1
|
The Genus Chrysosporium: A Potential Producer of Natural Products. FERMENTATION 2023. [DOI: 10.3390/fermentation9010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chrysosporium, a genus of ascomycete fungi in the family Onygenaceae, has the ability to produce abundant new bioactive natural products, providing a structural foundation in drug development. This review includes the sources, distribution, biological activities and structural characteristics of the compounds isolated from Chrysosporium from 1984 to 2021. The results show that 66% of the compounds isolated from Chrysosporium are new natural products. More than half of the Chrysosporium-isolated compounds are from marine-derived Chrysosporium. The chemical structures of Chrysosporium-derived compounds have different skeletons, which are concentrated in alkaloids, polyketides, and lactones. Eighty percent of the natural products isolated from Chrysosporium have been found to have various biological activities, including cytotoxic, antibacterial, antifungal and enzyme-inhibitory activities. These results demonstrate the potential of Chrysosporium for producing new bioactive secondary metabolites, which can be used as the structural basis for developing new drugs.
Collapse
|
2
|
Takase S, Kurokawa R, Kondoh Y, Honda K, Suzuki T, Kawahara T, Ikeda H, Dohmae N, Osada H, Shin-ya K, Kushiro T, Yoshida M, Matsumoto K. Mechanism of Action of Prethioviridamide, an Anticancer Ribosomally Synthesized and Post-Translationally Modified Peptide with a Polythioamide Structure. ACS Chem Biol 2019; 14:1819-1828. [PMID: 31365229 DOI: 10.1021/acschembio.9b00410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thioviridamide, prethioviridamide, and JBIR-140, which are ribosomally synthesized and post-translationally modified peptides (RiPPs) possessing five thioamide bonds, induce selective apoptosis in various cancer cells, especially those expressing the adenovirus oncogene E1A. However, the target protein of this unique family of bioactive compounds was previously unknown. To investigate the mechanism of action, we adopted a combined approach of genome-wide shRNA library screening, transcriptome profiling, and biochemical identification of prethioviridamide-binding proteins. An shRNA screen identified 63 genes involved in cell sensitivity to prethioviridamide, which included translation initiation factors, aminoacyl tRNA synthetases, and mitochondrial proteins. Transcriptome profiling and subsequent analysis revealed that prethioviridamide induces the integrated stress response (ISR) through the GCN2-ATF4 pathway, which is likely to cause cell death. Furthermore, we found that prethioviridamide binds and inhibits respiratory chain complex V (F1Fo-ATP synthase) in mitochondria, suggesting that inhibition of complex V leads to activation of the GCN2-ATF4 pathway. These results imply that the members of a unique family of RiPPs with polythioamide structure target mitochondria to induce the ISR.
Collapse
Affiliation(s)
- Shohei Takase
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Rumi Kurokawa
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Teppei Kawahara
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuo Kushiro
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo 113-8657, Japan
| | - Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Tokoro Y, Yamada Y, Takayanagi SI, Hagiwara T. 57R2A, a newly established monoclonal antibody against mouse GPR56, marks long-term repopulating hematopoietic stem cells. Exp Hematol 2017; 59:51-59.e1. [PMID: 29225194 DOI: 10.1016/j.exphem.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022]
Abstract
GPR56 molecule, a G-protein-coupled receptor, was suggested to be expressed in mouse hematopoietic stem cells (HSCs) by gene expression analyses. However, little is known about the cell surface expression of GPR56 protein in mouse HSCs due to the absence of an appropriate monoclonal antibody against GPR56 for flow cytometry analyses. In the present study, we established a novel monoclonal antibody against mouse GPR56 (57R2A) to examine the expression and distribution of GPR56 protein in HSCs. A flow cytometry analysis using 57R2A showed that GPR56 was highly expressed in the CD34-, c-Kit+, Sca-1+, lineage-negative (Lin-) fraction, which are highly enriched with HSCs. The competitive long-term repopulation (LTR) assay showed that LTR cells were included only within the GPR56+ fraction (≤15%) of bone marrow mononuclear cells (BMMNCs), but not within the remaining GPR56- fraction (85%), suggesting that all HSCs express GPR56 protein on their surface. Furthermore, we showed that double staining of BMMNCs with only 57R2A and AMM2 (monoclonal antibody against the HSC marker MPL) enabled enrichment of all LTR cells in the double-positive fraction (0.8% of BMMNCs), within which the LTR potency was consistent with the expression of both GPR56 and MPL. In conclusion, these findings for 57R2A suggest that all HSCs in mouse BMMNCs express GPR56 protein on their surface and that GPR56 is a positive marker for HSCs.
Collapse
Affiliation(s)
- Yusuke Tokoro
- Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan; Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
4
|
Okina Y, Takeuchi F, Yokomichi T, Takada Y, Kataoka T. Cardenolide aglycones inhibit tumor necrosis factor α-induced expression of intercellular adhesion molecule-1 at the translation step by blocking Na⁺/K⁺-ATPase. Biol Pharm Bull 2015; 38:39-47. [PMID: 25744456 DOI: 10.1248/bpb.b14-00532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac glycosides, which are inhibitors of Na(+)/K(+)-ATPase, are classified into cardenolides and bufadienolides. We have recently shown that two cardenolide glycosides, ouabain and odoroside A, inhibit Na(+)/K(+)-ATPase, thereby preventing nuclear factor κB-inducible protein expression by blocking Na(+)-dependent amino acid transport. In this study, we investigated the mechanism of action of cardenolide aglycones in tumor necrosis factor α (TNF-α)-induced gene expression. Ouabagenin, digitoxigenin, and digoxigenin were found to inhibit the TNF-α-induced cell-surface expression of intercellular adhesion molecule-1 (ICAM-1) in human lung carcinoma A549 cells. Those cardenolide aglycones did not inhibit the TNF-α-induced expression of ICAM-1 mRNA, but strongly inhibited the TNF-α-induced expression of ICAM-1 as translation product. The inhibition of the TNF-α-induced ICAM-1 expression by ouabagenin, digitoxigenin, and digoxigenin was significantly reversed by the ectopic expression of ouabain-resistant rat Na(+)/K(+)-ATPase α1 isoform. Moreover, knockdown of Na(+)/K(+)-ATPase α1 isoform augmented the inhibition of the TNF-α-induced ICAM-1 expression by ouabagenin or ouabain. These results clearly indicate that cardenolide aglycones inhibit the TNF-α-induced ICAM-1 expression at the translation step by blocking Na(+)/K(+)-ATPase.
Collapse
Affiliation(s)
- Yuji Okina
- Department of Applied Biology, Kyoto Institute of Technology
| | | | | | | | | |
Collapse
|
5
|
Nasuno M, Arimura Y, Nagaishi K, Isshiki H, Onodera K, Nakagaki S, Watanabe S, Idogawa M, Yamashita K, Naishiro Y, Adachi Y, Suzuki H, Fujimiya M, Imai K, Shinomura Y. Mesenchymal stem cells cancel azoxymethane-induced tumor initiation. Stem Cells 2015; 32:913-25. [PMID: 24715689 DOI: 10.1002/stem.1594] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/24/2013] [Accepted: 10/12/2013] [Indexed: 12/14/2022]
Abstract
The role of mesenchymal stem cells (MSCs) in tumorigenesis remains controversial. Therefore, our goal was to determine whether exogenous MSCs possess intrinsic antineoplastic or proneoplastic properties in azoxymethane (AOM)-induced carcinogenesis. Three in vivo models were studied: an AOM/dextran sulfate sodium colitis-associated carcinoma model, an aberrant crypt foci model, and a model to assess the acute apoptotic response of a genotoxic carcinogen (AARGC). We also performed in vitro coculture experiments. As a result, we found that MSCs partially canceled AOM-induced tumor initiation but not tumor promotion. Moreover, MSCs inhibited the AARGC in colonic epithelial cells because of the removal of O(6)-methylguanine (O(6) MeG) adducts through O(6) MeG-DNA methyltransferase activation. Furthermore, MSCs broadly affected the cell-cycle machinery, potentially leading to G1 arrest in vivo. Coculture of IEC-6 rat intestinal cells with MSCs not only arrested the cell cycle at the G1 phase, but also induced apoptosis. The anti-carcinogenetic properties of MSCs in vitro required transforming growth factor (TGF)-β signaling because such properties were completely abrogated by absorption of TGF-β under indirect coculture conditions. MSCs inhibited AOM-induced tumor initiation by preventing the initiating cells from sustaining DNA insults and subsequently inducing G1 arrest in the initiated cells that escaped from the AARGC. Furthermore, tumor initiation perturbed by MSCs might potentially dysregulate WNT and TGF-β-Smad signaling pathways in subsequent tumorigenesis. Obtaining a better understanding of MSC functions in colon carcinogenesis is essential before commencing the broader clinical application of promising MSC-based therapies for cancer-prone patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Masanao Nasuno
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yamada K, Ohtsu M, Sugano M, Kimura G. Effects of Butyrate on Cell Cycle Progression and Polyploidization of Various Types of Mammalian Cells. Biosci Biotechnol Biochem 2014; 56:1261-5. [PMID: 1368839 DOI: 10.1271/bbb.56.1261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We studied the effect of butyrate on cell cycle progression and polyploidization in three fibroblast (rat 3Y1, human IMR-90, and human embryo lung HEL) and two epithelial (human embryo kidney HEK and monkey kidney BSC-1) cells. In these cells, except for 3Y1, G1 arrest with butyrate was incomplete, and the production of tetraploid cells was detectable in the presence of butyrate. G2 arrest with butyrate was also incomplete in HEL and BSC-1 cells, and the number of HEL cells increased in the presence of butyrate. On the contrary, most BSC-1 cells that divided in the presence of butyrate were unstable and the number of attached cells decreased. These results indicate that the effect of butyrate on cell cycle progression varies with the cell type and that polyploidization can be induced by a single treatment with butyrate.
Collapse
Affiliation(s)
- K Yamada
- Department of Food Science and Technology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
7
|
Nallar SC, Kalakonda S, Lindner DJ, Lorenz RR, Lamarre E, Weihua X, Kalvakolanu DV. Tumor-derived mutations in the gene associated with retinoid interferon-induced mortality (GRIM-19) disrupt its anti-signal transducer and activator of transcription 3 (STAT3) activity and promote oncogenesis. J Biol Chem 2013; 288:7930-7941. [PMID: 23386605 DOI: 10.1074/jbc.m112.440610] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) protein is critical for multiple cytokine and growth factor-induced biological responses in vivo. Its transcriptional activity is controlled by a transient phosphorylation of a critical tyrosine. Constitutive activation of STAT3 imparts resistance to apoptosis, promotes cell proliferation, and induces de novo micro-angiogenesis, three of the six cardinal hallmarks of a typical cancer cell. Earlier we reported the isolation of GRIM-19 as a growth suppressor using a genome-wide expression knockdown strategy. GRIM-19 binds to STAT3 and suppresses its transcriptional activity. To understand the pathological relevance of GRIM-19, we screened a set of primary head and neck tumors and identified three somatic mutations in GRIM-19. Wild-type GRIM-19 suppressed cellular transformation by a constitutively active form of STAT3, whereas tumor-derived mutants L71P, L91P and A95T significantly lost their ability to associate with STAT3, block gene expression, and suppress cellular transformation and tumor growth in vivo. Additionally, these mutants lost their capacity to prevent metastasis. These mutations define a mechanism by which STAT3 activity is deregulated in certain human head and neck tumors.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology and Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sudhakar Kalakonda
- Department of Microbiology and Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Daniel J Lindner
- Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Robert R Lorenz
- Head and Neck Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Eric Lamarre
- Head and Neck Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiao Weihua
- University of Science Technology, 230027 Hefei, China
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
8
|
S-nitrosation of cellular proteins by NO donors in rat embryonic fibroblast 3Y1 cells: factors affecting S-nitrosation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:450317. [PMID: 21904643 PMCID: PMC3163492 DOI: 10.1155/2011/450317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/20/2011] [Indexed: 12/31/2022]
Abstract
The mechanism of protein S-nitrosation in cells is not fully understood. Using rat 3Y1 cells, we addressed this issue. Among S-nitrosothiols and NO donors tested, only S-nitrosocysteine (CysNO) induced S-nitrosation when exposed in Hanks' balanced salt solution (HBSS) and not in serum-containing general culture medium. In HBSS, NO release from CysNO was almost completely abolished by sequestering metal ions with a metal chelator without affecting cellular S-nitrosation. In contrast, L-leucine, a substrate of L-type amino acid transporters (LATs), significantly inhibited S-nitrosation. The absence of S-nitrosation with CysNO in general culture medium resulted not only from a competition with amino acids in the medium for LATs but also from transnitrosation of cysteine residues in serum albumin. Collectively, these results suggest that in simple buffered saline, CysNO-dependent S-nitrosation occurs through a cellular incorporation-dependent mechanism, but if it occurs in general culture media, it may be through an NO-dependent mechanism.
Collapse
|
9
|
Kalakonda S, Nallar SC, Gong P, Lindner DJ, Goldblum SE, Reddy SP, Kalvakolanu DV. Tumor suppressive protein gene associated with retinoid-interferon-induced mortality (GRIM)-19 inhibits src-induced oncogenic transformation at multiple levels. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1352-68. [PMID: 17823279 PMCID: PMC1988884 DOI: 10.2353/ajpath.2007.070241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interferons (IFNs) inhibit the growth of infectious pathogens and tumor development. Although IFNs are potent tumor suppressors, they modestly inhibit the growth of some human solid tumors. Their weak activity against such tumors is augmented by co-treatment with differentiation-inducing agents such as retinoids. Previous studies from our laboratory identified a novel gene product, gene associated with retinoid-interferon-induced mortality (GRIM)-19, as an IFN/all-trans retinoic acid-induced growth suppressor. However, the mechanisms of its growth suppressive actions are unclear. The src-family of tyrosine kinases is important regulators of various cell growth responses. Mutational activation of src causes cellular transformation by altering transcription and cytoskeletal properties. In this study, we show that GRIM-19 suppresses src-induced cellular transformation in vitro and in vivo by down-regulating the expression of a number of signal transducer and activator of transcription-3 (STAT3)-dependent cellular genes. In addition, GRIM-19 inhibited the src-induced cell motility and metastasis by suppressing the tyrosyl phosphorylation of focal adhesion kinase, paxillin, E-cadherin, and gamma-catenin. Effects of GRIM-19 on src-induced cellular transformation are reversible in the presence of specific short hairpin RNA, indicating its direct effect on transformation. GRIM-19-mediated inhibition of the src-induced tyrosyl phosphorylation of cellular proteins, such as focal adhesion kinase and paxillin, seems to occur independently of the STAT3 protein. GRIM-19 had no significant effect on the cellular transformation induced by other oncogenes such as myc and Ha-ras. Thus, GRIM-19 not only blocks src-induced gene expression through STAT3 but also the activation of cell adhesion molecules.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Down-Regulation
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Interferons/pharmacology
- NADH, NADPH Oxidoreductases/antagonists & inhibitors
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Phosphorylation
- RNA, Small Interfering/pharmacology
- Rats
- Retinoids/pharmacology
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Transfection
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Tyrosine/metabolism
- src-Family Kinases/antagonists & inhibitors
Collapse
Affiliation(s)
- Sudhakar Kalakonda
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall 350, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Yoshio T, Morita T, Kimura Y, Tsujii M, Hayashi N, Sobue K. Caldesmon suppresses cancer cell invasion by regulating podosome/invadopodium formation. FEBS Lett 2007; 581:3777-82. [PMID: 17631293 DOI: 10.1016/j.febslet.2007.06.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 06/28/2007] [Indexed: 12/15/2022]
Abstract
The podosome and invadopodium are dynamic cell-adhesion structures that degrade the extracellular matrix (ECM) and promote cell invasion. We recently reported that the actin-binding protein caldesmon is a pivotal regulator of podosome formation. Here, we analyzed the caldesmon's involvement in podosome/invadopodium-mediated invasion by transformed and cancer cells. The ectopic expression of caldesmon reduced the number of podosomes/invadopodia and decreased the ECM degradation activity, resulting in the suppression of cell invasion. Conversely, the depletion of caldesmon facilitated the formation of podosomes/invadopodia and cell invasion. Taken together, our results indicate that caldesmon acts as a potent repressor of cancer cell invasion.
Collapse
Affiliation(s)
- T Yoshio
- Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Morita T, Mayanagi T, Yoshio T, Sobue K. Changes in the Balance between Caldesmon Regulated by p21-activated Kinases and the Arp2/3 Complex Govern Podosome Formation. J Biol Chem 2007; 282:8454-63. [PMID: 17224451 DOI: 10.1074/jbc.m609983200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Podosomes are dynamic cell adhesion structures that degrade the extracellular matrix, permitting extracellular matrix remodeling. Accumulating evidence suggests that actin and its associated proteins play a crucial role in podosome dynamics. Caldesmon is localized to the podosomes, and its expression is down-regulated in transformed and cancer cells. Here we studied the regulatory mode of caldesmon in podosome formation in Rous sarcoma virus-transformed fibroblasts. Exogenous expression analyses revealed that caldesmon represses podosome formation triggered by the N-WASP-Arp2/3 pathway. Conversely, depletion of caldesmon by RNA interference induces numerous small-sized podosomes with high dynamics. Caldesmon competes with the Arp2/3 complex for actin binding and thereby inhibits podosome formation. p21-activated kinases (PAK)1 and 2 are also repressors of podosome formation via phosphorylation of caldesmon. Consequently, phosphorylation of caldesmon by PAK1/2 enhances this regulatory mode of caldesmon. Taken together, we conclude that in Rous sarcoma virus-transformed cells, changes in the balance between PAK1/2-regulated caldesmon and the Arp2/3 complex govern the formation of podosomes.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
12
|
Hayakawa Y, Sasaki K, Adachi H, Furihata K, Nagai K, Shin-ya K. Thioviridamide, a Novel Apoptosis Inducer in Transformed Cells from Streptomyces olivoviridis. J Antibiot (Tokyo) 2006; 59:1-5. [PMID: 16568712 DOI: 10.1038/ja.2006.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the course of screening for antitumor antibiotics using 3Y1 rat fibroblasts transformed with adenovirus oncogenes, a new active substance designated thioviridamide was isolated from the culture broth of an actinomycete. The producing organism was identified as Streptomyces olivoviridis on the basis of its culture characteristics and physiological properties. Thioviridamide showed cytotoxicity selectively against Ad12-3Y1 cells (IC50 = 3.9 ng/ml) and E1A-3Y1 cells (IC50 = 32 ng/ml), both of which contain the adenovirus E1A oncogene. Significant numbers of Ad12-3Y1 cells treated with thioviridamide contained condensed chromatin and fragmented nuclei, indicating that thioviridamide induced apoptosis.
Collapse
Affiliation(s)
- Yoichi Hayakawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Tsuji AB, Sugyo A, Sudo H, Sagara M, Ishikawa A, Ohtsuki M, Kimura T, Ogiu T, Miyagishi M, Taira K, Imai T, Harada YN. Defective repair of radiation-induced DNA damage is complemented by a CHORI-230-65K18 BAC clone on rat chromosome 4. Genomics 2005; 87:236-42. [PMID: 16309880 DOI: 10.1016/j.ygeno.2005.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 08/19/2005] [Accepted: 09/29/2005] [Indexed: 11/20/2022]
Abstract
The Long Evans cinnamon (LEC) rat is highly susceptible to X-irradiation due to defective DNA repair and is thus a model for hepatocellular carcinogenesis. We constructed a bacterial artificial chromosome (BAC) contig of rat chromosome 4 completely covering the region associated with radiation susceptibility. We used transient and stable transfections to demonstrate that defective DNA repair in LEC cells is fully complemented by a 200-kb BAC, CHORI-230-65K18. Further analysis showed that the region associated with radiation susceptibility is located in a 128,543-bp region of 65K18 that includes the known gene Rpn1. However, neither knockdown nor overexpression of Rpn1 indicated that this gene is associated with radiation susceptibility. We also mapped three ESTs (TC523872, TC533727, and CB607546) in the 128,543-bp region, suggesting that 65K18 contains an unknown gene associated with X-ray susceptibility in the LEC rat.
Collapse
Affiliation(s)
- Atsushi B Tsuji
- RadGenomics Project, Frontier Research Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kobayashi S, Shinohara H, Tsuneki H, Nagai R, Horiuchi S. N(epsilon)-(carboxymethyl)lysine proliferated CD34(+) cells from rat choroidal explant in culture. Biol Pharm Bull 2005; 27:1382-7. [PMID: 15340223 DOI: 10.1248/bpb.27.1382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Action of N(epsilon)-(carboxymethyl)lysine-human serum albumin (CML-HSA) on neovascularization was investigated in cultured rat choroidal explant. Choroidal explants of normal male Wistar rats were cultured in fibrin gel with Dulbecco's modified Eagle medium containing fetal bovine serum in the presence or absence of CML-HSA. Migrated cells were budded from 2nd day in culture and developed from cultured choroidal explants in a time-dependent manner. Budded and developed cells from the choroidal explant had a feature of fibroblasts, which had attenuated long cytoplasmic processes, long ellipsoid nuclei and numerous membrane-bound polymorphic vesicles. Immunostaining of the attenuated cells in fibrin bed with CD34 (a marker protein of vascular endothelial cells and endothelial progenitor cells) failed to disclose positive result. However the cells which were isolated from fibrin bed by collagenase were specifically stained with anti-CD34 antibody. The isolated cells did not form tube-like structures on collagen gel by 3 weeks in culture. CML-HSA significantly increased the number of total isolated cells and CD34(+) cells as well as the number of vessel-like structures. These results indicate that CML-HSA overproduced immature blood vessels from cultured choroidal explants in fibrin gel, which consisted of CD34(+) cells. The CML-HSA-induced formation of immature blood vessel may be implicated in various choroidal diseases such as age-related macular degeneration.
Collapse
Affiliation(s)
- Shinjiro Kobayashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokuriku University, 3-Ho Kanagawa-Machi, Kanazawa 920-1181, Japan.
| | | | | | | | | |
Collapse
|
15
|
Itano N, Sawai T, Atsumi F, Miyaishi O, Taniguchi S, Kannagi R, Hamaguchi M, Kimata K. Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem 2004; 279:18679-87. [PMID: 14724275 DOI: 10.1074/jbc.m313178200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malignant transformation of fibroblasts and epithelial cells is often accompanied by increased hyaluronan production and accumulation. Despite recent progress in the study of hyaluronan biosynthesis, the mechanisms underlying the transformation-induced overproduction of hyaluronan have not been elucidated. Here we report that activity and transcriptional levels of hyaluronan synthase (HAS) significantly increased after oncogenic malignant transformation of a rat 3Y1 fibroblast cell line. Of three HAS isoforms (HAS1, HAS2, and HAS3), only HAS2 gene expression was increased in the v-Ha-ras transformed 3Y1 cells, which show less malignancy. In contrast, both HAS1 and HAS2 expressions were elevated in the highly malignant cells transformed with v-src and/or v-fos. To assess the contribution of HAS expression to the oncogenic malignant transformation, we established stable cell transfectants expressing sense and antisense HAS genes. Antisense suppression of the HAS2 expression significantly decreased hyaluronan production in the cells transformed by the oncogenic v-Ha-ras and eventually led to a reduction in tumorigenicity in the rat peritoneum. The introduction of the HAS1 and HAS2 genes promoted the growth of subcutaneous tumors in a manner dependent on the levels of hyaluronan synthesis. Significant growth promotion was observed within a wide range of HAS1 expression. In contrast, the growth stimulation was only seen within a narrow range of HAS2 expression, and high levels of HAS2 expression even inhibited tumor growth. These results suggest that proper regulation of the expression of each HAS isoform is required for optimal malignant transformation and tumor growth.
Collapse
Affiliation(s)
- Naoki Itano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tsuneoka M, Umata T, Kimura H, Koda Y, Nakajima M, Kosai K, Takahashi T, Takahashi Y, Yamamoto A. c-myc induces autophagy in rat 3Y1 fibroblast cells. Cell Struct Funct 2003; 28:195-204. [PMID: 12951440 DOI: 10.1247/csf.28.195] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The proto-oncogene c-myc is a multifunctional gene that regulates cell division, cell growth, and apoptosis. Here we report a new function of c-myc: induction of autophagy. Autophagy is a bulk degradation system for intracellular proteins. Autophagy proceeds with characteristic morphologies, which begins with the formation of a double-membrane structure called the autophagosome surrounding a portion of the cytoplasm, after which its outer membrane then fuses with the lysosomal membrane to become an autolysosome. Autophagosomes and autolysosomes are generally called autophagic vacuoles. When c-Myc protein was overexpressed in rat 3Y1 fibroblasts or when the chimeric protein c-MycER was activated by estrogen, the number of autophagic vacuoles in cells increased significantly. The formation of autophagic vacuoles induced by c-Myc was completely blocked by a specific inhibitor of autophagosome formation, 3-methyladenine. A c-Myc mutant lacking Myc Box II induced neither apoptosis nor oncogenic transformation, but still stimulated autophagy. An inhibitor of caspases suppressed apoptosis but not autophagy. These results suggest that the autophagy caused by c-myc is not due to the apoptosis or tumorigenesis induced by c-myc. Taken together, our results suggest that the induction of autophagy is a novel function of c-myc.
Collapse
Affiliation(s)
- Makoto Tsuneoka
- Division of Human Genetics, Department of Forensic Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sebahar PR, Osada H, Usui T, Williams RM. Asymmetric, stereocontrolled total synthesis of (+) and (−)-spirotryprostatin B via a diastereoselective azomethine ylide [1,3]-dipolar cycloaddition reaction. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00630-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Sternberger M, Schmiedeknecht A, Kretschmer A, Gebhardt F, Leenders F, Czauderna F, Von Carlowitz I, Engle M, Giese K, Beigelman L, Klippel A. GeneBlocs are powerful tools to study and delineate signal transduction processes that regulate cell growth and transformation. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:131-43. [PMID: 12162696 DOI: 10.1089/108729002760220734] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The study of signal transduction processes using antisense oligonucleotides is often complicated by low intracellular stability of the antisense reagents or by nonspecific effects that cause toxicity. Here, we introduce a new class of antisense molecules, so-called GeneBlocs, which are characterized by improved stability, high target RNA specificity, and low toxicity. GeneBlocs allow for efficient downregulation of mRNA expression at nanomolar concentrations, and they do not interfere with cell proliferation. We demonstrate these beneficial properties using a positive readout system. GeneBloc-mediated inhibition of tumor suppressor PTEN (phosphatase and tension homologue detected on chromosome 10) expression leads to hyperactivation of the phosphatidylinositol (PI) 3-kinase pathway, thereby mimicking the loss of PTEN function and its early consequences observed in mammalian cancer cells. Specifically, cells treated with PTEN GeneBlocs show functional activation of Akt, a downstream effector of PI 3-kinase signaling, and exhibit enhanced proliferation when seeded on a basement membrane matrix. In addition, GeneBlocs targeting the catalytic subunit of PI 3-kinase, p110, specifically inhibit signal transduction of endogenous or recombinant PI 3-kinase. This demonstrates that GeneBlocs are powerful tools to analyze and to modulate signal transduction processes and, therefore, represent alternative reagents for the validation of gene function.
Collapse
|
19
|
Itano N, Atsumi F, Sawai T, Yamada Y, Miyaishi O, Senga T, Hamaguchi M, Kimata K. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A 2002; 99:3609-14. [PMID: 11891291 PMCID: PMC122571 DOI: 10.1073/pnas.052026799] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Elevated hyaluronan biosynthesis and matrix deposition correlates with cell proliferation and migration. We ectopically expressed three isoforms of hyaluronan synthase (HAS1, HAS2, or HAS3) in nontransformed rat 3Y1 cells and observed a de novo, massive formation of a hyaluronan matrix that resulted in a partial loss of contact-mediated inhibition of cell growth and migration. All three HAS transfectants showed an enhanced motility in scratch wound assays, and a significant increase in their confluent cell densities. In high-density cultures, the HAS transfectants had a fibroblastic cell shape and markedly formed overlapping cell layers. This phenotype was more pronounced in the HAS2 transfectants than HAS1 or HAS3 transfectants, and occurred with significant alterations in the microfilament organization and N-cadherin distribution at the cell-cell border. Inhibition of a phosphatidylinositol 3-kinase (PI3-kinase) pathway resulted in reacquisition of the normal phenotype of HAS2 transfectants, suggesting that the intracellular PI3-kinase signaling regulates diminution of contact inhibition induced by formation of the massive hyaluronan matrix. Our observations suggest that hyaluronan and its matrix can modulate contact inhibition of cell growth and migration, and provide evidence for functional differences between hyaluronan synthesized by the different HAS proteins.
Collapse
Affiliation(s)
- Naoki Itano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Aoto H, Sasaki H, Ishino M, Sasaki T. Nuclear translocation of cell adhesion kinase beta/proline-rich tyrosine kinase 2. Cell Struct Funct 2002; 27:47-61. [PMID: 11937718 DOI: 10.1247/csf.27.47] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell adhesion kinase beta (CAKbeta/PYK2) is a protein-tyrosine kinase of the focal adhesion kinase (FAK) family. Whereas FAK predominantly localizes at focal adhesions, CAK beta localizes at the perinuclear region in fibroblasts. Here we expressed in cultured cells two point mutants of CAKbeta, P717A and P859A, each of which had lost one of its two PXXP motifs, the ligand sequence for SH3 domains, found at the CAKbeta C-terminal region. We observed a remarkable change in the subcellular distribution of the P859A mutant; while that of the P717A mutant was the same as the wild type. The P859A mutant localized exclusively in the cell nucleus in all cell lines examined. Wild-type CAKbeta also accumulated in the nucleus when cells were treated with an inhibitor of the nuclear export of proteins. These results indicate that CAK beta shuttles between the cytoplasm and the nucleus. On nuclear accumulation of P859A-CAKbeta, a CAKbeta-binding protein, Hic-5, also accumulated in the nucleus. P859A-CAKbeta and co-expressed Hic-5 formed nuclear speckles, in which one other CAK beta-binding protein, p130(Cas), was also concentrated. These findings on nuclear translocation of CAK beta imply that CAKbeta may regulate nuclear processes such as transcription, particularly because Hic-5 was recently shown to be a coactivator of nuclear receptors.
Collapse
Affiliation(s)
- Hiroshi Aoto
- Department of Biochemistry, Cancer Research Institute, Sapporo Medical University, Japan.
| | | | | | | |
Collapse
|
21
|
Grundschober C, Delaunay F, Pühlhofer A, Triqueneaux G, Laudet V, Bartfai T, Nef P. Circadian regulation of diverse gene products revealed by mRNA expression profiling of synchronized fibroblasts. J Biol Chem 2001; 276:46751-8. [PMID: 11598123 DOI: 10.1074/jbc.m107499200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes under a 24-h regulation period may represent drug targets relevant to diseases involving circadian dysfunctions. As a testing model of the circadian clock system, we have used synchronized rat fibroblasts that are known to express at least six genes in a circadian fashion. We have determined the expression patterns of 9957 transcripts every 4 h over a total period of 76 h using high density oligonucleotide microarrays. The spectral analysis of our mRNA profiling data indicated that approximately 2% (85 genes) of all expressed genes followed a robust circadian pattern. We have confirmed the circadian expression of previously known clock or clock-driven genes, and we identified 81 novel circadian genes. The majority of the circadian-regulated gene products are known and are involved in diverse cellular functions. We have classified these circadian genes in seven clusters according to their phase of cycling. Our pathway analysis of the mRNA profiling data strongly suggests a direct link between circadian rhythm and cell cycle.
Collapse
Affiliation(s)
- C Grundschober
- Central Nervous System Department, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Fujioka Y, Taira T, Maeda Y, Tanaka S, Nishihara H, Iguchi-Ariga SM, Nagashima K, Ariga H. MM-1, a c-Myc-binding protein, is a candidate for a tumor suppressor in leukemia/lymphoma and tongue cancer. J Biol Chem 2001; 276:45137-44. [PMID: 11567024 DOI: 10.1074/jbc.m106127200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The c-myc oncogene product (c-Myc) is a transcription factor that dimerizes with Max and recognizes the E-box sequence, and it plays key functions in cell proliferation, differentiation, and apoptosis. We previously showed that MM-1 bound to myc box II within the transactivation domain of c-Myc and repressed the E-box-dependent transcriptional activity of c-Myc. Here we report that MM-1 showed features of a tumor suppressor. In an EST data base search for cDNAs homologous to MM-1, we found a frequent substitution of amino acid 157 of MM-1, from alanine to arginine (A157R), and the substitution was observed more in tumor cells than in normal cells. A survey of the A157R mutation of MM-1 in 57 cultured cancer cells and 90 tissues from cancer patients showed that the A157R was present in about 50-60% of leukemia/lymphoma cells and in more than 75% of squamous cell carcinoma of tongue cancer. Although both the A157R and the wild-type MM-1 bound to c-Myc, only A157R lost the activities to repress both the E-box-dependent transcriptional activity of c-Myc and the myc/ras cooperative transforming activity in rat 3Y1 cells. Furthermore, the wild-type MM-1, but not A157R, arrested the growth of 3Y1 cells. The human MM-1 gene was mapped at chromosome 12q12-12q13, where many chromosome abnormalities in cancer cells have been reported. The results suggest that MM-1 is a novel candidate for a tumor suppressor that controls the transcriptional activity of c-Myc.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acids/chemistry
- Animals
- Blotting, Northern
- Cell Cycle
- Cell Division/drug effects
- Cell Line
- Chromosomes, Human, Pair 12
- Cloning, Molecular
- DNA/metabolism
- DNA, Complementary/metabolism
- Exons
- Expressed Sequence Tags
- Fluorescent Antibody Technique, Indirect
- HeLa Cells
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia/genetics
- Leukemia/metabolism
- Luciferases/metabolism
- Lymphoma/genetics
- Lymphoma/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mutation
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Repressor Proteins/metabolism
- Repressor Proteins/physiology
- Time Factors
- Tongue Neoplasms/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Fujioka
- Graduate School of Pharmaceutical Sciences, Department of Pathology, Graduate School of Medicine, College of Medical Technology, Hokkaido University, Kita-ku, Sapporo 060-8012, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang JG, Miyazu M, Matsushita E, Sokabe M, Naruse K. Uniaxial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem Biophys Res Commun 2001; 288:356-61. [PMID: 11606050 DOI: 10.1006/bbrc.2001.5775] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the role of tyrosine phosphorylation of FAK in the stretch-induced MAPKs (extracellular signal-regulated kinase (ERK), p38MAPK) activation in mutant FAK-transfected fibroblasts. In response to uniaxial cyclic stretch (1 Hz, 120% in length), the levels of tyrosine phosphorylation of the Tyr-397 and Tyr-925 of FAK in control cells increased and peaked at 5 min (2.75 +/- 0.51, n = 3), and 20 min (2.98 +/- 0.58, n = 3), respectively, and the activities of MAPKs increased and peaked at approximately 10 min. On the other hand, in the mutant FAK-transfected cells, the stretch-induced MAPKs activation was significantly inhibited. The stretch-induced activation of MAPKs was also significantly abolished by either treatment with Gd(3+) or extracellular Ca(2+) removal which may inhibit intracellular Ca(2+) increase caused by the activation of cation selective (Ca(2+)-permeable) stretch activated (SACatC) channels. These results suggest that the stretch-induced tyrosine-phosphorylation of FAK via SACatC activation is critical for the stretch-induced MAPKs activation.
Collapse
Affiliation(s)
- J G Wang
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
24
|
Fukamachi K, Matsuoka Y, Kitanaka C, Kuchino Y, Tsuda H. Rat neuronal leucine-rich repeat protein-3: cloning and regulation of the gene expression. Biochem Biophys Res Commun 2001; 287:257-63. [PMID: 11549284 DOI: 10.1006/bbrc.2001.5579] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat neuronal leucine-rich repeat protein-3 (rNLRR-3) gene was isolated and cloned from fibrosarcoma cells overexpressing c-Ha-ras. Stable expression of constitutively active forms of Ras (H-Ras(V12) or v-H-Ras) led to a two- to fourfold increase in rNLRR-3 mRNA in rat normal fibroblasts (3Y1). When cells expressing H-Ras(V12) were treated with mitogen activated protein kinase (MAPK) kinase inhibitors (U0126, PD98059), suppression of rNLRR-3 mRNA correlated well with a reduction in MAPK activity. Epidermal growth factor (EGF) led to elevation of rNLRR-3 gene expression about 4 h after stimulation of normal fibroblasts. U0126 completely suppressed the induction by EGF of rNLRR-3 mRNA with abrogation of MAPK phosphorylation. U0126 inhibited the basal transcription of rNLRR-3. LY294002, a PI3 kinase inhibitor, showed a lesser effect on expression of the gene. These results indicate that rNLRR-3 gene expression is regulated mainly through the Ras-MAPK signaling pathway in fibroblasts.
Collapse
Affiliation(s)
- K Fukamachi
- Experimental Pathology and Chemotherapy Division, Biophysics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | |
Collapse
|
25
|
Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc Natl Acad Sci U S A 2001. [PMID: 11171987 PMCID: PMC29293 DOI: 10.1073/pnas.041588198] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Stats1 and 3 (signal transducers and activators of transcription) can be activated simultaneously, although not necessarily to the same degree or duration, by the interaction of cells with the same polypeptide ligand (EGF, PDGF, or high concentrations of IL-6, for example). However, these two Stat proteins can mediate opposing effects on cell growth and survival. Stat1 activation slows growth and promotes apoptosis. In contrast, activated Stat3 can protect cells from apoptosis. Furthermore, a constitutively active form of Stat3, Stat3-C (bridged by S-S linkages between cysteines instead of phosphotyrosines) can induce cellular transformation of fibroblasts. We have determined that fibroblasts transformed by Stat3-C are more resistant to proapoptotic stimuli than nontransformed cells. Also, to examine the potential opposing roles in apoptosis of Stat1 and Stat3, we studied the cervical carcinoma-derived cell line, Me180, which undergoes Stat1-dependent, IFN gamma-induced apoptosis. Me180 cells that express Stat3-C are protected against IFN gamma-mediated apoptosis.
Collapse
|
26
|
Shen Y, Devgan G, Darnell JE, Bromberg JF. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc Natl Acad Sci U S A 2001; 98:1543-8. [PMID: 11171987 PMCID: PMC29293 DOI: 10.1073/pnas.98.4.1543] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stats1 and 3 (signal transducers and activators of transcription) can be activated simultaneously, although not necessarily to the same degree or duration, by the interaction of cells with the same polypeptide ligand (EGF, PDGF, or high concentrations of IL-6, for example). However, these two Stat proteins can mediate opposing effects on cell growth and survival. Stat1 activation slows growth and promotes apoptosis. In contrast, activated Stat3 can protect cells from apoptosis. Furthermore, a constitutively active form of Stat3, Stat3-C (bridged by S-S linkages between cysteines instead of phosphotyrosines) can induce cellular transformation of fibroblasts. We have determined that fibroblasts transformed by Stat3-C are more resistant to proapoptotic stimuli than nontransformed cells. Also, to examine the potential opposing roles in apoptosis of Stat1 and Stat3, we studied the cervical carcinoma-derived cell line, Me180, which undergoes Stat1-dependent, IFN gamma-induced apoptosis. Me180 cells that express Stat3-C are protected against IFN gamma-mediated apoptosis.
Collapse
Affiliation(s)
- Y Shen
- Laboratory of Molecular Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
27
|
Georgopoulos NT, Proffitt JL, Blair GE. Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 2000; 19:4930-5. [PMID: 11039910 DOI: 10.1038/sj.onc.1203860] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have examined the possibility that the E7 proteins of the high-risk human papillomavirus (HPV) type 16 and 18 and the oncogenic adenovirus (Ad) type 12 E1A protein share the ability to down-regulate the expression of components of the antigen processing and presentation pathway, as a common strategy in the evasion of immune surveillance during the induction of cell transformation. Expression of the HPV 18 E7 oncoprotein, like Ad 12 E1A, resulted in repression of the major histocompatibility complex (MHC) class I heavy chain promoter, as well as repression of a bidirectional promoter that regulates expression of the genes encoding the transporter associated with antigen processing subunit 1 (TAP1) and a proteasome subunit, low molecular weight protein 2 (LMP2). HPV 16 E7 also caused a reduction in class I heavy chain promoter activity, however it did not have any significant effect on the activity of the bidirectional promoter. Interestingly, expression of the low-risk HPV 6b E7 protein resulted in an increase in MHC class I heavy chain promoter activity, while repressing the TAP1/LMP2 promoter. Interference with the class I pathway could also explain the ability of low-risk HPVs in inducing benign lesions.
Collapse
Affiliation(s)
- N T Georgopoulos
- School of Biochemistry and Molecular Biology, University of Leeds, UK
| | | | | |
Collapse
|
28
|
Sanz-Cervera JF, Stocking EM, Usui T, Osada H, Williams RM. Synthesis and evaluation of microtubule assembly inhibition and cytotoxicity of prenylated derivatives of cyclo-L-Trp-L-Pro. Bioorg Med Chem 2000; 8:2407-15. [PMID: 11058035 DOI: 10.1016/s0968-0896(00)00171-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The synthesis of three isoprenylated derivatives of cyclo-L-Trp-L-Pro is described. These substances have been evaluated for cytotoxic activity in rat normal fibroblast 3Y1 cells and have also been evaluated in vitro for the inhibition of microtubule assembly.
Collapse
Affiliation(s)
- J F Sanz-Cervera
- Departamento de Química Orgánica, Universidad de Valencia, Spain
| | | | | | | | | |
Collapse
|
29
|
Miyata Y, Yahara I. p53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90. Oncogene 2000; 19:1477-84. [PMID: 10723140 DOI: 10.1038/sj.onc.1203475] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The simian double strand DNA tumor virus SV40 encodes the 90-kDa multi-functional protein, large T antigen (LT). LT functions by binding to DNA, as well as to many cellular target proteins such as p53 and retinoblastoma protein (pRB). We report here the identification of a cellular heat shock protein, HSP90, as a previously undescribed LT-associated protein. Immunoprecipitates by anti-HSP90 antibodies from LT-expressing cell lysates contained LT protein, as revealed by Western blotting. Conversely, anti-LT antibody co-immunoprecipitated HSP90. Co-immunoprecipitation of HSP90 and LT was observed even after complete immuno-depletion of p53, indicating that the association of LT with HSP90 is p53-independent. LT-HSP90 complexes can be reconstituted from purified HSP90 and unfolded-LT in vitro in an ATP-independent manner but not from HSP90 and native LT, suggesting that non-mature conformation of LT is required for the efficient association with HSP90. Moreover, geldanamycin, an anti-tumor drug that specifically binds and inhibits HSP90, reduced the intracellular concentration of LT by destabilizing newly synthesized LT. The above results suggest that HSP90 associates with immature forms of LT both in vivo and in vitro, and thus might assist LT in the formation of a functional, mature structure.
Collapse
Affiliation(s)
- Y Miyata
- Department of Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Hon-Komagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | |
Collapse
|
30
|
Kogo H, Fujimoto T. Caveolin-1 isoforms are encoded by distinct mRNAs. Identification Of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett 2000; 465:119-23. [PMID: 10631317 DOI: 10.1016/s0014-5793(99)01730-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
By searching the EST database with the known cDNA sequence encoding alpha-caveolin-1 (full-length: FL), we found a variant having a hitherto unknown sequence in place of the first exon (5'-end variant: 5'V). The expression level of 5'V mRNA was equivalent to that of FL mRNA. The entire sequences of FL and 5'V mRNA were determined by 3'- and 5'-RACE analysis; their sizes were 2484 bp and 2533 bp, respectively, and the sequences were identical except for the region of the first exon. By Northern blotting, FL and 5'V mRNAs showed the same tissue distribution, and were intensely expressed in the lung, heart, and skeletal muscle. Analyzing the protein production from these mRNAs using green fluorescent protein as a tag, we found FL mRNA to produce the alpha-isoform predominantly, but to form little beta-isoform. The production of the beta-isoform from 5'V mRNA was also demonstrated. By sequence analysis of the first intron of the caveolin-1 gene, a TATA box was found at 28 bp upstream of the transcription initiation site for 5'V mRNA. This is the first demonstration of caveolin-1 mRNA variants generated by alternative transcription initiation, and it indicates that the two isoforms of caveolin-1 are produced from two distinct mRNAs.
Collapse
Affiliation(s)
- H Kogo
- Department of Anatomy and Molecular Cell Biology, Nagoya University School of Medicine, Showa-ku, Nagoya, Japan.
| | | |
Collapse
|
31
|
Tsuneoka M, Mekada E. Ras/MEK signaling suppresses Myc-dependent apoptosis in cells transformed by c-myc and activated ras. Oncogene 2000; 19:115-23. [PMID: 10644986 DOI: 10.1038/sj.onc.1203232] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cooperation of myc and activated ras has been suggested to cause malignant cell transformation but the mechanism is still unknown. Here we isolated a transformed cell line in which activation of c-Myc and Ras are independently controllable, and show that after establishment of the transformed state by c-myc and activated ras, removal of activated Ras initiates apoptosis that is dependent on c-Myc activity. Apoptosis is also initiated by an inhibitor of MEK (MAPK/ERK kinase), a kinase downstream of Ras, and apoptosis is blocked by activated Mek1. These results suggest that one of the conditions required for establishment of the transformed state is a block of apoptosis involving MEK activity. We tested the effect of MEK inhibition on cells transformed by various oncogenes. Suppression of apoptosis by MEK is not critical in general, but in cells transformed by c-myc plus a gene that activates the MAPK cascade it is necessary to avoid cell death. Activated Ras/MEK did not suppress c-myc-dependent apoptosis due to serum-limitation. Overexpression of chicken bcl-xL suppressed apoptosis under serum-limiting conditions, but not apoptosis initiated by Ras/MEK inhibition in cells transformed by myc and activated ras. Altogether, these results suggest the existence of a novel regulatory mechanism for myc-dependent apoptosis in certain transformed cells.
Collapse
Affiliation(s)
- M Tsuneoka
- Institute of Life Science, Kurume University, 2432-3 Aikawa-machi, Kurume, Fukuoka, 839-0861, Japan.
| | | |
Collapse
|
32
|
Yamashita T, Tonoki H, Nakata D, Yamano S, Segawa K, Moriuchi T. Adenovirus type 5 E1A immortalizes primary rat cells expressing wild-type p53. Microbiol Immunol 1999; 43:1037-44. [PMID: 10609613 DOI: 10.1111/j.1348-0421.1999.tb01233.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenovirus (Ad) E1A induces apoptosis in cells expressing wild-type p53, and stable transformation by Ad E1A requires the co-introduction of an anti-apoptotic gene such as Ad E1B 19K. Thus, cells immortalized by Ad E1A alone might have lost functional p53. In order to analyze the p53 in rat cells expressing Ad E1A, we established rat cell lines by transfecting primary rat embryo fibroblast (REF) and baby rat kidney (BRK) cells with cloned Ad5 E1A. By using a yeast functional assay, we analyzed p53 in six primary REF and three BRK cell lines immortalized by Ad5 E1A as well as five spontaneously immortalized rat cell lines (REF52, NRK, WFB, Rat-1 and 3Y1). The yeast functional assay revealed that all of the spontaneously and Ad5 ElA-immortalized rat cell lines except for 3Y1 expressed wild-type p53. All of the Ad5 E1A-immortalized rat cell lines contained p53 detectable by immunoprecipitation. Recombinant adenovirus expressing rat p53 cloned from a REF cell line immortalized by Ad5 E1A, as well as that expressing murine wild-type p53, induced apoptosis in p53-null cells in collaboration with E1A. Thus, it is suggested that the mutation of p53 appears to be not frequent in the spontaneous immortalization of primary rat cells, and that the functional loss of wild-type p53 is not a prerequisite of E1A-mediated immortalization.
Collapse
Affiliation(s)
- T Yamashita
- Department of Molecular Biology, Cancer Research Institute, Sapporo Medical University School of Medicine, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Okuda A, Ohtsu M, Kimura G. Extensive degradation of mutant-type D123 protein is responsible for temperature-sensitive proliferation inhibition in 3Y1tsD123 cells. Cell Struct Funct 1999; 24:443-9. [PMID: 10698258 DOI: 10.1247/csf.24.443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A temperature-sensitive mutant of 3Y1, 3Y1tsD123, reversibly arrested in G1 phase of cell cycle at the restrictive temperature of 39.8 degrees C, shows a single amino acid exchange in the D123 protein. In this study, we found that the D123 protein level in 3Y1tsD123, which was 1/8 of that in 3Y1 compared at the permissive temperature of 33.9 degrees C, lowered to 1/4 after a shift to the restrictive temperature. During inhibition of protein synthesis with cycloheximide, the D123 protein level in 3Y1tsD123 decreased markedly depending on the incubation temperature, compared with that in 3Y1, indicating that the lowered levels of D123 protein in 3Y1tsD123 are due to its degradation. Unexpectedly, 2 stably temperature-resistant clones were isolated after transfection of SV-3Y1tsD123 (SV40-transformed 3Y1tsD123, which shows cell death instead of G1 arrest at the restrictive temperature) with the cDNA of the mutant-type (3Y1tsD123-derived) D123 protein. The D123 protein in both clones degraded extensively at both temperatures, suggesting that the overexpression of the mutant-type D123 protein exceeds its degradation. Both temperature-resistant clones contained higher levels of D123 protein at the restrictive temperature than did SV-3Y1tsD123 at the permissive temperature. We concluded that the lowered D123 protein level at the restrictive temperature induces the temperature-sensitive characteristics of 3Y1tsD123 and SV-3Y1tsD123.
Collapse
Affiliation(s)
- A Okuda
- Department of Virology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
34
|
Yageta M, Tsunoda H, Yamanaka T, Nakajima T, Tomooka Y, Tsuchida N, Oda K. The adenovirus E1A domains required for induction of DNA rereplication in G2/M arrested cells coincide with those required for apoptosis. Oncogene 1999; 18:4767-76. [PMID: 10490810 DOI: 10.1038/sj.onc.1203063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induction of apoptosis by adenovirus E1A in rodent cells is stimulated by wild type (wt) p53 but completely suppressed by mutated p53. The suppression is overcome by coexpression with Id proteins (Ids). The cells expressing E1A and Ids undergo apoptosis after accumulation in S phase, suggesting that S phase events are perturbed by E1A and Ids. The E1A domains required for induction of apoptosis, analysed by transfection with expression vectors for E1A, Ids and their mutants, followed by flow cytometry, reside in N-terminal (positions 17 - 38), CR1 and CR2 regions. Interaction of E1A with Ids requires the N-terminal and CR1 regions. The cyclin D1 promoter activity in S phase was reduced severely by E1A and this reduction is caused through CR1 and CR2 regions required for interaction with pRB. Analysis of DNA synthesis in G2/M arrested cells indicated that E1A is capable of inducing >4 N cells and this E1A-mediated DNA rereplication is enhanced by coexpression with Id-1H. The E1A domains required for induction of DNA rereplication coincide with those required for apoptosis.
Collapse
Affiliation(s)
- M Yageta
- Department of Biological Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda 278, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
STATs are latent transcription factors that mediate cytokine- and growth factor-directed transcription. In many human cancers and transformed cell lines, Stat3 is persistently activated, and in cell culture, active Stat3 is either required for transformation, enhances transformation, or blocks apoptosis. We report that substitution of two cysteine residues within the C-terminal loop of the SH2 domain of Stat3 produces a molecule that dimerizes spontaneously, binds to DNA, and activates transcription. The Stat3-C molecule in immortalized fibroblasts causes cellular transformation scored by colony formation in soft agar and tumor formation in nude mice. Thus, the activated Stat3 molecule by itself can mediate cellular transformation and the experiments focus attention on the importance of constitutive Stat3 activation in human tumors.
Collapse
Affiliation(s)
- J F Bromberg
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Ye X, Fukudome K, Tsuneyoshi N, Satoh T, Tokunaga O, Sugawara K, Mizokami H, Kimoto M. The endothelial cell protein C receptor (EPCR) functions as a primary receptor for protein C activation on endothelial cells in arteries, veins, and capillaries. Biochem Biophys Res Commun 1999; 259:671-7. [PMID: 10364477 DOI: 10.1006/bbrc.1999.0846] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma protein C functions as an anticoagulant when it is converted to the active form of serine protease. Protein C activation has been found to be mediated by the endothelial cell surface thrombin/thrombomodulin (TM) complex. In addition, we recently identified the endothelial cell protein C/activated protein C receptor (EPCR) which is capable of high-affinity binding for protein C. In this study, we established monoclonal antibodies (mAbs) against EPCR including several function blocking antibodies. Immunohistochemical analysis using these mAbs demonstrated that EPCR is widely expressed in the endothelial cells of arteries, veins, and capillaries in the lung, heart, and skin. Function blocking anti-EPCR mAbs strongly inhibited protein C activation mediated by primary cultured arterial endothelial cells which express abundant EPCR. Anti-EPCR mAbs also prevent protein C activation mediated by microvascular endothelial cells. These results indicate that EPCR functions as an important regulator for the protein C pathway in various types of vessels.
Collapse
Affiliation(s)
- X Ye
- Department of Immunology, Saga Medical School, Nabeshima, 849-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sai X, Naruse K, Sokabe M. Activation of pp60(src) is critical for stretch-induced orienting response in fibroblasts. J Cell Sci 1999; 112 ( Pt 9):1365-73. [PMID: 10194415 DOI: 10.1242/jcs.112.9.1365] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When subjected to uni-axial cyclic stretch (120% in length, 1 Hz), fibroblasts (3Y1) aligned perpendicular to the stretch axis in a couple of hours. Concomitantly with this orienting response, protein tyrosine phosphorylation of cellular proteins (molecular masses of approximately 70 kDa and 120–130 kDa) increased and peaked at 30 minutes. Immuno-precipitation experiments revealed that paxillin, pp125(FAK), and pp130(CAS) were included in the 70 kDa, and 120–130 kDa bands, respectively. Treatment of the cells with herbimycin A, a tyrosine kinase inhibitor, suppressed the stretch induced tyrosine phosphorylation and the orienting response suggesting that certain tyrosine kinases are activated by stretch. We focused on pp60(src), the most abundant tyrosine kinase in fibroblasts. The kinase activity of pp60(src) increased and peaked at 20 minutes after the onset of cyclic stretch. Treatment of the cells with an anti-sense S-oligodeoxynucleotide (S-ODN) against pp60(src), but not the sense S-ODN, inhibited the stretch induced tyrosine phosphorylation and the orienting response. To further confirm the involvement of pp60(src), we performed the same sets of experiments using c-src-transformed 3Y1 (c-src-3Y1) fibroblasts. Cyclic stretch induced a similar orienting response in c-src-3Y1 to that in wild-type 3Y1, but with a significantly faster rate. The time course of the stretch-induced tyrosine phosphorylation was also much faster in c-src-3Y1 than in 3Y1 fibroblasts. These results strongly suggest that cyclic stretch induces the activation of pp60(src) and that pp60(src) is indispensable for the tyrosine phosphorylation of pp130(CAS), pp125(FAK) and paxillin followed by the orienting response in 3Y1 fibroblasts.
Collapse
Affiliation(s)
- X Sai
- Department of Physiology, Nagoya University School of Medicine, Showa-ku, Nagoya 466 Japan
| | | | | |
Collapse
|
38
|
Shirasuna K, Takeuchi A, Bando T, Nakajima T, Oda K. The G10BP-1 gene encoding a GC box binding protein, is a target of Myc and Jun/Fos. Genes Cells 1999; 4:277-89. [PMID: 10421838 DOI: 10.1046/j.1365-2443.1999.00258.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND G10BP, a serum-inducible factor, represses the transcription of the fibronectin gene through binding to the G-rich sequences in the promoter excluding Sp1 from binding to these sequences. RESULTS The 5' flanking sequence of the G10BP-1 gene was isolated by polymerase chain reaction of the adaptor-ligated genomic DNA library using the adaptor primer and the G10BP-1 cDNA primer. The elements required for activation of the G10BP-1 promoter following serum stimulation were analysed by transfection of quiescent rat 3Y1 cells with G10BP-1 promoter-luciferase cDNA constructs containing 5' sequential deletions or base substitutions. The results showed that the promoter was activated by Myc and Jun through the E box and AP1 sites. The formation of DNA-protein complexes with 32P-labelled oligonucleotides containing the E box or AP1 site with cell extracts prepared during G1 progression was correlated with the promoter activation and greatly reduced by immunodepletion of Myc or c-Jun from the extracts. CONCLUSION These results indicate that the G10BP-1 gene is a target of Myc and Jun/Fos and that these factors repress the fibronectin gene expression through induction of G10BP-1 during G1-to-S phase progression.
Collapse
Affiliation(s)
- K Shirasuna
- Department of Biological Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda 278, Japan
| | | | | | | | | |
Collapse
|
39
|
Hayashi K, Yonemura S, Matsui T, Tsukita S. Immunofluorescence detection of ezrin/radixin/moesin (ERM) proteins with their carboxyl-terminal threonine phosphorylated in cultured cells and tissues. J Cell Sci 1999; 112 ( Pt 8):1149-58. [PMID: 10085250 DOI: 10.1242/jcs.112.8.1149] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ezrin/radixin/moesin (ERM) proteins are thought to play an important role in organizing cortical actin-based cytoskeletons through cross-linkage of actin filaments with integral membrane proteins. Recent in vitro biochemical studies have revealed that ERM proteins phosphorylated on their COOH-terminal threonine residue (CPERMs) are active in their cross-linking activity, but this has not yet been evaluated in vivo. To immunofluorescently visualize CPERMs in cultured cells as well as tissues using a mAb specific for CPERMs, we developed a new fixation protocol using trichloroacetic acid (TCA) as a fixative. Immunoblotting analyses in combination with immunofluorescence microscopy showed that TCA effectively inactivated soluble phosphatases, which maintained the phosphorylation level of CPERMs during sample processing for immunofluorescence staining. Immunofluorescence microscopy with TCA-fixed samples revealed that CPERMs were exclusively associated with plasma membranes in a variety of cells and tissues, whereas total ERM proteins were distributed in both the cytoplasm and plasma membranes. Furthermore, the amounts of CPERMs were shown to be regulated in a cell and tissue type-dependent manner. These findings favored the notion that phosphorylation of the COOH-terminal threonine plays a key role in the regulation of the cross-linking activity of ERM proteins in vivo.
Collapse
Affiliation(s)
- K Hayashi
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
40
|
Takeuchi A, Shimizu M, Nishina M, Shirasuna K, Miura A, Nakajima T, Oda K. Enhancer and silencer binding proteins involved in the rat cdc2 promoter activation at the G1/S boundary. Genes Cells 1999; 4:229-42. [PMID: 10336694 DOI: 10.1046/j.1365-2443.1999.00252.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Expression of the rat cdc2 gene during G1-S phase progression is negatively and positively regulated by the silencer and enhancer elements located upstream of the basal promoter. The silencer and enhancer sequences resemble each other, but the silencer contains extra internal AG residues. RESULTS The cDNA clones encoding the enhancer binding proteins cdc2E1 and cdc2E2 were isolated by South-Western blotting. cdc2E1 and cdc2E2 comprise 436 and 256 amino acids and have two RNA binding domains which contain an RNP1 octamer and an RNP 2 hexamer. Both cdc2E1 and cdc2E2 bind to the double-stranded and single-stranded silencer and enhancer sequences, but their binding affinity to the enhancer was stronger than that to the silencer. Transfection of quiescent 3Y1 cells with the cdc2 promoter-luciferase constructs, followed by serum stimulation, showed that the promoter activation at the G1-S phase boundary was reduced greatly by base substitutions within the enhancer, but not within the silencer. Gel shift assays with oligonucleotides containing both the silencer and enhancer showed that formation of the large complex was greatly reduced if base-substitutions were introduced into the enhancer, but not within the silencer. The complex was supershifted completely by anti-cdc2E1 antibody and partially by anti-cdc2E2 antibody. CONCLUSION These results suggest that cdc2E1 and cdc2E2 preferentially form the multimeric complex at the enhancer site after the late G1 phase for activation of the cdc2 promoter.
Collapse
Affiliation(s)
- A Takeuchi
- Department of Biological Science and Technology, Science University of Tokyo, Noda-shi, Chiba 278, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Ikeda D, Wada S, Yoneda C, Abe H, Watabe S. Carnosine stimulates vimentin expression in cultured rat fibroblasts. Cell Struct Funct 1999; 24:79-87. [PMID: 10362071 DOI: 10.1247/csf.24.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two-dimensional electrophoretic gel profiles were compared between rat 3Y1 fibroblasts cultured in the presence and absence of 30 mM L-carnosine (beta-alanyl-L-histidine) for one week without any replenishment of medium. While a number of cellular proteins changed their expression levels by the addition of carnosine, we identified one of the most prominently varied proteins as vimentin. Immunoblot analysis with anti-vimentin antibody demonstrated that the vimentin levels increased about 2-fold after one-week culture in the presence of carnosine. We also confirmed that the increase of vimentin expression was dependent on the concentration of carnosine added to the medium. Moreover, when cultured cells were stained with anti-vimentin antibody and observed by light microscopy, most cells grown in the presence of carnosine were found to have markedly developed vimentin filaments. The increase of vimentin expression was also observed by adding with carnosine related dipeptides, N-acetylcarnosine and anserine.
Collapse
Affiliation(s)
- D Ikeda
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Thomas DL, Shin S, Jiang BH, Vogel H, Ross MA, Kaplitt M, Shenk TE, Javier RT. Early region 1 transforming functions are dispensable for mammary tumorigenesis by human adenovirus type 9. J Virol 1999; 73:3071-9. [PMID: 10074157 PMCID: PMC104067 DOI: 10.1128/jvi.73.4.3071-3079.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some human adenoviruses are tumorigenic in rodents. Subgroup A and B human adenoviruses generally induce sarcomas in both male and female animals, and the gene products encoded within viral early region 1 (E1 region) are both necessary and sufficient for this tumorigenicity. In contrast, subgroup D human adenovirus type 9 (Ad9) induces estrogen-dependent mammary tumors in female rats and requires the E4 region-encoded ORF1 oncoprotein for its tumorigenicity. Considering the established importance of the viral E1 region for tumorigenesis by adenoviruses, we investigated whether this viral transcription unit is also necessary for Ad9 to generate mammary tumors. The nucleotide sequence of the Ad9 E1 region indicated that the gene organization and predicted E1A and E1B polypeptides of Ad9 are closely related to those of other human adenovirus E1 regions. In addition, an Ad9 E1 region plasmid demonstrated focus-forming activity in both low-passage-number and established rat embryo fibroblasts, whereas a large deletion within either the E1A or E1B gene of this plasmid diminished transforming activity. Surprisingly, we found that introducing the same transformation-inactivating E1A and E1B deletions into Ad9 results in mutant viruses that retain the ability to elicit mammary tumors in rats. These results are novel in showing that Ad9 represents a unique oncogenic adenovirus in which the E4 region, rather than the E1 region, encodes the major oncogenic determinant in the rat.
Collapse
Affiliation(s)
- D L Thomas
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Besser D, Bromberg JF, Darnell JE, Hanafusa H. A single amino acid substitution in the v-Eyk intracellular domain results in activation of Stat3 and enhances cellular transformation. Mol Cell Biol 1999; 19:1401-9. [PMID: 9891073 PMCID: PMC116068 DOI: 10.1128/mcb.19.2.1401] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1998] [Accepted: 10/27/1998] [Indexed: 01/14/2023] Open
Abstract
The receptor tyrosine kinase Eyk, a member of the Axl/Tyro3 subfamily, activates the STAT pathway and transforms cells when constitutively activated. Here, we compared the potentials of the intracellular domains of Eyk molecules derived from c-Eyk and v-Eyk to transform rat 3Y1 fibroblasts. The v-Eyk molecule induced higher numbers of transformants in soft agar and stronger activation of Stat3; levels of Stat1 activation by the two Eyk molecules were similar. A mutation in the sequence Y933VPL, present in c-Eyk, to the v-Eyk sequence Y933VPQ led to increased activation of Stat3 and increased transformation efficiency. However, altering another sequence, Y862VNT, present in both Eyk molecules to F862VNT markedly decreased transformation without impairing Stat3 activation. These results indicate that activation of Stat3 enhances transformation efficiency and cooperates with another pathway to induce transformation.
Collapse
Affiliation(s)
- D Besser
- Laboratory of Molecular Oncology, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
44
|
|
45
|
Abstract
The incidence of ovarian malignancies has significantly increased in the past decades in many countries, however, an appropriate animal model system enabling the study of ovarian cancer such as stable mouse ovarian epithelial cell lines has not yet been developed. Here we report the establishment of cell lines derived from mouse ovarian surface epithelium (MOSE) by two procedures--one, through the introduction of SV40 large T antigen DNA into C3H/He MOSE (T-Ag-MOSE) and another through spontaneous immortalization of cells from p53-deficient MOSE (p53-def-MOSE). p53-def-MOSE cell line did not show any transformed phenotype either in vitro culture system nor in vivo tumorigenicity assay, whereas T-Ag-MOSE formed tumors in nude mice. Tumors formed by the injection of T-Ag-MOSE were undifferentiated malignancies associated with heterologous mesothelial tissues such as those of the osteoid phenotype. The established MOSE cell lines are useful in the molecular analysis of the multistep carcinogenesis of ovarian tissues in humans.
Collapse
Affiliation(s)
- M Kido
- Department of Obstetrics and Gynecology, Tokyo University Branch Hospital, Faculty of Medicine, University of Tokyo, Japan.
| | | |
Collapse
|
46
|
Klippel A, Escobedo MA, Wachowicz MS, Apell G, Brown TW, Giedlin MA, Kavanaugh WM, Williams LT. Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Mol Cell Biol 1998; 18:5699-711. [PMID: 9742087 PMCID: PMC109156 DOI: 10.1128/mcb.18.10.5699] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1998] [Accepted: 07/21/1998] [Indexed: 11/20/2022] Open
Abstract
Using a new inducible form of phosphatidylinositol 3-kinase (PI 3-kinase) we have found that PI 3-kinase activation has the following effects on cell growth and proliferation. (i) Activation of PI 3-kinase was sufficient to promote entry into S phase of the cell cycle within several hours. This was shown by activation of cyclin-dependent kinase 4 (Cdk4) and Cdk2 and by the induction of DNA synthesis. (ii) PI 3-kinase activation alone was not, however, sufficient to provide for progression through the entire cell cycle. Instead, prolonged activation of PI 3-kinase in the absence of serum stimulation resulted in apoptosis. It is possible that the cells undergo apoptosis because the PI 3-kinase-induced entry into the cell cycle is abnormal. For example, we found that the cyclin E-Cdk2 complex, which normally disappears after entry into S phase of the cell cycle, fails to be downregulated following induction by PI 3-kinase. (iii) Finally, we found that prolonged activation of PI 3-kinase in the presence of serum resulted in cellular changes that resemble those associated with oncogenic transformation. The cells reached high densities, were irregular and refractile in appearance, and formed colonies in soft agar. In contrast, neither PI 3-kinase nor serum stimulation alone could induce these changes. Our results suggest that activation of PI 3-kinase promotes anchorage-independent cell growth and entry into the cell cycle but does not abrogate the growth factor requirement for cell proliferation.
Collapse
Affiliation(s)
- A Klippel
- Chiron Corporation, Emeryville, California 94608, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakajima T, Yageta M, Shiotsu K, Morita K, Suzuki M, Tomooka Y, Oda K. Suppression of adenovirus E1A-induced apoptosis by mutated p53 is overcome by coexpression with Id proteins. Proc Natl Acad Sci U S A 1998; 95:10590-5. [PMID: 9724748 PMCID: PMC27939 DOI: 10.1073/pnas.95.18.10590] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1997] [Accepted: 07/06/1998] [Indexed: 11/18/2022] Open
Abstract
The rat 3Y1 derivative cell lines, EId10 and EId23, established by introducing the adenovirus E1A12S, Id-1H, and Id-2H cDNAs linked to the hormone-inducible promoter, express these proteins upon treatment with dexamethasone and elicit apoptosis, although these cell lines express mutated p53. The E1A mutants containing a deletion in either the N terminus or the conserved region 1 were unable to induce apoptosis in cooperation with Ids. Western blot analysis of the immunoprecipitates prepared from the dexamethasone-treated EId10 cell extract showed that Id-2H preferentially binds to E1A and E2A (E12/E47) helix-loop-helix transcription factors in vivo, but scarcely to the retinoblastoma protein. After induction of E1A and Ids, EId10 and EId23 cells began to accumulate in S phase and undergo apoptosis before entering G2 phase, suggesting that abnormal synthesis of DNA induced by coexpression of E1A, Id-1H, and Id-2H results in the induction of apoptosis. Apoptosis also is induced in mouse A40 (p53-/-) cells by E1A alone or E1A plus Ids after transient transfection of the expression vectors. The induction of apoptosis is stimulated by coexpression with wild-type p53; however, apoptosis induced by E1A alone was suppressed completely by coexpression with mutated p53, whereas apoptosis induced by E1A plus Ids was stimulated by the mutated p53 as done by wild-type p53. These results suggest that the suppressive function of mutated p53 is overcome by Ids.
Collapse
Affiliation(s)
- T Nakajima
- Department of Biological Science and Technology, Science University of Tokyo, Noda-shi, Chiba 278, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Usui T, Kondoh M, Cui CB, Mayumi T, Osada H. Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J 1998; 333 ( Pt 3):543-8. [PMID: 9677311 PMCID: PMC1219615 DOI: 10.1042/bj3330543] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated the cell cycle inhibition mechanism and primary target of tryprostatin A (TPS-A) purified from Aspergillus fumigatus. TPS-A inhibited cell cycle progression of asynchronously cultured 3Y1 cells in the M phase in a dose- and time-dependent manner. In contrast, TPS-B (the demethoxy analogue of TPS-A) showed cell-cycle non-specific inhibition on cell growth even though it inhibited cell growth at lower concentrations than TPS-A. TPS-A treatment induced the reversible disruption of the cytoplasmic microtubules of 3Y1 cells as observed by indirect immunofluorescence microscopy in the range of concentrations that specifically inhibited M-phase progression. TPS-A inhibited the assembly in vitro of microtubules purified from bovine brains (40% inhibition at 250 microM); however, there was little or no effect on the self-assembly of purified tubulin when polymerization was induced by glutamate even at 250 microM TPS-A. TPS-A did not inhibit assembly promoted by taxol or by digestion of the C-terminal domain of tubulin. However, TPS-A blocked the tubulin assembly induced by inducers interacting with the C-terminal domain, microtubule-associated protein 2 (MAP2), tau and poly-(l-lysine). These results indicate that TPS-A is a novel inhibitor of MAP-dependent microtubule assembly and, through the disruption of the microtubule spindle, specifically inhibits cell cycle progression at the M phase.
Collapse
Affiliation(s)
- T Usui
- Antibiotics Laboratory, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-01, Japan
| | | | | | | | | |
Collapse
|
49
|
Oda E, Shirasuna K, Suzuki M, Nakano K, Nakajima T, Oda K. Cloning and characterization of a GC-box binding protein, G10BP-1, responsible for repression of the rat fibronectin gene. Mol Cell Biol 1998; 18:4772-82. [PMID: 9671487 PMCID: PMC109063 DOI: 10.1128/mcb.18.8.4772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fibronectin (FN) is an extracellular matrix protein that connects the extracellular matrix to intracellular cortical actin filaments through binding to its cell surface receptor, alpha5beta1, a member of the integrin superfamily. The expression level of FN is reduced in most tumor cells, facilitating their anchorage-independent growth by still unclarified mechanisms. The cDNA clone encoding G-rich sequence binding protein G10BP-1, which is responsible for repression of the rat FN gene, was isolated by using a yeast one-hybrid screen with the G10 stretch inserted upstream of the HIS3 and lacZ gene minimal promoters. G10BP-1 comprises 385 amino acids and contains two basic regions and a putative zipper structure. It has the same specificity of binding to three G-rich sequences in the FN promoter and the same size as the G10BP previously identified in adenovirus E1A- and E1B-transformed rat cells. Expression of G10BP-1 is cell cycle regulated; the level was almost undetectable in quiescent rat 3Y1 cells but increased steeply after growth stimulation by serum, reaching a maximum in late G1. Expression of FN mRNA is inversely correlated with G10BP-1 expression, and the level decreased steeply during G1-to-S progression. This down regulation was strictly dependent on the downstream GC box (GCd), and base substitutions within GCd abolished the sensitivity of the promoter to G10BP-1. In contrast, the level of Sp1, which competes with G10BP for binding to the G-rich sequences, was constant throughout the cell cycle, suggesting that the concentration of G10BP-1 relative to that of Sp1 determines the expression level of the FN gene. Preparation of glutathione S-transferase pulldowns of native proteins from the cell extracts containing exogenously or endogenously expressed G10BP-1, followed by Western blot analysis, showed that G10BP-1 forms homodimers through its basic-zipper structure.
Collapse
Affiliation(s)
- E Oda
- Department of Biological Science and Technology, Science University of Tokyo, Noda-shi, Chiba 278, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Kondoh M, Usui T, Kobayashi S, Tsuchiya K, Nishikawa K, Nishikiori T, Mayumi T, Osada H. Cell cycle arrest and antitumor activity of pironetin and its derivatives. Cancer Lett 1998; 126:29-32. [PMID: 9563645 DOI: 10.1016/s0304-3835(97)00528-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The biological effects of pironetin and its derivatives on cell cycle progression and antitumor activity were studied. At 10-20 ng/ml, both pironetin and its demethyl derivative, NK10958P completely inhibited the cell proliferation of 3Y1 cells, however, epoxypironetin showed only a weak inhibitory activity. The cell cycle analysis revealed that these compounds arrested the cell cycle progression at the M-phase in a dose-dependent manner. These antiproliferative effects of pironetin were also observed in the range 5-25 ng/ml with several tumor cell lines. In CDF1-SLC mice bearing P388 leukemia cells, the intraperitoneal administration of 6.3 mg/kg pironetin over a 5-day period showed a moderate antitumor effect (T/C, 128%). As the chemical structure of pironetin is different from other M-phase inhibitors such as colchicine or vinblastine, pironetin will be the lead compound for a potential new antitumor drug.
Collapse
Affiliation(s)
- M Kondoh
- The Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|