1
|
He Y, Tian R, Xu D, Wu Y, Rina S, Chen T, Guan Y, Xie T, Ying T, Xie F, Han J. Preclinical evaluation and pilot clinical study of [ 68Ga]Ga-NOTA-H006 for non-invasive PET imaging of 5T4 oncofetal antigen. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06941-1. [PMID: 39377811 DOI: 10.1007/s00259-024-06941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE Trophoblast glycoprotein, the so-called 5T4, is an oncofetal antigen expressed in many different cancers. However, no 5T4-specific radioligand is employed in the clinic for non-invasive diagnosis. Thus, the aim of the current study was to develop a PET radiotracer for imaging 5T4 expression in preclinical and clinical stages. METHODS A VHH library was constructed by camel immunization. The specificity of the VHHs toward 5T4 antigen was screened through phage display biopanning and periplasmic extract enzyme-linked immunosorbent assay. 1,4,7-Triazacyclononane-1,4,7-triacetate acid (NOTA) derivative was conjugated to the selected VHH. After radiolabeling, microPET/CT and ex vivo biodistribution were conducted using BxPC-3 and MDA-MB-468 tumor-bearing mice. Cold VHH was co-injected with the tracer to challenge its binding in vivo. For the pilot clinical study, PET/CT images were acquired at 1 h after injection of tracer in patients with pathologically confirmed primary and metastatic tumors. RESULTS A library with a capacity of 1.2 × 1012 colony-forming units was constructed after successful camel immunization. Nb1-40 with a median effect concentration of 0.43 nM was selected. After humanization, the resulting H006 maintained a high affinity towards 5T4. [68Ga]Ga-NOTA-H006 with the molar activities of 6.48-54.2 GBq/µmol was prepared with high radiochemical purity (> 98%). Using [68Ga]Ga-NOTA-H006, microPET/CT revealed a clear visualization of 5T4 expression in BxPC-3 tumor-bearing mice. Ex vivo biodistribution showed that the highest tumor-to-blood ratio (∼ 3-fold) and tumor-to-muscle ratio (∼ 5-fold) were achieved at 60 min post-injection. Co-injection of the cold H006 at a dose of 1.5 mg/kg significantly reduced the tumor uptake (p < 0.0001). In the pilot clinical study, [68Ga]Ga-NOTA-H006 demonstrated its capacity to map 5T4-positive lesions in humans and yielded a mean effective dose of 3.4 × 10- 2 mSv/MBq. CONCLUSIONS [68Ga]Ga-NOTA-H006, which can visualize 5T4 expression in vivo, has been successfully developed. This opens up opportunities for non-invasively studying 5T4 expression through nuclear medicine. Further clinical investigations are warranted to explore its clinical value in disease progression and companion diagnosis.
Collapse
Affiliation(s)
- Yingfang He
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China
| | - Ruhua Tian
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Dong Xu
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfei Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200233, China
| | - Sa Rina
- Huahe Pharmaceutical Co., Ltd, Shanghai, China
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200233, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200233, China.
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.
| |
Collapse
|
2
|
Nelson MH, Fritzell S, Miller R, Werchau D, Van Citters D, Nilsson A, Misher L, Ljung L, Bader R, Deronic A, Chunyk AG, Schultz L, Varas LA, Rose N, Håkansson M, Gross J, Furebring C, Pavlik P, Sundstedt A, Veitonmäki N, Ramos HJ, Säll A, Dahlman A, Bienvenue D, von Schantz L, McMahan CJ, Askmyr M, Hernandez-Hoyos G, Ellmark P. The Bispecific Tumor Antigen-Conditional 4-1BB x 5T4 Agonist, ALG.APV-527, Mediates Strong T-Cell Activation and Potent Antitumor Activity in Preclinical Studies. Mol Cancer Ther 2023; 22:89-101. [PMID: 36343381 PMCID: PMC9808321 DOI: 10.1158/1535-7163.mct-22-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
4-1BB (CD137) is an activation-induced costimulatory receptor that regulates immune responses of activated CD8 T and natural killer cells, by enhancing proliferation, survival, cytolytic activity, and IFNγ production. The ability to induce potent antitumor activity by stimulating 4-1BB on tumor-specific cytotoxic T cells makes 4-1BB an attractive target for designing novel immuno-oncology therapeutics. To minimize systemic immune toxicities and enhance activity at the tumor site, we have developed a novel bispecific antibody that stimulates 4-1BB function when co-engaged with the tumor-associated antigen 5T4. ALG.APV-527 was built on the basis of the ADAPTIR bispecific platform with optimized binding domains to 4-1BB and 5T4 originating from the ALLIGATOR-GOLD human single-chain variable fragment library. The epitope of ALG.APV-527 was determined to be located at domain 1 and 2 on 4-1BB using X-ray crystallography. As shown in reporter and primary cell assays in vitro, ALG.APV-527 triggers dose-dependent 4-1BB activity mediated only by 5T4 crosslinking. In vivo, ALG.APV-527 demonstrates robust antitumor responses, by inhibiting growth of established tumors expressing human 5T4 followed by a long-lasting memory immune response. ALG.APV-527 has an antibody-like half-life in cynomolgus macaques and was well tolerated at 50.5 mg/kg. ALG.APV-527 is uniquely designed for 5T4-conditional 4-1BB-mediated antitumor activity with potential to minimize systemic immune activation and hepatotoxicity while providing efficacious tumor-specific responses in a range of 5T4-expressing tumor indications as shown by robust activity in preclinical in vitro and in vivo models. On the basis of the combined preclinical dataset, ALG.APV-527 has potential as a promising anticancer therapeutic for the treatment of 5T4-expressing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jane Gross
- Aptevo Therapeutics Inc., Seattle, Washington
| | | | | | | | | | | | - Anna Säll
- Alligator Bioscience AB, Lund, Sweden
| | | | | | | | | | | | | | - Peter Ellmark
- Alligator Bioscience AB, Lund, Sweden.,Department of Immunotechnology, Lund University, Lund, Sweden.,Corresponding Author: Peter Ellmark, Alligator Bioscience, Medicon Village, 223 81 Lund, Sweden. Phone: 467-9721-2739; E-mail:
| |
Collapse
|
3
|
Tsuboi A. LRR-Containing Oncofetal Trophoblast Glycoprotein 5T4 Shapes Neural Circuits in Olfactory and Visual Systems. Front Mol Neurosci 2020; 13:581018. [PMID: 33192298 PMCID: PMC7655536 DOI: 10.3389/fnmol.2020.581018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
In mammals, the sensory experience can regulate the development of various brain structures, including the cortex, hippocampus, retina, and olfactory bulb (OB). Odor experience-evoked neural activity drives the development of dendrites on excitatory projection neurons in the OB, such as mitral and tufted cells, as well as inhibitory interneurons. OB interneurons are generated continuously in the subventricular zone and differentiate into granule cells (GCs) and periglomerular cells (PGCs). However, it remains unknown what role each type of OB interneuron plays in controlling olfactory behaviors. Recent studies showed that among the various types of OB interneurons, a subtype of GCs expressing oncofetal trophoblast glycoprotein 5T4 is required for simple odor detection and discrimination behaviors. Mouse 5T4 (also known as Tpbg) is a type I membrane glycoprotein whose extracellular domain contains seven leucine-rich repeats (LRRs) sandwiched between characteristic LRR-N and LRR-C regions. Recently, it was found that the developmental expression of 5T4 increases dramatically in the retina just before eye-opening. Single-cell transcriptomics further suggests that 5T4 is involved in the development and maintenance of functional synapses in a subset of retinal interneurons, including rod bipolar cells (RBCs) and amacrine cells (ACs). Collectively, 5T4, expressed in interneurons of the OB and retina, plays a key role in sensory processing in the olfactory and visual systems.
Collapse
Affiliation(s)
- Akio Tsuboi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Cappuccini F, Bryant R, Pollock E, Carter L, Verrill C, Hollidge J, Poulton I, Baker M, Mitton C, Baines A, Meier A, Schmidt G, Harrop R, Protheroe A, MacPherson R, Kennish S, Morgan S, Vigano S, Romero PJ, Evans T, Catto J, Hamdy F, Hill AVS, Redchenko I. Safety and immunogenicity of novel 5T4 viral vectored vaccination regimens in early stage prostate cancer: a phase I clinical trial. J Immunother Cancer 2020; 8:e000928. [PMID: 32591433 PMCID: PMC7319775 DOI: 10.1136/jitc-2020-000928] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) has been under investigation as a target for antigen-specific immunotherapies in metastatic disease settings for the last two decades leading to a licensure of the first therapeutic cancer vaccine, Sipuleucel-T, in 2010. However, neither Sipuleucel-T nor other experimental PCa vaccines that emerged later induce strong T-cell immunity. METHODS In this first-in-man study, VANCE, we evaluated a novel vaccination platform based on two replication-deficient viruses, chimpanzee adenovirus (ChAd) and MVA (Modified Vaccinia Ankara), targeting the oncofetal self-antigen 5T4 in early stage PCa. Forty patients, either newly diagnosed with early-stage PCa and scheduled for radical prostatectomy or patients with stable disease on an active surveillance protocol, were recruited to the study to assess the vaccine safety and T-cell immunogenicity. Secondary and exploratory endpoints included immune infiltration into the prostate, prostate-specific antigen (PSA) change, and assessment of phenotype and functionality of antigen-specific T cells. RESULTS The vaccine had an excellent safety profile. Vaccination-induced 5T4-specific T-cell responses were measured in blood by ex vivo IFN-γ ELISpot and were detected in the majority of patients with a mean level in responders of 198 spot-forming cells per million peripheral blood mononuclear cells. Flow cytometry analysis demonstrated the presence of both CD8+ and CD4+ polyfunctional 5T4-specific T cells in the circulation. 5T4-reactive tumor-infiltrating lymphocytes were isolated from post-treatment prostate tissue. Some of the patients had a transient PSA rise 2-8 weeks following vaccination, possibly indicating an inflammatory response in the target organ. CONCLUSIONS An excellent safety profile and T-cell responses elicited in the circulation and also detected in the prostate gland support the evaluation of the ChAdOx1-MVA 5T4 vaccine in efficacy trials. It remains to be seen if this vaccination strategy generates immune responses of sufficient magnitude to mediate clinical efficacy and whether it can be effective in late-stage PCa settings, as a monotherapy in advanced disease or as part of multi-modality PCa therapy. To address these questions, the phase I/II trial, ADVANCE, is currently recruiting patients with intermediate-risk PCa, and patients with advanced metastatic castration-resistant PCa, to receive this vaccine in combination with nivolumab. TRIAL REGISTRATION The trial was registered with the U.S. National Institutes of Health (NIH) Clinical Trials Registry (ClinicalTrials.gov identifier NCT02390063).
Collapse
Affiliation(s)
- Federica Cappuccini
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Richard Bryant
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK
- Department of Urology, Churchill Hospital, Oxford, UK
| | - Emily Pollock
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Lucy Carter
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University, Oxford, UK
| | - Julianne Hollidge
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK
| | - Ian Poulton
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Megan Baker
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Celia Mitton
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Andrea Baines
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | | | | | | | - Andrew Protheroe
- Department of Oncology, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford, UK
| | | | - Steven Kennish
- Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Susan Morgan
- Department of Pathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Selena Vigano
- Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pedro J Romero
- Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - James Catto
- Academic Urology Unit, The University of Sheffield, Sheffield, UK
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK
- Department of Urology, Churchill Hospital, Oxford, UK
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Irina Redchenko
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| |
Collapse
|
5
|
Wan YL, Sapra P, Bolton J, Chua JX, Durrant LG, Stern PL. Combination Treatment with an Antibody-Drug Conjugate (A1mcMMAF) Targeting the Oncofetal Glycoprotein 5T4 and Carboplatin Improves Survival in a Xenograft Model of Ovarian Cancer. Target Oncol 2020; 14:465-477. [PMID: 31332693 PMCID: PMC6684567 DOI: 10.1007/s11523-019-00650-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Recurrence occurs in over 75% of women with epithelial ovarian cancer despite optimal treatment. Selectively killing tumour cells thought to initiate relapse using an antibody–drug conjugate could prolong progression-free survival and offer an improved side-effect profile. A1mcMMAF is an antibody–drug conjugate designed to target cells expressing the tumour-associated antigen 5T4. It has shown to be efficacious in various cell line models and have a greater impact when combined with routine chemotherapeutic regimes. Objectives This study aims to explore the potential for the use of a 5T4 antibody–drug conjugate in women with ovarian cancer both as a monotherapy and in combination with platinum-based chemotherapy. Methods Immunohistochemical analysis was used to assess 5T4 expression in tumours from patients with ovarian cancer. Effectiveness of A1mcMMAF therapy as a single agent and in combination with carboplatin was assessed in vitro in the ovarian cancer cell line SKOV3 and confirmed in vivo using a serial bioluminescence assay in a SKOV3 xenograft model of ovarian cancer. Results 5T4 is confirmed as suitably expressed in epithelial ovarian cancers prior to adjuvant therapy and is an independent predictor of poor survival. A1mcMMAF showed specific activity, both in vitro and in vivo, against SKOV3 ovarian cancer cells. When used in combination with carboplatin, in vivo tumour growth was inhibited resulting in prolonged survival in a SKOV3 xenograft model. Conclusions These data support further investigation of A1mcMMAF in combination with platinum-based chemotherapy in ovarian and other cancer treatments. Electronic supplementary material The online version of this article (10.1007/s11523-019-00650-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y Louise Wan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Puja Sapra
- Oncology Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, NY, 10954, USA
| | - James Bolton
- Department of Histopathology, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - Jia Xin Chua
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Lindy G Durrant
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Peter L Stern
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
6
|
Li Q, Barrett A, Vijayakrishnan B, Tiberghien A, Beard R, Rickert KW, Allen KL, Christie RJ, Marelli M, Harper J, Howard P, Wu H, Dall'Acqua WF, Tsui P, Gao C, Borrok MJ. Improved Inhibition of Tumor Growth by Diabody-Drug Conjugates via Half-Life Extension. Bioconjug Chem 2019; 30:1232-1243. [PMID: 30912649 DOI: 10.1021/acs.bioconjchem.9b00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite some clinical success with antibody-drug conjugates (ADCs) in patients with solid tumors and hematological malignancies, improvements in ADC design are still desirable due to the narrow therapeutic window of these compounds. Tumor-targeting antibody fragments have distinct advantages over monoclonal antibodies, including more rapid tumor accumulation and enhanced penetration, but are subject to rapid clearance. Half-life extension technologies such as PEGylation and albumin-binding domains (ABDs) have been widely used to improve the pharmacokinetics of many different types of biologics. PEGylation improves pharmacokinetics by increasing hydrodynamic size to reduce renal clearance, whereas ABDs extend half-life via FcRn-mediated recycling. In this study, we used an anti-oncofetal antigen 5T4 diabody conjugated with a highly potent cytotoxic pyrrolobenzodiazepine (PBD) warhead to assess and compare the effects of PEGylation and albumin binding on the in vivo efficacy of antibody fragment drug conjugates. Conjugation of 2× PEG20K to a diabody improved half-life from 40 min to 33 h, and an ABD-diabody fusion protein exhibited a half-life of 45 h in mice. In a xenograft model of breast cancer MDA-MB-436, the ABD-diabody-PBD showed greater tumor growth suppression and better tolerability than either PEG-diabody-PBD or diabody-PBD. These results suggest that the mechanism of half-life extension is an important consideration for designing cytotoxic antitumor agents.
Collapse
Affiliation(s)
| | | | | | | | - Rhiannon Beard
- Spirogen , 42 New Road , E1 2AX , London , United Kingdom
| | | | | | | | | | | | - Philip Howard
- Spirogen , 42 New Road , E1 2AX , London , United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Shi B, Wu M, Li Z, Xie Z, Wei X, Fan J, Xu Y, Ding D, Akash SH, Chen S, Cao S. Antitumor activity of a 5T4 targeting antibody drug conjugate with a novel payload derived from MMAF via C-Lock linker. Cancer Med 2019; 8:1793-1805. [PMID: 30843650 PMCID: PMC6488119 DOI: 10.1002/cam4.2066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/15/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
Antibody-drug conjugates (ADCs) belong to a promising class of biopharmaceuticals in which target-killing of tumor cells was achieved by marrying the potency of the cytotoxic payload with the tumor specificity of the antibody. Here we developed a novel ADC (ZV0508) that targets 5T4 oncofetal antigen, which is overexpressed in many carcinomas on both bulk tumor cells and cancer stem cells. A novel cytotoxic payload called Duostatin-5 (Duo-5) which was derived from monomethyl auristatin F (MMAF) was attached to a 5T4 targeting antibody (ZV05) by interchain cysteine cross-linking conjugation via a disubstituted C-Lock linker. We have investigated the antitumor efficacy of ZV0508 by in vitro and in vivo studies, and compared its antitumor activity with ZV05-mcMMAF (ZV0501), in which MMAF was linked via a conventional noncleavable maleimidocaproyl linker. As results, ZV0508 exhibited ideal antiproliferative effects through blocking cell cycle and inducing cell apoptosis. The in vivo studies revealed that both ZV0501 and ZV0508 exhibited excellent antitumor activities even at a single dose. Although ZV0508 was inferior to ZV0501 in vitro, it elicited more durable antitumor responses than ZV0501 in vivo. The superior in vivo activity of ZV0508 may be due to the combined use of the disubstituted C-Lock linker and the novel payload Duo-5, resulting in a more stable and potent ADC. Taken together, these data suggest ZV0508 is a worthy candidate for the treatment of 5T4 positive cancers.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cross-Linking Reagents
- Female
- Humans
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Male
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Targeted Therapy/methods
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Oligopeptides/pharmacology
- Tumor Cells, Cultured/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Baoying Shi
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Min Wu
- Zova Biotherapeutics IncFuyang, HangzhouChina
| | - Zhaohui Li
- Zova Biotherapeutics IncFuyang, HangzhouChina
| | | | - Xiaoyue Wei
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Jiansheng Fan
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Yingchun Xu
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Ding Ding
- Noeantigen Therapeutics (HangZhou) Co., LtdHangzhouChina
| | - Sajid Hamid Akash
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Shuqing Chen
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Sheldon Cao
- Zova Biotherapeutics IncFuyang, HangzhouChina
| |
Collapse
|
8
|
Wang R, Lai Q, Lu Y, Zhou Y, Tang L, Tao Y, Yao Y, Yu L, Liu Y, Wang Y, Zhang R, Jiang X, Gou L, Yang J. Expression of 5T4 extracellular domain fusion protein and preparation of anti-5T4 monoclonal antibody with high affinity and internalization efficiency. Protein Expr Purif 2018; 158:51-58. [PMID: 29981846 DOI: 10.1016/j.pep.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023]
Abstract
5T4, a membrane protein, is overexpressed in many tumor tissues but rarely expressed in normal tissues. Here, CHO-5T4+ cells were generated and served as the antigen to immunize mice. Hybridoma techniques were employed to produce monoclonal antibodies (mAbs). The recombinant protein of human IgG Fc-fused extracellular domain of 5T4 (5T4 ECD-Fc) was obtained from transient expression in HEK293F cells. The fusion protein 5T4 ECD-Fc and CHO-5T4+ cells were respectively utilized to screen anti-5T4 antibodies that could bind to the native antigen. In preliminary screening, three hundred and fifty mAbs were obtained. Via surface plasmon resonance and flow cytometry screening, seven anti-5T4 mAbs stood out. Among them, H6 showed a high affinity (KD = 1.6 × 10-11 M) and internalization percentage (36% for 1 h and 80% for 4 h). The molecular weight and isoelectric point of H6 were determined by LC-MS and iCIEF. Moreover, the specific reactivity of H6 was demonstrated by western blotting, flow cytometry, and immunohistochemistry, respectively. In conclusion, we produced human recombinant protein of 5T4 extracellular domain and developed high-affinity internalizing monoclonal antibodies which may be applied in the 5T4-targeting ADC therapy and basic research.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhou
- The Gastroenterology Tumor and Microenvironment Laboratory, Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Liangze Tang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Tao
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health and Healthy Food Evaluation Research Center, NO. 4 West China Teaching Hospital, Sichuan University, Chengdu, China; Guangdong Zhongsheng Pharmaceutical Co., Ltd., China
| | - Lin Yu
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruirui Zhang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Jiang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lantu Gou
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Guangdong Zhongsheng Pharmaceutical Co., Ltd., China.
| |
Collapse
|
9
|
Takahashi H, Yoshihara S, Tsuboi A. The Functional Role of Olfactory Bulb Granule Cell Subtypes Derived From Embryonic and Postnatal Neurogenesis. Front Mol Neurosci 2018; 11:229. [PMID: 30034321 PMCID: PMC6043811 DOI: 10.3389/fnmol.2018.00229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/12/2018] [Indexed: 02/01/2023] Open
Abstract
It has been shown in a variety of mammalian species that sensory experience can regulate the development of various structures, including the retina, cortex, hippocampus, and olfactory bulb (OB). In the mammalian OB, the development of dendrites in excitatory projection neurons, such as mitral and tufted cells, is well known to be dependent on odor experience. Odor experience is also involved in the development of another OB population, a subset of inhibitory interneurons that are generated in the ventricular-subventricular zone throughout life and differentiate into granule cells (GCs) and periglomerular cells. However, the roles that each type of interneuron plays in the control of olfactory behaviors are incompletely understood. We recently found that among the various types of OB interneurons, a subtype of GCs expressing the oncofetal trophoblast glycoprotein 5T4 gene is required for odor detection and discrimination behaviors. Our results suggest that embryonic-born OB interneurons, including 5T4-positive GCs, play a crucial role in fundamental olfactory responses such as simple odor detection and discrimination behaviors. By contrast, postnatal- and adult-born OB interneurons are important in the learning of more complicated olfactory behaviors. Here, we highlight the subtypes of OB GCs, and discuss their roles in olfactory processing and behavior, with a particular focus on the relative contributions of embryonically and postnatally generated subsets of GCs in rodents.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| | - Seiichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan.,Laboratory for the Molecular and Cellular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Tumor uptake of pegylated diabodies: Balancing systemic clearance and vascular transport. J Control Release 2018; 279:126-135. [DOI: 10.1016/j.jconrel.2018.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023]
|
11
|
A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors. J Neurosci 2017; 36:8210-27. [PMID: 27488640 DOI: 10.1523/jneurosci.2783-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. SIGNIFICANCE STATEMENT Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, brain function may be damaged, leading to behavior disorder. The olfactory bulb (OB) possesses various types of interneurons, including granule cells (GCs); however, the contribution that each type of interneuron makes to the control of olfactory behavior remains unknown. Here, we analyzed electrophysiologically and behaviorally the function of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic branching in OB GCs. We found that, among the various types of OB interneuron, the 5T4 GC subtype is required for odor detection and odor discrimination behaviors.
Collapse
|
12
|
Shapiro GI, Vaishampayan UN, LoRusso P, Barton J, Hua S, Reich SD, Shazer R, Taylor CT, Xuan D, Borghaei H. First-in-human trial of an anti-5T4 antibody-monomethylauristatin conjugate, PF-06263507, in patients with advanced solid tumors. Invest New Drugs 2017; 35:315-323. [PMID: 28070718 PMCID: PMC5418317 DOI: 10.1007/s10637-016-0419-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Background The antibody-drug conjugate PF-06263507 targets the cell-surface, tumor-associated antigen 5T4 and consists of a humanized IgG1 conjugated to the microtubule-disrupting agent monomethylauristatin-F by a non-cleavable maleimidocaproyl linker. In this first-in-human, dose-finding trial (NCT01891669), we evaluated safety, pharmacokinetics, and preliminary antitumor activity of PF-06263507 in pretreated patients with advanced solid tumors, unselected for 5T4 expression. starting at 0.05 mg/kg, with 25, 56, and 95% dose increments, depending on observed dose-limiting toxicities (DLTs), applying a modified continual reassessment method. Results Twenty-six patients received PF-06263507 at 0.05 to 6.5 mg/kg. The first DLT, grade 3 photophobia, occurred at 4.34 mg/kg and two additional DLTs, grade 2 keratitis and grade 1 limbal stem cell deficiency (> 2-week dosing delay), at 6.5 mg/kg. The most common adverse events (AEs) were fatigue (38.5%), photophobia (26.9%), and decreased appetite, dry eye, nausea, and thrombocytopenia (23.1% each). No treatment-related grade 4-5 AEs were reported. Systemic exposure of PF-06263507 increased in a dose-related manner. At the maximum tolerated dose (MTD, 4.34 mg/kg), mean terminal half-life for PF-06263507 and unconjugated payload were ~6 and 3 days, respectively. Payload serum concentrations were substantially lower compared with PF-06263507. No objective responses were observed. Conclusions The MTD and recommended phase II dose were determined to be 4.34 mg/kg. Ocular toxicities accounted for the DLTs observed, as previously reported with monomethylauristatin-F payloads. Further studies are warranted to investigate clinical activity of this agent in patients with 5T4-expressing tumors.Trial registration ID: NCT01891669.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, Neoplasm/adverse effects
- Antigens, Neoplasm/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/therapeutic use
- Female
- Humans
- Immunoconjugates/adverse effects
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/therapeutic use
- Keratitis/chemically induced
- Male
- Maximum Tolerated Dose
- Membrane Glycoproteins/antagonists & inhibitors
- Middle Aged
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Oligopeptides/adverse effects
- Oligopeptides/pharmacokinetics
- Oligopeptides/therapeutic use
- Photophobia/chemically induced
- Treatment Outcome
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Mayer 446, Boston, MA, 02215, USA.
| | | | | | | | | | | | | | - Carrie T Taylor
- Pfizer Oncology, La Jolla, CA, USA.
- Pfizer Early Oncology Development and Clinical Research, 10777 Science Center Drive, CB-1, San Diego, CA, 92121, USA.
| | | | | |
Collapse
|
13
|
Harper J, Lloyd C, Dimasi N, Toader D, Marwood R, Lewis L, Bannister D, Jovanovic J, Fleming R, D'Hooge F, Mao S, Marrero AM, Korade M, Strout P, Xu L, Chen C, Wetzel L, Breen S, van Vlerken-Ysla L, Jalla S, Rebelatto M, Zhong H, Hurt EM, Hinrichs MJ, Huang K, Howard PW, Tice DA, Hollingsworth RE, Herbst R, Kamal A. Preclinical Evaluation of MEDI0641, a Pyrrolobenzodiazepine-Conjugated Antibody-Drug Conjugate Targeting 5T4. Mol Cancer Ther 2017; 16:1576-1587. [PMID: 28522587 DOI: 10.1158/1535-7163.mct-16-0825] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC) are used to selectively deliver cytotoxic agents to tumors and have the potential for increased clinical benefit to cancer patients. 5T4 is an oncofetal antigen overexpressed on the cell surface in many carcinomas on both bulk tumor cells as well as cancer stem cells (CSC), has very limited normal tissue expression, and can internalize when bound by an antibody. An anti-5T4 antibody was identified and optimized for efficient binding and internalization in a target-specific manner, and engineered cysteines were incorporated into the molecule for site-specific conjugation. ADCs targeting 5T4 were constructed by site-specifically conjugating the antibody with payloads that possess different mechanisms of action, either a DNA cross-linking pyrrolobenzodiazepine (PBD) dimer or a microtubule-destabilizing tubulysin, so that each ADC had a drug:antibody ratio of 2. The resulting ADCs demonstrated significant target-dependent activity in vitro and in vivo; however, the ADC conjugated with a PBD payload (5T4-PBD) elicited more durable antitumor responses in vivo than the tubulysin conjugate in xenograft models. Likewise, the 5T4-PBD more potently inhibited the growth of 5T4-positive CSCs in vivo, which likely contributed to its superior antitumor activity. Given that the 5T4-PBD possessed both potent antitumor activity as well as anti-CSC activity, and thus could potentially target bulk tumor cells and CSCs in target-positive indications, it was further evaluated in non-GLP rat toxicology studies that demonstrated excellent in vivo stability with an acceptable safety profile. Taken together, these preclinical data support further development of 5T4-PBD, also known as MEDI0641, against 5T4+ cancer indications. Mol Cancer Ther; 16(8); 1576-87. ©2017 AACR.
Collapse
Affiliation(s)
- Jay Harper
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland.
| | - Christopher Lloyd
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - Nazzareno Dimasi
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland
| | - Dorin Toader
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland
| | - Rose Marwood
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - Leeanne Lewis
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - David Bannister
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - Jelena Jovanovic
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - Ryan Fleming
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Shenlan Mao
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Martin Korade
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Patrick Strout
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Linda Xu
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland
| | - Cui Chen
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Leslie Wetzel
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Shannon Breen
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Sanjoo Jalla
- Project Management, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Haihong Zhong
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Elaine M Hurt
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Keven Huang
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - David A Tice
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Ronald Herbst
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Adeela Kamal
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland.,Ferring Pharmaceuticals, San Diego, California
| |
Collapse
|
14
|
Alam SMK, Jasti S, Kshirsagar SK, Tannetta DS, Dragovic RA, Redman CW, Sargent IL, Hodes HC, Nauser TL, Fortes T, Filler AM, Behan K, Martin DR, Fields TA, Petroff BK, Petroff MG. Trophoblast Glycoprotein (TPGB/5T4) in Human Placenta: Expression, Regulation, and Presence in Extracellular Microvesicles and Exosomes. Reprod Sci 2017; 25:185-197. [PMID: 28481180 DOI: 10.1177/1933719117707053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Many parallels exist between growth and development of the placenta and that of cancer. One parallel is shared expression of antigens that may have functional importance and may be recognized by the immune system. Here, we characterize expression and regulation of one such antigen, Trophoblast glycoprotein (TPGB; also called 5T4), in the placenta across gestation, in placentas of preeclamptic (PE) pregnancies, and in purified microvesicles and exosomes. METHODS Trophoblast glycoprotein expression was analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. Regulation of 5T4 in cytotrophoblast cells was examined under either differentiating conditions of epidermal growth factor or under varying oxygen conditions. Microvesicles and exosomes were purified from supernatant of cultured and perfused placentas. RESULTS Trophoblast glycoprotein expression was prominent at the microvillus surface of syncytiotrophoblast and on the extravillous trophoblast cells, with minimal expression in undifferentiated cytotrophoblasts and normal tissues. Trophoblast glycoprotein expression was elevated in malignant tumors. In cytotrophoblasts, 5T4 was induced by in vitro differentiation, and its messenger RNA (mRNA) was increased under conditions of low oxygen. PE placentas expressed higher 5T4 mRNA than matched control placentas. Trophoblast glycoprotein was prominent within shed placental microvesicles and exosomes. CONCLUSION Given the potential functional and known immunological importance of 5T4 in cancer, these studies reveal a class of proteins that may influence placental development and/or sensitize the maternal immune system. In extravillous trophoblasts, 5T4 may function in epithelial-to-mesenchymal transition during placentation. The role of syncytiotrophoblast 5T4 is unknown, but its abundance in shed syncytial vesicles may signify route of sensitization of the maternal immune system.
Collapse
Affiliation(s)
- S M K Alam
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,2 Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - S Jasti
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S K Kshirsagar
- 3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - D S Tannetta
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - R A Dragovic
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - C W Redman
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - I L Sargent
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - H C Hodes
- 5 Center for Women's Health, Overland Park, KS, USA
| | - T L Nauser
- 5 Center for Women's Health, Overland Park, KS, USA
| | - T Fortes
- 6 Sparrow Hospital, Lansing, MI, USA.,7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - A M Filler
- 6 Sparrow Hospital, Lansing, MI, USA.,7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - K Behan
- 7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | | | - T A Fields
- 8 Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - B K Petroff
- 3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,9 Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - M G Petroff
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,10 Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Stern PL, Harrop R. 5T4 oncofoetal antigen: an attractive target for immune intervention in cancer. Cancer Immunol Immunother 2017; 66:415-426. [PMID: 27757559 PMCID: PMC11029567 DOI: 10.1007/s00262-016-1917-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/12/2016] [Indexed: 01/18/2023]
Abstract
The natural history of a patient's cancer is often characterised by genetic diversity and sequential sweeps of clonal dominance. It is therefore not surprising that identifying the most appropriate tumour-associated antigen for targeted intervention is challenging. The 5T4 oncofoetal antigen was identified by searching for surface molecules shared between human trophoblast and cancer cells with the rationale that they may function to allow survival of the foetus as a semi-allograft in the mother or a tumour in its host. The 5T4 protein is expressed by many different cancers but rarely in normal adult tissues. 5T4 molecules are 72 kD, heavily N-glycosylated proteins with several leucine-rich repeats which are often associated with protein-protein interactions. 5T4 expression is associated with the directional movement of cells through epithelial mesenchymal transition, potentiation of CXCL12/CXCR4 chemotaxis and inhibition of canonical Wnt/beta-catenin while favouring non-canonical pathway signalling; all processes which help drive the spread of cancer cells. The selective pattern of 5T4 tumour expression, association with a tumour-initiating phenotype plus a mechanistic involvement with cancer spread have underwritten the clinical development of different immunotherapeutic strategies including a vaccine, a tumour-targeted superantigen and an antibody drug conjugate. In addition, a chimeric antigen receptor T cell approach targeting 5T4 expressing tumour cells is in pre-clinical development. A key challenge will include how best to combine each 5T4 targeted immunotherapy with the most appropriate standard of care treatment (or adjunct therapy) to maximise the recovery of immune control and ultimately eliminate the tumour.
Collapse
Affiliation(s)
- Peter L Stern
- Institute of Cancer Studies, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Harrop
- Oxford BioMedica Plc, Windrush Court, Transport Way, Oxford, OX4 6LT, UK.
| |
Collapse
|
16
|
Maunder HE, Wright J, Kolli BR, Vieira CR, Mkandawire TT, Tatoris S, Kennedy V, Iqball S, Devarajan G, Ellis S, Lad Y, Clarkson NG, Mitrophanous KA, Farley DC. Enhancing titres of therapeutic viral vectors using the transgene repression in vector production (TRiP) system. Nat Commun 2017; 8:14834. [PMID: 28345582 PMCID: PMC5378976 DOI: 10.1038/ncomms14834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
A key challenge in the field of therapeutic viral vector/vaccine manufacturing is maximizing production. For most vector platforms, the ‘benchmark' vector titres are achieved with inert reporter genes. However, expression of therapeutic transgenes can often adversely affect vector titres due to biological effects on cell metabolism and/or on the vector virion itself. Here, we exemplify the novel ‘Transgene Repression In vector Production' (TRiP) system for the production of both RNA- and DNA-based viral vectors. The TRiP system utilizes a translational block of one or more transgenes by employing the bacterial tryptophan RNA-binding attenuation protein (TRAP), which binds its target RNA sequence close to the transgene initiation codon. We report enhancement of titres of lentiviral vectors expressing Cyclo-oxygenase-2 by 600-fold, and adenoviral vectors expressing the pro-apoptotic gene Bax by >150,000-fold. The TRiP system is transgene-independent and will be a particularly useful platform in the clinical development of viral vectors expressing problematic transgenes. The maximum titre of therapeutic viral vectors can be adversely affected by the encoded transgene. Here the authors repress transgene expression in producing cells by employing the tryptophan RNA-binding attenuation protein and show that it improves titre of RNA- and DNA-based viral vectors expressing toxic transgenes.
Collapse
Affiliation(s)
- H E Maunder
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - J Wright
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - B R Kolli
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - C R Vieira
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - T T Mkandawire
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Tatoris
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - V Kennedy
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Iqball
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - G Devarajan
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Ellis
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Y Lad
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - N G Clarkson
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - K A Mitrophanous
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - D C Farley
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| |
Collapse
|
17
|
Yoshihara SI, Takahashi H, Tsuboi A. Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner. Front Neurosci 2016; 9:514. [PMID: 26793053 PMCID: PMC4709855 DOI: 10.3389/fnins.2015.00514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/02/2022] Open
Abstract
Inhibitory interneurons in the olfactory bulb are generated continuously throughout life in the subventricular zone and differentiate into periglomerular and granule cells. Neural circuits that undergo reorganization by newborn olfactory bulb interneurons are necessary for odor detection, odor discrimination, olfactory memory, and innate olfactory responses. Although sensory experience has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and hippocampus, little is known about how sensory experience regulates the dendritic development of newborn olfactory bulb interneurons. Recent studies revealed that the 5T4 oncofetal trophoblast glycoprotein and the neuronal Per/Arnt/Sim domain protein 4 (Npas4) transcription factor regulate dendritic branching and dendritic spine formation, respectively, in olfactory bulb interneurons. Here, we summarize the molecular mechanisms that underlie the sensory input-dependent development of newborn interneurons and the formation of functional neural circuitry in the olfactory bulb.
Collapse
Affiliation(s)
- Sei-Ichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| |
Collapse
|
18
|
Leal M, Wentland J, Han X, Zhang Y, Rago B, Duriga N, Spriggs F, Kadar E, Song W, McNally J, Shakey Q, Lorello L, Lucas J, Sapra P. Preclinical Development of an anti-5T4 Antibody-Drug Conjugate: Pharmacokinetics in Mice, Rats, and NHP and Tumor/Tissue Distribution in Mice. Bioconjug Chem 2015; 26:2223-32. [PMID: 26180901 DOI: 10.1021/acs.bioconjchem.5b00205] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pharmacokinetics of an antibody (huA1)-drug (auristatin microtubule disrupting MMAF) conjugate, targeting 5T4-expressing cells, were characterized during the discovery and development phases in female nu/nu mice and cynomolgus monkeys after a single dose and in S-D rats and cynomolgus monkeys from multidose toxicity studies. Plasma/serum samples were analyzed using an ELISA-based method for antibody and conjugate (ADC) as well as for the released payload using an LC-MS/MS method. In addition, the distribution of the Ab, ADC, and released payload (cys-mcMMAF) was determined in a number of tissues (tumor, lung, liver, kidney, and heart) in two tumor mouse models (H1975 and MDA-MB-361-DYT2 models) using similar LBA and LC-MS/MS methods. Tissue distribution studies revealed preferential tumor distribution of cys-mcMMAF and its relative specificity to the 5T4 target containing tissue (tumor). Single dose studies suggests lower CL values at the higher doses in mice, although a linear relationship was seen in cynomolgus monkeys at doses from 0.3 to 10 mg/kg with no evidence of TMDD. Evaluation of DAR (drug-antibody ratio) in cynomolgus monkeys (at 3 mg/kg) indicated that at least half of the payload was still on the ADC 1 to 2 weeks after IV dosing. After multiple doses, the huA1 and conjugate data in rats and monkeys indicate that exposure (AUC) increases with increasing dose in a linear fashion. Systemic exposure (as assessed by Cmax and AUC) of the released payload increased with increasing dose, although exposure was very low and its pharmacokinetics appeared to be formation rate limited. The incidence of ADA was generally low in rats and monkeys. We will discuss cross species comparison, relationships between the Ab, ADC, and released payload exposure after multiple dosing, and insights into the distribution of this ADC with a focus on experimental design as a way to address or bypass apparent obstacles and its integration into predictive models.
Collapse
Affiliation(s)
- Mauricio Leal
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Pearl River, New York 10965, United States
| | - JoAnn Wentland
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Xiaogang Han
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Yanhua Zhang
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Brian Rago
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Nicole Duriga
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Andover, Massachusetts 01810, United States
| | - Franklin Spriggs
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Andover, Massachusetts 01810, United States
| | - Eugene Kadar
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Wei Song
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - James McNally
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Andover, Massachusetts 01810, United States
| | - Quazi Shakey
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Andover, Massachusetts 01810, United States
| | - Leslie Lorello
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Judy Lucas
- Oncology Research Unit, Pfizer Inc. , Pearl River, New York 10965, United States
| | - Puja Sapra
- Oncology Research Unit, Pfizer Inc. , Pearl River, New York 10965, United States
| |
Collapse
|
19
|
Evolving Strategies for Target Selection for Antibody-Drug Conjugates. Pharm Res 2015; 32:3494-507. [PMID: 25585957 DOI: 10.1007/s11095-015-1624-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/06/2015] [Indexed: 01/06/2023]
Abstract
Antibody-drug conjugates (ADCs) represent a promising modality for the treatment of cancer. The therapeutic strategy is to deliver a potent drug preferentially to the tumor and not normal tissues by attaching the drug to an antibody that recognizes a tumor antigen. The selection of antigen targets is critical to enabling a therapeutic window for the ADC and has proven to be surprisingly complex. We surveyed the tumor and normal tissue expression profiles of the targets of ADCs currently in clinical development. Our analysis demonstrates a surprisingly broad range of expression profiles and the inability to formalize any optimal parameters for an ADC target. In this context, we discuss additional considerations for ADC target selection, including interdependencies among biophysical properties of the drug, biological functions of the target and strategies for clinical development. The TPBG (5T4) oncofetal antigen and the anti-TPBG ADC A1-mcMMAF are highlighted to demonstrate the relevance of the target's biological function. Emerging platform technologies and novel biological insights are expanding ADC target space and transforming strategies for target selection.
Collapse
|
20
|
Hu G, Leal M, Lin Q, Affolter T, Sapra P, Bates B, Damelin M. Phenotype of TPBG Gene Replacement in the Mouse and Impact on the Pharmacokinetics of an Antibody-Drug Conjugate. Mol Pharm 2014; 12:1730-7. [PMID: 25423493 DOI: 10.1021/mp5006323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of predictive preclinical models in drug discovery is critical for compound selection, optimization, preclinical to clinical translation, and strategic decision-making. Trophoblast glycoprotein (TPBG), also known as 5T4, is the therapeutic target of several anticancer agents currently in clinical development, largely due to its high expression in tumors and low expression in normal adult tissues. In this study, mice were engineered to express human TPBG under endogenous regulatory sequences by replacement of the murine Tpbg coding sequence. The gene replacement was considered functional since the hTPBG knockin (hTPBG-KI) mice did not exhibit clinical observations or histopathological phenotypes that are associated with Tpbg gene deletion, except in rare instances. The expression of hTPBG in certain epithelial cell types and in different microregions of the brain and spinal cord was consistent with previously reported phenotypes and expression patterns. In pharmacokinetic studies, the exposure of a clinical-stage anti-TPBG antibody-drug conjugate (ADC), A1mcMMAF, was lower in hTPBG-KI versus wild-type animals, which was evidence of target-related increased clearance in hTPBG-KI mice. Thus, the hTPBG-KI mice constitute an improved system for pharmacology studies with current and future TPBG-targeted therapies and can generate more precise pharmacokinetic and pharmacodynamic data. In general the strategy of employing gene replacement to improve pharmacokinetic assessments should be broadly applicable to the discovery and development of ADCs and other biotherapeutics.
Collapse
Affiliation(s)
| | - Mauricio Leal
- §Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Pearl River, New York 10965, United States
| | - Qingcong Lin
- ∥Global Biotherapeutic Technologies, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | | | - Puja Sapra
- #Oncology Research Unit, Pfizer Inc., Pearl River, New York 10965, United States
| | - Brian Bates
- ∥Global Biotherapeutic Technologies, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Marc Damelin
- #Oncology Research Unit, Pfizer Inc., Pearl River, New York 10965, United States
| |
Collapse
|
21
|
Eisen T, Hedlund G, Forsberg G, Hawkins R. Naptumomab estafenatox: targeted immunotherapy with a novel immunotoxin. Curr Oncol Rep 2014; 16:370. [PMID: 24445502 PMCID: PMC3918406 DOI: 10.1007/s11912-013-0370-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Improvement of cancer therapy by introducing new concepts is still urgent even though there have been major advancements lately. Immunotherapy is well on the way to becoming an established tool in the cancer treatment armory. It seems that a combination of (1) activation of immune effector cells and selective targeting of them to tumors and (2) the inhibition of immune suppression often induced by the tumor itself are necessary to achieve the therapeutic goal. The immunotoxin naptumomab estafenatox was developed in an effort to activate and target the patient’s own T cells to their tumor, by fusing a superantigen (SAg) variant that activates T lymphocytes to the Fab moiety of a tumor-reactive monoclonal antibody. Naptumomab estafenatox targets the 5T4 tumor antigen, a 72-kDa oncofetal trophoblast protein expressed on many carcinomas, including renal cell carcinoma. The therapeutic effect is associated with activation of SAg-binding T cells. The SAg-binding T lymphocytes expand, differentiate to effector cells, and infiltrate the tumor. The therapeutic efficacy is most likely related to the dual mechanism of tumor cell killing: (1) direct lysis by cytotoxic T lymphocytes of tumor cells expressing the antigen recognized by the antibody moiety of the fusion protein and (2) secretion of cytokines eliminating antigen-negative tumor cell variants. Naptumomab estafenatox has been clinically tested in a range of solid tumors with focus on renal cell carcinoma. This review looks at the clinical experience with the new immunotoxin and its potential.
Collapse
Affiliation(s)
- Tim Eisen
- Cambridge University Health Partners, Addenbrooke's Hospital, Cambridge, UK,
| | | | | | | |
Collapse
|
22
|
Understanding and exploiting 5T4 oncofoetal glycoprotein expression. Semin Cancer Biol 2014; 29:13-20. [PMID: 25066861 DOI: 10.1016/j.semcancer.2014.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/17/2014] [Indexed: 01/14/2023]
Abstract
Oncofoetal antigens are present during foetal development with generally limited expression in the adult but are upregulated in cancer. These molecules can sometimes be used to diagnose or follow treatment of tumours or as a target for different immunotherapies. The 5T4 oncofoetal glycoprotein was identified by searching for shared surface molecules of human trophoblast and cancer cells with the rationale that they may function to allow survival of the foetus as a semi-allograft in the mother or a tumour in its host, potentially influencing growth, invasion or altered immune surveillance of the host. 5T4 tumour selective expression has stimulated the development of 5T4 vaccine, 5T4 antibody targeted-superantigen and 5T4 antibody-drug therapies through preclinical and into clinical studies. It is now apparent that 5T4 expression is a marker of the use (or not) of several cellular pathways relevant to tumour growth and spread. Thus 5T4 expression is mechanistically associated with the directional movement of cells through epithelial mesenchymal transition, facilitation of CXCL12/CXCR4 chemotaxis, blocking of canonical Wnt/beta-catenin while favouring non-canonical pathway signalling. These processes are highly regulated in development and in normal adult tissues but can contribute to the spread of cancer cells. Understanding the differential impact of these pathways marked by 5T4 can potentially improve existing, or aid development of novel cancer treatment strategies.
Collapse
|
23
|
Said R, Amato RJ. Identification of Pre- and Post-Treatment Markers, Clinical, and Laboratory Parameters Associated with Outcome in Renal Cancer Patients Treated with MVA-5T4. Front Oncol 2013; 3:185. [PMID: 23875174 PMCID: PMC3711044 DOI: 10.3389/fonc.2013.00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/02/2013] [Indexed: 01/20/2023] Open
Abstract
The recent approvals of immunotherapeutic agents (Sipuleucel-T and Ipilimumab) for the treatment of different solid tumors gave a boost to the growing cancer immunotherapy field, even though few immunotherapy studies have demonstrated convincingly that there is a direct link between the predicted mode of action of an immunological compound and therapeutic benefit. MVA-5T4 (TroVax®) is a novel vaccine combining the tumor-associated antigen 5T4 to an engineered vector-modified vaccinia Ankara (MVA). MVA helps to express the oncofetal 5T4 antigen and subsequently trigger a tumor-directed immune reaction. The safety and clinical benefit reported in multiple phase I and II clinical trials using MVA-5T4 were encouraging; immune responses were induced in almost all treated patients, and associations between 5T4-specific cellular or humoral responses and clinical benefit were reported in most of the nine phase II trials. In particular, clinical studies conducted in renal cell carcinoma (RCC) patients have demonstrated an association between 5T4-specific (but not MVA) antibody responses and enhanced survival. This review describes the clinical studies using MVA-5T4 conducted in RCC that convincingly demonstrated that an antigen-specific immune response induced by vaccination is associated with enhanced patient survival and is not simply a function of the general “health” of patients. We will also provide our expert opinions on possible future better-designed clinical trials based on relevant biomarkers. In addition, various combinations of MVA-5T4 and different and newer immunomodulator agents with promising clinical benefit will be discussed.
Collapse
Affiliation(s)
- Rabih Said
- Division of Oncology, Department of Internal Medicine, Memorial Hermann Cancer Center, University of Texas Health Science Center at Houston (Medical School) , Houston, TX , USA
| | | |
Collapse
|
24
|
Sapra P, Damelin M, DiJoseph J, Marquette K, Geles KG, Golas J, Dougher M, Narayanan B, Giannakou A, Khandke K, Dushin R, Ernstoff E, Lucas J, Leal M, Hu G, O'Donnell CJ, Tchistiakova L, Abraham RT, Gerber HP. Long-term Tumor Regression Induced by an Antibody–Drug Conjugate That Targets 5T4, an Oncofetal Antigen Expressed on Tumor-Initiating Cells. Mol Cancer Ther 2012; 12:38-47. [DOI: 10.1158/1535-7163.mct-12-0603] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Castro FV, Al-Muftah M, Mulryan K, Jiang HR, Drijfhout JW, Ali S, Rutkowski AJ, Kalaitsidou M, Gilham DE, Stern PL. Regulation of autologous immunity to the mouse 5T4 oncofoetal antigen: implications for immunotherapy. Cancer Immunol Immunother 2012; 61:1005-18. [PMID: 22127365 PMCID: PMC11029011 DOI: 10.1007/s00262-011-1167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/16/2011] [Indexed: 02/06/2023]
Abstract
Effective vaccination against tumour-associated antigens (TAA) such as the 5T4 oncofoetal glycoprotein may be limited by the nature of the T cell repertoire and the influence of immunomodulatory factors in particular T regulatory cells (Treg). Here, we identified mouse 5T4-specific T cell epitopes using a 5T4 knock out (5T4KO) mouse and evaluated corresponding wild-type (WT) responses as a model to refine and improve immunogenicity. We have shown that 5T4KO mice vaccinated by replication defective adenovirus encoding mouse 5T4 (Adm5T4) generate potent 5T4-specific IFN-γ CD8 and CD4 T cell responses which mediate significant protection against 5T4 positive tumour challenge. 5T4KO CD8 but not CD4 primed T cells also produced IL-17. By contrast, Adm5T4-immunized WT mice showed no tumour protection consistent with only low avidity CD8 IFN-γ, no IL-17 T cell responses and no detectable CD4 T cell effectors producing IFN-γ or IL-17. Treatment with anti-folate receptor 4 (FR4) antibody significantly reduced the frequency of Tregs in WT mice and enhanced 5T4-specific IFN-γ but reduced IL-10 T cell responses but did not reveal IL-17-producing effectors. This altered balance of effectors by treatment with FR4 antibody after Adm5T4 vaccination provided modest protection against autologous B16m5T4 melanoma challenge. The efficacy of 5T4 and some other TAA vaccines may be limited by the combination of TAA-specific T regs, the deletion and/or alternative differentiation of CD4 T cells as well as the absence of distinct subsets of CD8 T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Epitopes, T-Lymphocyte/immunology
- Immunotherapy, Active/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/prevention & control
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Receptors, Cell Surface/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Fernanda V. Castro
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Mariam Al-Muftah
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
- Clinical and Experimental Immunotherapy, Medical Oncology, School of Cancer and Enabling Sciences, University of Manchester, Manchester Academic Healthcare Science Centre, Manchester, UK
| | - Kate Mulryan
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Hui-Rong Jiang
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jan-Wouter Drijfhout
- Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sumia Ali
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Andrzej J. Rutkowski
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Milena Kalaitsidou
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - David E. Gilham
- Clinical and Experimental Immunotherapy, Medical Oncology, School of Cancer and Enabling Sciences, University of Manchester, Manchester Academic Healthcare Science Centre, Manchester, UK
| | - Peter L. Stern
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| |
Collapse
|
26
|
5T4 glycoprotein regulates the sensory input-dependent development of a specific subtype of newborn interneurons in the mouse olfactory bulb. J Neurosci 2012; 32:2217-26. [PMID: 22323733 DOI: 10.1523/jneurosci.5907-11.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sensory input has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and olfactory bulb (OB). Within the mammalian OB specifically, the development of dendrites in mitral/tufted cells is well known to be odor-evoked activity dependent. However, little is known about the developmental role of sensory input in the other major OB population of the GABAgenic interneurons, such as granule cells and periglomerular cells. Here, we identified, with DNA microarray and in situ hybridization screenings, a trophoblast glycoprotein gene, 5T4, whose expression in a specific subtype of OB interneurons is dependent on sensory input. 5T4 is a type I membrane protein, whose extracellular domain contains seven leucine-rich repeats (LRR) flanked by characteristic LRR-N-flanking and C-flanking regions, and a cytoplasmic domain. 5T4 overexpression in the newborn OB interneurons facilitated their dendritic arborization even under the sensory input-deprived condition. By contrast, both 5T4 knockdown with RNAi and 5T4 knockout with mice resulted in a significant reduction in the dendritic arborization of 5T4(+) granule cells. Further, we identified the amino acid sequence in the 5T4 cytoplasmic domain that is necessary and sufficient for the sensory input-dependent dendritic shaping of specific neuronal subtypes in the OB. Thus, these results demonstrate that 5T4 glycoprotein contributes in the regulation of activity-dependent dendritic development of interneurons and the formation of functional neural circuitry in the OB.
Collapse
|
27
|
Kagermeier-Schenk B, Wehner D, Ozhan-Kizil G, Yamamoto H, Li J, Kirchner K, Hoffmann C, Stern P, Kikuchi A, Schambony A, Weidinger G. Waif1/5T4 inhibits Wnt/β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. Dev Cell 2011; 21:1129-43. [PMID: 22100263 DOI: 10.1016/j.devcel.2011.10.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/09/2011] [Accepted: 10/20/2011] [Indexed: 02/03/2023]
Abstract
Wnt proteins can activate distinct signaling pathways, but little is known about the mechanisms regulating pathway selection. Here we show that the metastasis-associated transmembrane protein Wnt-activated inhibitory factor 1 (Waif1/5T4) interferes with Wnt/β-catenin signaling and concomitantly activates noncanonical Wnt pathways. Waif1 inhibits β-catenin signaling in zebrafish and Xenopus embryos as well as in mammalian cells, and zebrafish waif1a acts as a direct feedback inhibitor of wnt8-mediated mesoderm and neuroectoderm patterning during zebrafish gastrulation. Waif1a binds to the Wnt coreceptor LRP6 and inhibits Wnt-induced LRP6 internalization into endocytic vesicles, a process that is required for pathway activation. Thus, Waif1a modifies Wnt/β-catenin signaling by regulating LRP6 subcellular localization. In addition, Waif1a enhances β-catenin-independent Wnt signaling in zebrafish embryos and Xenopus explants by promoting a noncanonical function of Dickkopf1. These results suggest that Waif1 modulates pathway selection in Wnt-receiving cells.
Collapse
Affiliation(s)
- Birgit Kagermeier-Schenk
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Robinson MK, Alpaugh RK, Borghaei H. Naptumomab estafenatox: a new immunoconjugate. Expert Opin Biol Ther 2010; 10:273-9. [PMID: 20053143 DOI: 10.1517/14712590903575620] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD New agents that specifically engage the immune system are being tested in a variety of malignancies. This review provides an overview of naptumomab, an immunotoxin, with encouraging clinical activity in Phase I trials. AREAS COVERED IN THIS REVIEW This review examines the preclinical and the published clinical data with regards to naptumomab. WHAT THE READER WILL GAIN This review provides the reader with an understanding of the mechanism of action, immunology, pharmacokinetics and clinical activity of this agent. TAKE HOME MESSAGE Naptumomab has a unique mechanism of action and appears to be an active agent in the treatment of refractory solid tumors such as renal cell carcinoma.
Collapse
Affiliation(s)
- Matthew K Robinson
- Fox Chase Cancer Center, Department of Medical Oncology, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
29
|
Shingler WH, Chikoti P, Kingsman SM, Harrop R. Identification and functional validation of MHC class I epitopes in the tumor-associated antigen 5T4. Int Immunol 2008; 20:1057-66. [DOI: 10.1093/intimm/dxn063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Elkord E, Burt DJ, Drijfhout JW, Hawkins RE, Stern PL. CD4+ T-cell recognition of human 5T4 oncofoetal antigen: implications for initial depletion of CD25+ T cells. Cancer Immunol Immunother 2008; 57:833-47. [PMID: 18004564 PMCID: PMC11029843 DOI: 10.1007/s00262-007-0419-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 10/24/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND The human 5T4 (h5T4) oncofoetal antigen is expressed by a wide variety of human carcinomas including colorectal, ovarian, gastric and renal, but rarely on normal tissues. Its restricted expression on tumour tissues as well as its association with tumour progression and bad prognosis has driven the development of a MVA-based vaccine (TroVax) which has been tested in several early phase clinical trials and these studies have led to the start of a phase III trial in renal cell carcinoma patients. We have recently shown that CD8(+) T cells recognizing h5T4 can be generated in the absence of CD4(+) T cells from peripheral blood lymphocytes of human healthy individuals. RESULTS We report the existence and expansion of human CD4(+) T cells against h5T4 by stimulation with autologous monocyte-derived dendritic cells infected with a replication defective adenovirus encoding the h5T4 cDNA (Ad-h5T4). The h5T4-specific T-cell responses in normal individuals are enhanced by initial depletion of CD25(+) cells (putative T regulatory cells) prior to the in vitro stimulation. We have identified a novel h5T4-derived 15-mer peptide recognized by CD4(+) T cells in HLA-DR4 positive healthy individuals. Interestingly, CD4(+) T cells spontaneously recognizing a different 5T4 epitope restricted by HLA-DR were identified in tumour-infiltrating lymphocytes isolated from a regressing renal cell carcinoma lung metastasis. CONCLUSION Our data show that CD4(+) T cells recognizing h5T4 can be expanded and detected in healthy individuals and a renal cell carcinoma patient. Such h5T4-specific CD4(+) T cells boosted or induced by vaccination could act to modulate both cell or antibody mediated anti-tumour responses.
Collapse
Affiliation(s)
- Eyad Elkord
- Department of Immunology, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| | | | | | | | | |
Collapse
|
31
|
Eastham AM, Spencer H, Soncin F, Ritson S, Merry CLR, Stern PL, Ward CM. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res 2008; 67:11254-62. [PMID: 18056451 DOI: 10.1158/0008-5472.can-07-2253] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epithelial-mesenchymal transition (EMT) occurs during embryonic development and may also be associated with the metastatic spread of epithelial tumors. During EMT, E-cadherin is down-regulated and this correlates with increased motility and invasion of cells. We show that differentiation of human embryonic stem (ES) cells in monolayer culture is associated with an E- to N-cadherin switch, increased vimentin expression, up-regulation of E-cadherin repressor molecules (Snail and Slug proteins), and increased gelatinase (matrix metalloproteinases; MMP-2 and MMP-9) activity and cellular motility, all characteristic EMT events. The 5T4 oncofetal antigen, previously shown to be associated with early human ES cell differentiation, is also part of this process. Abrogation of E-cadherin-mediated cell-cell contact in undifferentiated ES cells using neutralizing antibody (nAb) SHE78.7 resulted in increased cellular motility, altered actin cytoskeleton arrangement and a mesenchymal phenotype together with presentation of the 5T4 antigen at the cell surface. nAb-treated ES cells remained in an undifferentiated state, as assessed by OCT-4 protein expression, and did not express EMT-associated transcripts. Removal of nAb from ES cells resulted in the restoration of cell-cell contact, absence of cell surface 5T4, decreased mesenchymal cellular morphology and motility, and enabled the differentiation of the cells to the three germ layers upon their removal from the fibroblast feeder layer. We conclude that E-cadherin functions in human ES cells to stabilize the cortical actin cyoskeletal arrangement and this prevents cell surface localization of the 5T4 antigen. Furthermore, human ES cells represent a useful model system with which to study EMT events relevant to embryonic development and tumor cell metastasis.
Collapse
Affiliation(s)
- Angela M Eastham
- Centre for Molecular Medicine, Faculty of Medical and Human Sciences, The University of Manchester, M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Perez-Campo FM, Spencer HL, Elder RH, Stern PL, Ward CM. Novel vectors for homologous recombination strategies in mouse embryonic stem cells: an ES cell line expressing EGFP under control of the 5T4 promoter. Exp Cell Res 2007; 313:3604-15. [PMID: 17765223 DOI: 10.1016/j.yexcr.2007.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 01/28/2023]
Abstract
The use of gene mutation/knock-out strategies in mouse embryonic stem (ES) cells has revolutionized the study of gene function in ES cells and embryonic development. However, the construction of vectors for homologous recombination strategies requires considerable expertise and time. We describe two novel vectors that can generate site specific knock-out or EGFP knock-in ES cells within 6 weeks from construct design to identification of positive ES cell clones. As proof-of-principle, we have utilized the knock-out targeting vector to modify the NEIL2 locus in ES cells. In addition, using the knock-in vector, we have inserted EGFP downstream of the 5T4 oncofetal antigen promoter in ES cells (5T4-GFP ES cells). Undifferentiated 5T4-GFP ES cells lack EGFP and maintain expression of the pluripotent markers OCT-4 and NANOG. Upon differentiation, EGFP expression is increased in 5T4-GFP ES cells and this correlates with 5T4 transcript expression of the unmodified allele, loss of Nanog and Oct-4 transcripts and upregulation of differentiation-associated transcripts. Furthermore, we demonstrate that fluorescent activated cell sorting of 5T4-GFP ES cells allows isolation of pluripotent or differentiated cells from a heterogeneous population. These vectors provide researchers with a rapid method of modifying specific ES cell genes to study cellular differentiation and embryonic development.
Collapse
Affiliation(s)
- Flor M Perez-Campo
- Stem Cell Biology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, UK
| | | | | | | | | |
Collapse
|
33
|
Shaw DM, Connolly NB, Patel PM, Kilany S, Hedlund G, Nordle O, Forsberg G, Zweit J, Stern PL, Hawkins RE. A phase II study of a 5T4 oncofoetal antigen tumour-targeted superantigen (ABR-214936) therapy in patients with advanced renal cell carcinoma. Br J Cancer 2007; 96:567-74. [PMID: 17285137 PMCID: PMC2360042 DOI: 10.1038/sj.bjc.6603567] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In a phase II study, 43 renal cell carcinoma patients were treated with individualised doses of ABR-214936; a fusion of a Fab recognising the antigen 5T4, and Staphylococcal enterotoxin A. Drug was given intravenously on 4 consecutive days, treatment was repeated 1 month later. Treatment was associated with moderate fever and nausea, but well tolerated. Of 40 evaluable patients, 28 had disease control at 2 months, and at 4 months, one patient showed partial response (PR) and 16 patients stable disease. Median survival, with minimum follow-up of 26 months was 19.7 months with 13 patients alive to date. Stratification by the Motzer's prognostic criteria highlights prolonged survival compared to published expectation. Patients receiving higher drug exposure had greater disease control and lived almost twice as long as expected, whereas the low-exposure patients survived as expected. Sustained interleukin-2 (IL-2) production after a repeated injection appears to be a biomarker for clinical effect, as the induced-IL-2 level on the day 2 of treatment correlated with survival. The high degree of disease control and the prolonged survival suggest that this treatment can be effective. These findings will be used in the trial design for the next generation of drug, with reduced antigenicity and toxicity.
Collapse
Affiliation(s)
- D M Shaw
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester M20 4BX, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jiang HR, Gilham DE, Mulryan K, Kirillova N, Hawkins RE, Stern PL. Combination of vaccination and chimeric receptor expressing T cells provides improved active therapy of tumors. THE JOURNAL OF IMMUNOLOGY 2006; 177:4288-98. [PMID: 16982863 DOI: 10.4049/jimmunol.177.7.4288] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have generated murine T cells expressing chimeric immune receptors (CR) against human 5T4 oncofetal Ag (h5T4) and evaluated their tumor therapeutic efficacy alone and in combination with immunization using a replication-defective adenovirus encoding h5T4 (Rad.h5T4) and bone marrow-derived dendritic cells (BMDC). The h5T4-specific engineered T cells demonstrated Ag-specific, non-MHC-restricted cytolysis of h5T4-positive B16 and CT26 tumor cells in vitro by cytotoxicity assay and antitumor activity in vivo using a Winn assay. In the s.c. injected B16h5T4 melanoma model, early local but not systemic i.v. administration of syngeneic h5T4-specific CR T cells significantly increased mice survival. This improvement was further enhanced when combined with immunization with Rad.h5T4, followed by post-CR T cell treatment with BMDC in the active therapy model, possibly through mechanisms of enhancing Ag-specific cellular immune responses. This synergistic effect was lost without delivery of the BMDC. Our findings suggest that combining engineered T cells with specific vaccination strategies can improve the active tumor therapy.
Collapse
Affiliation(s)
- Hui-Rong Jiang
- Cancer Research U.K. Immunology Group, Paterson Institute for Cancer Research, University of Manchester and Christie Hospital National Health Service Trust, Manchester M20 4BX, UK
| | | | | | | | | | | |
Collapse
|
35
|
Ward CM, Eastham AM, Stern PL. Cell surface 5T4 antigen is transiently upregulated during early human embryonic stem cell differentiation: effect of 5T4 phenotype on neural lineage formation. Exp Cell Res 2006; 312:1713-26. [PMID: 16616918 DOI: 10.1016/j.yexcr.2006.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 01/05/2006] [Accepted: 02/07/2006] [Indexed: 11/19/2022]
Abstract
The 5T4 oncofoetal antigen is a cell surface glycoprotein that is transiently expressed during mouse ES cell differentiation and correlates with decreased pluripotency of such cells. We show that 5T4 antigen is transiently unregulated during HES4 and H1 human ES cell differentiation and its expression correlates with loss of the pluripotent markers OCT-4 and Tra-1-60 and upregulation of transcript markers associated with the three primary germ layers. To confirm that absence of cell surface 5T4 antigen represents a pluripotent hES cell phenotype, we performed mechanical transfer of either 5T4-ve or 5T4+ve HES4 colonies identified using live cell staining. 5T4-ve transfers maintained expression of OCT-4 in over 90% of resultant colonies, whereas 5T4+ve transfers exhibited significantly lower numbers of OCT-4-expressing colonies (92 +/- 1.4 vs. 2.9 +/- 2.0%). Interestingly, low cell density 5T4-ve colony transfers exhibited increased numbers of OCT-4-expressing colonies compared to large 5T4-ve transfers (92 +/- 1.4 vs. 63.2 +/- 1.9%). 5T4-ve and 5T4+ve HES4 and H1 ES cell lines expressed markers representative of neuroectoderm lineages, and we assessed the formation of neural lineages from these phenotypes in serum-containing medium and N2B27 medium. Expression of 5T4 was found to be inversely related to the yield of tyrosine-hydroxylase (TH+)-expressing neurons in N2B27 medium, with additional mesoderm and endoderm transcript markers detected. Homogeneous glial cell populations were derived from low cell density 5T4-ve colony transfers cultured in serum-containing medium, with TH+ neuronal formation inhibited in a cell-density-dependent manner. We conclude that the 5T4 antigen is a transient marker of hES cell differentiation and that 5T4 phenotype, colony seeding density and culture conditions significantly influence the maintenance of pluripotent hES cells and their differentiation to neural lineages.
Collapse
Affiliation(s)
- Christopher M Ward
- Cancer Research UK Immunology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK.
| | | | | |
Collapse
|
36
|
Smyth LJC, Elkord E, Taher TEI, Jiang HR, Burt DJ, Clayton A, van Veelen PA, de Ru A, Ossendorp F, Melief CJM, Drijfhout JW, Dermime S, Hawkins RE, Stern PL. Cd8 T-cell recognition of human 5T4 oncofetal antigen. Int J Cancer 2006; 119:1638-47. [PMID: 16646078 DOI: 10.1002/ijc.22018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 5T4 oncofetal antigen is expressed by a wide variety of human carcinomas, including colorectal, ovarian and gastric carcinomas. The restricted expression of 5T4 on tumor tissues as well as its implication in tumor progression and bad prognosis makes 5T4 a promising new candidate for immunotherapy. An MVA vaccine encoding 5T4 antigen has been successfully evaluated in preclinical studies in a murine tumor model. Here, we report the generation of human CD8 T cells specific for the 5T4 antigen by stimulation with autologous monocyte derived DC infected with a replication defective adenovirus encoding the 5T4 cDNA (Ad5T4). Analysis of several donors confirms a repertoire of such CD8 responses. In a parallel approach, incorporating the results of proteasome-mediated digestion of 5T4 derived 35-mer peptides and the potential high affinity epitopes predicted by a computer-based algorithm, we identified 8 putative HLA-A*0201-presented CD8 MHC class I epitopes of 5T4 antigen. Two of these generated specific CD8 T cells after restimulation with peptide loaded autologous DC and assay by cytotoxicity and IFN gamma ELISPOT. Moreover these particular peptide generated T cells recognized naturally 5T4 positive tumor cells only if they expressed HLA-A*0201 as judged by IFN gamma ELISPOT or ELISA. Also, HLA-A*0201 CD8 T cells recognized these peptides in a DC-Ad5T4 polyclonal response. In conclusion, there is a repertoire of CD8 T cell recognition of 5T4 in normal human donors and some candidate HLA-A*0201 epitopes have been identified.
Collapse
Affiliation(s)
- Lucy J C Smyth
- Immunology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cheng JD, Babb JS, Langer C, Aamdal S, Robert F, Engelhardt LR, Fernberg O, Schiller J, Forsberg G, Alpaugh RK, Weiner LM, Rogatko A. Individualized Patient Dosing in Phase I Clinical Trials: The Role of Escalation With Overdose Control in PNU-214936. J Clin Oncol 2004; 22:602-9. [PMID: 14966084 DOI: 10.1200/jco.2004.12.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose A patient-specific dose-escalation scheme using a Bayesian model of Escalation with Overdose Control (EWOC) was conducted to establish the maximum tolerated dose (MTD) of PNU-214936 in advanced non–small-cell lung cancer (NSCLC). PNU-214936 is a murine Fab fragment of the monoclonal antibody 5T4 fused to a mutated superantigen staphylococcal enterotoxin A (SEA). Patients and Methods Seventy-eight patients with NSCLC were treated with an individualized dose of PNU-214936 calculated using EWOC, based on their anti-SEA antibody level, and given as a 3-hour infusion on 4 consecutive days. Results Fever (82%; grade 3 to 4, 2.6%) and hypotension (57%; grade 3 to 4, 9%) were the most common toxicities. Eight dose-limiting toxicities occurred, as defined as any grade 4 toxicity occurring within the first 5 days. The MTD was defined as a function of pretreatment anti-SEA antibody level. MTD ranged from 103 ng/kg for patients with anti-SEA concentrations ≤ 10 pmol/mL, to 601 ng/kg for patients with anti-SEA concentrations of 91 to 150 pmol/mL. A minor tumor response was demonstrated in five of 66 assessable patients. Conclusion EWOC determined phase I doses of PNU-214936 that were adjusted for patient anti-SEA antibody level, while safeguarding against overdose. Furthermore, the method permitted the construction of a dosing algorithm that would allow patients in subsequent clinical investigations to be treated with a dose of PNU-214936 that is tailored to their specific tolerance for the agent, as reflected by their pretreatment anti-SEA.
Collapse
Affiliation(s)
- Jonathan D Cheng
- Department of Medical Oncology, Fox Chase Cancer Center, 7701 Burholme Ave, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Myers KA, Ryan MG, Stern PL, Shaw DM, Embleton MJ, Kingsman SM, Carroll MW. Targeting immune effector molecules to human tumor cells through genetic delivery of 5T4-specific scFv fusion proteins. Cancer Gene Ther 2002; 9:884-96. [PMID: 12386827 DOI: 10.1038/sj.cgt.7700513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Indexed: 11/09/2022]
Abstract
Although several clinical trials have shown beneficial effects by targeting tumor-associated antigens (TAAs) with monoclonal antibodies, a number of issues, including poor penetration of the tumor mass and human antimouse antibody responses, remain. The use of recombinant single-chain Fv (scFv) fragments has the potential to address these and other issues while allowing the addition of different effector functions. To develop therapeutic strategies that recruit both humoral and cellular arms of the immune response, we have constructed chimeric proteins linking either the human IgG1 Fc domain or the extracellular domain of murine B7.1 to a scFv specific for the oncofetal glycoprotein, 5T4. This TAA is expressed by a wide variety of carcinomas and is associated with metastasis and poorer clinical outcome. We have engineered retroviral constructs that produce fusion proteins able to interact simultaneously with both 5T4-positive cells and with the receptor/ligands of the immune effector moieties. Genetic delivery through a murine leukemia virus vector to 5T4-positive tumor cells results in the secreted scFv fusion protein binding to the cell surface. Furthermore, the scFv-HIgG1 fusion protein is able to direct lysis of 5T4-expressing human tumor cell lines through antibody-dependent cell cytotoxicity, indicating its potential as a gene therapy for human cancers.
Collapse
Affiliation(s)
- Kevin A Myers
- Oxford BioMedica (UK) Ltd., Medawar Centre, Oxford Science Park, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Woods AM, Wang WW, Shaw DM, Ward CM, Carroll MW, Rees BR, Stern PL. Characterization of the murine 5T4 oncofoetal antigen: a target for immunotherapy in cancer. Biochem J 2002; 366:353-65. [PMID: 12003637 PMCID: PMC1222756 DOI: 10.1042/bj20020104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 05/03/2002] [Accepted: 05/10/2002] [Indexed: 11/17/2022]
Abstract
Human 5T4 oncofoetal antigen defined by the murine 5T4 monoclonal antibody is a highly glycosylated protein expressed by trophoblast and a few specialized adult epithelia. Up-regulation of 5T4 expression in some cancers is associated with poor clinical outcome; overexpression of human 5T4 cDNA in epithelial cells can alter their morphology and motility, supporting a role for such functions in cancer and development. A murine model to study 5T4 biology and tumour immunology would be useful. The production of m5T4-specific antibodies, their use in establishing transfected cells and documenting their biological properties in vitro are described. A rat monoclonal antibody specific for mouse 5T4 molecules by ELISA, flow cytometry, immunohistochemistry and immunoprecipitation was isolated and epitope mapped. Similar to its human counterpart, murine 5T4 antigen is a 72 kDa glycoprotein (immunoprecipitation and Western blot analysis) and exhibits punctate cell surface expression, dependent upon the integrity of the actin cytoskeleton. Likewise, overexpression of autologous murine 5T4 by B16 F10 melanoma cells and A9 L fibroblasts accentuates the 5T4 phenotype, which is characterized by a spindle-like morphology, increased motility, and reduced adhesion and proliferation rate. Immunohistochemical analysis of adult mouse tissues shows a restricted pattern of expression similar to that of human 5T4 antigen. The murine 5T4 antigen-expressing cell lines and antibody reagents are now being used to explore novel immunotherapies in pre-clinical models and the biology of 5T4 in development.
Collapse
Affiliation(s)
- Andrew M Woods
- CRUK Immunology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, U.K
| | | | | | | | | | | | | |
Collapse
|
40
|
Shaw DM, Woods AM, Myers KA, Westwater C, Rahi-Saund V, Davies MJ, Renouf DV, Hounsell EF, Stern PL. Glycosylation and epitope mapping of the 5T4 glycoprotein oncofoetal antigen. Biochem J 2002; 363:137-45. [PMID: 11903056 PMCID: PMC1222460 DOI: 10.1042/0264-6021:3630137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human 5T4 oncofoetal antigen is a focus for development of several antibody-directed therapies on the basis of the murine monoclonal antibody against 5T4 (mAb5T4), which recognizes a conformational epitope. 5T4 molecules are highly N-glycosylated transmembrane glycoproteins whose extracellular domain contains two regions of leucine-rich repeats (LRRs) and associated flanking regions, separated by an intervening hydrophilic sequence. Using a series of deletion and mutated cDNA constructs as well as chimaeras with the murine homologue, we have mapped the mAb5T4 epitope to the more membrane-proximal LRR2 or its flanking region. Analysis of the glycosylation of the seven consensus Asp-Xaa-Ser/Thr sites was consistent with all of the sites being glycosylated. A combination of two high-mannose chains (predominantly octasaccharide) and five mostly sialylated bi-, tri- and tetra-antennary complex chains with minor quantities of core fucose were detected. The two glycosylation sites, which are the most likely to have predominantly high-mannose chains, are in the only two regions that show significant differences between the human and the 81% identical mouse sequence. A site-directed mutation, which abolished glycosylation at one of these sites (position 192), did not alter antigenicity. The other, which is nearest to the N-terminus in the human, has an Asn-Leu-Thr to Asn-Leu-Leu conversion in the mouse, so cannot be glycosylated in the latter species. The large complex glycosylation at the other sites is likely to influence the antigenicity and tertiary structure generating the 5T4 epitope.
Collapse
Affiliation(s)
- David M Shaw
- CRC Immunology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kopreski MS, Benko FA, Gocke CD. Circulating RNA as a tumor marker: detection of 5T4 mRNA in breast and lung cancer patient serum. Ann N Y Acad Sci 2001. [PMID: 11708475 DOI: 10.1111/j.1749-6632.2001.tb03882.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer is commonly associated with the inappropriate mRNA expression of nonmutated genes. Recently, several tumor-associated RNA species, including tyrosinase mRNA and telomerase RNA, have been demonstrated in plasma and serum. The presence of tumor RNA in plasma and serum affords the opportunity to diagnose or stratify patients with cancer when tissue is not readily available. To exemplify the potential for pharmacogenomic and phenotypic stratification of the cancer patient, we evaluated serum for 5T4 mRNA. 5T4 is a trophoblast glycoprotein frequently overexpressed in epithelial malignancies that provides a potential target for cancer therapeutics. Serum was collected from 19 patients with advanced breast cancer (5 patients) or non-small-cell lung cancer (14 patients), and from 25 normal control volunteers having amplifiable RNA. RNA extracted from the serum was RT-PCR amplified using heminested, two-stage reactions, with products detected by gel electrophoresis. 5T4 mRNA was reproducibly detected in 8/19 (42%) cancer patient sera, including 2/5 breast cancer patient sera and 6/14 lung cancer patient sera, but in only 3/25 (12%) normal control sera (p = 0.035). The potential for circulating mRNA to identify patients who might benefit from a 5T4-directed therapy offers an example of the utility of circulating RNA as a tumor marker.
Collapse
Affiliation(s)
- M S Kopreski
- OncoMEDx, Incorporated, Columbia, Maryland 21044, USA.
| | | | | |
Collapse
|
42
|
Forsberg G, Ohlsson L, Brodin T, Björk P, Lando PA, Shaw D, Stern PL, Dohlsten M. Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen. Br J Cancer 2001; 85:129-36. [PMID: 11437414 PMCID: PMC2363924 DOI: 10.1054/bjoc.2001.1891] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superantigens activate T-cells by linking the T-cell receptor to MHC class II on antigen-presenting cells, and novel reactivity can be introduced by fusing the superantigen to a targeting molecule. Thus, an antibody-targeted superantigen, which activates T cells to destroy tumour cells, might be used as cancer therapy. A suitable target is the 5T4 oncofetal antigen, which is expressed on many carcinomas. We constructed a fusion protein from a Fab of a monoclonal antibody recognizing the 5T4 antigen, and an engineered superantigen. The recombinant product 5T4FabV13-SEA(D227A)bound the 5T4 antigen expressed on the human non-small-cell lung cancer cell line Calu-1 with a Kd of 1.2 nM while the substitution of Asp227 to Ala in the superantigen moiety reduced binding activity to MHC class II. 5T4FabV13-SEA(D227A)tumour reactivity was demonstrated in 7/7 NSCLC samples by immunohistochemistry, while normal tissue reactivity was low to moderate. 5T4FabV13-SEA(D227A)induced significant T-cell-dependent in vitro killing of sensitive 5T4 bearing Calu-1 cells, with maximum lysis at 10(-10)M, while the capacity to lyse MHC class II expressing cells was approximately 1000 times less effective. Immunotherapy of 5T4FabV13-SEA(D227A)against human NSCLC was investigated in SCID mice reconstituted with human peripheral blood mononuclear cells. Mice carrying intreperitoneally growing Calu-1 cells showed significant reduction in tumour mass and number after intravenous therapy with 5T4FabV13-SEA(D227A). Thus, 5T4FabV13-SEA(D227A)has highly attractive properties for therapy of human NSCLC.
Collapse
Affiliation(s)
- G Forsberg
- Active Biotech Research AB, Box 724, 220 07 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ali A, Langdon J, Stern P, Partridge M. The pattern of expression of the 5T4 oncofoetal antigen on normal, dysplastic and malignant oral mucosa. Oral Oncol 2001; 37:57-64. [PMID: 11120484 DOI: 10.1016/s1368-8375(00)00057-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The human 5T4 oncofoetal antigen is expressed by all types of trophoblast in pregnancy but is not detected on most adult tissues, although low levels are found on some epithelia. However, this antigen is strongly expressed by many cancers and tumour-associated labelling correlates with metastatic spread and poor clinical outcome for patients with gastric and colon cancer. Over-expression of the gene influences cell adhesion, shape and motility, which may be related to changes in the cellular localisation of the 5T4 oncofoetal antigen as malignancy develops. To establish whether the 5T4 oncofoetal antigen can serve as a tumour-specific marker for oral cancer and precancer, we have evaluated the pattern of expression on biopsies of normal, inflamed and dysplastic oral mucosa using immunohistochemistry. Oral mucosa, taken from different sites in the mouth, expressed the 5T4 oncofoetal antigen with varying intensity and pattern. The majority of the immunoreactivity was detected in the basal and suprabasal layers, with expression extending into the spinous cells at fully keratinised sites and when inflammation was present. This antigen was also detected in the underlying connective tissue. Oral squamous cell carcinoma showed a variety of patterns and intensity of staining corresponding to those found for normal mucosa. However, 21 of 41 cases showed no stromal labelling, a finding also observed for dysplastic lesions. The alterations in the pattern and intensity of 5T4 oncofoetal antigen expression were not related to clinicopathological features of the tumours examined. These data show that the 5T4 oncofoetal antigen is expressed on normal oral mucosa, such that this target cannot be used for detection of neoplastic or preneoplastic cells, although altered expression may contribute to the pathogenesis of these lesions.
Collapse
Affiliation(s)
- A Ali
- Maxillofacial Unit/Molecular Oncology, King's College Hospital, Denmark Hill, SE5 8RX, London, UK
| | | | | | | |
Collapse
|
44
|
Shaw DM, Embleton MJ, Westwater C, Ryan MG, Myers KA, Kingsman SM, Carroll MW, Stern PL. Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1524:238-46. [PMID: 11113573 DOI: 10.1016/s0304-4165(00)00165-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The oncofoetal antigen 5T4 is a 72 kDa glycoprotein expressed at the cell surface. It is defined by a monoclonal antibody, mAb5T4, that recognises a conformational extracellular epitope in the molecule. Overexpression of 5T4 antigen by tumours of several types has been linked with disease progression and poor clinical outcome. Its restricted expression in non-malignant tissue makes 5T4 antigen a suitable target for the development of antibody directed therapies. The use of murine monoclonal antibodies for targeted therapy allows the tumour specific delivery of therapeutic agents. However, their use has several drawbacks, including a strong human anti-mouse immune (HAMA) response and limited tumour penetration due to the size of the molecules. The use of antibody fragments leads to improved targeting, pharmacokinetics and a reduced HAMA. A single chain antibody (scFv) comprising the variable regions of the mAb5T4 heavy and light chains has been expressed in Escherichia coli. The addition of a eukaryotic leader sequence allowed production in mammalian cells. The two 5T4 single chain antibodies, scFv5T4WT19 and LscFv5T4, described the same pattern of 5T4 antigen expression as mAb5T4 in normal human placenta and by FACS. Construction of a 5T4 extracellular domain-IgGFc fusion protein and its expression in COS-7 cells allowed the relative affinities of the antibodies to be compared by ELISA and measured in real time using a biosensor based assay. MAb5T4 has a high affinity, K(D)=1.8x10(-11) M, as did both single chain antibodies, scFv5T4WT19 K(D)=2.3x10(-9) M and LscFv5T4 K(D)=7.9x10(-10) M. The small size of this 5T4 specific scFv should allow construction of fusion proteins with a range of biological response modifiers to be prepared whilst retaining the improved pharmacokinetic properties of scFvs.
Collapse
Affiliation(s)
- D M Shaw
- CRC Immunology Group, Paterson Institute for Cancer Research, Christie Hospital, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
King KW, Sheppard FC, Westwater C, Stern PL, Myers KA. Organisation of the mouse and human 5T4 oncofoetal leucine-rich glycoprotein genes and expression in foetal and adult murine tissues. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:257-70. [PMID: 10366710 DOI: 10.1016/s0167-4781(99)00055-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human 5T4 oncotrophoblast leucine-rich glycoprotein may contribute to the process of placentation or metastasis by modulating cell adhesion, shape and motility. To understand better the role of 5T4 in development and cancer, the gene structure has been elucidated from both human and mouse genomic clones and mRNA expression has been studied in foetal and adult mouse tissues. The protein coding region is located within the second of two exons, the first exon comprising solely of 5'-untranslated region. Upstream there are no TATA or CAAT boxes, but there are a number of potential Sp1 binding sites. The murine and human proteins show a homologous domain organisation of the leucine rich repeats (LRR) and associated N- and C-terminal flanking regions, although the hydrophilic sequence which intervenes between the two LRR domains contains six additional amino acids in the mouse. The signal peptide, transmembrane region and cytoplasmic tail sequences are identical as are 6 out of the 7 potential N-linked glycosylation sites. Mouse 5T4 transcripts are abundant in placenta and also highly expressed in embryos while in adult tissues transcripts are restricted to brain and ovary. These patterns of expression and the genomic organisation are discussed in relation to possible function and other recently described LRR containing proteins.
Collapse
Affiliation(s)
- K W King
- CRC Immunology Group, Cell and Tumour Biology Section, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 9BX, UK
| | | | | | | | | |
Collapse
|
46
|
Carsberg CJ, Myers KA, Stern PL. Metastasis-associated 5T4 antigen disrupts cell-cell contacts and induces cellular motility in epithelial cells. Int J Cancer 1996; 68:84-92. [PMID: 8895545 DOI: 10.1002/(sici)1097-0215(19960927)68:1<84::aid-ijc15>3.0.co;2-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 5T4 antigen is defined by a monoclonal antibody (MAb) specific for human trophoblast. It is also expressed by many types of tumour cell and has been associated with metastasis and poor clinical outcome in a number of cancers. This pattern of expression is consistent with a mechanistic involvement of 5T4 molecules in the spread of cancer cells. The 5T4 antigen is a transmembrane glycoprotein with a 310 amino acid extracellular domain and a 44 amino acid cytoplasmic domain. Transfection of full-length 5T4 cDNA into epithelial cells alters cell-cell contacts and cellular motility. Thus, in 5T4-transfected CL-S1 murine mammary cells, 5T4 expression is associated with dendritic morphology, accompanied by abrogation of actin/cadherin-containing contacts and increased motility. In transfected MDCK canine kidney epithelial cells, 5T4 over-expression also results in increased motility, but disruption of cell-cell contacts, either by culturing cells in low calcium medium or by addition of HGF/SF, is needed. The effects of 5T4 expression on morphology and motility are separable since cells transfected with a truncated form of 5T4 cDNA in which the cytoplasmic domain is deleted reveal that the latter is necessary to abrogate actin/cadherin-containing contacts but does not influence the effects on motility. Thus, 5T4 molecules can deliver signals through both the extracellular and intracellular domains, and the resultant effects are consistent with a role for 5T4 molecules in invasion processes.
Collapse
Affiliation(s)
- C J Carsberg
- CRC Department of Immunology, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK
| | | | | |
Collapse
|
47
|
Andrews PW, Casper J, Damjanov I, Duggan-Keen M, Giwercman A, Hata J, von Keitz A, Looijenga LH, Millán JL, Oosterhuis JW, Pera M, Sawada M, Schmoll HJ, Skakkebaek NE, van Putten W, Stern P. Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. Int J Cancer 1996; 66:806-16. [PMID: 8647654 DOI: 10.1002/(sici)1097-0215(19960611)66:6<806::aid-ijc17>3.0.co;2-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pattern of cell surface antigen expression of a set of cell lines derived from human germ cell tumours and corresponding to various cell phenotypes found within these tumours was studied using immunofluorescence. Twenty-two different antibodies were used. Many of these antibodies have been noted to recognise epitopes that are either preferentially expressed by embryonal carcinoma (EC) cells, or by more differentiated cell types. Using scatter plots and rank correlations, 6 groups of antibodies were distinguished with respect to their staining patterns on the cell lines tested. Several antibodies showed a specific staining pattern in relation to the differentiation state of the cells. Two groups of antibodies included those recognising high m.w. glycoproteins (antibodies TRA-1-60, TRA-1-81, GCTM2, 3-177, K4 and K21) and the ganglioseries glycolipid antigens SSEA-3 and -4 (antibodies MC631 and MC813-70). These antibodies mostly stained EC cells but not other cell types, confirming previously published data. However, one of these groups, comprising antibodies K4 and MC631, was more exclusively associated with the EC cell phenotype than was the other group. Antibodies recognising the liver isozyme of alkaline phosphatase (TRA-2-49 and TRA-2-54) also reacted strongly with most EC cell lines, although they reacted significantly with a number of other cell lines as well, whereas antibodies to the placental isozyme tended to react only weakly with EC cells. The antibodies recognising the ganglioseries glycolipids GD2 and GD3 (VIN2PB22 and VINIS56) preferentially stained cells with neuroectodermal characteristics. Other antibodies showed a heterogeneous staining pattern for the cell lines with different phenotypes. The data obtained from the cell lines were, in general, similar to data obtained from immunohistochemical studies on tissue sections of primary germ cell tumours of the adult testis, including carcinoma in situ.
Collapse
MESH Headings
- Adult
- Alkaline Phosphatase/immunology
- Antibodies, Monoclonal/classification
- Antibodies, Monoclonal/immunology
- Antibodies, Neoplasm/classification
- Antibodies, Neoplasm/immunology
- Antibody Specificity
- Antigens, Neoplasm/analysis
- Antigens, Surface/analysis
- Biomarkers, Tumor/immunology
- Biopsy
- Carcinoma in Situ/chemistry
- Carcinoma in Situ/immunology
- Carcinoma in Situ/pathology
- Carcinoma, Embryonal/chemistry
- Carcinoma, Embryonal/immunology
- Carcinoma, Embryonal/pathology
- Endodermal Sinus Tumor/chemistry
- Endodermal Sinus Tumor/immunology
- Endodermal Sinus Tumor/pathology
- Flow Cytometry
- Fluorescent Antibody Technique, Indirect
- Gene Expression
- Germinoma/chemistry
- Germinoma/classification
- Germinoma/immunology
- Germinoma/pathology
- Glycolipids/immunology
- Humans
- Immunophenotyping
- Isoenzymes/immunology
- Male
- Membrane Glycoproteins/immunology
- Microscopy, Fluorescence
- Neoplasm Proteins/immunology
- Seminoma/chemistry
- Seminoma/immunology
- Seminoma/pathology
- Testicular Neoplasms/chemistry
- Testicular Neoplasms/classification
- Testicular Neoplasms/immunology
- Testicular Neoplasms/pathology
- Testis/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P W Andrews
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yu KJ, Ng HT, Ho DM, Wang SY, Ho CK. Production of a monoclonal antibody to an antigen present on both trophoblasts and leukocytes. Hybridoma (Larchmt) 1995; 14:487-93. [PMID: 8575798 DOI: 10.1089/hyb.1995.14.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study, we report the establishment of a monoclonal antibody (Mab) designated F10 that recognized an antigen commonly shared by human trophoblasts and leucocytes. F10 MAb was obtained using cell membrane components from a trophoblast cell line HT as immunogen. Based on immunochemical studies, the F10 reactive antigen (F10-Ag) could be located on both villous and nonvillous trophoblasts from early and term placental tissues and on all trophoblastic cell lines. In addition, flow cytometry revealed that most ( > 95%) peripheral blood lymphocytes, monocytes, as well as polymorphonuclear leukocytes (PMN) were positively stained with F10 MAb. Immunoblotting with F10 MAb identified two protein bands with apparent molecular mass of 62 and 56 kDa. Furthermore, the antigens were glycoproteins and were glycosylated via the O-linkage. Scatchard plot analyses of the binding data between 125I-labeled MAb F10 IgG and HT cells revealed a single class of F10 binding sites with an apparent dissociation constant (Kd) of 10.54 +/- 2.03 pM and maximum binding-site (Bmax) value of 2.1 +/- 0.11 x 10(6) sites per cell. We suggest that F10 may be useful for the identification of a novel epitope that is commonly shared by all trophoblasts and leukocytes and such an epitope may be potentially active in maternal-fetal interactions.
Collapse
Affiliation(s)
- K J Yu
- Department of Obstetrics and Gynecology, Veterans General Hospital-Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
49
|
Carsberg CJ, Myers KA, Evans GS, Allen TD, Stern PL. Metastasis-associated 5T4 oncofoetal antigen is concentrated at microvillus projections of the plasma membrane. J Cell Sci 1995; 108 ( Pt 8):2905-16. [PMID: 7593330 DOI: 10.1242/jcs.108.8.2905] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5T4 oncofoetal antigen is a 72 kDa glycoprotein defined by a monoclonal antibody raised against human placental trophoblast and is expressed in many different carcinomas but detected only at low levels in some normal epithelia. Immunohistochemical analysis of the patterns of expression in colorectal carcinomas has indicated a significant association between the presence of the antigen in tumour cells and metastatic spread. A cDNA encoding the 5T4 molecules has been isolated and the extracellular portion contains several leucine-rich repeats which have been implicated in cellular interactions. To study the cell biological role of 5T4 molecules, murine L cells (A9 derivative) were stably transfected with 5T4 cDNA under the control of the CMV immediate-early promoter. The 5T4-expressing cells exhibited a more spindle-shaped morphology compared to the vector alone transfected cells. Confocal immunofluorescence microscopy revealed a ‘polkadot’ pattern of 5T4 antigen expression, heterogeneous in intensity between cells, but distributed over the entire cell surface. Transmission and scanning electron microscopy showed that the 5T4 antigen is concentrated at microvillus projections of the plasma membrane both in the transfected A9 cells and in various carcinoma cell lines. Such projections express an array of surface molecules which function in cell adhesion and motility. This association of 5T4 antigen with microvillus projections was also observed in various carcinoma cell lines. 5T4 expression in A9 cells was also associated with an altered pattern of cell division, decreased cell-substratum adhesion and increased cellular motility. These results support the hypothesis that 5T4 molecules may have a direct function in trophoblast and tumour cell invasion processes.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Biomarkers, Tumor/analysis
- Blotting, Southern
- Blotting, Western
- Cell Adhesion
- Cell Aggregation
- Cell Division
- Colonic Neoplasms
- Cytomegalovirus/genetics
- Extracellular Matrix Proteins
- Fluorescent Antibody Technique
- Humans
- L Cells
- Membrane Glycoproteins/analysis
- Membrane Glycoproteins/biosynthesis
- Mice
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Electron, Scanning
- Microscopy, Video
- Microvilli/ultrastructure
- Neoplasm Metastasis
- Promoter Regions, Genetic
- Recombinant Proteins/analysis
- Recombinant Proteins/biosynthesis
- Transfection
- Tumor Cells, Cultured
- Urinary Bladder Neoplasms
Collapse
Affiliation(s)
- C J Carsberg
- CRC Department of Immunology, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK
| | | | | | | | | |
Collapse
|
50
|
Starzynska T, Marsh PJ, Schofield PF, Roberts SA, Myers KA, Stern PL. Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma. Br J Cancer 1994; 69:899-902. [PMID: 8180020 PMCID: PMC1968915 DOI: 10.1038/bjc.1994.173] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 5T4 oncofetal antigen is a 72 kDa glycoprotein defined by a monoclonal antibody raised against human placental trophoblast and is expressed in many different carcinomas but detected only at low levels in some normal epithelia. Immunohistochemical analysis of the patterns of expression in colorectal carcinomas has indicated a significant association between the presence of the antigen in tumour cells and metastatic spread. The 5T4 antigen phenotype of 72 colorectal cancers has been compared with the clinical outcome of the patients in order to assess its relationship with prognosis. Forty per cent of tumours were 5T4 positive; the remainder were either unlabelled or exhibited stroma-associated labelling only. There was a significant correlation between 5T4 expression in the malignant cells and unfavourable course of disease (P < 0.001). The 5 year survival with 5T4-positive tumours was 22% compared with 75% for patients with 5T4-negative tumours; median survival was 24 versus > 90 months respectively. Stratified analysis showed that 5T4 antigen tumour positivity was acting independently of each of stage, site of tumour, age or sex. There were significant differences in survival for patients with Dukes' B and C stage carcinomas (P = 0.001 and P = 0.034). The results suggest that in colorectal cancer immunohistochemical assessment of 5T4 expression may be useful in identifying patients at high risk for tumour recurrence and for whom additional treatment strategies might be most appropriate.
Collapse
Affiliation(s)
- T Starzynska
- Department of Immunology, Paterson Institute of Cancer Research, Christie Hospital, NHS Trust, Manchester, UK
| | | | | | | | | | | |
Collapse
|