1
|
Barai A, Piplani N, Saha SK, Dutta S, Gomathi V, Ghogale MM, Kumar S, Kulkarni M, Sen S. Bulky glycocalyx drives cancer invasiveness by modulating substrate-specific adhesion. PNAS NEXUS 2024; 3:pgae335. [PMID: 39211517 PMCID: PMC11358709 DOI: 10.1093/pnasnexus/pgae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The majority of the eukaryotic cell surface is decorated with a layer of membrane-attached polysaccharides and glycoproteins collectively referred to as the glycocalyx. While the formation of a bulky glycocalyx has been associated with the cancer progression, the mechanisms by which the glycocalyx regulates cancer invasiveness are incompletely understood. We address this question by first documenting subtype-specific expression of the major glycocalyx glycoprotein Mucin-1 (MUC1) in breast cancer patient samples and breast cancer cell lines. Strikingly, glycocalyx disruption led to inhibition of 2D motility, loss of 3D invasion, and reduction of clonal scattering in breast cancer cells at the population level. Tracking of 2D cell motility and 3D invasiveness of MUC1-based sorted subpopulations revealed the fastest motility and invasiveness in intermediate MUC1-expressing cells, with glycocalyx disruption abolishing these effects. While differential sensitivity in 2D motility is attributed to a nonmonotonic dependence of focal adhesion size on MUC1 levels, higher MUC1 levels enhance 3D invasiveness via increased traction generation. In contrast to inducing cell rounding on collagen-coated substrates, high MUC1 level promotes cell adhesion and confers resistance to shear flow on substrates coated with the endothelial surface protein E-selectin. Collectively, our findings illustrate how MUC1 drives cancer invasiveness by differentially regulating cell-substrate adhesion in a substrate-dependent manner.
Collapse
Affiliation(s)
- Amlan Barai
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Niyati Piplani
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sumon Kumar Saha
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sarbajeet Dutta
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - V Gomathi
- Center for Translational Cancer Research, IISER Pune and PCCM Pune, Pune 411008, India
| | - Mayank M Ghogale
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sushil Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Madhura Kulkarni
- Center for Translational Cancer Research, IISER Pune and PCCM Pune, Pune 411008, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
3
|
Cox KE, Liu S, Lwin TM, Hoffman RM, Batra SK, Bouvet M. The Mucin Family of Proteins: Candidates as Potential Biomarkers for Colon Cancer. Cancers (Basel) 2023; 15:1491. [PMID: 36900282 PMCID: PMC10000725 DOI: 10.3390/cancers15051491] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Mucins (MUC1-MUC24) are a family of glycoproteins involved in cell signaling and barrier protection. They have been implicated in the progression of numerous malignancies including gastric, pancreatic, ovarian, breast, and lung cancer. Mucins have also been extensively studied with respect to colorectal cancer. They have been found to have diverse expression profiles amongst the normal colon, benign hyperplastic polyps, pre-malignant polyps, and colon cancers. Those expressed in the normal colon include MUC2, MUC3, MUC4, MUC11, MUC12, MUC13, MUC15 (at low levels), and MUC21. Whereas MUC5, MUC6, MUC16, and MUC20 are absent from the normal colon and are expressed in colorectal cancers. MUC1, MUC2, MUC4, MUC5AC, and MUC6 are currently the most widely covered in the literature regarding their role in the progression from normal colonic tissue to cancer.
Collapse
Affiliation(s)
- Kristin E. Cox
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Shanglei Liu
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Thinzar M. Lwin
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
- AntiCancer, Inc., San Diego, CA 92111, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| |
Collapse
|
4
|
Danilova NV, Chayka AV, Khomyakov VM, Oleynikova NA, Andreeva YY, Malkov PG, Sotnikova TN. [Mucins expression in gastric cancer: connection of MUC status with clinical, morphological and prognostic characteristics of the tumor]. Arkh Patol 2023; 85:16-28. [PMID: 36785958 DOI: 10.17116/patol20238501116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
OBJECTIVE Clarification of the prognostic value and relationship of MUC-phenotypes of gastric cancer with clinical and morphological parameters. MATERIAL AND METHODS Surgical material from 310 patients with a verified diagnosis of gastric cancer was studied. Samples were immunohistochemically stained with antibodies to MUC2, CD10, MUC5AC. The results were compared with clinical and morphological characteristics of gastric cancer and patient survival data. RESULTS The MUC-null and MUC-mix groups significantly differ in the prevalence of subtotal/total tumors from the MUC-I group (p=0.022 and p=0.007, respectively), where there are significantly fewer such tumors. Tubular tumors were more common in the MUC-null group compared to the MUC-G (p=0.026) and MUC-mix (p=0.006) groups, and there were fewer cases with the presence of "signet-ring" cells in the MUC-null group (p=0.000). When studying the discohesive histological type, the literature data on smaller tumor sizes and a lower frequency of lymph node metastasis for MUC-G status were not confirmed, but a more frequent proximal localization of MUC-I tumors was found (p=0.003). No statistically significant differences in survival were found in the analysis of the total sample. Differences in survival were found only in discohesive cancers, where the best survival was recorded for the MUC-null group, and the worst for the MUC-mix group (p=0.022). MUC status is not an independent predictor of gastric cancer (HR=1.662, p=0.093). CONCLUSION Between tumors with different MUC statuses, there were differences in localization and belonging to individual histological types. Significant differences in survival were found only for discohesive cancers with MUC-null and MUC-mix statuses. Separation of gastric cancers according to MUC status may have only limited predictive value in selected histological forms of cancer.
Collapse
Affiliation(s)
- N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| | - A V Chayka
- P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Center, Moscow, Russia
| | - V M Khomyakov
- P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Center, Moscow, Russia
| | | | - Yu Yu Andreeva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - P G Malkov
- Lomonosov Moscow State University, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - T N Sotnikova
- City clinical Hospital named after I.V. Davydovsky, Moscow, Russia
| |
Collapse
|
5
|
Das A, Deka D, Banerjee A, Radhakrishnan AK, Zhang H, Sun XF, Pathak S. A Concise Review on the Role of Natural and Synthetically Derived Peptides in Colorectal Cancer. Curr Top Med Chem 2022; 22:2571-2588. [PMID: 35578849 DOI: 10.2174/1568026622666220516105049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/20/2023]
Abstract
Colorectal cancer being the second leading cause of cancer-associated deaths has become a significant health concern around the globe. Though there are various cancer treatment approaches, many of them show adverse effects and some compromise the health of cancer patients. Hence, significant efforts are being made for the evolution of a novel biological therapeutic approach with better efficacy and minimal side effects. Current research suggests that the application of peptides in colorectal cancer therapeutics holds the possibility of the emergence of an anticancer reagent. The primary beneficial factors of peptides are their comparatively rapid and easy process of synthesis and the enormous potential for chemical alterations that can be evaluated for designing novel peptides and enhancing the delivery capacity of peptides. Peptides might be utilized as agents with cytotoxic activities or as a carrier of a specific drug or as cytotoxic agents that can efficiently target the tumor cells. Further, peptides can also be used as a tool for diagnostic purposes. The recent analysis aims at developing peptides that have the potential to efficiently target the tumor moieties without harming the nearby normal cells. Additionally, decreasing the adverse effects, and unfolding the other therapeutic properties of potential peptides, are also the subject matter of in-depth analysis. This review provides a concise summary of the function of both natural and synthetically derived peptides in colorectal cancer therapeutics that are recently being evaluated and their potent applications in the clinical field.
Collapse
Affiliation(s)
- Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| |
Collapse
|
6
|
Riley NM, Wen RM, Bertozzi CR, Brooks JD, Pitteri SJ. Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Adv Cancer Res 2022; 157:83-121. [PMID: 36725114 PMCID: PMC10582998 DOI: 10.1016/bs.acr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin-domain glycoproteins are highly O-glycosylated cell surface and secreted proteins that serve as both biochemical and biophysical modulators. Aberrant expression and glycosylation of mucins are known hallmarks in numerous malignancies, yet mucin-domain glycoproteins remain enigmatic in the broad landscape of cancer glycobiology. Here we review the multifaceted roles of mucins in cancer through the lens of the analytical and biochemical methods used to study them. We also describe a collection of emerging tools that are specifically equipped to characterize mucin-domain glycoproteins in complex biological backgrounds. These approaches are poised to further elucidate how mucin biology can be understood and subsequently targeted for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States.
| | - Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, Stanford, CA, United States
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States.
| |
Collapse
|
7
|
Qing L, Li Q, Dong Z. MUC1: An emerging target in cancer treatment and diagnosis. Bull Cancer 2022; 109:1202-1216. [DOI: 10.1016/j.bulcan.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
8
|
Oruc A, Simsek G. A Pathophysiological Approach To Current Biomarkers. Biomark Med 2022. [DOI: 10.2174/9789815040463122010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biomarkers are necessary for screening and diagnosing numerous diseases,
predicting the prognosis of patients, and following-up treatment and the course of the
patient. Everyday new biomarkers are being used in clinics for these purposes. This
section will discuss the physiological roles of the various current biomarkers in a
healthy person and the pathophysiological mechanisms underlying the release of these
biomarkers. This chapter aims to gain a new perspective for evaluating and interpreting
the most current biomarkers.
Collapse
Affiliation(s)
- Aykut Oruc
- Department of Physiology,Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa,
Istanbul, Turkey
| | - Gonul Simsek
- Department of Physiology,Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa,
Istanbul, Turkey
| |
Collapse
|
9
|
Yamashita N, Kufe D. Addiction of Cancer Stem Cells to MUC1-C in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 23:8219. [PMID: 35897789 PMCID: PMC9331006 DOI: 10.3390/ijms23158219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
10
|
Son HY, Jeong HK, Apostolopoulos V, Kim CW. MUC1 expressing tumor growth was retarded after human mucin 1 (MUC1) plasmid DNA immunization. Int J Immunopathol Pharmacol 2022; 36:3946320221112358. [PMID: 35839304 PMCID: PMC9289905 DOI: 10.1177/03946320221112358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction Naked DNA is one of the attractive tools for vaccination studies. We studied naked DNA
vaccination against the human tumor antigen, mucin, which is encoded by the
MUC1 gene. Methods We constructed the pcDNA3.0-MUC1 (pcDNA-MUC1) plasmid expressing an underglycosylated
MUC1 protein. BALB/c mice were immunized intradermally thrice at 2-weeks intervals with
pcDNA-MUC1. Two weeks after the last immunization, tumor challenge experiments were
performed using either the CT26 or TA3HA tumor cell lines, both of which transduce human
MUC1. Results Immune cell population monitoring from pcDNA-MUC1-immunized animals indicated that
immune cell activation was induced by MUC1-specific immunization. Using intracellular
fluorescence activated cell sorting and enzyme-linked immunosorbent spot assay, we
reported that interferon-γ secreting CD8+ T cells were mainly involved in
MUC1-specific immunization. In all mice immunized with MUC1 DNA, tumor
growth inhibition was observed, whereas control mice developed tumors
(p < 0.001). Conclusion Our results suggest that intradermal immunization with MUC1 DNA
induces MUC1-specific CD8+ T cell infiltration into tumors, elicits
tumor-specific Th1-type immune response, and inhibits tumor growth.
Collapse
Affiliation(s)
- Hye-Youn Son
- Department of Breast and Endocrine Surgery, Center for Medical Innovation, 58927Seoul National University Hospital, Seoul, South Korea
| | - Hwan-Kyu Jeong
- School of Biosystems and Biomedical Sciences, 34973Korea University, Seoul, South Korea
| | - Vasso Apostolopoulos
- Institute for Health and Sport, 5399Victoria University, Melbourne, Vic, Australia
| | | |
Collapse
|
11
|
Al Jammaz I, Al-Otaibi B, Al-Malki Y, Abousekhrah A, Okarvi SM. Fast Fluorine-18 labeling and preclinical evaluation of novel Mucin1 and its Folate hybrid peptide conjugate for targeting breast carcinoma. EJNMMI Radiopharm Chem 2021; 6:12. [PMID: 33738611 PMCID: PMC7973340 DOI: 10.1186/s41181-021-00127-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background There is a need to develop new and more potent radiofluorinated peptide and their hybrid conjugates for multiple-receptors targeting properties that overexpress on many cancers. Methods We have synthesized MUC1-[18F] SFB and MUC1-FA-[18F] SFB hybrid conjugates using a convenient and one-step nucleophilic displacement reaction. In vitro cell binding and in vivo evaluation in animals were performed to determine the potential of these radiolabeled compounds. Results Radiochemical yields for MUC1-[18F] SFB and MUC1-FA-[18F] SFB conjugates were greater than 70% in less than 30 min synthesis time. Radiochemical purities were greater than 97% without HPLC purification, which makes these approaches amenable to automation. In vitro studies on MCF7 breast cancer cells showed that the significant amounts of the radiofluorinated conjugates were associated with cell fractions and held good affinity and specificity for MCF7 cells. In vivo characterization in Balb/c mice revealed rapid blood clearance with excretion predominantly by urinary as well as hepatobiliary systems for MUC1-[18F] SFB and MUC1-FA-[18F] SFB, respectively. Biodistribution in SCID mice bearing MCF7 xenografts, demonstrated excellent tumor uptake (12% ID/g) and favorable kinetics for MUC1-FA-[18F] SFB over MUC1-[18F]SFB. The tumor uptake was blocked by the excess co-injection of cold peptides suggesting the receptor-mediated process. Conclusion Initial PET/CT imaging of SCID mice with MCF7 xenografts, confirmed these observations. These results demonstrate that MUC1-FA-[18F] SFB may be a useful PET imaging probe for breast cancer detection and monitoring tumor response to the treatment.
Collapse
Affiliation(s)
- I Al Jammaz
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia.
| | - B Al-Otaibi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Y Al-Malki
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - A Abousekhrah
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - S M Okarvi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Luna A, Rabassa ME, Isla Larrain M, Cabaleiro P, Zwenger A, Canzoneri R, Segal-Eiras A, Abba MC, Croce MV. Breast cancer cutaneous metastases are associated to uMUC1 and sialyl Lewis x and to highly malignant primary tumors. Pathol Res Pract 2020; 216:152859. [PMID: 32081510 DOI: 10.1016/j.prp.2020.152859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 11/25/2022]
Abstract
Breast cancer spreading to different organs have been related to different molecules and mechanisms, but cutaneous metastasis remains unexplored. Increasing evidence showed that MUC1 and some of its carbohydrate associated antigens may be implicated in breast cancer metastasis. In this study we analyzed these tumor markers in order to identify breast cancer cutaneous metastatic profiles. A cohort of 26 primary tumors from breast cancer patients with cutaneous metastases were included; also, cutaneous and lymphatic node metastatic samples and primary tumors from breast cancer patients without metastases were analysed. Immunohistochemical (IHC) studies demonstrated that both underglycosylated MUC1 (uMUC1) and sialyl Lewis x (sLex) to be positively associated with cutaneous metastatic primary tumors (p < 0.05). Notably, a high percentage of tumors with cutaneous metastases were characterized as triple negative and Her2+ tumors (37.5 % and 29 %, respectively). Some discordant results were found between primary tumors and their matched cutaneous metastases. To determine if MUC1 variants may be carriers of carbohydrate antigens, subcellular fractions from a cutaneous metastatic lesion were obtained, immunoprecipitated and analyzed by Western blot. We found that the isolated uMUC1 with a molecular weight of>200 kDa was also the site for binding of anti-sLex MAb; in coincidence, a high correlation of positive IHC expression of both markers was observed. Our findings confirm that breast cancer cutaneous metastases were associated to highly malignant primary tumors and sustain the hypothesis that u-MUC1 and sLe x may drive breast cancer cutaneous metastases.
Collapse
Affiliation(s)
- A Luna
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M E Rabassa
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M Isla Larrain
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - P Cabaleiro
- Laboratorio de Patología, Citopatología e Inmunohistoquímica, Neuquén, Argentina
| | - A Zwenger
- GOCS Neuquén Hospital, Neuquén, Argentina
| | - R Canzoneri
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - A Segal-Eiras
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M V Croce
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
13
|
Sarivalasis A, Boudousquié C, Balint K, Stevenson BJ, Gannon PO, Iancu EM, Rossier L, Martin Lluesma S, Mathevet P, Sempoux C, Coukos G, Dafni U, Harari A, Bassani-Sternberg M, Kandalaft LE. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J Transl Med 2019; 17:391. [PMID: 31771601 PMCID: PMC6880492 DOI: 10.1186/s12967-019-02133-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Most ovarian cancer patients are diagnosed at a late stage with 85% of them relapsing after surgery and standard chemotherapy; for this reason, new treatments are urgently needed. Ovarian cancer has become a candidate for immunotherapy by reason of their expression of shared tumor-associated antigens (TAAs) and private mutated neoantigens (NeoAgs) and the recognition of the tumor by the immune system. Additionally, the presence of intraepithelial tumor infiltrating lymphocytes (TILs) is associated with improved progression-free and overall survival of patients with ovarian cancer. The aim of active immunotherapy, including vaccination, is to generate a new anti-tumor response and amplify an existing immune response. Recently developed NeoAgs-based cancer vaccines have the advantage of being more tumor specific, reducing the potential for immunological tolerance, and inducing robust immunogenicity. Methods We propose a randomized phase I/II study in patients with advanced ovarian cancer to compare the immunogenicity and to assess safety and feasibility of two personalized DC vaccines. After standard of care surgery and chemotherapy, patients will receive either a novel vaccine consisting of autologous DCs pulsed with up to ten peptides (PEP-DC), selected using an agnostic, yet personalized, epitope discovery algorithm, or a sequential combination of a DC vaccine loaded with autologous oxidized tumor lysate (OC-DC) prior to an equivalent PEP-DC vaccine. All vaccines will be administered in combination with low-dose cyclophosphamide. This study is the first attempt to compare the two approaches and to use NeoAgs-based vaccines in ovarian cancer in the adjuvant setting. Discussion The proposed treatment takes advantage of the beneficial effects of pre-treatment with OC-DC prior to PEP-DC vaccination, prompting immune response induction against a wide range of patient-specific antigens, and amplification of pre-existing NeoAgs-specific T cell clones. Trial registration This trial is already approved by Swissmedic (Ref.: 2019TpP1004) and will be registered at http://www.clinicaltrials.gov before enrollment opens.
Collapse
Affiliation(s)
- Apostolos Sarivalasis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Caroline Boudousquié
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Philippe O Gannon
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Emanuela Marina Iancu
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Laetitia Rossier
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Silvia Martin Lluesma
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Patrice Mathevet
- Women-Mother-Child Department, Service of Gynecology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Department of Pathology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Urania Dafni
- Laboratory of Biostatistics, School of Health Sciences, National and Kapodistrian, University of Athens, Athens, Greece
| | - Alexandre Harari
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Okarvi SM, AlJammaz I. Development of the Tumor-Specific Antigen-Derived Synthetic Peptides as Potential Candidates for Targeting Breast and Other Possible Human Carcinomas. Molecules 2019; 24:molecules24173142. [PMID: 31470531 PMCID: PMC6749314 DOI: 10.3390/molecules24173142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 01/26/2023] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) represents one of the most studied tumor-associated antigens for cancer immunotherapy. The receptors for HER2 are overexpressed in various human cancers, such as breast and ovarian cancer. The relatively low expression of this antigen on normal tissues makes it a clinically useful molecular target for tumor imaging and targeted therapy. HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcomes. Thus, HER2 has become an important prognostic and predictive factor, as well as a potential molecular target. Due to the heterogeneity of breast cancer and possible discordance in HER2 status between primary tumors and distant metastases, assessment of HER2 expression by noninvasive imaging is important. Molecular imaging of HER2 expression may provide essential prognostic and predictive information concerning disseminated cancer and aid in the selection of an optimal therapy. Another tumor-specific antigen is MUC1, which is silent on normal tissues, but overexpressed in almost all human epithelial cell cancers, including >90% of human breast, ovarian, pancreatic, colorectal, lung, prostate, and gastric cancers and is a promising tumor antigen with diagnostic as well as the therapeutic potential of cancer. Radiolabeled small peptide ligands are attractive as probes for molecular imaging, as they reach and bind the target receptor efficiently and clear from blood and non-target organs faster than bulky antibodies. In this study, HER2 and MUC1-based peptides were synthesized and preclinically evaluated in an effort to develop peptide-based SPECT radiopharmaceuticals derived from tumor-associated antigens for the detection of breast cancer. Our findings demonstrate that the tumor antigen peptides radiolabeled efficiently with 99mTc and showed high metabolic stability in human plasma in vitro. The data from breast tumor cell binding confirmed the high affinity (in low nanomolar range) towards respective breast cancer cell lines. In healthy mice, 99mTc-labeled peptides displayed favorable pharmacokinetics, with high excretion by the renal system. In tumor xenografts nude mice models, good uptake by the SKBR3, MCF7, and T47D tumors were found, with good tumor-to-blood and tumor to muscle ratios. Additionally, tumor lesions can be seen in γ-camera imaging. Our data suggest that based on its ability to detect HER2- and MUC1-positive breast cancer cells in vivo, 99mTc-HER2 and 99mTc-MUC1-targeted peptides may be promising tumor imaging probes and warrant further investigation.
Collapse
Affiliation(s)
- Subhani M Okarvi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Ibrahim AlJammaz
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
15
|
Scott DA, Drake RR. Glycosylation and its implications in breast cancer. Expert Rev Proteomics 2019; 16:665-680. [PMID: 31314995 PMCID: PMC6702063 DOI: 10.1080/14789450.2019.1645604] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Introduction: For decades, the role of glycans and glycoproteins in the progression of breast cancer and other cancers have been evaluated. Through extensive studies focused on elucidating the biological functions of glycosylation, researchers have been able to implicate alterations in these functions to tumor formation and metastasis. Areas covered: In this review, we summarize how changes in glycosylation are associated with tumorigenesis, with emphasis on breast cancers. An overview of the changes in N-linked and O-linked glycans associated with breast cancer tumors and biofluids are described. Recent advances in glycomics are emphasized in the context of continuing to decipher the glycosylation changes associated with breast cancer progression. Expert opinion: While changes in glycosylation have been studied in breast cancer for many years, the clinical relevance of these studies has been limited. This reflects the inherent biological and clinical heterogeneity of breast cancers. Glycomics analysis lags behind the advances in genomics and proteomics, but new approaches are emerging. A summary of known glycosylation changes associated with breast cancer is necessary to implement new findings in the context of clinical outcomes and therapeutic strategies. A better understanding of the dynamics of tumor and immune glycosylation is critical to improving emerging immunotherapeutic treatments.
Collapse
Affiliation(s)
- Danielle A Scott
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC, Proteomics Center, Medical University of South Carolina , Charleston , SC , USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC, Proteomics Center, Medical University of South Carolina , Charleston , SC , USA
| |
Collapse
|
16
|
Yamashita MSDA, Melo EO. Mucin 2 (MUC2) promoter characterization: an overview. Cell Tissue Res 2018; 374:455-463. [PMID: 30218241 DOI: 10.1007/s00441-018-2916-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
Transgenic livestock have been studied with a well-known interest in improving quantitative and qualitative traits. In order to direct heterologous gene expression, it is indispensable to identify and characterize a promoter suitable for directing the expression of the gene of interest (GOI) in a tissue-specific way. The gastrointestinal tract is a desirable target for gene expression in several mammalian models. Throughout the surface of the intestinal epithelium, there is an intricate polymer network, formed by gel-forming mucins (especially MUC2 and MUC5AC, of which MUC2 is the major one), which plays a protective role due to the formation of a physical, chemical and immunological barrier between the organism and the environment. The characterization of the gel-forming mucins is difficult because of their large size and repetitive DNA sequences and domains. The main mucin in the small and large intestine, mucin 2 (MUC2), is expressed specifically in goblet cells. MUC2 plays an important role in intestinal homeostasis and its disruption is associated with several diseases and carcinomas. This mucin is also an important marker for elucidating mechanisms that regulate differentiation of the secretory cell lineage. This review presents the state of the art of MUC2 promoter structure and functional characterization.
Collapse
Affiliation(s)
| | - Eduardo O Melo
- EMBRAPA Genetic Resources and Biotechnology, PqEB Av W5 Norte, Brasilia, DF, 70770-917, Brazil
| |
Collapse
|
17
|
Finn OJ. A Believer's Overview of Cancer Immunosurveillance and Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2018; 200:385-391. [PMID: 29311379 DOI: 10.4049/jimmunol.1701302] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
The field of tumor immunology has grown around the idea that one of the important roles of the immune system is to eliminate cancer. This idea was difficult to reconcile with the accepted notion that the immune system evolved to distinguish self from nonself and therefore tumors derived from self-tissues would not be recognized. Lack of appropriate animal models prevented experimental testing of cancer immunosurveillance. This changed with the realization that the immune system evolved to recognize danger and with the advent of mouse models deficient in one or more immune function, which showed predicted increases in susceptibility to cancer. Simultaneously, technical advances that enabled the study of the human immune system provided data for the existence of tumor-specific T cells and Abs and led to molecular identification of tumor Ags, fully validating the cancer immunosurveillance hypothesis. Immunotherapy designed to strengthen cancer immunosurveillance has achieved unprecedented clinical successes.
Collapse
Affiliation(s)
- Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232
| |
Collapse
|
18
|
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37:163. [PMID: 30031396 PMCID: PMC6054736 DOI: 10.1186/s13046-018-0817-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Gajendra Shrestha
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
- Thunder Biotech, Highland, UT USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|
19
|
O-linked mucin-type glycosylation in breast cancer. Biochem Soc Trans 2018; 46:779-788. [PMID: 29903935 PMCID: PMC6103458 DOI: 10.1042/bst20170483] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022]
Abstract
Changes in mucin-type O-linked glycosylation are seen in over 90% of breast cancers where increased sialylation is often observed and a change from branched glycans to linear glycans is often seen. There are many mechanisms involved including increased/altered expression of glycosyltransferases and relocalisation to the endoplasmic reticulum of the enzymes responsible for the addition of the first sugar, N-acetyl-d-galactosamine. It is now becoming clear that these changes can contribute to tumour growth and progression by modulating the micro-environment through glycan-sensing lectins expressed on immune cells, by modulating interactions with tumour surface receptors and by binding to selectins. The understanding of how changes in mucin-type O-linked glycosylation influence tumour growth and progression reveals new potential targets for therapeutic intervention in the treatment of breast cancer.
Collapse
|
20
|
Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018; 23:molecules23061326. [PMID: 29857542 PMCID: PMC6099590 DOI: 10.3390/molecules23061326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.
Collapse
Affiliation(s)
- Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, China.
| | - Lan Xu
- Laboratory of Antibody Structure, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201203, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and iHuman Institute, ShanghaiTech University, Shanghai 201203, China.
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, D-01307 Dresden, Germany.
- Medical Faculty, Carl Gustav Carus Technical University Dresden, D-01307 Dresden, Germany.
| |
Collapse
|
21
|
Nuti M, Turchi V, Rughetti A, Viacava P, Masci A, Castagna M, Frati L. Characterization of Monoclonal Antibody 436 Recognizing the ARG-PRO-ALA-PRO Sequence of the Polymorphic Epithelial Mucin (PEM) Protein Core in Breast Carcinoma Cells. Int J Biol Markers 2018. [DOI: 10.1177/172460089200700201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial mucins have obtained increasing clinical relevance since they were found in the serum of cancer patients and were shown to be elevated in metastatic disease. We report here the characterization of the monoclonal antibody (MAb) 436 which recognises the protein core of the polymorphic epithelial mucin (PEM) of the human breast. MAb 436 was generated by immunizing Balb/c mice with membrane-enriched fractions prepared from metastatic lesions in the axillary lymph nodes. The antigenic determinant recognized by the MAb 436 is expressed on the surface of breast cancer cells and was measured by ELISA on all of 50 cytosol preparations of primary breast tumors. Immunohistochemistry showed 98% of primary and 100% of metastatic breast cancer lesions to be positive with the 436 antigenic determinant expressed both in the cytoplasm and at the plasma membrane level of the tumor cells. Moreover, the antigen was expressed in a homogeneous fashion (80-100% of the total number of tumor cells) in more than 60% of the tumors. Reactivity with normal tissues was rare and scattered and restricted to glandular structures particularly at the luminal border level except for the distal and collecting tubules of adult and fetal kidney, where a cytoplasmic 436 antigen distribution was observed. Other cancers proved positive but the reactivity was always variable and heterogeneous. The antigen recognized by MAb 436 appears in Western Blotting as a Mr of more than 200,000 daltons protein resolved in two bands. Epitope mapping experiments using overlapping octapeptides in the repeat unit of the PEM identified in the RPAP (Arg-Pro-Ala-Pro) sequence the binding site of the 436 antigen. With the selective reactivity shown and the homogeneous expression of the corresponding epitope in breast cancer cells of primary and metastic lesions, the MAb 436 represents a good reagent with potential application in the diagnosis and therapy of breast cancer.
Collapse
Affiliation(s)
- M. Nuti
- Department of Experimental Medicine, University of Roma, Roma
| | - V. Turchi
- Department of Experimental Medicine, University of Roma, Roma
| | - A. Rughetti
- Department of Experimental Medicine, University of Roma, Roma
| | - P. Viacava
- Institute of Pathological Anatomy, University of Pisa, Pisa - Italy
| | - A.M. Masci
- Department of Experimental Medicine, University of Roma, Roma
| | - M. Castagna
- Institute of Pathological Anatomy, University of Pisa, Pisa - Italy
| | - L. Frati
- Department of Experimental Medicine, University of Roma, Roma
| |
Collapse
|
22
|
Seregni E, Botti C, Bajetta E, Ferrari L, Martinetti A, Nerini-Molteni S, Bombardieri E. Hormonal Regulation of MUC1 Expression. Int J Biol Markers 2018; 14:29-35. [PMID: 10367247 DOI: 10.1177/172460089901400106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several circulating mucinous markers, including CA 15.3, MCA, CA 459, CASA, and Truquant BR, are secreted products of the polymorphic MUC1 gene, and are used as diagnostic tools in patients with breast cancer. In clinical practice the measurement of the levels of these markers in the blood can give important information on the tumor's response to treatment and its biological behavior during disease monitoring. Since the marker levels reflect the activity of the tumor, it is important to know all factors influencing the production/secretion and the blood concentrations of MUC1 mucin. Recent findings suggest that MUC1 gene expression is regulated by steroid hormones and other substances present in the serum. Such observations are very important not only because of their biological significance but also for their clinical implications, as one approach to breast cancer therapy is based on chemical hormone manipulation. Nevertheless, we have preliminarily demonstrated that endocrine treatment in breast cancer patients does not influence the circulating CA 15.3 serum levels, so changes in marker levels are related only to the clinical evolution of the tumor.
Collapse
Affiliation(s)
- E Seregni
- Nuclear Medicine Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The question of whether human tumors express antigens that can be recognized by the immune system has been answered with a resounding YES. Most were identified through spontaneous antitumor humoral and cellular immune responses found in cancer patients and include peptides, glycopeptides, phosphopeptides, viral peptides, and peptides resulting from common mutations in oncogenes and tumor-suppressor genes, or common gene fusion events. Many have been extensively tested as candidates for anticancer vaccines. More recently, attention has been focused on the potentially large number of unique tumor antigens, mutated neoantigens, that are the predicted products of the numerous mutations revealed by exome sequencing of primary tumors. Only a few have been confirmed as targets of spontaneous immunity and immunosurveillance, and even fewer have been tested in preclinical and clinical settings. The field has been divided for a long time on the relative importance of shared versus mutated antigens in tumor surveillance and as candidates for vaccines. This question will eventually need to be answered in a head to head comparison in well-designed clinical trials. One advantage that shared antigens have over mutated antigens is their potential to be used in vaccines for primary cancer prevention. Cancer Immunol Res; 5(5); 347-54. ©2017 AACR.
Collapse
Affiliation(s)
- Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
24
|
Abstract
Development of chimeric antigen receptor (CAR) T cells have led to remarkable successes in the treatment of B-cell malignancies with anti-CD19 CAR. Here we discuss the development of novel antigen receptors for use in solid malignancies with respect to target antigens, receptor design, and T cell manipulations.
Collapse
Affiliation(s)
- David Chen
- Surgery Branch, National Cancer Institute National Institutes of Health, Bethesda, Md.
| | - James Yang
- Surgery Branch, National Cancer Institute National Institutes of Health, Bethesda, Md
| |
Collapse
|
25
|
Pett C, Cai H, Liu J, Palitzsch B, Schorlemer M, Hartmann S, Stergiou N, Lu M, Kunz H, Schmitt E, Westerlind U. Microarray Analysis of Antibodies Induced with Synthetic Antitumor Vaccines: Specificity against Diverse Mucin Core Structures. Chemistry 2017; 23:3875-3884. [PMID: 27957769 DOI: 10.1002/chem.201603921] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 01/08/2023]
Abstract
Glycoprotein research is pivotal for vaccine development and biomarker discovery. Many successful methodologies for reliably increasing the antigenicity toward tumor-associated glycopeptide structures have been reported. Deeper insights into the quality and specificity of the raised polyclonal, humoral reactions are often not addressed, despite the fact that an immunological memory, which produces antibodies with cross-reactivity to epitopes exposed on healthy cells, may cause autoimmune diseases. In the current work, three MUC1 antitumor vaccine candidates conjugated with different immune stimulants are evaluated immunologically. For assessment of the influence of the immune stimulant on antibody recognition, a comprehensive library of mucin 1 glycopeptides (>100 entries) is synthesized and employed in antibody microarray profiling; these range from small tumor-associated glycans (TN , STN , and T-antigen structures) to heavily extended O-glycan core structures (type-1 and type-2 elongated core 1-3 tri-, tetra-, and hexasaccharides) glycosylated in variable density at the five different sites of the MUC1 tandem repeat. This is one of the most extensive glycopeptide libraries ever made through total synthesis. On tumor cells, the core 2 β-1,6-N-acetylglucosaminyltransferase-1 (C2GlcNAcT-1) is down-regulated, resulting in lower amounts of the branched core 2 structures, which favor formation of linear core 1 or core 3 structures, and in particular, truncated tumor-associated antigen structures. The core 2 structures are commonly found on healthy cells and the elucidation of antibody cross-reactivity to such epitopes may predict the tumor-selectivity and safety of synthetic vaccines. With the extended mucin core structures in hand, antibody cross-reactivity toward the branched core 2 glycopeptide epitopes is explored. It is observed that the induced antibodies recognize MUC1 peptides with very high glycosylation site specificity. The nature of the antibody response is characteristically different for antibodies directed to glycosylation sites in either the immune-dominant PDTR or the GSTA domain. All antibody sera show high reactivity to the tumor-associated saccharide structures on MUC1. Extensive glycosylation with branched core 2 structures, typically found on healthy cells, abolishes antibody recognition of the antisera and suggests that all vaccine conjugates preferentially induce a tumor-specific humoral immune response.
Collapse
Affiliation(s)
- Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hui Cai
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Jia Liu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Palitzsch
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manuel Schorlemer
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Sebastian Hartmann
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Natascha Stergiou
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Horst Kunz
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
26
|
Santos do Carmo F, Ricci-Junior E, Cerqueira-Coutinho C, Albernaz MDS, Bernardes ES, Missailidis S, Santos-Oliveira R. Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: initial considerations. Int J Nanomedicine 2016; 12:53-60. [PMID: 28053523 PMCID: PMC5191850 DOI: 10.2147/ijn.s118482] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The early and specific detection of tumors remains a barrier in oncology, especially in cases such as the triple-negative breast cancer (TNBC). To address this gap, aptamers have found an important application in the recognition of tumor biomarkers such as mucin 1 (MUC1). However, there are still some difficulties in the use of aptamer, as their rapid biological clearance makes their use as drugs limited. In this study, the anti-MUC1 aptamer was used as a drug delivery system (DDS) for a radioactive polymeric nanoparticle (NP) in the imaging of TNBCs. Thus, poly(lactic-co-glycolic acid) NPs loaded with the anti-MUC1 aptamer and labeled with technetium-99m were used for a biodistribution study and imaging of TNBC. The results confirmed that the NP was successfully obtained, with a mean size of 262 nm, according to the dynamic light scattering data. The biodistribution assay in induced animal models with TNBC showed that although there was a high capture by intestine (>30%), the DDS developed had a high tumor uptake (5%) and with great in vivo imaging properties, corroborating the possibility of use of this DDS as an imaging drug for TNBC.
Collapse
Affiliation(s)
- Fagner Santos do Carmo
- Rio de Janeiro State University, Biology Institute Roberto Alcantara Gomes; Brazilian Nuclear Energy Commission, Nuclear Engineering Institute
| | | | | | - Marta de Souza Albernaz
- Rio de Janeiro State University, Biology Institute Roberto Alcantara Gomes; University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro
| | | | - Sotiris Missailidis
- Institute of Technology in Immunobiologics Bio-Manguinhos, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | |
Collapse
|
27
|
Abstract
One of the strategies to enhance immune response against tumors has been the use of vaccines against tumor-associated antigens (TAAs). MUC1 is a TAA that is overexpressed in many malignancies being linked to worse prognosis. Moreover, tumor MUC1 is hypoglycosylated revealing new epitopes that are antigenic and potential T-cell targets. TG4010 is a recombinant viral vaccine targeting MUC1, also encoding for IL-2. TG4010 has been tested in Phase I-II trials demonstrating a consistent safety profile with mild local reactions as main side effect. These studies have confirmed immune responses to the vaccine product. Clinical efficacy has been observed mainly in patients with non-small-cell lung cancer in combination with chemotherapy. Peripheral activated NK cells are currently being validated as biomarkers of response.
Collapse
Affiliation(s)
- Edurne Arriola
- Southampton NIHR Experimental Cancer Medicine Centre, Faculty of Medicine, University of Southampton Tremona Road, Southampton SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Christian Ottensmeier
- Southampton NIHR Experimental Cancer Medicine Centre, Faculty of Medicine, University of Southampton Tremona Road, Southampton SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
28
|
Okarvi SM, Al Jammaz I. Preparation and evaluation of the tumor-specific antigen-derived synthetic mucin 1 peptide: A potential candidate for the targeting of breast carcinoma. Nucl Med Biol 2016; 43:403-9. [PMID: 27179249 DOI: 10.1016/j.nucmedbio.2016.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE The goal of this study was to prepare a synthetic peptide derived from breast tumor associated antigen and to evaluate its potential as a breast cancer imaging agent. METHODS A mucin 1 derived peptide was synthesized by solid-phase peptide synthesis and examined for its radiochemical and metabolic stability. The tumor cell binding affinity of (99m)Tc-MUC1 peptide was investigated on MUC1-positive T47D and MCF7 breast cancer cell lines. In vivo biodistribution was studied in normal Balb/c mice and in vivo tumor targeting and imaging in MCF7 and T47D tumor-bearing nude mice. RESULTS The synthesized MUC1-derived peptide displayed high radiochemical and metabolic stability. In vitro tumor cell-binding on T47D and MCF7 cell lines demonstrated high affinity of (99m)Tc-MUC1 peptide towards human breast cancer cells (binding affinities in nanomolar range). Pharmacokinetic studies performed on Balb/c mice are characterized by an efficient clearance from the blood and excretion predominantly through the urinary system. In vivo tumor uptake in nude mice with MCF7 tumor xenografts was 2.77±0.63% ID/g as early as 1h p.i. whereas in nude mice with T47D human ductal breast epithelial cancer cells, the accumulation in the tumor was found to be 2.65±0.54% ID/g at 1h p.i. Also tumor lesion was detectable in γ-camera imaging. The tumor uptake values were always higher than the blood and muscle uptake, with good tumor retention and good tumor-to-blood and tumor-to-muscle ratios. A low to moderate (<5% ID/g) accumulation and retention of (99m)Tc-MUC1 was found in the major organs (i.e., lungs, stomach, liver, intestines, kidneys, etc.) in both normal and tumor-bearing mice. CONCLUSION This study suggests that (99m)Tc-MUC1 tumor-antigen peptide may be a potential candidate for the targeted imaging of MUC1-positive human tumors and warrants further investigation.
Collapse
Affiliation(s)
- Subhani M Okarvi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| | - Ibrahim Al Jammaz
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| |
Collapse
|
29
|
Lakshminarayanan V, Supekar NT, Wei J, McCurry DB, Dueck AC, Kosiorek HE, Trivedi PP, Bradley JM, Madsen CS, Pathangey LB, Hoelzinger DB, Wolfert MA, Boons GJ, Cohen PA, Gendler SJ. MUC1 Vaccines, Comprised of Glycosylated or Non-Glycosylated Peptides or Tumor-Derived MUC1, Can Circumvent Immunoediting to Control Tumor Growth in MUC1 Transgenic Mice. PLoS One 2016; 11:e0145920. [PMID: 26788922 PMCID: PMC4720451 DOI: 10.1371/journal.pone.0145920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/05/2015] [Indexed: 01/21/2023] Open
Abstract
It remains challenging to produce decisive vaccines against MUC1, a tumor-associated antigen widely expressed by pancreas, breast and other tumors. Employing clinically relevant mouse models, we ruled out such causes as irreversible T-cell tolerance, inadequate avidity, and failure of T-cells to recognize aberrantly glycosylated tumor MUC1. Instead, every tested MUC1 preparation, even non-glycosylated synthetic 9mer peptides, induced interferon gamma-producing CD4+ and CD8+ T-cells that recognized glycosylated variants including tumor-associated MUC1. Vaccination with synthetic peptides conferred protection as long as vaccination was repeated post tumor challenge. Failure to revaccinate post challenge was associated with down-regulated tumor MUC1 and MHC molecules. Surprisingly, direct admixture of MUC1-expressing tumor with MUC1-hyperimmune T-cells could not prevent tumor outgrowth or MUC1 immunoediting, whereas ex vivo activation of the hyperimmune T-cells prior to tumor admixture rendered them curative. Therefore, surrogate T-cell preactivation outside the tumor bed, either in culture or by repetitive vaccination, can overcome tumor escape.
Collapse
Affiliation(s)
- Vani Lakshminarayanan
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Nitin T. Supekar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Jie Wei
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Dustin B. McCurry
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Amylou C. Dueck
- Biostatistics, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Heidi E. Kosiorek
- Biostatistics, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Priyanka P. Trivedi
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Judy M. Bradley
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Cathy S. Madsen
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Latha B. Pathangey
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | | | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| | - Peter A. Cohen
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| | - Sandra J. Gendler
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Department of Biochemistry/Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| |
Collapse
|
30
|
Wurz GT, Kao CJ, Wolf M, DeGregorio MW. Tecemotide: an antigen-specific cancer immunotherapy. Hum Vaccin Immunother 2015; 10:3383-93. [PMID: 25483673 DOI: 10.4161/hv.29836] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The identification of tumor-associated antigens (TAA) has made possible the development of antigen-specific cancer immunotherapies such as tecemotide. One of those is mucin 1 (MUC1), a cell membrane glycoprotein expressed on some epithelial tissues such as breast and lung. In cancer, MUC1 becomes overexpressed and aberrantly glycosylated, exposing the immunogenic tandem repeat units in the extracellular domain of MUC1. Designed to target tumor associated MUC1, tecemotide is being evaluated in Phase III clinical trials for treatment of unresectable stage IIIA/IIIB non-small cell lung cancer (NSCLC) as maintenance therapy following chemoradiotherapy. Additional Phase II studies in other indications are ongoing. This review discusses the preclinical and clinical development of tecemotide, ongoing preclinical studies of tecemotide in human MUC1 transgenic mouse models of breast and lung cancer, and the potential application of these models for optimizing the timing of chemoradiotherapy and tecemotide immunotherapy to achieve the best treatment outcome for patients.
Collapse
Key Words
- ADT, androgen deprivation therapy
- APC, antigen presenting cell
- ASI, active specific immunotherapy
- BSC, best supportive care
- CEA, carcinoembryonic antigen
- CI, confidence interval
- CONSORT, consolidated standards of reporting trials
- CPA, cyclophosphamide
- CRT, chemoradiotherapy
- CTL, Cytotoxic T-lymphocyte
- Chemoradiotherapy
- DMPG, Dimyristoyl phosphatidylglycerol
- DPPC, Dipalmitoyl phosphatidylcholine
- DTH, delayed-type hypersensitivity
- ECOG, Eastern cooperative oncology group
- ELISpot, enzyme-linked immunosorbent spot
- FACT-L, functional assessment of cancer therapy-lung
- Gy, gray
- HLA, human lymphocyte antigen
- HR, hazard ratio
- IFN-γ, interferon gamma
- IL-2, Interleukin 2
- INSPIRE, stimuvax trial in Asian NSCLC patients: stimulating immune response
- ITT, intent to treat
- IgG, immunoglobulin G
- KLH, keyhole limpet hemocyanin
- LICC, L-BLP25 in colorectal cancer
- LR, locoregional
- MAP, multiple antigenic peptide
- MHC, major histocompatibility complex
- MMT, muc1-expressing mammary tumor
- MPLA, monophosphoryl lipid A
- MUC1
- MUC1, Mucin 1
- MUC1.Tg, MUC1 transgenic
- NSCLC, non-small cell lung cancer
- OH-BBN, N-butyl-N-(4-hydroxybutyl)nitrosamine
- OS, overall survival
- PBL, peripheral blood lymphocytes
- PCR, pathological complete remission
- PSA, prostate specific antigen
- PyV-mT, polyomavirus middle-T
- QOL, quality of life
- RCB, residual cancer burden
- RECIST, response evaluation criteria in solid tumors
- RTX, radiotherapy
- START, stimulating targeted antigenic responses to NSCLC
- TAA, tumor associated antigen
- TGF-β, transforming growth factor β
- TH1, T-helper type I
- TH2, T-helper type II
- TNF-α, tumor necrosis factor α
- TOI, trial outcome index
- VNTR, variable number of tandem repeats
- i.v., intravenous
- immunotherapy
- non-small cell lung cancer
- tecemotide
Collapse
Affiliation(s)
- Gregory T Wurz
- a University of California , Davis; Department of Internal Medicine; Division of Hematology and Oncology ; Sacramento , CA USA
| | | | | | | |
Collapse
|
31
|
Tavernaro I, Hartmann S, Sommer L, Hausmann H, Rohner C, Ruehl M, Hoffmann-Roeder A, Schlecht S. Synthesis of tumor-associated MUC1-glycopeptides and their multivalent presentation by functionalized gold colloids. Org Biomol Chem 2015; 13:81-97. [PMID: 25212389 DOI: 10.1039/c4ob01339e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mucin MUC1 is a glycoprotein involved in fundamental biological processes, which can be found over-expressed and with a distinctly altered glycan pattern on epithelial tumor cells; thus it is a promising target structure in the quest for effective carbohydrate-based cancer vaccines and immunotherapeutics. Natural glycopeptide antigens indicate only a low immunogenicity and a T-cell independent immune response; however, this major drawback can be overcome by coupling of glycopeptide antigens multivalently to immunostimulating carrier platforms. In particular, gold nanoparticles are well suited as templates for the multivalent presentation of glycopeptide antigens, due to their remarkably high surface-to-volume ratio in combination with their high biostability. In this work the synthesis of novel MUC1-glycopeptide antigens and their coupling to gold nanoparticles of different sizes are presented. In addition, the development of a new dot-blot immunoassay to test the potential antigen-antibody binding is introduced.
Collapse
Affiliation(s)
- Isabella Tavernaro
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Glaffig M, Palitzsch B, Stergiou N, Schüll C, Straßburger D, Schmitt E, Frey H, Kunz H. Enhanced immunogenicity of multivalent MUC1 glycopeptide antitumour vaccines based on hyperbranched polymers. Org Biomol Chem 2015; 13:10150-4. [DOI: 10.1039/c5ob01255d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A fully synthetic multivalent MUC1 glycopeptide vaccine based on a hyperbranched polyglycerol core induced IgG antibodies which strongly recognise epithelial tumour cells.
Collapse
Affiliation(s)
- M. Glaffig
- Johannes Gutenberg-University Mainz
- Institute of Organic Chemistry
- 55128 Mainz
- Germany
| | - B. Palitzsch
- Johannes Gutenberg-University Mainz
- Institute of Organic Chemistry
- 55128 Mainz
- Germany
| | - N. Stergiou
- University Medical Center
- Institute of Immunology
- Johannes Gutenberg-University Mainz
- 55101 Mainz
- Germany
| | - C. Schüll
- Johannes Gutenberg-University Mainz
- Institute of Organic Chemistry
- 55128 Mainz
- Germany
| | - D. Straßburger
- Johannes Gutenberg-University Mainz
- Institute of Organic Chemistry
- 55128 Mainz
- Germany
| | - E. Schmitt
- University Medical Center
- Institute of Immunology
- Johannes Gutenberg-University Mainz
- 55101 Mainz
- Germany
| | - H. Frey
- Johannes Gutenberg-University Mainz
- Institute of Organic Chemistry
- 55128 Mainz
- Germany
| | - H. Kunz
- Johannes Gutenberg-University Mainz
- Institute of Organic Chemistry
- 55128 Mainz
- Germany
| |
Collapse
|
33
|
Kruspe S, Mittelberger F, Szameit K, Hahn U. Aptamers as drug delivery vehicles. ChemMedChem 2014; 9:1998-2011. [PMID: 25130604 DOI: 10.1002/cmdc.201402163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/02/2014] [Indexed: 01/22/2023]
Abstract
The benefits of directed and selective therapy for systemic treatment are reasons for increased interest in exploiting aptamers for cell-specific drug delivery. Nucleic acid based pharmaceuticals represent an interesting and novel tool to counter human diseases. Combining inhibitory potential and cargo transfer upon internalization, nanocarriers as well as various therapeutics including siRNAs, chemotherapeutics, photosensitizers, or proteins can be imported via these synthetic nucleic acids. However, widespread clinical application is still hampered by obstacles that must be overcome. In this review, we give an overview of applications and recent advances in aptamer-mediated drug delivery. We also introduce prominent selection methods as well as useful approaches in choice of drug and conjugation method. We discuss the challenges that need to be considered and present strategies that have been applied to achieve intracellular delivery of effectors transported by readily internalized aptamers.
Collapse
Affiliation(s)
- Sven Kruspe
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg (Germany)
| | | | | | | |
Collapse
|
34
|
Glaffig M, Palitzsch B, Hartmann S, Schüll C, Nuhn L, Gerlitzki B, Schmitt E, Frey H, Kunz H. A Fully Synthetic Glycopeptide Antitumor Vaccine Based on Multiple Antigen Presentation on a Hyperbranched Polymer. Chemistry 2014; 20:4232-6. [DOI: 10.1002/chem.201400256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 11/07/2022]
|
35
|
Abstract
The notion that breast cancers can survive in an individual patient in a dormant state only to grow as metastatic disease in the future, is in our view incontrovertibly established. Convincing too is the evidence that surgery to remove the primary tumor often terminates dormancy resulting in accelerated relapses. Accepting that many deaths due to breast cancer might be averted were we to understand the cellular mechanisms underlying escape from dormancy, we have examined the extracellular signals produced by breast cancers derived from women with metastatic breast disease. In this perspective, we explore the role of extracellular nucleotide signaling that we have proposed constitutes a pathological axis from the transformed tumor cell to the endothelium in the service of intravasation, dissemination, extravasation and angiogenesis. A role for the dinucleotide kinase NM23/NDPK (nucleoside diphosphate kinase) secreted by breast tumor cells in the generation of signals that stimulate vascular leakiness, anti-thrombosis, endothelial migration and growth, constitutes a mechanistic basis for escape from latency and offers putative therapeutic targets for breast cancer management not previously appreciated.
Collapse
|
36
|
Humoral immune response against tumoral mucin 1 (MUC1) in breast cancer patients. Int J Biol Markers 2013; 28:318-25. [PMID: 23828406 DOI: 10.5301/jbm.5000036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2013] [Indexed: 11/20/2022]
Abstract
The aim of this study was to elucidate whether the IgG humoral immune response to breast cancer cells is directed to the aberrant mucin-1 (MUC1) associated to this type of cancer. To this aim, an adaptation of immunohistochemistry (IHC) was performed on samples of 45 breast cancer tissues, 12 benign disease tissues, and 31 normal tissues, incubated with matched serum samples from the same patients. Each serum sample was also incubated, with a modified immunocytochemistry (ICC), with MCF7 cells. In both techniques, serum was employed instead of the primary antibody. In the case of IHC, the reactivity with sera diminished when added after previous incubation of the tumor/tissue with an anti-MUC1 mAb; the reduction in reactivity was: from 93% to 44% in breast cancer tissues, and from 100% to 67% in benign disease tissues. The reactivity of normal samples (36%) remained unchanged. In the case of ICC, the reactivity with sera decreased after incubation with anti-MUC1 mAb from 71% to 16% in breast cancer tissues, from 83% to 0% in benign disease tissues, and from 52% to 10% in normal serum samples. These results were confirmed employing siRNA MUC1 transient gene knockdown. By Western blot analysis -
after immunoprecipitation (IP) of the circulating MUC1- and ELISA, the TF antigen was detected in circulating MUC1 in all breast cancer and benign samples while Tn was detected in 38% of the samples.
The existence of IgG autoantibodies against aberrantly glycosylated MUC1 may have a protective role and may contribute to a better prognosis in some patients. Enhancement of this natural immune response may constitute an alternative therapeutic strategy.
Collapse
|
37
|
Li Y, Xu Z, Wang K, Wang N, Zhu M. Network analysis of microRNAs, genes and their regulation in human bladder cancer. Biomed Rep 2013; 1:918-924. [PMID: 24649053 DOI: 10.3892/br.2013.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/16/2013] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BC) is the fifth most common malignancy occurring worldwide and a significant cause of cancer-related morbidity and mortality. Although BC is a serious health issue, studies available concerning the relationship of genes, microRNAs (miRNAs) and their host genes has been lacking. In the present study, we assessed experimentally validated data from various sources that reported the effect of miRNA on various diseases, miRNA targeting of mRNAs, and combined these data with initial transcription factor (TF) binding site predictions within miRNA promoter regions. Topology networks obtained in this study included the differentially expressed, BC-associated and global networks. The three networks may be used to assess the effect of miRNAs and their regulation in human BC. By comparing and analyzing the similarities and differences among the three networks, key nodes with the largest potential of affecting the behavior of a particular network were identified. The results also showed potentially substantially influential miRNAs and TFs, which revealed subnetworks demonstrating the mechanisms involved as well as regulatory miRNA network motifs in human BC. Regulatory pathways regarding differentially expressed elements, such as genes and miRNAs, demonstrate self-adapting associations including, self-adapting associations and feedback loops in genes MYC, TP53, PTEN and 10 differentially expressed miRNAs. The differentially expressed network partially identified the BC mechanism. miRNA-targeted human BC genes were also enriched in highly relevant pathways, cell cycle regulation and apoptosis. The present study systematically delineated the pathogenesis of BC and provided theoretical foundations for gene therapy investigators to focu attention on key genes and miRNAs in future studies.
Collapse
Affiliation(s)
- Yang Li
- College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Zhiwen Xu
- College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Kunhao Wang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ning Wang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Minghui Zhu
- College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
38
|
MUC1-specific cytotoxic T lymphocytes in cancer therapy: induction and challenge. BIOMED RESEARCH INTERNATIONAL 2012; 2013:871936. [PMID: 23509794 PMCID: PMC3591236 DOI: 10.1155/2013/871936] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/06/2012] [Indexed: 01/08/2023]
Abstract
MUC1 glycoprotein is often found overexpressed and hypoglycosylated in tumor cells from numerous cancer types. Since its discovery MUC1 has been an attractive target for antitumor immunotherapy. Indeed, in vitro and in vivo experiments have shown T-cell-specific responses against MUC1 in an HLA-restricted and HLA-unrestricted manner, although some animal models have highlighted the possible development of tolerogenic responses against this antigen. These observations permit the development of new T-cell vaccine strategies capable of inducing an MUC1-specific cytotoxic T cell response in cancer patients. Some of these strategies are now being tested in clinical trials against different types of cancer. To date, encouraging clinical responses have been observed with some MUC1 vaccines in phase II/III clinical trials. This paper compiles knowledge regarding MUC1 as a promising tumor antigen for antitumor therapeutic vaccines applicable to numerous cancers. We also summarize the results of MUC1-vaccine-based clinical trials.
Collapse
|
39
|
Progress with Tumour Vaccines. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03258519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Geng Y, Yeh K, Takatani T, King MR. Three to Tango: MUC1 as a Ligand for Both E-Selectin and ICAM-1 in the Breast Cancer Metastatic Cascade. Front Oncol 2012; 2:76. [PMID: 22866263 PMCID: PMC3406322 DOI: 10.3389/fonc.2012.00076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/03/2012] [Indexed: 02/04/2023] Open
Abstract
Cancer cell tethering and rolling on the vascular wall is facilitated by various selectin: glycoprotein interactions which lead to eventual extravasation and metastases. The aberrantly underglycosylated mucin MUC1 has been shown to both abundantly express selectin binding moieties (sialyl Lewis x and a) and to consistently expose its core epitope. Flow cytometry was used to determine MUC1 expression on ZR-75-1 and MCF7 cells, while immunofluorescence microscopy was used to confirm the aberrant form of MUC1 and MUC1:ICAM-1 interactions. Each cell line was then perfused through combined E-selectin and ICAM-1 coated microtubes, as a model of the microvascular endothelium. ZR-75-1 and MCF7 were found to express abundant and low levels of underglycosylated MUC1, respectively. The rolling/adhesion profiles showed that ZR-75-1 cells, when compared to MCF7 cells, interact with E-selectin more efficiently resulting in sufficiently slow rolling velocities to form MUC1:ICAM-1 interactions thereby facilitating firm adhesion. The purpose and novelty of this work is the demonstration of the synergistic adhesion capabilities of MUC1 in the metastatic adhesion cascade, where the observed differential adhesion is consistent with the relative metastatic potential of the ZR-75-1 (highly metastatic) and MCF7 (weakly metastatic) cell lines.
Collapse
Affiliation(s)
- Yue Geng
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | | | | | | |
Collapse
|
41
|
Semaan SM, Wang X, Marshall AG, Sang QXA. Identification of Potential Glycoprotein Biomarkers in Estrogen Receptor Positive (ER+) and Negative (ER-) Human Breast Cancer Tissues by LC-LTQ/FT-ICR Mass Spectrometry. J Cancer 2012; 3:269-84. [PMID: 22773931 PMCID: PMC3390597 DOI: 10.7150/jca.4592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/20/2012] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is the second most fatal cancer in American women. To increase the life expectancy of patients with breast cancer new diagnostic and prognostic biomarkers and drug targets must be identified. A change in the glycosylation on a glycoprotein often causes a change in the function of that glycoprotein; such a phenomenon is correlated with cancerous transformation. Thus, glycoproteins in human breast cancer estrogen receptor positive (ER+) tissues and those in the more advanced stage of breast cancer, estrogen receptor negative (ER-) tissues, were compared. Glycoproteins showing differences in glycosylation were examined by 2-dimensional gel electrophoresis with double staining (glyco- and total protein staining) and identified by reversed-phase nano-liquid chromatography coupled with a hybrid linear quadrupole ion trap/ Fourier transform ion cyclotron resonance mass spectrometer. Among the identified glycosylated proteins are alpha 1 acid glycoprotein, alpha-1-antitrypsin, calmodulin, and superoxide dismutase mitochondrial precursor that were further verified by Western blotting for both ER+ and ER- human breast tissues. Results show the presence of a possible glycosylation difference in alpha-1-antitrypsin, a potential tumor-derived biomarker for breast cancer progression, which was expressed highest in the ER- samples.
Collapse
Affiliation(s)
- Suzan M Semaan
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics
| | | | | | | |
Collapse
|
42
|
Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 2012; 18:4206-14. [PMID: 21838685 DOI: 10.2174/092986711797189600] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/15/2011] [Accepted: 07/17/2011] [Indexed: 12/25/2022]
Abstract
Aptamers are a special class of nucleic acid molecules that are beginning to be investigated for clinical use. These small RNA/DNA molecules can form secondary and tertiary structures capable of specifically binding proteins or other cellular targets; they are essentially a chemical equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small in size, and non-immunogenic. Since the discovery of aptamers in the early 1990s, great efforts have been made to make them clinically relevant for diseases like cancer, HIV, and macular degeneration. In the last two decades, many aptamers have been clinically developed as inhibitors for targets such as vascular endothelial growth factor (VEGF) and thrombin. The first aptamer based therapeutic was FDA approved in 2004 for the treatment of age-related macular degeneration and several other aptamers are currently being evaluated in clinical trials. With advances in targeted-therapy, imaging, and nanotechnology, aptamers are readily considered as potential targeting ligands because of their chemical synthesis and ease of modification for conjugation. Preclinical studies using aptamer-siRNA chimeras and aptamer targeted nanoparticle therapeutics have been very successful in mouse models of cancer and HIV. In summary aptamers are in several stages of development, from pre-clinical studies to clinical trials and even as FDA approved therapeutics. In this review, we will discuss the current state of aptamers in clinical trials as well as some promising aptamers in pre-clinical development.
Collapse
Affiliation(s)
- X Ni
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine 600 N Wolfe St., Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
43
|
Geng Y, Marshall JR, King MR. Glycomechanics of the metastatic cascade: tumor cell-endothelial cell interactions in the circulation. Ann Biomed Eng 2011; 40:790-805. [PMID: 22101756 DOI: 10.1007/s10439-011-0463-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/02/2011] [Indexed: 02/07/2023]
Abstract
Hydrodynamic shear force plays an important role in the leukocyte adhesion cascade that involves the tethering and rolling of cells along the endothelial layer, their firm adhesion or arrest, and their extravasation or escape from the circulatory system by inducing passive deformation, or cell flattening, and microvilli stretching, as well as regulating the expression, distribution, and conformation of adhesion molecules on leukocytes and the endothelial layer. Similarly, the dissemination of circulating tumor cells (CTCs) from the primary tumor sites is believed to involve tethering, rolling, and firm adhesion steps before their eventual extravasation which leads to secondary tumor sites (metastasis). Of particular importance to both the leukocyte adhesion cascade and the extravasation of CTCs, glycoproteins are involved in all three steps (capture, rolling, and firm adhesion) and consist of a variety of important selectin ligands. This review article provides an overview of glycoprotein glycosylation associated with the abnormal glycan expression on cancer cell surfaces, where well-established and novel selectin ligands that are cancer related are discussed. An overview of computational approaches on the effects of fluid mechanical force on glycoprotein mediated cancer cell rolling and adhesion is presented with a highlight of recent flow-based and selectin-mediated cell capturing/enriching devices. Finally, as an important branch of the glycoprotein family, mucins, specifically MUC1, are discussed in the context of their aberrant expression on cancer cells and their role as cancer cell adhesion molecules. Since metastasis relies heavily on glycoprotein interactions in the bloodstream where the fluid shear stress highly regulates cell adhesion forces, it is important to study and understand the glycomechanics of all relevant glycoproteins (well-established and novel) as they relate to the metastatic cascade.
Collapse
Affiliation(s)
- Yue Geng
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
44
|
von Mensdorff-Pouilly S, Moreno M, Verheijen RHM. Natural and Induced Humoral Responses to MUC1. Cancers (Basel) 2011; 3:3073-103. [PMID: 24212946 PMCID: PMC3759187 DOI: 10.3390/cancers3033073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/29/2023] Open
Abstract
MUC1 is a membrane-tethered mucin expressed on the ductal cell surface of glandular epithelial cells. Loss of polarization, overexpression and aberrant glycosylation of MUC1 in mucosal inflammation and in adenocarcinomas induces humoral immune responses to the mucin. MUC1 IgG responses have been associated with a benefit in survival in patients with breast, lung, pancreatic, ovarian and gastric carcinomas. Antibodies bound to the mucin may curb tumor progression by restoring cell-cell interactions altered by tumor-associated MUC1, thus preventing metastatic dissemination, as well as counteracting the immune suppression exerted by the molecule. Furthermore, anti-MUC1 antibodies are capable of effecting tumor cell killing by antibody-dependent cell-mediated cytotoxicity. Although cytotoxic T cells are indispensable to achieve anti-tumor responses in advanced disease, abs to tumor-associated antigens are ideally suited to address minimal residual disease and may be sufficient to exert adequate immune surveillance in an adjuvant setting, destroying tumor cells as they arise or maintaining occult disease in an equilibrium state. Initial evaluation of MUC1 peptide/glycopeptide mono and polyvalent vaccines has shown them to be immunogenic and safe; anti-tumor responses are scarce. Progress in carbohydrate synthesis has yielded a number of sophisticated substrates that include MUC1 glycopeptide epitopes that are at present in preclinical testing. Adjuvant vaccination with MUC1 glycopeptide polyvalent vaccines that induce strong humoral responses may prevent recurrence of disease in patients with early stage carcinomas. Furthermore, prophylactic immunotherapy targeting MUC1 may be a strategy to strengthen immune surveillance and prevent disease in subjects at hereditary high risk of breast, ovarian and colon cancer.
Collapse
Affiliation(s)
- Silvia von Mensdorff-Pouilly
- Department of Obstetrics and Gynecology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +3170-325-9603; Fax: +3120-444-3114
| | - Maria Moreno
- Department of Obstetrics and Gynecology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; E-Mail:
| | - René H. M. Verheijen
- Department of Woman & Baby, Division of Surgical & Oncological Gynaecology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3508 GA, The Netherlands; E-Mail:
| |
Collapse
|
45
|
Alatrash G, Molldrem JJ. Vaccines as consolidation therapy for myeloid leukemia. Expert Rev Hematol 2011; 4:37-50. [PMID: 21322777 DOI: 10.1586/ehm.10.80] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunotherapy for myeloid leukemias remains a cornerstone in the management of this highly aggressive group of malignancies. Allogeneic (allo) stem cell transplantation (SCT), which can be curative in acute and chronic myeloid leukemias, exemplifies the success of immunotherapy for cancer management. However, because of its nonspecific immune response against normal tissue, allo-SCT is associated with high rates of morbidity and mortality, secondary to graft-versus-host disease, which can occur in up to 50% of allo-SCT recipients. Targeted immunotherapy using leukemia vaccines has been heavily investigated, as these vaccines elicit specific immune responses against leukemia cells while sparing normal tissue. Peptide and cellular vaccines have been developed against tumor-specific and leukemia-associated self-antigens. Although not yet considered the standard of care, leukemia vaccines continue to show promising results in the management of the myeloid leukemias.
Collapse
Affiliation(s)
- Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 900, Houston, TX 77030, USA
| | | |
Collapse
|
46
|
Van Elssen CHMJ, Frings PWH, Bot FJ, Van de Vijver KK, Huls MB, Meek B, Hupperets P, Germeraad WTV, Bos GMJ. Expression of aberrantly glycosylated Mucin-1 in ovarian cancer. Histopathology 2011; 57:597-606. [PMID: 20955385 DOI: 10.1111/j.1365-2559.2010.03667.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS Mucin 1 (MUC1) is an important tumour-associated antigen (TAA), both overexpressed and aberrantly glycosylated in adenocarcinomas. The aim of this study was to examine the MUC1-glycosylation status of primary ovarian adenocarcinomas and metastatic lesions. METHODS AND RESULTS Paraffin-embedded tissue sections of 37 primary ovarian adenocarcinomas representing all histotypes (22 serous, five mucinous, two clear-cell, eight endometrioid), four serous borderline tumours with intraepithelial carcinoma, seven sections of ovarian endometriosis and 13 metastatic lesions were analysed by immunohistochemistry. Non-neoplastic ovarian surface epithelium and serous cystadenomas were used as controls. All epithelia expressed MUC1 protein. Of primary tumours, 76% expressed the differentiation-dependent glycoform and 84% the cancer-associated glycoform (Tn/Sialyl-Tn-epitopes). In metastatic lesions this was 77% and 85%, respectively. Notably, in 57% of ovarian endometriosis and 75% of intraepithelial lesions, the cancer-associated MUC1 epitopes were expressed, whereas normal ovarian surface epithelium and serous cystadenomas did not express these epitopes. CONCLUSIONS The underglycosylated MUC1 epitopes are expressed by all histotypes of primary ovarian adenocarcinomas, by the vast majority of metastatic lesions and by possible ovarian cancer precursor lesions, but not by normal ovarian tissue. These results indicate that MUC1-associated Tn/STn-epitopes are important targets for immunotherapy and diagnostic imaging in ovarian cancer patients.
Collapse
Affiliation(s)
- Catharina H M J Van Elssen
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chakraborty S, Bonthu N, Swanson BJ, Batra SK. Role of mucins in the skin during benign and malignant conditions. Cancer Lett 2010; 301:127-41. [PMID: 21146919 DOI: 10.1016/j.canlet.2010.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 10/31/2010] [Accepted: 11/07/2010] [Indexed: 12/12/2022]
Abstract
Skin-related diseases comprise a major health challenge to the practicing physician, and constitute a significant psychological, social and financial burden to the society. Further, skin cancer, especially non-melanoma skin cancer is currently the leading type of malignancy in the Western world. Given the huge burden of skin diseases, there is growing emphasis on understanding their pathophysiology, and towards their early detection. Mucins are high-molecular weight O- and N-linked glycoproteins that have emerged in recent years as important molecules in maintaining health and in promoting or protecting against inflammation and cancer. They have also begun to emerge as highly specific diagnostic and prognostic markers and novel therapeutic targets in several malignant disorders. However, their role in cutaneous pathologies has remained largely obscured. The present review provides the expression patterns and proposed role of mucins in the healthy skin and various benign and malignant skin diseases. The review has immense clinical significance as the availability of highly specific reagents including monoclonal antibodies against mucins makes them extremely attractive targets for specific diagnosis and/or immunotherapy of benign and malignant cutaneous diseases.
Collapse
Affiliation(s)
- Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
49
|
Abstract
The Cancer Report from the World Health Organization states that in the year 2000 12% of all death cases worldwide were caused by cancer. In the western world, the cancer death rates are often devastating, being at about 25%. This fact stresses the urgency to find effective cures against malignant diseases. New approaches in the treatment of cancer focus on the development of immunotherapies to fight the disease. Besides other methods, the usage of tumor-specific RNA as part of vaccines is investigated lately. RNA, administered alone or used for transfection of dendritic cells, shows several advantages as a vaccine including feasibility, applicability, safeness, and effectiveness when it comes to the generation of immune responses. This review concentrates on results from in vitro experiments and recent trials using RNA vaccines to present an overview about this specific strategy.
Collapse
|
50
|
Beckhove P, Warta R, Lemke B, Stoycheva D, Momburg F, Schnölzer M, Warnken U, Schmitz-Winnenthal H, Ahmadi R, Dyckhoff G, Bucur M, Jünger S, Schueler T, Lennerz V, Woelfel T, Unterberg A, Herold-Mende C. Rapid T cell-based identification of human tumor tissue antigens by automated two-dimensional protein fractionation. J Clin Invest 2010; 120:2230-42. [PMID: 20458140 DOI: 10.1172/jci37646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 03/17/2010] [Indexed: 11/17/2022] Open
Abstract
Identifying the antigens that have the potential to trigger endogenous antitumor responses in an individual cancer patient is likely to enhance the efficacy of cancer immunotherapy, but current methodologies do not efficiently identify such antigens. This study describes what we believe to be a new method of comprehensively identifying candidate tissue antigens that spontaneously cause T cell responses in disease situations. We used the newly developed automated, two-dimensional chromatography system PF2D to fractionate the proteome of human tumor tissues and tested protein fractions for recognition by preexisting tumor-specific CD4+ Th cells and CTLs. Applying this method using mice transgenic for a TCR that recognizes an OVA peptide presented by MHC class I, we demonstrated efficient separation, processing, and cross-presentation to CD8+ T cells by DCs of OVA expressed by the OVA-transfected mouse lymphoma RMA-OVA. Applying this method to human tumor tissues, we identified MUC1 and EGFR as tumor-associated antigens selectively recognized by T cells in patients with head and neck cancer. Finally, in an exemplary patient with a malignant brain tumor, we detected CD4+ and CD8+ T cell responses against two novel antigens, transthyretin and calgranulin B/S100A9, which were expressed in tumor and endothelial cells. The immunogenicity of these antigens was confirmed in 4 of 10 other brain tumor patients. This fast and inexpensive method therefore appears suitable for identifying candidate T cell antigens in various disease situations, such as autoimmune and malignant diseases, without being restricted to expression by a certain cell type or HLA allele.
Collapse
Affiliation(s)
- Philipp Beckhove
- Translational Immunology Unit, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|