occupied the promoter of AR, and silencing KLF5 repressed AR transcription. In addition, KLF5 and AR physically interacted with each other to regulate the expression of multiple genes (e.g., MYC, CCND1 and PSA) to promote cell proliferation. These findings indicate that, while transcriptionally upregulated by AR signaling, KLF5 also regulates the expression and transcriptional activity of AR in androgen-sensitive prostate cancer cells. The KLF5-AR interaction could provide a therapeutic opportunity for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Juan Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China (L.F.)
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China;
| | - Baotong Zhang
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA
| | - Mingcheng Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China (L.F.)
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China;
| | - Xing Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China (L.F.)
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China;
| | - Xinpei Ci
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Jun A
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China (L.F.)
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China;
| | - Changying Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China (L.F.)
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China;
| | - Ge Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China (L.F.)
| | - Rui Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China (L.F.)
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China;
| | - Zhiqian Zhang
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China;
| | - Liya Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China (L.F.)
| | - Jin-Tang Dong
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China;
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
14
|
Klf5 acetylation regulates luminal differentiation of basal progenitors in prostate development and regeneration. Nat Commun 2020; 11:997. [PMID: 32081850 PMCID: PMC7035357 DOI: 10.1038/s41467-020-14737-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Prostate development depends on balanced cell proliferation and differentiation, and acetylated KLF5 is known to alter epithelial proliferation. It remains elusive whether post-translational modifications of transcription factors can differentially determine adult stem/progenitor cell fate. Here we report that, in human and mouse prostates, Klf5 is expressed in both basal and luminal cells, with basal cells preferentially expressing acetylated Klf5. Functionally, Klf5 is indispensable for maintaining basal progenitors, their luminal differentiation, and the proliferation of their basal and luminal progenies. Acetylated Klf5 is also essential for basal progenitors' maintenance and proper luminal differentiation, as deacetylation of Klf5 causes excess basal-to-luminal differentiation; attenuates androgen-mediated organoid organization; and retards postnatal prostate development. In basal progenitor-derived luminal cells, Klf5 deacetylation increases their proliferation and attenuates their survival and regeneration following castration and subsequent androgen restoration. Mechanistically, Klf5 deacetylation activates Notch signaling. Klf5 and its acetylation thus contribute to postnatal prostate development and regeneration by controlling basal progenitor cell fate.
Collapse
|
15
|
Nuclear up regulation of the BRCA1-associated ubiquitinase BAP1 is associated with tumor aggressiveness in prostate cancers lacking the TMPRSS2:ERG fusion. Oncotarget 2019; 10:7096-7111. [PMID: 31903168 PMCID: PMC6935259 DOI: 10.18632/oncotarget.27270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
Loss of the putative tumor suppressor BAP1 is a candidate biomarker for adverse prognosis in many cancer types, but conversely for improved survival in others. Studies on the expression and prognostic role of BAP1 in prostate cancer are currently lacking. We used a tissue microarray of 17,747 individual prostate cancer samples linked with comprehensive pathological, clinical and molecular data and studied the immunohistochemical expression of BAP1. BAP1 expression was typically up regulated in cancers as compared to adjacent normal prostatic glands. In 15,857 cancers, BAP1 staining was weak in 3.3%, moderate in 41.6% and strong in 17.4%. Strong BAP1 staining was associated with advanced tumor stage (p<0.0001), high classical and quantitative Gleason grade (p<0.0001), lymph node metastasis (p<0.0001), a positive surgical margin (p=0.0019) and early biochemical recurrence (p<0.0001). BAP1 expression was linked to ERG-fusion type cancers, with strong BAP1 staining in 12% of ERG-negative, but 30% of ERG-positive cancers (p<0.0001). Subset analyses in 5,415 cancers with and 4,217 cancers without TMPRSS2:ERG fusion revealed that these associations with tumor phenotype and patient outcome were largely driven by the subset of ERG-negative tumors. Multivariate analysis revealed that the prognostic impact was independent of established prognostic features in ERG negative p<0.001) but not in ERG positive cancers. BAP1 expression was further linked to androgen receptor (AR) expression: Only 2% of AR-negative, but 33% of strongly AR expressing cancers had strong BAP1 expression (p<0.0001). In conclusion, this study shows that BAP1 up regulation is linked to prostate cancer progression and aggressiveness.
Collapse
|
16
|
Guo P, Xing C, Fu X, He D, Dong J. Ras inhibits TGF‐β‐induced KLF5 acetylation and transcriptional complex assembly via regulating SMAD2/3 phosphorylation in epithelial cells. J Cell Biochem 2019; 121:2197-2208. [DOI: 10.1002/jcb.29443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Peng Guo
- Department of Urology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
- Department of Hematology and Medical Oncology, Winship Cancer Institute Emory University School of Medicine Atlanta Georgia
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Winship Cancer Institute Emory University School of Medicine Atlanta Georgia
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Winship Cancer Institute Emory University School of Medicine Atlanta Georgia
| | - Dalin He
- Department of Urology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jin‐Tang Dong
- Department of Hematology and Medical Oncology, Winship Cancer Institute Emory University School of Medicine Atlanta Georgia
| |
Collapse
|
17
|
Wang Y, Xia Y, Hu K, Zeng M, Zhi C, Lai M, Wu L, Liu S, Zeng S, Huang Z, Ma S, Yuan Z. MKK7 transcription positively or negatively regulated by SP1 and KLF5 depends on HDAC4 activity in glioma. Int J Cancer 2019; 145:2496-2508. [PMID: 30963560 DOI: 10.1002/ijc.32321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
JNK activity has been implicated in the malignant proliferation, invasion and drug-resistance of glioma cells (GCs), but the molecular mechanisms underlying JNK activation are currently unknown. Here, we reported that MKK7, not MKK4, directly activates JNK in GCs and exerts oncogenic effects on tumor formation. Notably, MKK7 expression in glioma tissues was closely correlated with the grade of the glioma and JNK/c-Jun activation. Mechanistically, MKK7 transcription critically depends on the complexes formed by HDAC4 and the transcriptional factors SP1 and Krüppel-like factor-5 (KLF5), wherein HDAC4 directly deacetylates both SP1 and KLF5 and synergistically upregulates MKK7 transcription through two SP1 sites located on its promoter. In contrast, the increases in acetylated-SP1 and acetylated-KLF5 after HDAC4 inhibition switched to transcriptionally suppress MKK7. Selective inhibition of HDAC4 by LMK235, siRNAs or blockage of SP1 and KLF5 by the ectopic dominant-negative SP1 greatly reduced the malignant capacity of GCs. Furthermore, suppression of both MKK7 expression and JNK/c-Jun activities was involved in the tumor-growth inhibitory effects induced by LMK235 in U87-xenograft mice. Interestingly, HDAC4 is highly expressed in glioma tissues, and the rate of HDAC4 nuclear import is closely correlated with glioma grade, as well as with MKK7 expression. Collectively, these findings demonstrated that highly expressed MKK7 contributes to JNK/c-Jun signaling-mediated glioma formation. MKK7 transcription, regulated by SP1 and KLF5, critically depends on HDAC4 activity, and inhibition of HDAC4 presents a potential strategy for suppressing the oncogenic roles of MKK7/JNK/c-Jun signaling in GCs.
Collapse
Affiliation(s)
- Yezhong Wang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Yong Xia
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Minling Zeng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhi
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaoling Lai
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqiang Wu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Sisi Liu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Shulian Zeng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Ziyan Huang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
18
|
Pang J, Li Z, Wang G, Li N, Gao Y, Wang S. miR-214-5p targets KLF5 and suppresses proliferation of human hepatocellular carcinoma cells. J Cell Biochem 2019; 120:1850-1859. [PMID: 30206974 DOI: 10.1002/jcb.27498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are small endogenous conserved RNAs regulating genes expression through base pairing with the 3'-untranslated region (3'-UTR) of target messenger RNAs. MiR-214-5p is a newly identified miRNA with its biological role largely unknown. In this study, we explored miR-214-5p expression status in 78 paired tumor and nontumor tissues obtained from patients with hepatocellular carcinoma (HCC) by RT-qPCR. The effects of miR-214-5p expression on HCC cell proliferation, cell cycle progression, and cell migration were measured by CCK-8 assay, flow cytometry, and wound-healing assay. A dual-luciferase activity assay was performed to identify whether KLF5 was a target of miR-214-5p. Kaplan-Meier curve and log-rank test were used to investigate the effects of miR-214-5p and KLF5 on overall survival and disease-free survival of patients with HCC. We found miR-214-5p expression was sharply reduced in HCC tissues and cell lines compared with the normal tissues and cell lines. Functional assay revealed that miR-214-5p overexpression could downregulate cell proliferation, cell migration, and arrested cell cycle at G0/G1 phase. Further, we validated Krüppel-like factor 5 (KLF5) as a direct target of miR-214-5p, and was upregulated in HCC and inversely correlated with the expression of miR-214-5p. Moreover, we found the low expression of miR-214-5p and high expression of KLF5 were correlated with tumor size, tumor stage, and poorer 5-year overall survival and disease-free survival of patients with HCC. In conclusion, our results suggested miR-214-5p functions as a tumor suppressor through targeting KLF5 in HCC. Also, miR-214-5p and KLF5 were identified as potential prognostic markers and might be therapeutic targets in HCC.
Collapse
Affiliation(s)
- Jinzhong Pang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University (West Coast District), Qingdao, China
| | - Zheng Li
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Guangjun Wang
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Ningbo Li
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Yan Gao
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Shuhui Wang
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| |
Collapse
|
19
|
Diallo I, Seve M, Cunin V, Minassian F, Poisson JF, Michelland S, Bourgoin-Voillard S. Current trends in protein acetylation analysis. Expert Rev Proteomics 2018; 16:139-159. [PMID: 30580641 DOI: 10.1080/14789450.2019.1559061] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Acetylation is a widely occurring post-translational modification (PTM) of proteins that plays a crucial role in many cellular physiological and pathological processes. Over the last decade, acetylation analyses required the development of multiple methods to target individual acetylated proteins, as well as to cover a broader description of acetylated proteins that comprise the acetylome. Areas covered: This review discusses the different types of acetylation (N-ter/K-/O-acetylation) and then describes some major strategies that have been reported in the literature to detect, enrich, identify and quantify protein acetylation. The review highlights the advantages and limitations of these strategies, to guide researchers in designing their experimental investigations and analysis of protein acetylation. Finally, this review highlights the main applications of acetylomics (proteomics based on mass spectrometry) for understanding physiological and pathological conditions. Expert opinion: Recent advances in acetylomics have enhanced knowledge of the biological and pathological roles of protein acetylation and the acetylome. Besides, radiolabeling and western blotting remain also techniques-of-choice for targeted protein acetylation. Future challenges in acetylomics to analyze the N-ter and K-acetylome will most likely require enrichment/fractionation, MS instrumentation and bioinformatics. Challenges also remain to identify the potential biological roles of O-acetylation and cross-talk with other PTMs.
Collapse
Affiliation(s)
- Issa Diallo
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | - Michel Seve
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | - Valérie Cunin
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | | | | | - Sylvie Michelland
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | - Sandrine Bourgoin-Voillard
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| |
Collapse
|
20
|
Asahchop EL, Branton WG, Krishnan A, Chen PA, Yang D, Kong L, Zochodne DW, Brew BJ, Gill MJ, Power C. HIV-associated sensory polyneuropathy and neuronal injury are associated with miRNA-455-3p induction. JCI Insight 2018; 3:122450. [PMID: 30518697 DOI: 10.1172/jci.insight.122450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022] Open
Abstract
Symptomatic distal sensory polyneuropathy (sDSP) is common and debilitating in people with HIV/AIDS, leading to neuropathic pain, although the condition's cause is unknown. To investigate biomarkers and associated pathogenic mechanisms for sDSP, we examined plasma miRNA profiles in HIV/AIDS patients with sDSP or without sDSP in 2 independent cohorts together with assessing related pathogenic effects. Several miRNAs were found to be increased in the Discovery Cohort (sDSP, n = 29; non-DSP, n = 40) by array analyses and were increased in patients with sDSP compared with patients without sDSP. miR-455-3p displayed a 12-fold median increase in the sDSP group, which was confirmed by machine learning analyses and verified by reverse transcription PCR. In the Validation Cohort (sDSP n = 16, non-DSP n = 20, healthy controls n = 15), significant upregulation of miR-455-3p was also observed in the sDSP group. Bioinformatics revealed that miR-455-3p targeted multiple host genes implicated in peripheral nerve maintenance, including nerve growth factor (NGF) and related genes. Transfection of cultured human dorsal root ganglia with miR-455-3p showed a concentration-dependent reduction in neuronal β-III tubulin expression. Human neurons transfected with miR-455-3p demonstrated reduced neurite outgrowth and NGF expression that was reversed by anti-miR-455-3p antagomir cotreatment. miR-455-3p represents a potential biomarker for HIV-associated sDSP and might also exert pathogenic effects leading to sDSP.
Collapse
Affiliation(s)
- Eugene L Asahchop
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Anand Krishnan
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Patricia A Chen
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Dong Yang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Linglong Kong
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce J Brew
- Departments of Neurology and HIV, St. Vincent's Hospital, and Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| | - M John Gill
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Luo A, Zhang K, Zhao Y, Zhu Z, Fu L, Dong JT. ZNF121 interacts with ZBRK1 and BRCA1 to regulate their target genes in mammary epithelial cells. FEBS Open Bio 2018; 8:1943-1952. [PMID: 30524945 PMCID: PMC6275281 DOI: 10.1002/2211-5463.12530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022] Open
Abstract
The novel zinc finger protein 121 (ZNF121) has been demonstrated to physically and functionally associate with the MYC oncoprotein to regulate cell proliferation and likely breast cancer development. To further understand how ZNF121 functions in cell proliferation and carcinogenesis, we identified and characterized the interaction of ZNF121 with zinc finger and BRCA1‐interacting protein with a KRAB domain 1 (ZBRK1), a breast and ovarian cancer susceptibility protein 1 (BRCA1)‐interacting protein, using the yeast two‐hybrid assay and other approaches. We also found that ZNF121 bound to BRCA1. Functionally, ZFN121 suppressed the expression of ANG1 and HMGA2, two common downstream targets of ZBRK1 and BRCA1. Interestingly, ZNF121 also regulated the expression of BRCA1 and ZBRK1. These findings suggest that ZNF121 is likely a member of the BRCA1/CtIP/ZBRK1 repressor complex that plays a role in breast cancer.
Collapse
Affiliation(s)
- Ang Luo
- Department of Genetics and Cell Biology Nankai University College of Life Sciences Tianjin China.,Present address: Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota-Twin Cities 420 Washington Avenue SE Minneapolis MN 55455 USA
| | - Kailun Zhang
- Department of Genetics and Cell Biology Nankai University College of Life Sciences Tianjin China
| | - Yanxia Zhao
- Department of Genetics and Cell Biology Nankai University College of Life Sciences Tianjin China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology Nankai University College of Life Sciences Tianjin China
| | - Liya Fu
- Department of Genetics and Cell Biology Nankai University College of Life Sciences Tianjin China
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology Nankai University College of Life Sciences Tianjin China.,Department of Hematology and Medical Oncology Winship Cancer Institute Emory University School of Medicine Atlanta GA USA
| |
Collapse
|
22
|
Wu Q, Fu C, Li M, Li J, Li Z, Qi L, Ci X, Ma G, Gao A, Fu X, A J, An N, Liu M, Li Y, King JL, Fu L, Zhang B, Dong JT. CINP is a novel cofactor of KLF5 required for its role in the promotion of cell proliferation, survival and tumor growth. Int J Cancer 2018; 144:582-594. [PMID: 30289973 DOI: 10.1002/ijc.31908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/21/2018] [Indexed: 02/01/2023]
Abstract
Krüppel-like factor 5 (KLF5) both suppresses and promotes tumor growth depending on cellular context. The mechanisms underlying tumor promotion could be targetable for therapy. Although a number of transcriptional targets of KLF5 have been identified and implicated in KLF5-mediated tumor growth, how KLF5 regulates these genes remains to be addressed. Here we performed coimmunoprecipitation (co-IP) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the TSU-Pr1 bladder cancer cell line, in which KLF5 is shown to promote tumor growth, to identify KLF5-interacting nuclear proteins that are necessary for KLF5's tumor promoting function. LC-MS/MS revealed 122 potential KLF5 binding proteins in the nuclear proteins precipitated by the KLF5 antibody, and the top nine candidates included AHNAK, TFAM, HSDL2, HNRNPC, CINP, IST1, FBL, PABPC1 and SNRNP40. SRB assays of these nine proteins indicated that silencing CINP had the most potent inhibitory effect on cell growth in KLF5-expressing cells but did not affect parental TSU-Pr1 cells. Further analyses not only confirmed the physical interaction between KLF5 and CINP, also demonstrated that knockdown of CINP attenuated the effects of KLF5 on cell cycle progression, apoptosis and tumorigenesis. Silencing CINP also attenuated the effect of KLF5 on the expression of a number of genes and signaling pathways, including cell cycle regulator Cyclin D1 and apoptosis-related Caspase 7. These results suggest that CINP is a cofactor of KLF5 that is crucial for the promotion of tumor growth, and that the KLF5-CINP interaction could be a novel therapeutic target for inhibiting KLF5-promoted tumor growth.
Collapse
Affiliation(s)
- Qiao Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Changying Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Menglin Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Juan Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhigui Li
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
| | - Leilei Qi
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinpei Ci
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Gui Ma
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ang Gao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xing Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun A
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Na An
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingcheng Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Jamie L King
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Liya Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China.,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
23
|
TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis 2018; 7:69. [PMID: 30206215 PMCID: PMC6133923 DOI: 10.1038/s41389-018-0077-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal expression of TTK kinase has been associated with the initiation, progression, and therapeutic resistance of breast and other cancers, but its roles remain to be clarified. In this study, we examined the role of TTK in triple negative breast cancer (TNBC), and found that higher TTK expression correlated with mesenchymal and proliferative phenotypes in TNBC cells. Pharmacologic inhibition and genomic silencing of TTK not only reversed the epithelial-to-mesenchymal transition (EMT) in TNBC cells, but also increased the expression of KLF5, an effector of TGF-β signaling and inhibitor of EMT. In addition, TTK inhibition decreased the expression of EMT-associated micro-RNA miR-21 but increased the expression of miR-200 family members and suppressed TGF-β signaling. To test if upregulation of KLF5 plays a role in TTK-induced EMT, TTK and KLF5 were silenced simultaneously, which reversed the decreased EMT caused by loss of TTK. Consistently, the decrease in miR-21 expression and increase in miR-200 expression caused by TTK silencing were rescued by loss of KLF5. Altogether, this study highlights a novel role and signaling pathway for TTK in regulating EMT of TN breast cancer cells through TGF-β and KLF5 signaling, highlighting targetable signaling pathways for TTK inhibitors in aggressive breast cancer.
Collapse
|
24
|
Tao R, Zhang B, Li Y, King JL, Tian R, Xia S, Schiavon CR, Dong JT. HDAC-mediated deacetylation of KLF5 associates with its proteasomal degradation. Biochem Biophys Res Commun 2018; 500:777-782. [PMID: 29679567 DOI: 10.1016/j.bbrc.2018.04.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Krüppel-like factor 5 (KLF5) is a basic transcription factor that regulates diverse cellular processes during tumor development. Acetylation of KLF5 at lysine 369 (K369) reverses its function from promoting to suppressing cell proliferation and tumor growth. In this study, we examined the regulation of KLF5 by histone deacetylases in the prostate cancer cell line DU 145. While confirming the functions of HDAC1/2 in KLF5 deacetylation and the promotion of cell proliferation, we found that the knockdown of HDAC1/2 upregulated KLF5 protein but not KLF5 mRNA, and the increase in KLF5 protein level by silencing HDAC1/2 was at least in part due to decreased proteasomal degradation. Deacetylase activity was required for HDAC1/2-mediated KLF5 degradation, and mutation of KLF5 to an acetylation-mimicking form prevented its degradation, even though the mutation did not affect the binding of KLF5 with HDAC1/2. Mutation of K369 to arginine, which prevents acetylation, did not affect the binding of KLF5 to HDAC1 or the response of KLF5 to HDAC1/2-promoted degradation. These findings provide a novel mechanistic association between the acetylation status of KLF5 and its protein stability. They also suggest that maintaining KLF5 in a deacetylated form may be an important mechanism by which KLF5 and HDACs promote cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Ran Tao
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA; Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Jamie L King
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Ruoyu Tian
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Cara Rae Schiavon
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA; Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
25
|
Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 2018; 7:35454-65. [PMID: 26934558 PMCID: PMC5085243 DOI: 10.18632/oncotarget.7721] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
The cyclic AMP response element binding (CREB) protein has pleiotropic activities in physiologic processes. Due to its central position downstream of many growth signaling pathways CREB has the ability to influence cell survival, growth and differentiation of normal, but also of tumor cells suggesting an oncogenic potential of CREB. Indeed, increased CREB expression and activation is associated with tumor progression, chemotherapy resistance and reduced patients' survival. We summarize here the different cellular functions of CREB in tumors of distinct histology as well as its use as potential prognostic marker. In addition, the underlying molecular mechanisms to achieve constitutive activation of CREB including structural alterations, such as gene amplification and chromosomal translocation, and deregulation, which could occur at the transcriptional, post-transcriptional and post-translational level, will be described. Since downregulation of CREB by different strategies resulted in inhibition of cell proliferation, invasion and induction of apoptosis, the role of CREB as a promising target for cancer therapy will be also discussed.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
26
|
Fu RJ, He W, Wang XB, Li L, Zhao HB, Liu XY, Pang Z, Chen GQ, Huang L, Zhao KW. DNMT1-maintained hypermethylation of Krüppel-like factor 5 involves in the progression of clear cell renal cell carcinoma. Cell Death Dis 2017; 8:e2952. [PMID: 28749461 PMCID: PMC5550868 DOI: 10.1038/cddis.2017.323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/27/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major subtype of renal cell carcinoma (RCC) that is resistant to conventional radiation and chemotherapy. It is a challenge to explore effective therapeutic targets and drugs for this kind of cancer. Transcription factor Krüppel-like factor 5 (KLF5) exerts diverse functions in various tumor types. By analyzing cohorts of the Cancer Genome Atlas (TCGA) data sets, we find that KLF5 expression is suppressed in ccRCC patients and higher level of KLF5 expression is associated with better prognostic outcome. Our further investigations demonstrate that KLF5 genomic loci are hypermethylated at proximal exon 4 and suppression of DNA methyltransferase 1 (DNMT1) expression by ShRNAs or a methylation inhibitor 5-Aza-CdR can recover KLF5 expression. Meanwhile, there is a negative correlation between expressions of KLF5 and DNMT1 in ccRCC tissues. Ectopic KLF5 expression inhibits ccRCC cell proliferation and migration/invasion in vitro and decreases xenograft growth and metastasis in vivo. Moreover, 5-Aza-CdR, a chemotherapy drug as DNMTs' inhibitor that can induce KLF5 expression, suppresses ccRCC cell growth, while knockdown of KLF5 abolishes 5-Aza-CdR-induced growth inhibition. Collectively, our data demonstrate that KLF5 inhibits ccRCC growth as a tumor suppressor and highlight the potential of 5-Aza-CdR to release KLF5 expression as a therapeutic modality for the treatment of ccRCC.
Collapse
Affiliation(s)
- Rong-Jie Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Wei He
- Department of Pathology, Ren-Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Bo Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Huan-Bin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiao-Ye Liu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zhi Pang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Guo-Qiang Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Ke-Wen Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
27
|
Shao M, Ge GZ, Liu WJ, Xiao J, Xia HJ, Fan Y, Zhao F, He BL, Chen C. Characterization and phylogenetic analysis of Krüppel-like transcription factor (KLF) gene family in tree shrews (Tupaia belangeri chinensis). Oncotarget 2017; 8:16325-16339. [PMID: 28032601 PMCID: PMC5369966 DOI: 10.18632/oncotarget.13883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Krüppel-like factors (KLFs) are a family of zinc finger transcription factors regulating embryonic development and diseases. The phylogenetics of KLFs has not been studied in tree shrews, an animal lineage with a closer relationship to primates than rodents. Here, we identified 17 KLFs from Chinese tree shrew (Tupaia belangeri chinensis). KLF proteins are highly conserved among humans, monkeys, rats, mice and tree shrews compared to zebrafish and chickens. The CtBP binding site, Sin3A binding site and nuclear localization signals are largely conserved between tree shrews and human beings. Tupaia belangeri (Tb) KLF5 contains several conserved post-transcriptional modification motifs. Moreover, the mRNA and protein expression patterns of multiple tbKLFs are tissue-specific. TbKLF5, like hKLF5, significantly promotes NIH3T3 cell proliferation in vitro. These results provide insight for future studies regarding the structure and function of the tbKLF gene family.
Collapse
Affiliation(s)
- Ming Shao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guang-Zhe Ge
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wen-Jing Liu
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ji Xiao
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hou-Jun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Feng Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Li He
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
28
|
Thiagarajan D, Vedantham S, Ananthakrishnan R, Schmidt AM, Ramasamy R. Mechanisms of transcription factor acetylation and consequences in hearts. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2221-2231. [PMID: 27543804 PMCID: PMC5159280 DOI: 10.1016/j.bbadis.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 01/06/2023]
Abstract
Acetylation of proteins as a post-translational modification is gaining rapid acceptance as a cellular control mechanism on par with other protein modification mechanisms such as phosphorylation and ubiquitination. Through genetic manipulations and evolving proteomic technologies, identification and consequences of transcription factor acetylation is beginning to emerge. In this review, we summarize the field and discuss newly unfolding mechanisms and consequences of transcription factor acetylation in normal and stressed hearts. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | | | - Radha Ananthakrishnan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States.
| |
Collapse
|
29
|
Gao Y, Wu K, Chen Y, Zhou J, Du C, Shi Q, Xu S, Jia J, Tang X, Li F, Hui K, He D, Guo P. Beyond proliferation: KLF5 promotes angiogenesis of bladder cancer through directly regulating VEGFA transcription. Oncotarget 2016; 6:43791-805. [PMID: 26544730 PMCID: PMC4791267 DOI: 10.18632/oncotarget.6101] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023] Open
Abstract
Abundant evidence has demonstrated critical roles of KLF5 in regulating cell proliferation in various cancers, however, its additional roles in other aspects of cancer development remain to be further clarified. In this study, we found that KLF5 was essential for cancer cell-endothelial cell interaction in vitro and tumor angiogenesis in nude mice based on lentivirus-mediated KLF5 knockdown bladder cancer cell models. Moreover, KLF5 insufficiency abolished the ability of bladder cancer cells to induce neovascularization in rabbit cornea. Mechanistically, the pro-angiogenic factor VEGFA was identified as a direct downstream target of KLF5, which bound to GC-boxes and CACCC elements of VEGFA promoter and regulated its transcriptional activity. In addition, there was a positive correlation between KLF5 and VEGFA expression in human bladder cancer tissues by immunohistochemistry assay and statistical analysis from TCGA and GEO data. Furthermore, we found that two pivotal pathways in bladder cancer, RTKs/RAS/MAPK and PI3K/Akt, might convey their oncogenic signaling through KLF5-VEGFA axis. Taken together, our results indicate that KLF5 promotes angiogenesis of bladder cancer through directly regulating VEGFA transcription and suggest that KLF5 could be a novel therapeutic target for angiogenesis inhibition in bladder cancer.
Collapse
Affiliation(s)
- Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Jiancheng Zhou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chong Du
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Shi
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Jing Jia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoshuang Tang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Hui
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Tokheim C, Bhattacharya R, Niknafs N, Gygax DM, Kim R, Ryan M, Masica DL, Karchin R. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure. Cancer Res 2016; 76:3719-31. [PMID: 27197156 DOI: 10.1158/0008-5472.can-15-3190] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
Abstract
The impact of somatic missense mutation on cancer etiology and progression is often difficult to interpret. One common approach for assessing the contribution of missense mutations in carcinogenesis is to identify genes mutated with statistically nonrandom frequencies. Even given the large number of sequenced cancer samples currently available, this approach remains underpowered to detect drivers, particularly in less studied cancer types. Alternative statistical and bioinformatic approaches are needed. One approach to increase power is to focus on localized regions of increased missense mutation density or hotspot regions, rather than a whole gene or protein domain. Detecting missense mutation hotspot regions in three-dimensional (3D) protein structure may also be beneficial because linear sequence alone does not fully describe the biologically relevant organization of codons. Here, we present a novel and statistically rigorous algorithm for detecting missense mutation hotspot regions in 3D protein structures. We analyzed approximately 3 × 10(5) mutations from The Cancer Genome Atlas (TCGA) and identified 216 tumor-type-specific hotspot regions. In addition to experimentally determined protein structures, we considered high-quality structural models, which increase genomic coverage from approximately 5,000 to more than 15,000 genes. We provide new evidence that 3D mutation analysis has unique advantages. It enables discovery of hotspot regions in many more genes than previously shown and increases sensitivity to hotspot regions in tumor suppressor genes (TSG). Although hotspot regions have long been known to exist in both TSGs and oncogenes, we provide the first report that they have different characteristic properties in the two types of driver genes. We show how cancer researchers can use our results to link 3D protein structure and the biologic functions of missense mutations in cancer, and to generate testable hypotheses about driver mechanisms. Our results are included in a new interactive website for visualizing protein structures with TCGA mutations and associated hotspot regions. Users can submit new sequence data, facilitating the visualization of mutations in a biologically relevant context. Cancer Res; 76(13); 3719-31. ©2016 AACR.
Collapse
Affiliation(s)
- Collin Tokheim
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rohit Bhattacharya
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Noushin Niknafs
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Rick Kim
- In Silico Solutions, Fairfax, Virginia
| | | | - David L Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
31
|
Nakajima Y, Osakabe A, Waku T, Suzuki T, Akaogi K, Fujimura T, Homma Y, Inoue S, Yanagisawa J. Estrogen Exhibits a Biphasic Effect on Prostate Tumor Growth through the Estrogen Receptor β-KLF5 Pathway. Mol Cell Biol 2016; 36:144-56. [PMID: 26483416 PMCID: PMC4702593 DOI: 10.1128/mcb.00625-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/14/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022] Open
Abstract
Estrogens are effective in the treatment of prostate cancer; however, the effects of estrogens on prostate cancer are enigmatic. In this study, we demonstrated that estrogen (17β-estradiol [E2]) has biphasic effects on prostate tumor growth. A lower dose of E2 increased tumor growth in mouse xenograft models using DU145 and PC-3 human prostate cancer cells, whereas a higher dose significantly decreased tumor growth. We found that anchorage-independent apoptosis in these cells was inhibited by E2 treatment. Similarly, in vivo angiogenesis was suppressed by E2. Interestingly, these effects of E2 were abolished by knockdown of either estrogen receptor β (ERβ) or Krüppel-like zinc finger transcription factor 5 (KLF5). Ιn addition, E2 suppressed KLF5-mediated transcription through ERβ, which inhibits proapoptotic FOXO1 and proangiogenic PDGFA expression. Furthermore, we revealed that a nonagonistic ER ligand GS-1405 inhibited FOXO1 and PDGFA expression through the ERβ-KLF5 pathway and regulated prostate tumor growth without ERβ transactivation. Therefore, these results suggest that E2 biphasically modulates prostate tumor formation by regulating KLF5-dependent transcription through ERβ and provide a new strategy for designing ER modulators, which will be able to regulate prostate cancer progression with minimal adverse effects due to ER transactivation.
Collapse
Affiliation(s)
- Yuka Nakajima
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Asami Osakabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tsuyoshi Waku
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kensuke Akaogi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Junn Yanagisawa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
32
|
Zhao T, Liu C, Chen L. Roles of Klf5 Acetylation in the Self-Renewal and the Differentiation of Mouse Embryonic Stem Cells. PLoS One 2015; 10:e0138168. [PMID: 26372456 PMCID: PMC4570665 DOI: 10.1371/journal.pone.0138168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Transcription factor Krüppel-like factor 5 (Klf5) plays important roles in the formation of the inner cell mass (ICM) and the trophectoderm during embryogenesis, as well as the self-renewal and the differentiation of mouse embryonic stem cells (ESCs). Acetylation of KLF5 has been shown to reverse the transcriptional activity of KLF5 in human epidermal cells and prostate cancer cells. Whether Klf5 acetylation contributes to the lineage specification in the blastocyst and pluripotency maintenance in ESCs remains unexplored. Here, we showed the ubiquitous expression of acetylated Klf5 in the ICM and the trophectoderm, ruling out the possibility that differential acetylation status of Klf5 leads to the lineage specification in the blastocyst. We found that K358Q mutation, mimicking acetylation, enhances the transcriptional activity of Klf5 for pluripotency genes in ESCs, and that K358Q Klf5 is more potent in pluripotency maintenance and in somatic cell reprogramming, compared to K358R Klf5. In ESCs, Klf5 acetylation, stimulated by TGF-β signaling, is involved in enhancing Sox2 expression. Moreover, upon ESC differentiation, acetylation of Klf5 facilitates the suppression of many differentiation genes, except for that K358Q Klf5 activates Cdx2, promoting trophectodermal differentiation. In summary, our results revealed the regulatory functions of Klf5 acetylation in ESC self-renewal and differentiation.
Collapse
Affiliation(s)
- Tong Zhao
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, CAMS, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Maehara O, Sato F, Natsuizaka M, Asano A, Kubota Y, Itoh J, Tsunematsu S, Terashita K, Tsukuda Y, Nakai M, Sho T, Suda G, Morikawa K, Ogawa K, Chuma M, Nakagawa K, Ohnishi S, Komatsu Y, Whelan KA, Nakagawa H, Takeda H, Sakamoto N. A pivotal role of Krüppel-like factor 5 in regulation of cancer stem-like cells in hepatocellular carcinoma. Cancer Biol Ther 2015; 16:1453-61. [PMID: 26176896 DOI: 10.1080/15384047.2015.1070992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In hepatocellular carcinoma (HCC), there exists a highly tumorigenic subset of cells defined by high expression of CD44 and CD133 that has been reported to contain cancer stem-like cells (CSCs). Krüppel-like factor 5 (KLF5) regulates many factors involved in cell cycle, migration, inflammation, angiogenesis and stemness and has cancer-promoting effects in some cancers. While some reports have indicated that KLF5 may have important roles in regulation of CSCs, what role, if any, KLF5 plays in regulation of CSCs in HCC remains to be elucidated. Flow cytometric analysis of CD44 and CD133 in HCC cell lines revealed subpopulations of CD44(High)/CD133(High) and CD44(Low)/CD133(Low) cells. We subsequently sorted these subpopulations and identified KLF5 as a gene that is significantly upregulated in CD44(High)/CD44(High) cells via RNA sequencing using next generation sequencing technology. Moreover, KLF5 overexpression enriched the CD44(High)/CD133(High) subpopulation and, consistent with the up-regulation of CD44(High)/CD133(High) cells, KLF5 overexpressing cells were more resistant to anti-cancer drugs and displayed enhanced colony-formation capacity. By contrast, knock-down of KLF5 by siRNA diminished the CD44(High)/CD133(High) subpopulation. When KLF5 was acetylated by TGF-β1, the KLF5-mediated CD44(High)/CD133(High) subpopulation enrichment was abrogated. Oppositely, ectopic expression of an acetylation-deficient KLF5 mutant further increased CD44(High)/CD133(High) subpopulations as compared to cell expressing wild-type KLF5. These findings provide novel mechanistic insight into a pivotal role for KLF5 in the regulation of CSCs in HCC.
Collapse
Affiliation(s)
- Osamu Maehara
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan.,b Pathophysiology and Therapeutics ; Hokkaido University Graduate School of Pharmaceutical Science ; Sapporo , Japan
| | - Fumiyuki Sato
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Mitsuteru Natsuizaka
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Ayaka Asano
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan.,b Pathophysiology and Therapeutics ; Hokkaido University Graduate School of Pharmaceutical Science ; Sapporo , Japan
| | - Yoshimasa Kubota
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Jun Itoh
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Seiji Tsunematsu
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Katsumi Terashita
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Yoko Tsukuda
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Masato Nakai
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Takuya Sho
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Goki Suda
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Kenichi Morikawa
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Koji Ogawa
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Makoto Chuma
- c Gastroenterological Center ; Yokohama City University Medical Center ; Yokohama , Japan
| | - Koji Nakagawa
- b Pathophysiology and Therapeutics ; Hokkaido University Graduate School of Pharmaceutical Science ; Sapporo , Japan
| | - Shunsuke Ohnishi
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Yoshito Komatsu
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Kelly A Whelan
- d Gastroenterology Division ; University of Pennsylvania ; Philadelphia , PA USA.,e Abramson Cancer Center ; Philadelphia , PA USA
| | - Hiroshi Nakagawa
- d Gastroenterology Division ; University of Pennsylvania ; Philadelphia , PA USA.,e Abramson Cancer Center ; Philadelphia , PA USA
| | - Hiroshi Takeda
- b Pathophysiology and Therapeutics ; Hokkaido University Graduate School of Pharmaceutical Science ; Sapporo , Japan
| | - Naoya Sakamoto
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| |
Collapse
|
34
|
Ci X, Xing C, Zhang B, Zhang Z, Ni JJ, Zhou W, Dong JT. KLF5 inhibits angiogenesis in PTEN-deficient prostate cancer by attenuating AKT activation and subsequent HIF1α accumulation. Mol Cancer 2015; 14:91. [PMID: 25896712 PMCID: PMC4417294 DOI: 10.1186/s12943-015-0365-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/10/2015] [Indexed: 12/20/2022] Open
Abstract
Background KLF5 is a basic transcriptional factor that regulates multiple physiopathological processes. Our recent study showed that deletion of Klf5 in mouse prostate promotes tumorigenesis initiated by the deletion of Pten. While molecular characterization of Klf5-null tumors suggested that angiogenesis was partially responsible for tumor promotion, the precise function and mechanism of KLF5 deletion in prostate tumor angiogenesis remain unclear. Results Applying histological staining to Pten-null mouse prostates, we observed that deletion of Klf5 significantly increased the number of microvessels, accompanied by the upregulation of multiple angiogenesis-related genes based on microarray analysis with MetaCore software. In human umbilical vein endothelial cells (HuVECs), tube formation and migration, both of which are indicators of angiogenic activities, were decreased by conditioned media from PC-3 and DU 145 human prostate cancer cells with KLF5 overexpression, but increased by media from cells with KLF5 knockdown. HIF1α, a key angiogenesis inducer, was upregulated by KLF5 loss at the protein but not the mRNA level in both mouse tissues and human cell lines, as determined by immunohistochemical staining, real-time RT-PCR and Western blotting. Consistently, KLF5 loss also upregulated VEGF and PDGF, two pro-angiogenic mediators of HIF1α function, as analyzed by immunohistochemical staining in mouse tissues and ELISA in conditioned media. Mechanistically, AKT activity, which caused the accumulation of HIF1α, was increased by KLF5 knockout or knockdown but decreased by KLF5 overexpression. PI3K/AKT inhibitors consistently abolished the effects of KLF5 knockdown on angiogenic activity, HIF1α accumulation, and VEGF and PDGF expression. Conclusion KLF5 loss enhances tumor angiogenesis by attenuating PI3K/AKT signaling and subsequent accumulation of HIF1α in PTEN deficient prostate tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0365-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinpei Ci
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Zhiqian Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Jenny Jianping Ni
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
35
|
Xing C, Ci X, Sun X, Fu X, Zhang Z, Dong EN, Hao ZZ, Dong JT. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways. Neoplasia 2014; 16:883-99. [PMID: 25425963 PMCID: PMC4240924 DOI: 10.1016/j.neo.2014.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 01/18/2023] Open
Abstract
Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer—mutation/deletion of Pten and deletion of Klf5.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China ; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xinpei Ci
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China ; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaodong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA ; Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqian Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric N Dong
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhao-Zhe Hao
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China ; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|