1
|
Zhang B, Wang S, Fu Z, Gao Q, Yang L, Lei Z, Shi Y, Le K, Xiong J, Liu S, Zhang J, Su J, Chen J, Liu M, Niu B. Single-cell RNA sequencing reveals intratumoral heterogeneity and potential mechanisms of malignant progression in prostate cancer with perineural invasion. Front Genet 2023; 13:1073232. [PMID: 36712886 PMCID: PMC9875799 DOI: 10.3389/fgene.2022.1073232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Prostate cancer (PCa) is the second most common cancer among men worldwide. Perineural invasion (PNI) was a prominent characteristic of PCa, which was recognized as a key factor in promoting PCa progression. As a complex and heterogeneous disease, its true condition is difficult to explain thoroughly with conventional bulk RNA sequencing. Thus, an improved understanding of PNI-PCa progression at the single-cell level is needed. Methods: In this study, we performed scRNAseq on tumor tissues of three PNI-PCa patients. Principal component analysis (PCA) and Uniform manifold approximation and projection (UMAP) were used to reduce dimensionality and visualize the cellular composition of tumor tissues. The differently expressed genes among each cluster were identified by EdgeR. GO enrichment analysis was used to understand the roles of genes within the clusters. Pseudotime cell trajectory was used to reveal the molecular pathways underlying cell fate decisions and identify genes whose expression changed as the cells underwent transition. We applied CellPhoneDB to identify cell-cell interactions among the epithelial and neural cells in PNI-PCa. Results: Analysis of the ∼17,000 single-cell transcriptomes in three PNI prostate cancer tissues, we identified 12 major cell clusters, including neural cells and two epithelial subtypes with different expression profiles. We found that basal/intermediate epithelial cell subtypes highly expressed PCa progression-related genes, including PIGR, MMP7, and AGR2. Pseudotime trajectory analysis showed that luminal epithelial cells could be the initiating cells and transition to based/intermediate cells. Gene ontology (GO) enrichment analysis showed that pathways related to cancer progressions, such as lipid catabolic and fatty acid metabolic processes, were significantly enriched in basal/intermediate cells. Our analysis also suggested that basal/intermediate cells communicate closely with neural cells played a potential role in PNI-PCa progression. Conclusion: These results provide our understanding of PNI-PCa cellular heterogeneity and characterize the potential role of basal/intermediate cells in the PNI-PCa progression.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Urology, Aerospace Center Hospital, Beijing, China,*Correspondence: Bao Zhang, ; Beifang Niu,
| | - Shenghan Wang
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Zhichao Fu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Qiang Gao
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Lin Yang
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Zhentao Lei
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Yuqiang Shi
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Kai Le
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Jie Xiong
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Siyao Liu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Jiali Zhang
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Junyan Su
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Jing Chen
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Mengyuan Liu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China,Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Beifang Niu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China,Computer Network Information Center, Chinese Academy of Sciences, Beijing, China,University of the Chinese Academy of Sciences, Beijing, China,*Correspondence: Bao Zhang, ; Beifang Niu,
| |
Collapse
|
2
|
CC chemokine receptor 2 (CCR2) expression promotes diffuse large B-Cell lymphoma survival and invasion. J Transl Med 2022; 102:1377-1388. [PMID: 35851856 DOI: 10.1038/s41374-022-00824-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
In recent years, CC chemokine receptor 2 (CCR2) has been found to be involved in tumor growth, angiogenesis, epithelial mesenchymal transition, metastasis, and immune escape. CCR2 overexpression was first identified as a poor prognostic predictor in diffuse large B-cell lymphoma (DLBCL) in our published article, but the mechanisms involved remain unknown. In this work, we collected data from another 138 patients with DLBCL data and verified the CCR2 expression level and its relationship to clinicopathological characteristics. Furthermore, we explored the possible mechanisms via in vitro and in vivo experiments. We showed that CCR2 overexpression was an independent prognostic marker and predicted shorter overall survival (OS) and progression-free survival (PFS) in patients with DLBCL. Blockade of CCR2 expression with a CCR2 antagonist inhibited tumor cell proliferation, migration, and anti-apoptosis ability in vitro by affecting the PI3K/Akt signaling pathway and the p38 MAPK signaling pathway. Furthermore, administration of a CCR2 antagonist decreased tumor growth and dissemination of DLBCL cells and increased survival time in the xenograft model. Our study demonstrates that CCR2 expression plays an important role in the development of DLBCL by stimulating cell proliferation, migration, and anti-apoptosis. Therefore, the inhibition of CCR2 may be a potential target for anticancer therapy in DLBCL.
Collapse
|
3
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy. Mol Divers 2022; 26:2473-2502. [PMID: 34743299 DOI: 10.1007/s11030-021-10345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022]
Abstract
The deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant-based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand-based virtual screening to identify similar drug molecules using a large collection of 376,342 compounds from DrugBank. The results suggested that several structural analogs (e.g., tramadol, nabumetone, DGLA and hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend further in vitro and in vivo trials for the experimental validation of the findings.
Collapse
Affiliation(s)
- Anik Banik
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Sheikh Rashel Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Anamika Deb
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shiuly Sinha
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Faculté de Pharmacie, Université de Tours, 37200, Tours, France.
| |
Collapse
|
4
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Wang H, Luo W, Wang X, Xue D, Ren L, Xu L, Ge G, Xia L, Yu S, Wang M, Zhou Z, Li G, Wu H. Testicular Nuclear Receptor 4 Regulates Proliferation and Apoptosis of Bladder Cancer via Bcl-2. Front Mol Biosci 2021; 8:670409. [PMID: 34616769 PMCID: PMC8488086 DOI: 10.3389/fmolb.2021.670409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Testicular nuclear receptor 4 (TR4) is a member of the nuclear hormone receptor family and acts as a ligand-activated transcription factor and functions in many biological processes, such as development, cellular differentiation, and homeostasis. Recent studies have shown that TR4 plays an important role in prostate cancer, renal cell carcinoma, and hepatocellular carcinoma; however, its potential link to bladder cancer (BC) remains unknown. This study found that bladder cancer exhibited a higher expression of TR4 compared to normal tissues. Overexpressed TR4 promoted the bladder cancer cell proliferation, and knocked down TR4 with TR4-siRNA suppressed the bladder cancer cell proliferation. Mechanistic studies reveal that TR4 functions by altering the expression of Bcl-2 to regulate apoptosis in bladder cancer cells. Furthermore, knocking down Bcl-2 reversed the BC proliferation induced by TR4. In vivo, we also confirmed that TR4 knockdown mice (TR4+/−) showed slower bladder cancer growth than wild-type mice (TR4+/+) induced by the carcinogenic chemicals. Moreover, TR4+/− mice showed a lower grade of histopathology than the control group. In conclusion, these results indicate that TR4 plays a key role in bladder cancer proliferation, and targeting TR4 would probably be a potential strategy for bladder cancer treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuliang Wang
- Department of Urology, The Affiliated Hangzhou First People's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangliang Ren
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangju Ge
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shicheng Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Wu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Yang L, Zou X, Zou J, Zhang G. A Review of Recent Research on the Role of MicroRNAs in Renal Cancer. Med Sci Monit 2021; 27:e930639. [PMID: 33963171 PMCID: PMC8114846 DOI: 10.12659/msm.930639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) is a most common type of urologic neoplasms; it accounts for 3% of malignant tumors, with high rates of relapse and mortality. The most common types of renal cancer are clear cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal carcinoma (chRCC), which account for 90%, 6–15%, and 2–5%, respectively, of all renal malignancies. Although surgical resection, chemotherapy, and radiotherapy are the most common treatment method for those diseases, their effects remain dissatisfactory. Furthermore, recent research shows that the treatment efficacy of checkpoint inhibitors in advanced RCC patients is widely variable. Hence, patients urgently need a new molecular biomarker for early diagnosis and evaluating the prognosis of RCC. MicroRNAs (miRNAs) belong to a family of short, non-coding RNAs that are highly conserved, have long half-life evolution, and post-transcriptionally regulate gene expression; they have been predicted to play crucial roles in tumor metastasis, invasion, angiogenesis, proliferation, apoptosis, epithelial-mesenchymal transition, differentiation, metabolism, cancer occurrence, and treatment resistance. Although some previous papers demonstrated that miRNAs play vital roles in renal cancer, such as pathogenesis, diagnosis, and prognosis, the roles of miRNAs in kidney cancer are still unclear. Therefore, we reviewed studies indexed in PubMed from 2017 to 2020, and found several studies suggesting that there are more than 82 miRNAs involved in renal cancers. The present review describes the current status of miRNAs in RCC and their roles in progression, diagnosis, therapy targeting, and prognosis of RCC.
Collapse
Affiliation(s)
- Longfei Yang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Junrong Zou
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| |
Collapse
|
7
|
Xia L, Shen D, Zhang Y, Lu J, Wang M, Wang H, Chen Y, Xue D, Xie D, Li G. Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT-20 cells. J Cell Mol Med 2021; 25:2404-2417. [PMID: 33491272 PMCID: PMC7933964 DOI: 10.1111/jcmm.16074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/12/2023] Open
Abstract
Drug options for the life‐threatening Cushing's disease are limited, and surgical resection or radiation therapy is not invariably effective. Testicular receptor 4 (TR4) has been identified as a novel drug target to treat Cushing's disease. We built the structure model of TR4 and searched the TR4 antagonist candidate via in silico virtual screening. Bexarotene was identified as an antagonist of TR4 that can directly interact with TR4 ligand binding domain (TR4‐LBD) and induces a conformational change in the secondary structure of TR4‐LBD. Bexarotene suppressed AtT‐20 cell growth, proopiomelanocortin (POMC) expression and adrenocorticotropin (ACTH) secretion. Mechanism dissection revealed that bexarotene could suppress TR4‐increased POMC expression via promoting the TR4 translocation from the nucleus to the cytoplasm. This TR4 translocation might then result in reducing the TR4 binding to the TR4 response element (TR4RE) on the 5’ promoter region of POMC. Results from in vivo mouse model also revealed that oral bexarotene administration markedly suppressed ACTH‐secreting tumour growth, adrenal enlargement and the secretion of ACTH and corticosterone in mice with already established tumours. Together, these results suggest that bexarotene may be developed as a potential novel therapeutic drug to better suppress Cushing's disease.
Collapse
Affiliation(s)
- Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youyun Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajiang Xie
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Zhu J, Qin P, Cao C, Dai G, Xu L, Yang D. Use of miR‑145 and testicular nuclear receptor 4 inhibition to reduce chemoresistance to docetaxel in prostate cancer. Oncol Rep 2021; 45:963-974. [PMID: 33650661 PMCID: PMC7859919 DOI: 10.3892/or.2021.7925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022] Open
Abstract
The human testicular nuclear receptor 4 (TR4) is a critical regulatory gene for the progression of prostate cancer (PCa). Although it has been revealed that TR4 causes chemoresistance in PCa via the activation of octamer-binding transcription factor 4 (OCT4), the detailed mechanism remains unexplored. In the present study, it was revealed that inhibition of TR4 by shRNA in PCa enhanced the sensitivity to docetaxel in vitro and in vivo. TR4 induced the downregulation of miR-145 by directly binding it to the promoter of miR-145, which was confirmed by chromatin immunoprecipitation analysis and luciferase assay. The overexpression of miR-145 suppressed both the chemoresistance and the expression of OCT4 mRNA and protein. Additionally, the TR4 shRNA mediated re-sensitization to docetaxel, along with the downregulated expression of OCT4, were reversed by the concurrent inhibition of miR-145. The luciferase assay revealed that the activity of the wild-type OCT4 3′ untranslated region reporter was suppressed. This suppression diminished when the miR-145 response element mutated. These findings suggest an undescribed regulatory pathway in PCa, by which TR4 directly suppressed the expression of miR-145, thereby inhibiting its direct target OCT4, leading to the promotion of chemoresistance in PCa.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Peibo Qin
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, P.R. China
| | - Cheng Cao
- Department of Urology, The First People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Guangcheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lijun Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
9
|
Xia L, Shen D, Wang H, Ren L, Chen Y, Li G. Identification of Small-Molecule Regulators of Testicular Receptor 4 via a Drug Repurposing Screening. ACS OMEGA 2020; 5:30625-30632. [PMID: 33283111 PMCID: PMC7711931 DOI: 10.1021/acsomega.0c04623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
The testicular receptor 4 (TR4) is a nuclear receptor implicated in multiple pathological processes, including cancer development, chemotherapy, and radiotherapy resistance. However, no effective TR4 small-molecule regulator is available to date. Here, we assessed a physical-interaction-based surface plasmon resonance imaging assay for discovery of TR4 regulators. We screened 1018 FDA-approved drugs and obtained 126 drugs with K D values below 10-6 M. The dual-luciferase-based biological assay verified four activatory compounds and two inhibitory compounds against TR4. Among them, nilotinib exhibited the most potent inhibitor, with an EC50 of 1.05 μM, while genistein represented the most potent activator, with an EC50 of 2.42 μM. Both drugs were predicted to bind in the ligand binding pocket of TR4. The circular dichroism spectroscopic assay revealed differed conformation changes upon nilotinib or genistein binding. These results established our combined physical and biological approaches as a highly effective way to identify and develop new TR4 regulators.
Collapse
|
10
|
Ha NT, Lee CH. Roles of Farnesyl-Diphosphate Farnesyltransferase 1 in Tumour and Tumour Microenvironments. Cells 2020; 9:cells9112352. [PMID: 33113804 PMCID: PMC7693003 DOI: 10.3390/cells9112352] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Farnesyl-diphosphate farnesyltransferase 1 (FDFT1, squalene synthase), a membrane-associated enzyme, synthesizes squalene via condensation of two molecules of farnesyl pyrophosphate. Accumulating evidence has noted that FDFT1 plays a critical role in cancer, particularly in metabolic reprogramming, cell proliferation, and invasion. Based on these advances in our knowledge, FDFT1 could be a potential target for cancer treatment. This review focuses on the contribution of FDFT1 to the hallmarks of cancer, and further, we discuss the applicability of FDFT1 as a cancer prognostic marker and target for anticancer therapy.
Collapse
|
11
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy.. [DOI: 10.1101/2020.10.19.345975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractThe deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand based virtual screening to identify similar drug molecules using a large collection of 3,76,342 compounds from DrugBank. The results suggested that several structural analogs (e.g. Tramadol, Nabumetone, DGLA, Hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend furtherin vitroandin vivotrials for the experimental validation of the findings.
Collapse
|
12
|
Chen D, Chou FJ, Chen Y, Tian H, Wang Y, You B, Niu Y, Huang CP, Yeh S, Xing N, Chang C. Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Lett 2020; 495:100-111. [PMID: 32768524 DOI: 10.1016/j.canlet.2020.07.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Early studies indicated that the testicular nuclear receptor 4 (TR4) might play key roles in altering prostate cancer (PCa) progression; however, its ability to alter PCa radiosensitivity remains unclear. Here, we found that suppressing TR4 expression promoted radiosensitivity and better suppressed PCa by modulating the protein quaking (QKI)/circZEB1/miR-141-3p/ZEB1 signaling pathway. Mechanism dissection studies revealed that TR4 could transcriptionally increase the RNA-binding protein QKI to increase circZEB1 levels, which then sponges the miR-141-3p to increase the expression of its host gene ZEB1. Preclinical studies with an in vivo mouse model further proved that combining radiation therapy (RT) with metformin promoted radiosensitivity to suppress PCa progression. Together, these results suggest that TR4 may play key roles in altering PCa radiosensitivity and show that targeting this newly identified TR4-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling pathway may help in the development of a novel RT to better suppress the progression of PCa.
Collapse
Affiliation(s)
- Dong Chen
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Yuhchyau Chen
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Hao Tian
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA; Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China
| | - Yaqin Wang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Bosen You
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Yuanjie Niu
- Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China
| | - Chi-Ping Huang
- Sex Hormone Research Center, China Medical University, 404, Taichung, Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Nianzeng Xing
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA; Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China.
| |
Collapse
|
13
|
Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression. Oncogene 2019; 39:1891-1903. [PMID: 31748715 PMCID: PMC7044111 DOI: 10.1038/s41388-019-1070-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/04/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men in America, and there are no curative options for metastatic castration-resistant prostate cancer (mCRPC). Docetaxel (DTX) has been used as a standard chemotherapy for the mCRPC. However, resistance to DTX is a significant clinical problem as half of patients fail to respond to therapy. The TR4 nuclear receptor has been reported to play an important role in PCa progression, however, its linkage to the DTX resistance remains unclear. Here we found that TR4 was upregulated after DTX chemotherapy in the mCRPC cells and patients, and TR4 expression is correlated with DTX sensitivity with a higher level conferring chemo-resistance. Targeting TR4 with an antagonist bexarotene (Bex, a derivative of retinoid) suppressed the TR4 transactivation with increased DTX chemo-sensitivity. Mechanism dissection studies revealed that TR4 might alter the DTX chemo-sensitivity via modulating the TR4/lincRNA-p21/HIF-1α/VEGF-A signaling. Together, these results suggest that targeting this newly identified TR4/lincRNA-p21/HIF-1α/VEGF-A signaling with Bex, an FDA-approved drug, may increase the DTX chemo-sensitivity to better suppress the mCRPC progression.
Collapse
|
14
|
Rani A, Dasgupta P, Murphy JJ. Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2119-2137. [DOI: 10.1016/j.ajpath.2019.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
|
15
|
Shiota M, Fujimoto N, Kashiwagi E, Eto M. The Role of Nuclear Receptors in Prostate Cancer. Cells 2019; 8:cells8060602. [PMID: 31212954 PMCID: PMC6627805 DOI: 10.3390/cells8060602] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily consists of 48 members that are divided into seven subfamilies. NRs are transcription factors that play an important role in a number of biological processes. The NR superfamily includes androgen receptor, which is a key player in prostate cancer pathogenesis, suggesting the functional roles of other NRs in prostate cancer. The findings on the roles of NRs in prostate cancer thus far have shown that several NRs such as vitamin D receptor, estrogen receptor β, and mineralocorticoid receptor play antioncogenic roles, while other NRs such as peroxisome proliferator-activated receptor γ and estrogen receptor α as well as androgen receptor play oncogenic roles. However, the roles of other NRs in prostate cancer remain controversial or uninvestigated. Further research on the role of NRs in prostate cancer is required and may lead to the development of novel preventions and therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
16
|
Chen S, Yang L, Dong H, Guo H. Human telomerase reverse transcriptase recruits the β-catenin/TCF-4 complex to transactivate chemokine (C-C motif) ligand 2 expression in colorectal cancer. Biomed Pharmacother 2019; 112:108700. [PMID: 30970512 DOI: 10.1016/j.biopha.2019.108700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM Various molecular mechanisms are involved in the pathogenesis of colorectal cancer (CRC), one of the leading fatal diseases. Although human telomerase reverse transcriptase (hTERT) is critical in promoting CRC development, its regulatory mechanism is still elusive. Chemokine (C-C motif) ligand 2 (CCL2) is important to CRC pathogenesis, but the upstream regulation of CCL2 requires further investigation. Therefore, we aim to investigate the crosstalk mechanism between hTERT and CCL2 and its involvement in the pathogenesis of CRC. METHODS The expression relationship between hTERT and CCL2 was verified in CRC and adjacent tissues by immunohistochemistry. Lentiviruses or plasmids were used to regulate hTERT and CCL2 expression. The roles of hTERT and CCL2 in cell growth and migration were studied using CCK8 and transwell assays. The interaction between hTERT and CCL2 was detected by a luciferase reporter assay, immunofluorescence and ChIP assays. The β-catenin/TCF-4 complex was confirmed by COIP. RESULTS Both hTERT and CCL2 expression levels were markedly increased in CRC tissues compared to the adjacent stroma. Moreover, myeloid-derived suppressor cells (MDSCs) were found in tumor areas with higher expression levels of hTERT and CCL2. hTERT promoted HCT116 cell migration and invasion by increasing CCL2 expression. Mechanistically, ectopic hTERT facilitated the nuclear translocation of canonical β-catenin and the formation of a complex with downstream effector TCF-4, which eventually activated the CCL2 promoter. CONCLUSIONS hTERT may promote CRC by recruiting β-catenin/TCF-4 complex to transactivate CCL2 expression, which is a novel crosstalk mechanism likely involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Li Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hong Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
17
|
Fan Z, Zheng J, Xue Y, Liu X, Wang D, Yang C, Ma J, Liu L, Ruan X, Wang Z, Liu Y. NR2C2-uORF targeting UCA1-miR-627-5p-NR2C2 feedback loop to regulate the malignant behaviors of glioma cells. Cell Death Dis 2018; 9:1165. [PMID: 30518750 PMCID: PMC6281640 DOI: 10.1038/s41419-018-1149-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
Accumulating evidence has highlighted the potential role of non-coding RNAs (ncRNAs) and upstream open-reading frames (uORFs) in the biological behaviors of glioblastoma. Here, we elucidated the function and possible molecular mechanisms of the effect of some ncRNAs and NR2C2-uORF on the biological behaviors of gliomas. Quantitative real-time PCR was conducted to profile the cell expression of lnc-UCA1 and microRNA-627-5p (miR-627-5p) in glioma tissues and cells. Western blot assay was used to determine the expression levels of NR2C2, SPOCK1, and NR2C2-uORF in glioma tissues and cells. Stable knockdown of lnc-UCA1 or overexpression of miR-627-5p in glioma cell lines (U87 and U251) were established to explore the function of lnc-UCA1 and miR-627-5p in glioma cells. Further, Dual luciferase report assay was used to investigate the correlation between lnc-UCA1 and miR-627-5p. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate lnc-UCA1 and miR-627-5p function including cell proliferation, migration and invasion, and apoptosis, respectively. ChIP assays were used to ascertain the correlations between NR2C2 and SPOCK1 as well as NR2C2 between lnc-UCA1. This study confirmed that lnc-UCA1 was up-regulated in glioma tissues and cells. UCA1 knockdown inhibited the malignancies of glioma cells by reducing proliferation, migration, and invasion, but inducing apoptosis. We found that lnc-UCA1 acted as miR-627-5p sponge in a sequence-specific manner. Meanwhile, upregulated lnc-UCA1 inhibited miR-627-5p expression. In addition, miR-627-5p targeted 3'UTR of NR2C2 and down-regulated its expression. Moreover, UCA1 knockdown impaired NR2C2 expression by upregulating miR-627-5p. An uORF was identified in mRNA 5'UTR of NR2C2 and overexpression of whom negatively regulated NR2C2 expression. Remarkably, lnc-UCA1 knockdown combined with uORF overepression and NR2C2 knockdown led to severe tumor suppression in vivo. This study demonstrated that the NR2C2-uORF impaired the pivotal roles that UCA1-miR-627-5p-NR2C2 feedback loop had in regulating the malignancies of glioma cells by targeting NR2C2 directly. And this may provide a potential therapeutic strategy for treating glioma.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/mortality
- Glioblastoma/pathology
- Humans
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Open Reading Frames
- Promoter Regions, Genetic
- Proteoglycans/genetics
- Proteoglycans/metabolism
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Signal Transduction
- Survival Analysis
- Tumor Burden
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zirong Fan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medicine, China Medical University, 110122, Shenyang, Liaoning, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China.
| |
Collapse
|
18
|
Duan S, Dong X, Hai J, Jiang J, Wang W, Yang J, Zhang W, Chen C. MicroRNA-135a-3p is downregulated and serves as a tumour suppressor in ovarian cancer by targeting CCR2. Biomed Pharmacother 2018; 107:712-720. [PMID: 30138893 DOI: 10.1016/j.biopha.2018.08.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs have been demonstrated to play a crucial role in the development of ovarian cancer. Many studies prove that forms of miR-135a, including miR-135a-5p and miR-135a-3p, serve as tumour suppressors in multiple cancers. Nevertheless, the precise function of miR-135a-3p and the molecular mechanisms underlying the involvement of miR-135a-3p in ovarian carcinoma cell growth and metastasis remain largely unknown. Herein, we report that miR-135a-3p expression was significantly downregulated in ovarian carcinoma tissues compared with corresponding adjacent non-tumour tissues. Ectopic miR-135a-3p expression inhibited ovarian carcinoma cell proliferation, migration and invasion in vitro. Additionally, the overexpression of miR-135a-3p inhibited epithelial-mesenchymal transition (EMT) in ovarian cancer cells. A luciferase reporter assay confirmed that the C-C chemokine receptor type 2 (CCR2) gene was the target of miR-135a-3p. In addition, CCR2 depletion mimicked the inhibitory effects of miR-135a-3p on ovarian cancer cells in vitro. Rescue experiments using CCR2 overexpression further verified that CCR2 was a functional target of miR-135a-3p. Xenograft model assays demonstrated that miR-135a-3p functions as an anti-oncogene by targeting CCR2 in vivo. Taken together, these data prove that miR-135a-3p serves as a tumour suppressor gene in ovarian cancer by regulating CCR2.
Collapse
Affiliation(s)
- Shufeng Duan
- Department of Gynecology and Oncology, Xinxiang Central Hospital, Xinxiang, Henan, 453000, China
| | - Xuecai Dong
- Department of Gynecology and Oncology, Xinxiang Central Hospital, Xinxiang, Henan, 453000, China
| | - Jing Hai
- Department of Gynecology and Oncology, Xinxiang Central Hospital, Xinxiang, Henan, 453000, China
| | - Jinghong Jiang
- Obstetrics&Gynecology Department, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei, 430070, China
| | - Wenxiang Wang
- Department of Gynecology and Oncology, Xinxiang Central Hospital, Xinxiang, Henan, 453000, China
| | - Jing Yang
- Department of Gynecology and Oncology, Xinxiang Central Hospital, Xinxiang, Henan, 453000, China
| | - Wei Zhang
- Obstetrics&Gynecology Department, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei, 430070, China
| | - Caixia Chen
- Department of Gynecology and Oncology, Xinxiang Central Hospital, Xinxiang, Henan, 453000, China.
| |
Collapse
|
19
|
TR4 nuclear receptor promotes clear cell renal cell carcinoma (ccRCC) vasculogenic mimicry (VM) formation and metastasis via altering the miR490-3p/vimentin signals. Oncogene 2018; 37:5901-5912. [DOI: 10.1038/s41388-018-0269-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/29/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
|
20
|
Wang M, Sun Y, Xu J, Lu J, Wang K, Yang DR, Yang G, Li G, Chang C. Preclinical studies using miR-32-5p to suppress clear cell renal cell carcinoma metastasis via altering the miR-32-5p/TR4/HGF/Met signaling. Int J Cancer 2018; 143:100-112. [PMID: 29396852 DOI: 10.1002/ijc.31289] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Abstract
While testicular nuclear receptor 4 (TR4) may promote prostate cancer (PCa) metastasis, its role in the clear cell renal cell carcinoma (ccRCC) remains unclear. Here we found a higher expression of TR4 in ccRCC tumors from patients with distant metastases than those from metastasis-free patients, suggesting TR4 may play positive roles in the ccRCC metastasis. Results from multiple in vitro ccRCC cell lines also confirmed TR4's positive roles in promoting ccRCC cell invasion/migration via altering the microRNA (miR-32-5p)/TR4/HGF/Met/MMP2-MMP9 signaling. Mechanism dissection revealed that miR-32-5p could suppress TR4 protein expression levels via direct binding to the 3'UTR of TR4 mRNA, and TR4 might then alter the HGF/Met signaling at the transcriptional level via direct binding to the TR4-response-elements (TR4RE) on the HGF promoter. Then the in vitro data also demonstrated the efficacy of Sunitinib, a currently used drug to treat ccRCC, could be increased after targeting this newly identified miR-32-5p/TR4/HGF/Met signaling. The preclinical study using the in vivo mouse model with xenografted ccRCC cells confirmed the in vitro cell lines data. Together, these findings suggest that TR4 is a key player to promote ccRCC metastasis and targeting this miR-32-5p/TR4/HGF/Met signaling with small molecules including TR4-shRNA or miR-32-5p may help to develop a new therapy to better suppress the ccRCC metastasis.
Collapse
Affiliation(s)
- Mingchao Wang
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Junjie Xu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Jieyang Lu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Kefeng Wang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Dong-Rong Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Guosheng Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Gonghui Li
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642.,Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan
| |
Collapse
|
21
|
Jin R, Lin H, Li G, Xu J, Shi L, Chang C, Cai X. TR 4 nuclear receptor suppresses HCC cell invasion via downregulating the EphA2 expression. Cell Death Dis 2018; 9:283. [PMID: 29449527 PMCID: PMC5833398 DOI: 10.1038/s41419-018-0287-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/02/2017] [Accepted: 01/04/2018] [Indexed: 11/24/2022]
Abstract
Early studies indicated that testicular nuclear receptor 4 (TR4) could function as a suppressor in the transcriptional regulation of the HBV core gene expression, which might then influence the development of hepatocellular carcinoma (HCC). The direct linkage between TR4 and HCC progression, however, remained unclear. Here, via a human clinical sample survey, we found that 13 of the 18 HCC patients studied had lower TR4 expression in metastatic lesions than in matched primary HCC lesions, suggesting that TR4 may play a negative role in HCC metastasis. Results from in vitro cell migration/invasion studied confirmed that TR4 could suppress HCC cell migration/invasion. Mechanism dissection revealed that TR4 might function through downregulating ephrin type-A receptor 2 (EphA2) expression at the transcriptional level via direct binding to the TR4REs located on the 5' promoter of EphA2 to suppress HCC cell migration/invasion. Targeting the EphA2 via EphA2-siRNA partially reversed the enhanced HCC cell migration/invasion with confirmed TR4 knockdown. Notably, results from preclinical studies using in vivo mouse model with orthotopic xenograft of HCC LM3 cells also confirmed the in vitro findings. Taking these findings together, preclinical studies using multiple in vitro HCC cell lines and an in vivo mouse model all led to the conclusion that TR4 may function as a suppressor of HCC metastasis and that targeting this newly identified TR4-EphA2 signaling may improve our ability to suppress HCC metastasis.
Collapse
Affiliation(s)
- Ren'an Jin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, 310016, Hangzhou, China
| | - Hui Lin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, 310016, Hangzhou, China
| | - Gonghui Li
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, 310016, Hangzhou, China
| | - Junjie Xu
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, 310016, Hangzhou, China
| | - Liang Shi
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, 310016, Hangzhou, China
| | - Chawnshang Chang
- Departments of Pathology and Urology and The Wilmot Cancer Center, George Whipple Lab for Cancer Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Xiujun Cai
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, 310016, Hangzhou, China.
| |
Collapse
|
22
|
Chen Y, Lu J, Xia L, Xue D, Yu X, Shen D, Xu L, Li G. Testicular orphan receptor 4 promotes tumor progression and implies poor survival through AKT3 regulation in seminoma. Cancer Sci 2018; 109:384-394. [PMID: 29197138 PMCID: PMC5797821 DOI: 10.1111/cas.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Seminoma is the most common testicular germ cell tumor worldwide and mainly occurs in 15-35-year-old young men. Early studies have indicated that testicular nuclear receptor 4 (TR4) first cloned from testis is involved in the invasion and metastasis of several human tumors; however, little attention is paid to the function of TR4 in seminoma. Our immunohistochemical (IHC) staining results showed that patients with advanced stage tumors tended to have higher expression of TR4. Importantly, there was a significant association between elevated TR4 expression and reduced overall survival in seminoma patients. In vitro MTS, western blot and transwell assays, after manipulating TR4 expression in Tcam-2 cells, revealed that TR4 induced epithelial-to-mesenchymal transition (EMT) and promoted Tcam-2 cell proliferation and invasion. Mechanism dissection demonstrated that AKT3, a critical component in the signaling pathway, played a crucial role in mediating TR4-promoted Tcam-2 cell proliferation and invasion. We further revealed that TR4 modulated AKT3 at the transcriptional level via chromatin immunoprecipitation and luciferase assays. Meanwhile, addition of the AKT3 siRNA blocked the function of TR4. Overall, these findings first elucidate that TR4 is a novel prognostic marker and plays a critical role in the metastatic capacity of Tcam-2 cells by EMT regulation and, consequently, targeting TR4-AKT3 pathway may serve as a potential therapeutic approach for seminoma.
Collapse
Affiliation(s)
- Yuanlei Chen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoming Yu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Xu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Roumeguère T, Sfeir J, El Rassy E, Albisinni S, Van Antwerpen P, Boudjeltia KZ, Farès N, Kattan J, Aoun F. Oxidative stress and prostatic diseases. Mol Clin Oncol 2017; 7:723-728. [PMID: 29181163 PMCID: PMC5700279 DOI: 10.3892/mco.2017.1413] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Prostatic diseases are a common health problem among males in Western countries, and include chronic prostatic diseases, which have an unclear pathogenesis and few treatment options. In vitro and in vivo studies describe oxidative stress as a major pathway involved in the occurrence of benign prostatic hyperplasia, prostatic cancer and chronic prostatitis. Thus, the oxidative stress cascade is a potential target for the treatment of prostatic diseases. This paper presents a systematic review of the available data concerning the association between oxidative stress and the most common chronic prostatic diseases, and describes the available treatment options that act upon this pathway.
Collapse
Affiliation(s)
- Thierry Roumeguère
- Department of Urology, University Clinics of Brussels, Université Libre de Bruxelles, Erasme Hôpital, 187793 Bruxelles, Belgium.,Laboratory of Experimental Medicine, Unit 222, Université Libre de Bruxelles, Le Centre Hospitalier Universitaire de Charleroi, 6042 Charleroi, Belgium
| | - Joseph Sfeir
- Department of Urology, Hôtel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Elie El Rassy
- Department of Oncology, Hôtel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Simone Albisinni
- Department of Urology, University Clinics of Brussels, Université Libre de Bruxelles, Erasme Hôpital, 187793 Bruxelles, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Experimental Medicine, Unit 222, Université Libre de Bruxelles, Le Centre Hospitalier Universitaire de Charleroi, 6042 Charleroi, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, Unit 222, Université Libre de Bruxelles, Le Centre Hospitalier Universitaire de Charleroi, 6042 Charleroi, Belgium
| | - Nassim Farès
- Research Laboratory of Physiology and PathoPhysiology, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Joseph Kattan
- Department of Oncology, Hôtel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Fouad Aoun
- Department of Urology, Hôtel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon.,Department of Urology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Bruxelles, Belgium
| |
Collapse
|
24
|
Abstract
Testicular nuclear receptors 2 and 4 (TR2, TR4), also known as NR2C1 and NR2C2, belong to the nuclear receptor superfamily and were first cloned in 1989 and 1994, respectively. Although classified as orphan receptors, several natural molecules, their metabolites, and synthetic compounds including polyunsaturated fatty acids (PUFAs), PUFA metabolites 13-hydroxyoctadecadienoic acid, 15-hydroxyeicosatetraenoic acid, and the antidiabetic drug thiazolidinediones can transactivate TR4. Importantly, many of these ligands/activators can also transactivate peroxisome proliferator-activated receptor gamma (PPARγ), also known as NR1C3 nuclear receptor. Both TR4 and PPARγ can bind to similar hormone response elements (HREs) located in the promoter of their common downstream target genes. However, these two nuclear receptors, even with shared ligands/activators and shared binding ability for similar HREs, have some distinct functions in many diseases they influence. In cancer, PPARγ inhibits thyroid, lung, colon, and prostate cancers but enhances bladder cancer. In contrast, TR4 inhibits liver and prostate cancer initiation but enhances pituitary corticotroph, liver, and prostate cancer progression. In type 2 diabetes, PPARγ increases insulin sensitivity but TR4 decreases insulin sensitivity. In cardiovascular disease, PPARγ inhibits atherosclerosis but TR4 enhances atherosclerosis through increasing foam cell formation. In bone physiology, PPARγ inhibits bone formation but TR4 increases bone formation. Together, the contrasting impact of TR4 and PPARγ on different diseases may raise a critical issue about drug used to target any one of these nuclear receptors.
Collapse
|
25
|
Economopoulou P, Psyrri A. Organ-specific gene modulation: Principles and applications in cancer research. Cancer Lett 2017; 387:18-24. [PMID: 27224891 DOI: 10.1016/j.canlet.2016.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/22/2016] [Accepted: 05/15/2016] [Indexed: 11/19/2022]
Abstract
Microarray and next generation sequencing has led to the exploration of correlated gene patterns and their shared functions. Gene modulators are proteins that alter the activity of transcription factors and influence the expression of their target genes. It is assumed that modulators are dependent on transcription factors. Several algorithms have been developed for the detection of gene modulators. On the other hand, it is becoming increasingly evident that modulators play a crucial role in carcinogenesis by interfering with fundamental biologic processes. Therapeutic gene modulation that is based on artificial modification of endogenous gene functions by designer molecules is an exciting new field of investigation.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Amanda Psyrri
- Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
26
|
Leach DA, Powell SM, Bevan CL. WOMEN IN CANCER THEMATIC REVIEW: New roles for nuclear receptors in prostate cancer. Endocr Relat Cancer 2016; 23:T85-T108. [PMID: 27645052 DOI: 10.1530/erc-16-0319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Prostate cancer has, for decades, been treated by inhibiting androgen signalling. This is effective in the majority of patients, but inevitably resistance develops and patients progress to life-threatening metastatic disease - hence the quest for new effective therapies for 'castrate-resistant' prostate cancer (CRPC). Studies into what pathways can drive tumour recurrence under these conditions has identified several other nuclear receptor signalling pathways as potential drivers or modulators of CRPC.The nuclear receptors constitute a large (48 members) superfamily of transcription factors sharing a common modular functional structure. Many of them are activated by the binding of small lipophilic molecules, making them potentially druggable. Even those for which no ligand exists or has yet been identified may be tractable to activity modulation by small molecules. Moreover, genomic studies have shown that in models of CRPC, other nuclear receptors can potentially drive similar transcriptional responses to the androgen receptor, while analysis of expression and sequencing databases shows disproportionately high mutation and copy number variation rates among the superfamily. Hence, the nuclear receptor superfamily is of intense interest in the drive to understand how prostate cancer recurs and how we may best treat such recurrent disease. This review aims to provide a snapshot of the current knowledge of the roles of different nuclear receptors in prostate cancer - a rapidly evolving field of research.
Collapse
Affiliation(s)
- Damien A Leach
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| | - Sue M Powell
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
27
|
Wu D, Cheung A, Wang Y, Yu S, Chan FL. The emerging roles of orphan nuclear receptors in prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:23-36. [PMID: 27264242 DOI: 10.1016/j.bbcan.2016.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022]
Abstract
Orphan nuclear receptors are members of the nuclear receptor (NR) superfamily and are so named because their endogenous physiological ligands are either unknown or may not exist. Because of their important regulatory roles in many key physiological processes, dysregulation of signalings controlled by these receptors is associated with many diseases including cancer. Over years, studies of orphan NRs have become an area of great interest because their specific physiological and pathological roles have not been well-defined, and some of them are promising drug targets for diseases. The recently identified synthetic small molecule ligands, acting as agonists or antagonists, to these orphan NRs not only help to understand better their functional roles but also highlight that the signalings mediated by these ligand-independent NRs in diseases could be therapeutically intervened. This review is a summary of the recent advances in elucidating the emerging functional roles of orphan NRs in cancers, especially prostate cancer. In particular, some orphan NRs, RORγ, TR2, TR4, COUP-IFII, ERRα, DAX1 and SHP, exhibit crosstalk or interference with androgen receptor (AR) signaling in either normal or malignant prostatic cells, highlighting their involvement in prostate cancer progression as androgen and AR signaling pathway play critical roles in this process. We also propose that a better understanding of the mechanism of actions of these orphan NRs in prostate gland or prostate cancer could help to evaluate their potential value as therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Dinglan Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alyson Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shan Yu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Franky L Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
28
|
Yu S, Wang M, Ding X, Xia L, Chen B, Chen Y, Zhang Z, Niu Y, Li G, Chang C. Testicular orphan nuclear receptor 4 is associated with the radio-sensitivity of prostate cancer. Prostate 2015; 75:1632-42. [PMID: 26178291 DOI: 10.1002/pros.23044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/02/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND It is well known that a significant number of prostate cancers (PCa) showed different extents of radio-resistance and the tumor may recur after treatment. Recent studies demonstrated that Testicular orphan nuclear receptor 4 (TR4) could play a critical role in anti-oxidative stress responses and might modulate the DNA damage repair. The objective of this study is to investigate the role of TR4 in the radiotherapy for PCa. METHODS The TR4 expression in tissue samples from PCa patients treated with brachytherapy was measured by immunohistochemistry (IHC). Cell survival test and colony formation assay were applied to test the radio-sensitivity of PCa cells with modulated TR4 gene expression upon irradiation. RESULTS PCa patients with biochemical recurrence (BCR) after brachytherapy tend to have higher TR4 expression (80%, n = 30) as compared to those without BCR (36.67%, n = 30). Survival analysis demonstrated a significant higher BCR occurrence in patients with high level of TR4 expression (HR = 3.474, 95%CI 1.678-7.192, P = 0.0008). Multivariate analysis showed that the TR4 staining score on IHC was the only significant variable for predicting the PCa patients' clinical outcomes after radiotherapy (OR = 9.919, 95% CI 2.516-39.101, P = 0.001). Using cell survival test and colony forming assay, we found that the addition of functional TR4 in PC3 cells lead to elevated radio-resistance. In contrast, knocking-down TR4 in LNCaP cells resulted in increased radio-sensitivity. The γH2AX foci kinetic analysis suggested that knocking down TR4 might delay the PCa cell's DNA damage repair which would enhance the radio-sensitivity. CONCLUSION TR4 could mediate the PCa cells' radio-sensitivity and might become a prognostic indicator for PCa patients received radiotherapy. This study provides a novel approach to manipulate radio-sensitivity of PCa cells, and may bring a promoted therapeutic outcome of radiotherapy to battle PCa in future.
Collapse
Affiliation(s)
- Shicheng Yu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mingchao Wang
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xianfan Ding
- George Whipple Lab for Cancer Research, Department of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Liqun Xia
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Bide Chen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yicheng Chen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhigen Zhang
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yuanjie Niu
- Chawnshang Chang Sex Hormone Research Center, Department of Urology, The 2nd affiliated hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Gonghui Li
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Department of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
29
|
Qiu X, Zhu J, Sun Y, Fan K, Yang DR, Li G, Yang G, Chang C. TR4 nuclear receptor increases prostate cancer invasion via decreasing the miR-373-3p expression to alter TGFβR2/p-Smad3 signals. Oncotarget 2015; 6:15397-409. [PMID: 25980442 PMCID: PMC4558159 DOI: 10.18632/oncotarget.3778] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/14/2015] [Indexed: 01/07/2023] Open
Abstract
Testicular nuclear receptor 4 (TR4), a member of the nuclear receptor superfamily, may play important roles to modulate the metabolic diseases and prostate tumorigenesis. Here we found TR4 could increase prostate cancer (PCa) cell invasion. Mechanism dissection revealed that TR4 might increase PCa cell invasion via decreasing the miR-373-3p expression that resulted in the activation of the TGFβR2/p-Smad3 signals. The in vivo mouse model using orthotopically xenografted CWR22Rv1 cell line transfected with luciferase-reporter confirmed in vitro cell line studies showing TR4 increased PCa metastasis via decreasing the miR-373-3p expression. Together, these data suggest that TR4 may increase PCa metastasis via a newly identified signal and targeting these TR4/miR-473-3p/TGFβR2/p-Smad3 signals using TR4 antagonist or TR4-siRNA or miR-373-3p may allow us to develop a new potential therapeutic approach to better suppress PCa metastasis.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Nude
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Neoplasm Invasiveness/pathology
- Neoplasm Transplantation
- Prostatic Neoplasms/pathology
- Protein Serine-Threonine Kinases/metabolism
- RNA Interference
- RNA, Small Interfering
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/metabolism
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction/genetics
- Smad3 Protein/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Xiaofu Qiu
- Department of Urology, Guangdong No. 2 Provincial People's Hospital, Guangzhou, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Jin Zhu
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Kun Fan
- Department of Urology, Guangdong No. 2 Provincial People's Hospital, Guangzhou, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Dong-Rong Yang
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Gonghui Li
- Chawnshang Chang Liver Cancer Center, Department of Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Guosheng Yang
- Department of Urology, Guangdong No. 2 Provincial People's Hospital, Guangzhou, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
30
|
Zhu J, Yang DR, Sun Y, Qiu X, Chang HC, Li G, Shan Y, Chang C. TR4 Nuclear Receptor Alters the Prostate Cancer CD133+ Stem/Progenitor Cell Invasion via Modulating the EZH2-Related Metastasis Gene Expression. Mol Cancer Ther 2015; 14:1445-53. [PMID: 25833838 DOI: 10.1158/1535-7163.mct-14-0971] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/23/2015] [Indexed: 11/16/2022]
Abstract
The testicular nuclear receptor 4 (TR4) is a member of the nuclear receptor superfamily that mediates various biologic functions with key impacts on metabolic disorders and tumor progression. Here, we demonstrate that TR4 may play a positive role in prostate cancer CD133(+) stem/progenitor (S/P) cell invasion. Targeting TR4 with lentiviral silencing RNA significantly suppressed prostate cancer CD133(+) S/P cell invasion both in vitro and in vivo. Mechanism dissection found that TR4 transcriptionally regulates the oncogene EZH2 via binding to its 5' promoter region. The consequences of targeting TR4 to suppress EZH2 expression may then suppress the expression of its downstream key metastasis-related genes, including NOTCH1, TGFβ1, SLUG, and MMP9. Rescue approaches via adding the EZH2 reversed the TR4-mediated prostate cancer S/P cell invasion. Together, these results suggest that the TR4→EZH2 signaling may play a critical role in the prostate cancer S/P cell invasion and may allow us to develop a better therapy to battle the prostate cancer metastasis.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China. George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Dong-Rong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China. George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Xiaofu Qiu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York. Department of Urology, Guangdong No. 2 Provincial People's Hospital, Guangzhou, China
| | - Hong-Chiang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York. Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Yuxi Shan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China. George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York. Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
31
|
Lin SJ, Yang DR, Li G, Chang C. TR4 Nuclear Receptor Different Roles in Prostate Cancer Progression. Front Endocrinol (Lausanne) 2015; 6:78. [PMID: 26074876 PMCID: PMC4445305 DOI: 10.3389/fendo.2015.00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 01/03/2023] Open
Abstract
Nuclear receptors are important to maintain the tissue homeostasis. Each receptor is tightly controlled and under a very complicated balance. In this review, we summarize the current findings regarding the nuclear receptor TR4 and its role in prostate cancer (PCa) progression. In general, TR4 can inhibit the PCa carcinogenesis. However, when PPARγ is knocked out, activation of TR4 can have an opposite effect to promote the PCa carcinogenesis. Clinical data also indicates that higher TR4 expression is found in PCa tissues with high Gleason scores compared to those tissues with low Gleason scores. In vitro and in vivo studies show that TR4 can promote PCa progression. Mechanism dissection indicates that TR4 inhibits PCa carcinogenesis through regulating the tumor suppressor ATM to reduce DNA damages. On the other hand, in the absence of PPARγ, TR4 tends to increase the stem cell population and epithelial-mesenchymal transition (EMT) via regulating CCL2, Oct4, EZH2, and miRNA-373-3p expression that results in increased PCa carcinogenesis. In opposition to PCa initiation, TR4 can increase PCa metastasis via modulating the CCL2 signals. Finally, targeting TR4 enhances the chemotherapy and radiation therapy sensitivity in PCa. Together, these data suggest TR4 is a key player to control PCa progression, and targeting TR4 with small molecules may provide us a new and better therapy to suppress PCa progression.
Collapse
Affiliation(s)
- Shin-Jen Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Dong-Rong Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, Sir-Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Chawnshang Chang, George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center. University of Rochester Medical Center, Rochester, NY 14642, USA,
| |
Collapse
|
32
|
Tsaur I, Rutz J, Makarević J, Juengel E, Gust KM, Borgmann H, Schilling D, Nelson K, Haferkamp A, Bartsch G, Blaheta RA. CCL2 promotes integrin-mediated adhesion of prostate cancer cells in vitro. World J Urol 2014; 33:1051-6. [PMID: 25179012 DOI: 10.1007/s00345-014-1389-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Chemokines undergo alterations during neoplasia. However, knowledge about their functional significance in prostate cancer (PCa) progression is still sparse. Since chemokine (C-C motif) ligand 2 (CCL2) is significantly up-regulated in patients with PCa, aim of the current study was to assess whether CCL2 contributes to invasive behavior of prostate cancer cells in vitro. METHODS The human PCa cell line PC3 was stimulated with CCL2. Cell growth was investigated by MTT dye reduction assay. Cell adhesion was analyzed by measuring attachment to a human endothelial cell (HUVEC) monolayer and immobilized collagen. Cell migration was assessed by a chemotactic assay. Integrin expression on the cell surface was evaluated by Western blot. Blocking studies were performed with anti-integrin α3, anti-integrin α6 and anti-integrin β4 monoclonal antibodies. RESULTS PC3 cell growth 72 h after CCL2 exposure was significantly increased, compared to controls. Activation of tumor cells by CCL2 significantly enhanced tumor cell adhesion to HUVEC and immobilized collagen. CCL2, added for 4 or 24 h, elevated α6 and β4 (4 > 24 h) integrin expression. α3 was enhanced after 4 h, but reduced after 24 h. Blocking either α3, α6 or β4 led to significant suppression of tumor cell binding to immobilized collagen. CONCLUSIONS CCL2 stimulates PCa cell adhesion and induces alterations in α3-, α6- and β4-integrin expression on the cell surface. Blocking these integrins leads to a significant reduction in cell adhesion.
Collapse
Affiliation(s)
- Igor Tsaur
- Department of Urology and Pediatric Urology, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|