1
|
Boccellino M, Ambrosio P, Ballini A, De Vito D, Scacco S, Cantore S, Feola A, Di Donato M, Quagliuolo L, Sciarra A, Galasso G, Crocetto F, Imbimbo C, Boffo S, Di Zazzo E, Di Domenico M. The Role of Curcumin in Prostate Cancer Cells and Derived Spheroids. Cancers (Basel) 2022; 14:cancers14143348. [PMID: 35884410 PMCID: PMC9320241 DOI: 10.3390/cancers14143348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
A major challenge in the clinical management of prostate cancer (PC) is to inhibit tumor growth and prevent metastatic spreading. In recent years, considerable efforts have been made to discover new compounds useful for PC therapy, and promising advances in this field were reached. Drugs currently used in PC therapy frequently induce resistance and PC progresses toward metastatic castration-resistant forms (mCRPC), making it virtually incurable. Curcumin, a commercially available nutritional supplement, represents an attractive therapeutic agent for mCRPC patients. In the present study, we compared the effects of chemotherapeutic drugs such as docetaxel, paclitaxel, and cisplatin, to curcumin, on two PC cell lines displaying a different metastatic potential: DU145 (moderate metastatic potential) and PC-3 (high metastatic potential). Our results revealed a dose-dependent reduction of DU145 and PC-3 cell viability upon treatment with curcumin similar to chemotherapeutic agents (paclitaxel, cisplatin, and docetaxel). Furthermore, we explored the EGFR-mediated signaling effects on ERK activation in DU145 and PC-3 cells. Our results showed that DU145 and PC-3 cells overexpress EGFR, and the treatment with chemotherapeutic agents or curcumin reduced EGFR expression levels and ERK activation. Finally, chemotherapeutic agents and curcumin reduced the size of DU145 and PC-3 spheroids and have the potential to induce apoptosis and also in Matrigel. In conclusion, despite different studies being carried out to identify the potential synergistic curcumin combinations with chemopreventive/therapeutic efficacy for inhibiting PC growth, the results show the ability of curcumin used alone, or in combinatorial approaches, to impair the size and the viability of PC-derived spheroids.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Pasqualina Ambrosio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
- Correspondence: (A.B.); (S.C.)
| | - Danila De Vito
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.D.V.); (S.S.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.D.V.); (S.S.)
| | - Stefania Cantore
- Independent Researcher, 70129 Bari, Italy
- Correspondence: (A.B.); (S.C.)
| | - Antonia Feola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Antonella Sciarra
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Silvia Boffo
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122-6078, USA;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122-6078, USA;
| |
Collapse
|
2
|
Casper RF, MacLusky NJ, Vanin C, Brown TJ. Rationale for Estrogen With Interrupted Progestin as a New Low-Dose Hormonal Replacement Therapy. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769600300501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Robert F. Casper
- Division of Reproductive Sciences, The Toronoto Hospital Research Institute, Toronto, Canada; Departments of Obstetrics and Gynecology, Physiology, and Zoology, The University of Toronto, Toronto, Canada; 6-246 EN, The Toronto Hospital, 200 Elizabeth St., Toronto, Ontario, Candada, M5G 2C4
| | | | | | - Theodore J. Brown
- Division of Reproductive Sciences, The Toronoto Hospital Research Institute, Toronto, Canada; Departments of Obstetrics and Gynecology, Physiology, and Zoology, The University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Castoria G, Giovannelli P, Lombardi M, De Rosa C, Giraldi T, de Falco A, Barone MV, Abbondanza C, Migliaccio A, Auricchio F. Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells. Oncogene 2012; 31:4868-77. [PMID: 22266855 DOI: 10.1038/onc.2011.642] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 12/23/2022]
Abstract
We report that in breast cancer cells, tyrosine phosphorylation of the estradiol receptor alpha (ERalpha) by Src regulates cytoplasmic localization of the receptor and DNA synthesis. Inhibition of Src or use of a peptide mimicking the ERalpha p-Tyr537 sequence abolishes ERalpha tyrosine phosphorylation and traps the receptor in nuclei of estradiol-treated MCF-7 cells. An ERalpha mutant carrying a mutation of Tyr537 to phenylalanine (ER537F) persistently localizes in nuclei of various cell types. In contrast with ERalpha wt, ER537F does not associate with Ran and its interaction with Crm1 is insensitive to estradiol. Thus, independently of estradiol, ER537F is retained in nuclei, where it entangles FKHR-driving cell cycle arrest. Chromatin immunoprecipitation analysis reveals that overexpression of ER537F in breast cancer cells enhances FKHR interaction with cyclin D1 promoter. This mutant also counteracts cell transformation by the activated forms of Src or PI3-K. In conclusion, in addition to regulating receptor localization, ERalpha phosphorylation by Src is required for hormone responsiveness of DNA synthesis in breast cancer cells.
Collapse
Affiliation(s)
- G Castoria
- 1] Department of General Pathology, II University of Naples, Naples, Italy [2] These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gallo D, Jacquot Y, Laurent G, Leclercq G. Calmodulin, a regulatory partner of the estrogen receptor alpha in breast cancer cells. Mol Cell Endocrinol 2008; 291:20-6. [PMID: 18524472 DOI: 10.1016/j.mce.2008.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 02/07/2023]
Abstract
Although calmodulin (CaM) interaction with estrogen receptor alpha (ERalpha) has been known for more than two decades, it is only recently that the molecular mechanism of CaM-mediated regulation of ERalpha is beginning to emerge. Others and we have identified a putative calmodulin binding site (P(295)LMIKRSKKNSLALSTADQMVS(317)) in ERalpha, at the boundary between the hinge and the ligand binding domain. ERalpha mutations affecting its association with CaM have been reported to generate high basal, estrogen-independent transactivation activity, indicating that the P(295)-T(317) sequence has an inhibitory function. Moreover, we found that a synthetic peptide (ERalpha17p: P(295)-T(311)) containing residues crucial for CaM binding exerts estrogenic effects on breast carcinoma cells. Finally, computer-aided conformational studies revealed that the CaM binding site might associate with a region located downstream in ERalpha (the beta turn/H4 region), this association likely resulting in an auto-inhibitory folding of the receptor. Thus, we propose as a hypothesis that CaM acts as a positive regulator by relieving this ERalpha auto-inhibition.
Collapse
Affiliation(s)
- Dominique Gallo
- Laboratoire J.-C. Heuson de Cancérologie Mammaire, Université Libre de Bruxelles, Institut Jules Bordet, 1 rue Héger-Bordet, B-1000 Brussels, Belgium
| | | | | | | |
Collapse
|
5
|
Helguero LA, Viegas M, Asaithamby A, Shyamala G, Lanari C, Molinolo AA. Progesterone receptor expression in medroxyprogesterone acetate-induced murine mammary carcinomas and response to endocrine treatment. Breast Cancer Res Treat 2003; 79:379-90. [PMID: 12846422 DOI: 10.1023/a:1024029826248] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using medroxyprogesterone acetate (MPA) as a carcinogen, we were able to induce in BALB/c female mice, several progestin-dependent mammary ductal carcinomas that regress completely with estrogen or antiprogestins and are maintained by serial transplantations in syngeneic mice. Progestin-independent variants were subsequently generated or appeared spontaneously. Based on their response to estrogen or antiprogestins, we subdivided them into responsive progestin-independent (R-PI) variants which regress completely and unresponsive progestin-independent (UR-PI) carcinomas which are resistant to both families of compounds. In this study we have investigated progesterone receptor (PR) expression in six responsive progestin-dependent, six R-PI, and three UR-PI tumors. Progestin-dependent and R-PI tumors disclosed a higher expression of the PR(A) isoform as compared with PR(B), as well as an additional band of 78 kDa that was not detected in uterine tissue; all were down-regulated by progestins. UR-PI tumors expressed lower levels of all bands in western blots, but were highly reactive by immunohistochemistry. PR RNA expression was detected in both, UR-PI and R-PI tumors. PR binding was comparable in progestin-dependent and R-PI tumors. In the three UR-PI tumors, only 29/61 (48%) of the samples evaluated showed low binding levels, the rest were negative. This report is the first to describe in an experimental model of breast cancer the expression of PR isoforms and their distribution. Our results suggest the expression of functionally altered isoforms in a subgroup of mammary carcinomas, which may explain their lack of hormone response.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/physiopathology
- Down-Regulation
- Estrogens/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Immunohistochemistry
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/physiopathology
- Medroxyprogesterone Acetate/administration & dosage
- Medroxyprogesterone Acetate/adverse effects
- Mice
- Mice, Inbred BALB C
- Progesterone Congeners/administration & dosage
- Progesterone Congeners/adverse effects
- Progestins/pharmacology
- RNA/biosynthesis
- Receptors, Progesterone/biosynthesis
Collapse
Affiliation(s)
- Luisa A Helguero
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Estrogen receptors (ERs) of which two isoforms have been identified (alpha and beta) are subjected to phosphorylation, glycozylation, ubiquitination and other post-transcriptional conformational changes giving rise to a very high molecular heterogeneity. Partial proteolysis of these receptors, as well as their high tendency to associate within oligomeric structures, reinforces this property. Investigations demonstrated that this heterogeneity is not a biochemical artefact suggesting some biological relevance. Our purpose was to review this topic, especially with regard to ERalpha from breast cancers.
Collapse
Affiliation(s)
- Guy Leclercq
- Laboratoire J.-C. Heuson de Cancérologie Mammaire 1, Institut Jules Bordet, Service de Médecine Interne, rue héger-Bordet, 1-1000 Brussels, Belgium.
| |
Collapse
|
7
|
MacLusky NJ, Bowlby DA, Brown TJ, Peterson RE, Hochberg RB. Sex and the developing brain: suppression of neuronal estrogen sensitivity by developmental androgen exposure. Neurochem Res 1997; 22:1395-414. [PMID: 9355112 DOI: 10.1023/a:1022027408234] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The developmental effects of androgen play a central role in sexual differentiation of the mammalian central nervous system. The cellular mechanisms responsible for mediating these effects remain incompletely understood. A considerable amount of evidence has accumulated indicating that one of the earliest detectable events in the mechanism of sexual differentiation is a selective and permanent reduction in estrogen receptor concentrations in specific regions of the brain. Using quantitative autoradiographic methods, it has been possible to precisely map the regional distribution of estrogen receptors in the brains of male and female rats, as well as to study the development of sexual dimorphisms in receptor distribution. Despite previous data suggesting that the left and right sides of the brain may be differentially responsive to early androgen exposure, there is no significant right-left asymmetry in estrogen receptor distribution, in either sex. Significant sex differences in receptor density are, however, observed in several regions of the preoptic area, the bed nucleus of the stria terminalis and the ventromedial nucleus of the hypothalamus, particularly in its most rostral and caudal aspects. In the periventricular preoptic area of the female, highest estrogen receptor density occurs in the anteroventral periventricular region: binding in this region is reduced by approximately 50% in the male, as compared to the female. These data are consistent with the hypothesis that androgen-induced defeminization of feminine behavioral and neuroendocrine responses to estrogen may involve selective reductions in the estrogen sensitivity of critical components of the neural circuitry regulating these responses, mediated in part through a reduction in estrogen receptor biosynthesis.
Collapse
Affiliation(s)
- N J MacLusky
- Division of Reproductive Science, Toronto Hospital Research Institute, Ontario, Canada
| | | | | | | | | |
Collapse
|
8
|
Jiang MS, Hart GW. A subpopulation of estrogen receptors are modified by O-linked N-acetylglucosamine. J Biol Chem 1997; 272:2421-8. [PMID: 8999954 DOI: 10.1074/jbc.272.4.2421] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Estrogen receptors (ER) are ligand-inducible transcription factors regulated by Ser(Thr)-O-phosphorylation. Many transcription factors and eukaryotic RNA polymerase II itself are also dynamically modified by Ser(Thr)-O-linked N-acetylglucosamine moieties (O-GlcNAc). Here we report that subpopulations of murine, bovine, and human estrogen receptors are modified by O-GlcNAc. O-GlcNAc moieties were detected on insect cell-expressed, mouse ER (mER) by probing with bovine milk galactosyltransferase, followed by structural analysis. Wheat germ agglutinin-Sepharose affinity chromatography also readily detected terminal GlcNAc residues on subpopulations of ER purified from calf uterus, from human breast cancer cells (MCF-7), or from mER produced by in vitro translation. These data suggest that greater than 10% of these populations of estrogen receptors bear O-GlcNAc. Site mapping of insect cell expressed mER localized one major site of O-GlcNAc addition to Thr-575, within a PEST region of the carboxyl-terminal F domain. Based upon their relative resistance to both hexosaminidase and to in vitro galactosylation, O-GlcNAc moieties appear to be largely buried on native mER. This dynamic saccharide modification, like phosphorylation, may play a role in modulating the dimerization, stability, or transactivation functions of estrogen receptors.
Collapse
Affiliation(s)
- M S Jiang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
9
|
Trivedi S, Piccart M, Muquardt C, Gilot N, Hadiy S, Patel D, Leclercq G. Tamoxifen aziridine labeling of the estrogen receptor-potential utility in detecting biologically aggressive breast tumors. Breast Cancer Res Treat 1996; 40:231-41. [PMID: 8883965 DOI: 10.1007/bf01806811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Expression of estrogen receptor (ER) is a helpful predictor of response to endocrine therapy and disease free survival in breast cancer patients. The presence of variant estrogen receptors has been demonstrated at the RNA/DNA level and might represent an escape of tumors from hormonal control mechanisms. However, the demonstration that the corresponding peptides do exist is a real challenge. Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) of covalently bound [3H]tamoxifen aziridine ([3H]TAZ) to ER demonstrates a specific, multiband peptide pattern recognized by anti-ER monoclonal antibodies (anti-ER Mo Abs). The native 66 kDa ER form identified through its hormone binding domain by the H-222 Mo Ab was the most prominent one followed by 50, 35, and 28 kDa forms on fluorography. Such patterns from early human breast tumors were compared to the ones of more advanced disease, namely large primary breast cancers, metastatic lymph nodes, and soft tissue relapses: in these cases, molecular forms of 43 and 35 kDa were identified with a remarkable consistency. The 43 kDa peptide was more frequently identified by the H-226 Mo Ab (which maps a region near the DNA binding domain)-albeit with low labeling intensity as compared to H-222 Mo Ab. In addition, the 43 kDa peptide was inversely correlated to ER levels. This altered ER or related peptide could potentially be a marker of biologically aggressive breast tumors.
Collapse
Affiliation(s)
- S Trivedi
- Laboratoire J.-C. Heuson de Cancérologie Mammaire, Institut Jules Bordet, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
10
|
Auricchio F, Migliaccio A, Castoria G, Di Domenico M, Bilancio A, Rotondi A. Protein tyrosine phosphorylation and estradiol action. Ann N Y Acad Sci 1996; 784:149-72. [PMID: 8651566 DOI: 10.1111/j.1749-6632.1996.tb16234.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- F Auricchio
- II Cattedra di Patologia Generale, Facoltà di Medicina e Chirurgia, II Università di Napoli, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Castoria G, Migliaccio A, Bilancio A, Pagano M, Abbondanza C, Auricchio F. A 67 kDa non-hormone binding estradiol receptor is present in human mammary cancers. Int J Cancer 1996; 65:574-83. [PMID: 8598306 DOI: 10.1002/(sici)1097-0215(19960301)65:5<574::aid-ijc4>3.0.co;2-#] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The presence of large amounts of a 67 kDa estradiol receptor that does not bind hormone was observed in 8 to 37 human mammary tumors (34 malignant and 3 benign). This form of receptor was detected by its conversion to hormone binding receptor by an endogenous tyrosine kinase in vitro. All 8 tumors were malignant. In these, the incubation of cytosol with ATP was seen to cause a 1- to 5-fold increase in estradiol-specific binding sites. These sites bound estradiol with physiological affinity, and their appearance was associated with tyrosine phosphorylation of estradiol receptor. The enzyme converting the non-hormone binding receptor into the hormone binding receptor is largely present in cytosol and scarce in membranes. It has been extensively purified. It is a 67 kDa protein under denaturating conditions, binds calmodulin-Sepharose in a Ca2+-dependent manner, is stimulated by Ca2+ and calmodulin, phosphorylates exogenous actin, is activated by the estradiol-receptor complex. The enzyme interacts with antibodies directed against the carboxy-terminal and catalytic domains of c-src. Therefore, it is a putative new member of the large c-src-related kinase family. Human mammary cancers with significant amounts of 67 kDa non-hormone binding receptor show relatively low levels of hormone binding estradiol receptor. The presence of non-hormone binding receptor that can be activated by in vitro tyrosine phosphorylation suggests that functional interaction of estradiol receptor with tyrosine kinases is altered in malignant tumors and has bearing on loss of hormone dependence and progression of the mammary cancer malignancy.
Collapse
Affiliation(s)
- G Castoria
- Instituto di Patologia Generale ed Oncologia, Facolta di Medicina e Chirurgia, II Universita di Napoli, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Sluyser M, Dantuma NP, Van Tiggelen C, De Goeij CC. Estrogen receptor variants in mouse mammary tumors. Ann N Y Acad Sci 1993; 684:116-8. [PMID: 8317824 DOI: 10.1111/j.1749-6632.1993.tb32275.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M Sluyser
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
13
|
Sluyser M. Role of estrogen receptor variants in the development of hormone resistance in breast cancer. Clin Biochem 1992; 25:407-14. [PMID: 1362141 DOI: 10.1016/0009-9120(92)90015-k] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent evidence suggests that the progression to hormone resistance in some breast tumors is due to mutations in the estrogen receptor (ER). Various types of ER variants have been found in breast cancer biopsies and breast cancer cell lines. The ER variants include dominant-positive receptors that are transcriptionally active in the absence of estrogen, and dominant-negative receptors that are themselves transcriptionally inactive but prevent the action of the normal receptor. The mechanisms by which these variants cause loss of hormonal control is becoming clear. ER variants may be prognostic factors for breast cancer. By modifying the action of ER variants, it should be possible to develop new strategies for treatment of malignant breast disease.
Collapse
Affiliation(s)
- M Sluyser
- Division of Tumor Biology, The Netherlands Cancer Institute, Amsterdam
| |
Collapse
|