1
|
Huang Y, Ren S, Ding L, Jiang Y, Luo J, Huang J, Yin X, Zhao J, Fu S, Liao J. TP53-specific mutations serve as a potential biomarker for homologous recombination deficiency in breast cancer: a clinical next-generation sequencing study. PRECISION CLINICAL MEDICINE 2024; 7:pbae009. [PMID: 38745917 PMCID: PMC11092399 DOI: 10.1093/pcmedi/pbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
Background TP53 mutations and homologous recombination deficiency (HRD) occur frequently in breast cancer. However, the characteristics of TP53 pathogenic mutations in breast cancer patients with/without HRD are not clear. Methods Clinical next-generation sequencing (NGS) of both tumor and paired blood DNA from 119 breast cancer patients (BRCA-119 cohort) was performed with a 520-gene panel. Mutations, tumor mutation burden (TMB), and genomic HRD scores were assessed from NGS data. NGS data from 47 breast cancer patients in the HRD test cohort were analyzed for further verification. Results All TP53 pathogenic mutations in patients had somatic origin, which was associated with the protein expression of estrogen receptor and progestogen receptor. Compared to patients without TP53 pathologic mutations, patients with TP53 pathologic mutations had higher levels of HRD scores and different genomic alterations. The frequency of TP53 pathologic mutation was higher in the HRD-high group (HRD score ≥ 42) relative to that in the HRD-low group (HRD score < 42). TP53 has different mutational characteristics between the HRD-low and HRD-high groups. TP53-specific mutation subgroups had diverse genomic features and TMB. Notably, TP53 pathogenic mutations predicted the HRD status of breast cancer patients with an area under the curve (AUC) of 0.61. TP53-specific mutations, namely HRD-low mutation, HRD-high mutation, and HRD common mutation, predicted the HRD status of breast cancer patients with AUC values of 0.32, 0.72, and 0.58, respectively. Interestingly, TP53 HRD-high mutation and HRD common mutation combinations showed the highest AUC values (0.80) in predicting HRD status. Conclusions TP53-specific mutation combinations predict the HRD status of patients, indicating that TP53 pathogenic mutations could serve as a potential biomarker for poly-ADP-ribose polymerase (PARP) inhibitors in breast cancer patients .
Collapse
Affiliation(s)
- Yongsheng Huang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shuwei Ren
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Linxiaoxiao Ding
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuanling Jiang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiahuan Luo
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinghua Huang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinke Yin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianli Zhao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Sha Fu
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianwei Liao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
2
|
Lind SM, Sletten M, Hellenes M, Mathelier A, Tekpli X, Tinholt M, Iversen N. Coagulation factor V in breast cancer: a p53-regulated tumor suppressor and predictive marker for treatment response to chemotherapy. J Thromb Haemost 2024; 22:1569-1582. [PMID: 38382738 DOI: 10.1016/j.jtha.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Patients with cancer are at an increased risk of developing coagulation complications, and chemotherapy treatment increases the risk. Tumor progression is closely linked to the hemostatic system. Breast cancer tumors express coagulation factor V (FV), an essential factor in blood coagulation. The functional role of FV during treatment with chemotherapy is poorly understood and was explored in this study. OBJECTIVES We aimed to investigate the role of FV in breast cancer progression by exploring associations with treatment response, gene regulation, and the functional effects of FV. METHODS The receiver operating characteristic plotter was used to explore the predictive value of FV mRNA (F5) expression for treatment with FEC (5-fluorouracil, anthracycline, and cyclophosphamide). Breast cancer cohorts were analyzed to study treatment response to FEC. The effect of chemotherapy on F5 expression, the regulation of F5, and the functional effects of FV dependent and independent of chemotherapy were studied in breast cancer cell lines. RESULTS F5 tumor expression was significantly higher in responders to FEC than in nonresponders. In vitro experiments revealed that anthracycline treatment increased the expression of F5. Inhibition and knockdown of p53 reduced the anthracycline-induced F5 expression. Mutation of a p53 half-site (c.158+1541/158+1564) in a luciferase plasmid reduced luciferase activity, suggesting that p53 plays a role in regulating F5. FV overexpression increased apoptosis and reduced proliferation slightly during anthracycline treatment. CONCLUSION Our study identified F5 as a p53-regulated tumor suppressor candidate and a promising marker for response to chemotherapy. FV may have functional effects that are therapeutically relevant in breast cancer.
Collapse
Affiliation(s)
- Sara Marie Lind
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marit Sletten
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mona Hellenes
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anthony Mathelier
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mari Tinholt
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Bahrin NWS, Matusin SNI, Mustapa A, Huat LZ, Perera S, Hamid MRWHA. Exploring the effectiveness of molecular subtypes, biomarkers, and genetic variations as first-line treatment predictors in Asian breast cancer patients: a systematic review and meta-analysis. Syst Rev 2024; 13:100. [PMID: 38576013 PMCID: PMC10993489 DOI: 10.1186/s13643-024-02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Breast cancer incidence has been on the rise significantly in the Asian population, occurring at an earlier age and a later stage. The potential predictive value of molecular subtypes, biomarkers, and genetic variations has not been deeply explored in the Asian population. This study evaluated the effect of molecular subtype classification and the presence or absence of biomarkers and genetic variations on pathological complete response (pCR) after neoadjuvant treatment in Asian breast cancer patients. METHODS A systematic search was conducted in MEDLINE (PubMed), Science Direct, Scopus, and Cochrane Library databases. Studies were selected if they included Asian breast cancer patients treated with neoadjuvant chemotherapy and contained data for qualitative or quantitative analyses. The quality of the included studies was assessed using the Newcastle Ottawa Scale. Following the random effects model, pooled odds ratios or hazard ratios with 95% confidence intervals for pCR were analysed using Review Manager Software. Heterogeneity between studies was assessed using Cochran's Q-test and I2 test statistics. RESULTS In total, 19,708 Asian breast cancer patients were pooled from 101 studies. In the neoadjuvant setting, taxane-anthracycline (TA) chemotherapy showed better pCR outcomes in triple-negative breast cancer (TNBC) (p<0.0001) and human epidermal growth factor receptor 2 enriched (HER2E) (p<0.0001) than luminal breast cancer patients. Similarly, taxane-platinum (TP) chemotherapy also showed better pCR outcomes in TNBC (p<0.0001) and HER2E (p<0.0001). Oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, HER2-positive and high Ki-67 were significantly associated with better pCR outcomes when treated with either TA or TP. Asian breast cancer patients harbouring wildtype PIK3CA were significantly associated with better pCR outcomes when treated with TA in the neoadjuvant setting (p=0.001). CONCLUSIONS In the neoadjuvant setting, molecular subtypes (HER2E and TNBC), biomarkers (ER, PR, HER2, HR, Ki-67, nm23-H1, CK5/6, and Tau), and gene (PIK3CA) are associated with increased pCR rates in Asian breast cancer patients. Hence, they could be further explored for their possible role in first-line treatment response, which can be utilised to treat breast cancer more efficiently in the Asian population. However, it needs to be further validated with additional powered studies. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021246295.
Collapse
Affiliation(s)
- Nurul Wafiqah Saipol Bahrin
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Siti Nur Idayu Matusin
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Aklimah Mustapa
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Lu Zen Huat
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Sriyani Perera
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mas Rina Wati Haji Abdul Hamid
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam.
| |
Collapse
|
4
|
Ghislanzoni S, Kang JW, Bresci A, Masella A, Kobayashi-Kirschvink KJ, Polli D, Bongarzone I, So PTC. Optical Diffraction Tomography and Raman Confocal Microscopy for the Investigation of Vacuoles Associated with Cancer Senescent Engulfing Cells. BIOSENSORS 2023; 13:973. [PMID: 37998148 PMCID: PMC10669708 DOI: 10.3390/bios13110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Wild-type p53 cancer therapy-induced senescent cells frequently engulf and degrade neighboring ones inside a massive vacuole in their cytoplasm. After clearance of the internalized cell, the vacuole persists, seemingly empty, for several hours. Despite large vacuoles being associated with cell death, this process is known to confer a survival advantage to cancer engulfing cells, leading to therapy resistance and tumor relapse. Previous attempts to resolve the vacuolar structure and visualize their content using dyes were unsatisfying for lack of known targets and ineffective dye penetration and/or retention. Here, we overcame this problem by applying optical diffraction tomography and Raman spectroscopy to MCF7 doxorubicin-induced engulfing cells. We demonstrated a real ability of cell tomography and Raman to phenotype complex microstructures, such as cell-in-cells and vacuoles, and detect chemical species in extremely low concentrations within live cells in a completely label-free fashion. We show that vacuoles had a density indistinguishable to the medium, but were not empty, instead contained diluted cell-derived macromolecules, and we could discern vacuoles from medium and cells using their Raman fingerprint. Our approach is useful for the noninvasive investigation of senescent engulfing (and other peculiar) cells in unperturbed conditions, crucial for a better understanding of complex biological processes.
Collapse
Affiliation(s)
- Silvia Ghislanzoni
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy;
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
| | - Arianna Bresci
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | | | - Koseki J. Kobayashi-Kirschvink
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy;
- CNR Institute for Photonics and Nanotechnologies (IFN), Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Italia Bongarzone
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy;
| | - Peter T. C. So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (A.B.); (K.J.K.-K.); (P.T.C.S.)
| |
Collapse
|
5
|
Lin XY, Guo L, Lin X, Wang Y, Zhang G. Concomitant PIK3CA and TP53 Mutations in Breast Cancer: An Analysis of Clinicopathologic and Mutational Features, Neoadjuvant Therapeutic Response, and Prognosis. J Breast Cancer 2023; 26:363-377. [PMID: 37565929 PMCID: PMC10475711 DOI: 10.4048/jbc.2023.26.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 08/12/2023] Open
Abstract
PURPOSE PIK3CA and TP53 are the most prevalently mutated genes in breast cancer (BC). Previous studies have indicated an association between concomitant PIK3CA/TP53 mutations and shorter disease-free survival. As its clinical utility remains largely unknown, we aimed to analyze the prognostic and predictive roles of this co-mutation. METHODS We retrospectively analyzed patients who were diagnosed with BC at Guangdong Provincial People's Hospital (GDPH) who underwent next-generation sequencing. The correlation of concomitant PIK3CA/TP53 mutations with clinicopathological and mutational characteristics, and neoadjuvant systemic therapy (NST) responses was analyzed. The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset was used to verify associations between concurrent mutations and survival outcomes. RESULTS In the GDPH cohort, concomitant PIK3CA/TP53 mutations were associated with more aggressive phenotypes, including human epidermal growth factor receptor 2 positive status, hormone receptor negative status, high Ki-67 expression, high histological grade, advanced TNM stage, and additional genetic alterations. Co-mutations also portended a worse response to NST, especially taxane-containing regimens, when compared with the TP53 mutant alone (odds ratio, 3.767; 95% confidence interval, 1.205-13.087; p = 0.028). A significant association was observed between concomitant PIK3CA/TP53 mutations and poor survival outcomes in the METABRIC cohort. CONCLUSION Concomitant PIK3CA/TP53 mutations not only suggested unfavorable features and poor prognosis in BC but also conferred less benefit to NST than TP53 mutations alone.
Collapse
Affiliation(s)
- Xiao-Yi Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Lijuan Guo
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulei Wang
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guochun Zhang
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Takahashi S, Sasaki K, Ishioka C. TP53 Signature Can Predict Pathological Response From Neoadjuvant Chemotherapy and Is a Prognostic Factor in Patients With Residual Disease. Breast Cancer (Auckl) 2023; 17:11782234231167655. [PMID: 37181950 PMCID: PMC10170595 DOI: 10.1177/11782234231167655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/09/2023] [Indexed: 05/16/2023] Open
Abstract
Background The TP53 signature that predicts the mutation status of TP53 has been shown to be a prognostic factor and predictor of neoadjuvant chemotherapy (NAC) response. Objectives The current study sought to investigate the utility of the TP53 signature for predicting pathological complete response (pCR) and its prognostic significance among patients with residual disease (RD). Design The study followed a retrospective cohort study design. Methods Patients with T1-3/N0-1 from a cohort of those with HER2-negative breast cancer who received NAC were selected. Ability to predict pCR was evaluated using odds ratio, positive and negative predictive values, sensitivity, and specificity. Prognostic factors in the RD group were explored using the Cox proportional hazards model with distant recurrence-free survival (DRFS). Four independent cohorts were used for validation. Results A total of 333 eligible patients were classified into the TP53 mutant signature (n = 154) and wild-type signature (n = 179). Among the molecular and pathological factors, the TP53 signature had the highest predictive power for pCR. In 4 independent cohorts (n = 151, 85, 104, and 67, respectively), pCR rate in TP53 mutant signature group was significantly higher than that in the wild-type group. Univariate and multivariate analyses on DRFS in the RD group identified the TP53 signature and nodal status as independent prognostic factors, with the former having a better hazard ratio than the latter. After comparing DRFS between 3 groups (pCR, RD/TP53 wild-type signature, and RD/TP53 mutant signature groups), the RD/TP53 mutant signature group showed significantly worse prognosis compared with others. The RD/TP53 wild-type signature group did not exhibit inferior DRFS compared with the pCR group. Conclusion Our results showed that the TP53 mutant signature can predict pCR and that combining pathological response and TP53 mutant signature allows for the identification of subgroups with truly poor prognosis.
Collapse
Affiliation(s)
- Shin Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiju Sasaki
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Chiu FY, Kvadas RM, Mheidly Z, Shahbandi A, Jackson JG. Could senescence phenotypes strike the balance to promote tumor dormancy? Cancer Metastasis Rev 2023; 42:143-160. [PMID: 36735097 DOI: 10.1007/s10555-023-10089-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Collapse
Affiliation(s)
- Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Raegan M Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Lin X, Lin X, Guo L, Wang Y, Zhang G. Distinct clinicopathological characteristics, genomic alteration and prognosis in breast cancer with concurrent TP53 mutation and MYC amplification. Thorac Cancer 2022; 13:3441-3450. [PMID: 36305094 PMCID: PMC9750818 DOI: 10.1111/1759-7714.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both TP53 mutation and MYC amplification indicate poor outcomes in breast cancer (BC), but the clinical values of concurrent TP53 and MYC alterations have not been well-characterized. METHODS A total of 494 BC patients diagnosed at Guangdong Provincial People's Hospital (GDPH) were retrospectively analyzed. Genomic alterations were determined using next-generation sequencing. Survival analysis was applied to assess the effects of genetic alterations on relapse-free survival. The prognosis was verified based on 1405 patients from METABRIC cohort. Additionally, we used logistic regression to identify the factors associated with pathological complete response (pCR) after neoadjuvant chemotherapy. RESULTS In GDPH cohort, patients with TP53/MYC co-alteration exhibited higher grade and stage, more positive HER2 status and higher Ki67 levels, but less luminal A subtypes. They also had more mutations in genes involved in ERBB and TGF-β signaling pathways, as well as exclusive FANCG/CDKN2B/QKI copy number amplifications and SUFU/HIST3H3/ERCC4/JUN/BCR mutations. Concurrent TP53 and MYC alterations independently increased hazards of relapse (HR, 5.425; 95% CI: 2.019-14.579; p < 0.001). They maintained independent significance for relapse-free (HR, 1.310; 95% CI: 1.012-1.697; p = 0.041) and overall survival (HR, 1.373; 95% CI: 1.093-1.725; p = 0.006) in METABRIC cohort. Among the 81 patients receiving chemotherapy, TP53 mutation (OR, 5.750; 95% CI: 1.553-25.776; p = 0.013) and earlier stage (OR, 0.275; 95% CI 0.088-0.788; p = 0.020) were associated with pCR, while the co-alteration did not serve as an independent predictor (p = 0.199). CONCLUSIONS TP53/MYC co-alteration was associated with distinct clinicopathological and genomic features. They also conferred unfavorable prognosis in BC patients, and did not improve pCR after neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Xiaoyi Lin
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- Shantou University Medical CollegeShantouChina
| | - Xin Lin
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| | - Lijuan Guo
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yulei Wang
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Guochun Zhang
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
9
|
Abstract
Identifying triple negative breast cancer (TNBC) patients expected to have poor outcomes provides an opportunity to enhance clinical management. We applied an Evolutionary Action Score to functionally characterize TP53 mutations (EAp53) in 96 TNBC patients and observed that EAp53 stratification may identify TP53 mutations associated with worse outcomes. These findings merit further exploration in larger TNBC cohorts and in patients treated with neoadjuvant chemotherapy regimens.
Collapse
|
10
|
Basmadjian RB, Kong S, Boyne DJ, Jarada TN, Xu Y, Cheung WY, Lupichuk S, Quan ML, Brenner DR. Developing a Prediction Model for Pathologic Complete Response Following Neoadjuvant Chemotherapy in Breast Cancer: A Comparison of Model Building Approaches. JCO Clin Cancer Inform 2022; 6:e2100055. [PMID: 35148170 PMCID: PMC8846388 DOI: 10.1200/cci.21.00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The optimal characteristics among patients with breast cancer to recommend neoadjuvant chemotherapy is an active area of clinical research. We developed and compared several approaches to developing prediction models for pathologic complete response (pCR) among patients with breast cancer in Alberta.
Collapse
Affiliation(s)
- Robert B Basmadjian
- Department of Community Health Sciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Shiying Kong
- Department of Community Health Sciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada.,Department of Surgery, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Devon J Boyne
- Department of Community Health Sciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Tamer N Jarada
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Yuan Xu
- Department of Community Health Sciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada.,Department of Surgery, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Winson Y Cheung
- Department of Community Health Sciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Sasha Lupichuk
- Department of Community Health Sciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - May Lynn Quan
- Department of Community Health Sciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada.,Department of Surgery, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Darren R Brenner
- Department of Community Health Sciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Predicting clinical outcomes of cancer patients with a p53 deficiency gene signature. Sci Rep 2022; 12:1317. [PMID: 35079034 PMCID: PMC8789768 DOI: 10.1038/s41598-022-05243-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor p53, encoded by the TP53 gene, is mutated or nullified in nearly 50% of human cancers. It has long been debated whether TP53 mutations can be utilized as a biomarker to predict clinical outcomes of cancer patients. In this study, we applied computational methods to calculate p53 deficiency scores (PDSs) that reflect the inactivation of the p53 pathway, instead of TP53 mutation status. Compared to TP53 mutation status, the p53 deficiency gene signature is a powerful predictor of overall survival and drug sensitivity in a variety of cancer types and treatments. Interestingly, the PDSs predicted clinical outcomes more accurately than drug sensitivity in cell lines, suggesting that tumor heterogeneity and/or tumor microenvironment may play an important role in predicting clinical outcomes using p53 deficiency gene signatures.
Collapse
|
12
|
Das S, Idate R, Regan DP, Fowles JS, Lana SE, Thamm DH, Gustafson DL, Duval DL. Immune pathways and TP53 missense mutations are associated with longer survival in canine osteosarcoma. Commun Biol 2021; 4:1178. [PMID: 34635775 PMCID: PMC8505454 DOI: 10.1038/s42003-021-02683-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma affects about 2.8% of dogs with cancer, with a one-year survival rate of approximately 45%. The purpose of this study was to characterize mutation and expression profiles of osteosarcoma and its association with outcome in dogs. The number of somatic variants identified across 26 samples ranged from 145 to 2,697 with top recurrent mutations observed in TP53 and SETD2. Additionally, 47 cancer genes were identified with copy number variations. Missense TP53 mutation status and low pre-treatment blood monocyte counts were associated with a longer disease-free interval (DFI). Patients with longer DFI also showed increased transcript levels of anti-tumor immune response genes. Although, T-cell and myeloid cell quantifications were not significantly associated with outcome; immune related genes, PDL-1 and CD160, were correlated with T-cell abundance. Overall, the association of gene expression and mutation profiles to outcome provides insights into pathogenesis and therapeutic interventions in osteosarcoma patients.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Rupa Idate
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins, CO, 80523, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jared S Fowles
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Susan E Lana
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Douglas H Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
13
|
Nassif EF, Auclin E, Bahleda R, Honoré C, Mir O, Dumont S, Mery B, Hodroj K, Brahmi M, Trédan O, Ray-Coquard I, Blay JY, Massard C, Le Cesne A, Dufresne A. TP53 Mutation as a Prognostic and Predictive Marker in Sarcoma: Pooled Analysis of MOSCATO and ProfiLER Precision Medicine Trials. Cancers (Basel) 2021; 13:3362. [PMID: 34282771 PMCID: PMC8268242 DOI: 10.3390/cancers13133362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: locally resected high-grade sarcomas relapse in 40% of cases. There is no prognostic or predictive genomic marker for response to peri-operative chemotherapy. (2) Methods: MOSCATO and ProfiLER are pan-tumor prospective precision medicine trials for advanced tumors. Molecular analysis in both trials comprised targeted next-generation sequencing and comparative genomic hybridization array. We investigated if molecular alterations identified in these trials in sarcomas were associated with disease-free survival (DFS) and response to anthracyclines. (3) Results: this analysis included 215 sarcomas, amongst which 53 leiomyosarcomas, 27 rhabdomyosarcomas, 20 undifferentiated pleomorphic sarcomas, and 17 liposarcomas. The most frequently altered gene was TP53 (46 mutations and eight deletions). There were 149 surgically resected localized sarcomas. Median DFS in TP53 wild type (WT), deleted, and mutated sarcomas was 16, 10, and 10 months, respectively (p = 0.028; deletions: HR = 1.55; 95% CI = 0.75-3.19; mutations: HR = 1.70; 95%CI = 1.13-2.64). In multivariate analysis, TP53 mutations remained associated with shorter DFS (p = 0.027; HR = 2.30; 95%CI = 1.10-4.82). There were 161 localized and advanced sarcomas evaluable for response to anthracyclines. Objective response rates were 35% and 55% in TP53 WT and mutated sarcomas, respectively (OR = 2.24; 95%CI = 1.01-5.03; p = 0.05). In multivariate analysis, TP53 mutations remained associated with increased response (OR = 3.24; 95%CI = 1.30-8.45; p = 0.01). (4) Conclusions: TP53 mutations are associated with shorter DFS and increased response to anthracyclines. Post-validation, these findings could assist in decision-making for peri-operative treatments.
Collapse
Affiliation(s)
- Elise F. Nassif
- Centre Léon Bérard, Medical Oncology Department, 69008 Lyon, France; (E.F.N.); (B.M.); (K.H.); (M.B.); (O.T.); (I.R.-C.); (J.-Y.B.); (A.D.)
| | - Edouard Auclin
- Oncology Department, Hopital Européen Georges Pompidou, 75015 Paris, France;
| | - Rastilav Bahleda
- DITEP (Département d’Innovation Therapeutique et d’Essais Précoces), Drug Development Department, Gustave Roussy, 94805 Villejuif, France; (R.B.); (C.M.)
| | - Charles Honoré
- Surgical Oncology Department, Gustave Roussy, 94805 Villejuif, France;
| | - Olivier Mir
- Ambulatory Cancer Care Department, Gustave Roussy, 94805 Villejuif, France;
| | - Sarah Dumont
- Medical Oncology Department, Gustave Roussy, 94805 Villejuif, France;
| | - Benoite Mery
- Centre Léon Bérard, Medical Oncology Department, 69008 Lyon, France; (E.F.N.); (B.M.); (K.H.); (M.B.); (O.T.); (I.R.-C.); (J.-Y.B.); (A.D.)
| | - Khalil Hodroj
- Centre Léon Bérard, Medical Oncology Department, 69008 Lyon, France; (E.F.N.); (B.M.); (K.H.); (M.B.); (O.T.); (I.R.-C.); (J.-Y.B.); (A.D.)
| | - Mehdi Brahmi
- Centre Léon Bérard, Medical Oncology Department, 69008 Lyon, France; (E.F.N.); (B.M.); (K.H.); (M.B.); (O.T.); (I.R.-C.); (J.-Y.B.); (A.D.)
| | - Olivier Trédan
- Centre Léon Bérard, Medical Oncology Department, 69008 Lyon, France; (E.F.N.); (B.M.); (K.H.); (M.B.); (O.T.); (I.R.-C.); (J.-Y.B.); (A.D.)
| | - Isabelle Ray-Coquard
- Centre Léon Bérard, Medical Oncology Department, 69008 Lyon, France; (E.F.N.); (B.M.); (K.H.); (M.B.); (O.T.); (I.R.-C.); (J.-Y.B.); (A.D.)
| | - Jean-Yves Blay
- Centre Léon Bérard, Medical Oncology Department, 69008 Lyon, France; (E.F.N.); (B.M.); (K.H.); (M.B.); (O.T.); (I.R.-C.); (J.-Y.B.); (A.D.)
| | - Christophe Massard
- DITEP (Département d’Innovation Therapeutique et d’Essais Précoces), Drug Development Department, Gustave Roussy, 94805 Villejuif, France; (R.B.); (C.M.)
| | - Axel Le Cesne
- Medical Oncology Department, Gustave Roussy, 94805 Villejuif, France;
| | - Armelle Dufresne
- Centre Léon Bérard, Medical Oncology Department, 69008 Lyon, France; (E.F.N.); (B.M.); (K.H.); (M.B.); (O.T.); (I.R.-C.); (J.-Y.B.); (A.D.)
| |
Collapse
|
14
|
Zubareva EY, Sen’chukova MA. The modern views of the clinical, morphological and molecular biological predictors of breast cancer sensitivity to chemotherapy. ADVANCES IN MOLECULAR ONCOLOGY 2020. [DOI: 10.17650/2313-805x-2020-7-2-20-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the treatment of breast cancer, the neoadjuvant chemotherapy is vitally important and the evaluation of its effectiveness is crucial for determining the further therapy treatment, as well as the prognosis of the disease. This review provides current data of the physical, instrumental, morphological, molecular biology and genetics analysis used for the estimation of the neoadjuvant treatment effectiveness. Thus, review discusses the data concerning association of the disease peculiarities with the efficient therapeutic response to neoadjuvant chemotherapy including characteristics of patients (age, status of regional lymph nodes, presence of the lymphovascular invasion) and tumors (size, histological type, degree of differentiation, severity of the lymphoid tumor infiltration, molecular biological and genetic peculiarities). Particular attention is paid to such a promising predictive marker of the breast cancer response to chemotherapy as the level of tissue hypoxia. This section discusses the currently known mechanisms that might enable the effect of tissue hypoxia on the sensitivity of the tumor to drug treatment. The prospects for the use of a comprehensive analysis of predictive markers of the effectiveness of chemotherapeutic treatment are discussed.
Collapse
Affiliation(s)
- E. Yu. Zubareva
- Orenburg Regional Clinical Oncology Dispensary; Orenburg State Medical University, Ministry of Health of Russia
| | - M. A. Sen’chukova
- Orenburg Regional Clinical Oncology Dispensary; Orenburg State Medical University, Ministry of Health of Russia
| |
Collapse
|
15
|
Bae SY, Lee JH, Bae JW, Jung SP. Differences in prognosis by p53 expression after neoadjuvant chemotherapy in triple-negative breast cancer. Ann Surg Treat Res 2020; 98:291-298. [PMID: 32528908 PMCID: PMC7263888 DOI: 10.4174/astr.2020.98.6.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/29/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Our previous studies suggested that p53-positive triple-negative breast cancer (TNBC) should be more sensitive to chemotherapy than p53-negative TNBC. The aim of this study was to determine whether p53 expression in TNBC could predict response to neoadjuvant chemotherapy and the resulting prognosis. Methods From January 2009 to December 2017, TNBC patients who underwent neoadjuvant chemotherapy were reviewed, including a total of 31 TNBC patients who had clinical lymph node metastasis. The status of p53 expression in patients before and after chemotherapy was evaluated. Results Two patients (22.2%, 2 of 9) achieved pCR in p53(+) TNBC and 4 patients (50%, 5 of 10) achieved pCR in p53(−) TNBC. There was no correlation between pCR rate and p53 expression (P = 0.350). Based on prechemotherapy p53 expression, there was no significant difference in disease-free survival (DFS) between p53(+) TNBC and p53(−) TNBC (P = 0.335). However, after chemotherapy, p53(+) TNBC had shown higher DFS than p53(−) TBNC (P = 0.099). Based on prechemotherapy p53 expression, p53(+) TNBC had better overall survival (OS) than p53(−) TNBC, but the difference was not statistically significant (P = 0.082). After chemotherapy, p53(+) TNBC showed significantly better OS than p53(−) TNBC (P = 0.018). Conclusion Immunohistochemically detected p53 expression in TNBC could not predict the response to neoadjuvant chemotherapy. However, p53(+) TNBC had a better OS than p53(−) TNBC in patients who underwent neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Soo Youn Bae
- Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jeong Hyeon Lee
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jeoung Won Bae
- Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Seung Pil Jung
- Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death Differ 2020; 27:3097-3116. [PMID: 32457483 DOI: 10.1038/s41418-020-0564-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
TP53 wild-type breast tumors rarely undergo a complete pathological response after chemotherapy treatment. These patients have an extremely poor survival rate and studies show these tumors preferentially undergo senescence instead of apoptosis. These senescent cells persist after chemotherapy and secrete cytokines and chemokines comprising the senescence associated secretory phenotype, which promotes survival, proliferation, and metastasis. We hypothesized that eliminating senescent tumor cells would improve chemotherapy response and extend survival. Previous studies have shown "senolytic" agents selectively kill senescent normal cells, but their efficacy in killing chemotherapy-induced senescent cancer cells is unknown. We show that ABT-263, a BH3 mimetic that targets antiapoptotic proteins BCL2/BCL-XL/BCL-W, had no effect on proliferating cells, but rapidly and selectively induced apoptosis in a subset of chemotherapy-treated cancer cells, though sensitivity required days to develop. Low NOXA expression conferred resistance to ABT-263 in some cells, necessitating additional MCL1 inhibition. Gene editing confirmed breast cancer cells relied on BCL-XL or BCL-XL/MCL1 for survival in senescence. In a mouse model of breast cancer, ABT-263 treatment following chemotherapy led to apoptosis, greater tumor regression, and longer survival. Our results reveal cancer cells that have survived chemotherapy by entering senescence can be eliminated using BH3 mimetic drugs that target BCL-XL or BCL-XL/MCL1. These drugs could help minimize residual disease and extend survival in breast cancer patients that otherwise have a poor prognosis and are most in need of improved therapies.
Collapse
|
17
|
Shahbandi A, Nguyen HD, Jackson JG. TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines. Trends Cancer 2020; 6:98-110. [PMID: 32061310 PMCID: PMC7931175 DOI: 10.1016/j.trecan.2020.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
TP53 is the most frequently mutated gene in breast cancer, but its role in survival is confounded by different studies concluding that TP53 mutations are associated with negative, neutral, or positive outcomes. Closer examination showed that many studies were limited by factors such as imprecise methods to detect TP53 mutations and small cohorts that combined patients treated with drugs having very different mechanisms of action. When only studies of patients receiving the same treatment(s) were compared, they tended to agree. These analyses reveal a role for TP53 in response to different treatments as complex as its different biological activities. We discuss studies that have assessed the role of TP53 mutations in breast cancer treatment and limitations in interpreting reported results.
Collapse
Affiliation(s)
- Ashkan Shahbandi
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue #8543, New Orleans, LA 70112, USA
| | - Hoang D Nguyen
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue #8543, New Orleans, LA 70112, USA
| | - James G Jackson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue #8543, New Orleans, LA 70112, USA.
| |
Collapse
|
18
|
Tonnessen-Murray CA, Frey WD, Rao SG, Shahbandi A, Ungerleider NA, Olayiwola JO, Murray LB, Vinson BT, Chrisey DB, Lord CJ, Jackson JG. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. J Cell Biol 2019; 218:3827-3844. [PMID: 31530580 PMCID: PMC6829672 DOI: 10.1083/jcb.201904051] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
In chemotherapy-treated breast cancer, wild-type p53 preferentially induces senescence over apoptosis, resulting in a persisting cell population constituting residual disease that drives relapse and poor patient survival via the senescence-associated secretory phenotype. Understanding the properties of tumor cells that allow survival after chemotherapy treatment is paramount. Using time-lapse and confocal microscopy to observe interactions of cells in treated tumors, we show here that chemotherapy-induced senescent cells frequently engulf both neighboring senescent or nonsenescent tumor cells at a remarkable frequency. Engulfed cells are processed through the lysosome and broken down, and cells that have engulfed others obtain a survival advantage. Gene expression analysis showed a marked up-regulation of conserved macrophage-like program of engulfment in chemotherapy-induced senescent cell lines and tumors. Our data suggest compelling explanations for how senescent cells persist in dormancy, how they manage the metabolically expensive process of cytokine production that drives relapse in those tumors that respond the worst, and a function for their expanded lysosomal compartment.
Collapse
Affiliation(s)
| | - Wesley D Frey
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Sonia G Rao
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Nathan A Ungerleider
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Joy O Olayiwola
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Lucas B Murray
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | | | | | | | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| |
Collapse
|
19
|
Chen X, Guo Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xu Y, Xie Y. Co-mutation of TP53 and PIK3CA in residual disease after neoadjuvant chemotherapy is associated with poor survival in breast cancer. J Cancer Res Clin Oncol 2019; 145:1235-1242. [PMID: 30806788 DOI: 10.1007/s00432-019-02873-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/20/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE The prevalence and clinical relevance of TP53 and PIK3CA mutations in pretreatment breast cancer have been previously reported. However, little is known regarding these mutations in residual tumor tissues after neoadjuvant chemotherapy. Here, we investigated the association between TP53 and PIK3CA mutations in residual disease and survival of breast cancers. METHODS TP53 and PIK3CA somatic mutations were examined in 353 post-neoadjuvant chemotherapy residual tumor tissues by Sanger sequencing. Survival curves of patients with TP53 and PIK3CA mutations were compared using the Kaplan-Meier method. RESULTS Fifty-six (15.9%) of the 353 patients carried a TP53 somatic mutation and 79 patients (22.4%) carried a PIK3CA somatic mutation. A total of 18 patients carried co-mutation of TP53 and PIK3CA. Patients with somatic co-mutation were more likely to have high-grade tumors (35.3% vs. 10.6%, P = 0.010), estrogen receptor-negative tumors (55.6% vs. 26.7%, P = 0.009), progesterone receptor-negative tumors (61.1% vs. 30.5%, P = 0.008) and triple-negative tumors (35.3% vs. 13.3%, P = 0.025) compared with non-carriers. More importantly, co-mutation of TP53 and PIK3CA carriers had a significantly worse disease-free survival (DFS) and distant disease-free survival (DDFS) than non-carriers (5-year DFS: 58.0% vs. 83.2%, P < 0.001; 5-year DDFS: 70.3% vs. 86.4%, P = 0.024). Furthermore, in multivariate regression analysis, TP53 and PIK3CA co-mutation carriers showed a significantly worse DFS (adjusted hazard ratio = 3.70; 95% confidence interval, 1.79-7.63; P < 0.001). CONCLUSIONS Patients with somatic co-mutation of TP53 and PIK3CA were associated with unfavorable survival compared with non-carriers. Co-mutation of TP53 and PIK3CA could be used as a potential prognosis marker in post-neoadjuvant chemotherapy breast cancer patients.
Collapse
Affiliation(s)
- Xinyi Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Yonghai Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tao Ouyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Jinfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tianfeng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Zhaoqing Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tie Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Benyao Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Ye Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China.
| | - Yuntao Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China.
| |
Collapse
|
20
|
Andrade SN, Evangelista FCG, Seckler D, Marques DR, Freitas TR, Nunes RR, Oliveira JT, Ribeiro RIMA, Santos HB, Thomé RG, Taranto AG, Santos FV, Viana GHR, Freitas RP, Humberto JL, Sabino ADP, Hilário FF, Varotti FP. Synthesis, cytotoxic activity, and mode of action of new Santacruzamate A analogs. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2244-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Tonnessen-Murray C, Ungerleider NA, Rao SG, Wasylishen AR, Frey WD, Jackson JG. p53 Mediates Vast Gene Expression Changes That Contribute to Poor Chemotherapeutic Response in a Mouse Model of Breast Cancer. Transl Oncol 2018; 11:930-940. [PMID: 29852458 PMCID: PMC6041561 DOI: 10.1016/j.tranon.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor that regulates expression of genes involved in cell cycle arrest, senescence, and apoptosis. TP53 harbors mutations that inactivate its transcriptional activity in roughly 30% of breast cancers, and these tumors are much more likely to undergo a pathological complete response to chemotherapy. Thus, the gene expression program activated by wild-type p53 contributes to a poor response. We used an in vivo genetic model system to comprehensively define the p53- and p21-dependent genes and pathways modulated in tumors following doxorubicin treatment. We identified genes differentially expressed in spontaneous mammary tumors harvested from treated MMTV-Wnt1 mice that respond poorly (Trp53+/+) or favorably (Trp53-null) and those that lack the critical senescence/arrest p53 target gene Cdkn1a. Trp53 wild-type tumors differentially expressed nearly 10-fold more genes than Trp53-null tumors after treatment. Pathway analyses showed that genes involved in cell cycle, senescence, and inflammation were enriched in treated Trp53 wild-type tumors; however, no genes/pathways were identified that adequately explain the superior cell death/tumor regression observed in Trp53-null tumors. Cdkn1a-null tumors that retained arrest capacity (responded poorly) and those that proliferated (responded well) after treatment had remarkably different gene regulation. For instance, Cdkn1a-null tumors that arrested upregulated Cdkn2a (p16), suggesting an alternative, p21-independent route to arrest. Live animal imaging of longitudinal gene expression of a senescence/inflammation gene reporter in Trp53+/+ tumors showed induction during and after chemotherapy treatment, while tumors were arrested, but expression rapidly diminished immediately upon relapse.
Collapse
Affiliation(s)
- Crystal Tonnessen-Murray
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, 70112
| | | | - Sonia G Rao
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, 70112
| | - Amanda R Wasylishen
- Department of Genetics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| | - Wesley D Frey
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, 70112
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, 70112.
| |
Collapse
|
22
|
Fagerholm R, Khan S, Schmidt MK, GarcClosas M, Heikkilä P, Saarela J, Beesley J, Jamshidi M, Aittomäki K, Liu J, Raza Ali H, Andrulis IL, Beckmann MW, Behrens S, Blows FM, Brenner H, Chang-Claude J, Couch FJ, Czene K, Fasching PA, Figueroa J, Floris G, Glendon G, Guo Q, Hall P, Hallberg E, Hamann U, Holleczek B, Hooning MJ, Hopper JL, Jager A, Kabisch M, Investigators KC, Keeman R, Kosma VM, Lambrechts D, Lindblom A, Mannermaa A, Margolin S, Provenzano E, Shah M, Southey MC, Dennis J, Lush M, Michailidou K, Wang Q, Bolla MK, Dunning AM, Easton DF, Pharoah PD., Chenevix-Trench G, Blomqvist C, Nevanlinna H. TP53-based interaction analysis identifies cis-eQTL variants for TP53BP2, FBXO28, and FAM53A that associate with survival and treatment outcome in breast cancer. Oncotarget 2017; 8:18381-18398. [PMID: 28179588 PMCID: PMC5392336 DOI: 10.18632/oncotarget.15110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 01/13/2023] Open
Abstract
TP53 overexpression is indicative of somatic TP53 mutations and associates with aggressive tumors and poor prognosis in breast cancer. We utilized a two-stage SNP association study to detect variants associated with breast cancer survival in a TP53-dependent manner. Initially, a genome-wide study (n = 575 cases) was conducted to discover candidate SNPs for genotyping and validation in the Breast Cancer Association Consortium (BCAC). The SNPs were then tested for interaction with tumor TP53 status (n = 4,610) and anthracycline treatment (n = 17,828). For SNPs interacting with anthracycline treatment, siRNA knockdown experiments were carried out to validate candidate genes.In the test for interaction between SNP genotype and TP53 status, we identified one locus, represented by rs10916264 (p(interaction) = 3.44 × 10-5; FDR-adjusted p = 0.0011) in estrogen receptor (ER) positive cases. The rs10916264 AA genotype associated with worse survival among cases with ER-positive, TP53-positive tumors (hazard ratio [HR] 2.36, 95% confidence interval [C.I] 1.45 - 3.82). This is a cis-eQTL locus for FBXO28 and TP53BP2; expression levels of these genes were associated with patient survival specifically in ER-positive, TP53-mutated tumors. Additionally, the SNP rs798755 was associated with survival in interaction with anthracycline treatment (p(interaction) = 9.57 × 10-5, FDR-adjusted p = 0.0130). RNAi-based depletion of a predicted regulatory target gene, FAM53A, indicated that this gene can modulate doxorubicin sensitivity in breast cancer cell lines.If confirmed in independent data sets, these results may be of clinical relevance in the development of prognostic and predictive marker panels for breast cancer.
Collapse
Affiliation(s)
- Rainer Fagerholm
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Montserrat GarcClosas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Päivi Heikkilä
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Jonathan Beesley
- Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Maral Jamshidi
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - H. Raza Ali
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fiona M. Blows
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
| | - Giuseppe Floris
- Leuven Multidisciplinary Breast Center, Department of Oncology, KULeuven, Leuven Cancer Institute, University Hospitals Leuven
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Qi Guo
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Agnes Jager
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Renske Keeman
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Veli-Matti Kosma
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Sara Margolin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Provenzano
- Department of Oncology, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
- Department of Histopathology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D.P . Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oncology, University of Örebro, Örebro, Sweden
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Mutational studies on single circulating tumor cells isolated from the blood of inflammatory breast cancer patients. Breast Cancer Res Treat 2017; 163:219-230. [PMID: 28271309 PMCID: PMC5410214 DOI: 10.1007/s10549-017-4176-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/25/2017] [Indexed: 12/13/2022]
Abstract
Purpose The molecular characterization of circulating tumor cells (CTCs) is critical to identify the key drivers of cancer metastasis and devising therapeutic approaches, particularly for inflammatory breast cancer (IBC) which is usually diagnosed at advance stages and progresses rapidly. Methods Genomic alterations in tumor tissue samples were studied using Foundation One™. Single CTCs were isolated using CellSearch followed by single-cell isolation by DEPArray™. Samples with 20 or more CTCs were chosen to isolate single CTCs using the DEPArray™. Results Genomic alterations were studied in primary tumor or metastatic sites from 32 IBC patients. Genes with high-frequency mutations were as follows: TP53 (69%), RB1 (16%), PIK3CA (13%), and also ErbB2 (3%). At least once during treatment, CTCs were detected in 26 patients with metastatic IBC, in two patients with locally advanced IBC, and four patients had no detectable CTCs. Per 7.5 mL of blood, fifteen patients (47%) had ≥20 CTCs and six of them were chosen at random to isolate single CTCs. These cells were tested for the presence of TP53, RB1, PIK3CA, and/or ErbB2 mutations previously found in matching tissue biopsies. The isolated CTCs showed the same mutations as primary or metastatic tumor samples. Intra-patient CTC heterogeneity was found by the presence of different CTC subclones, with some CTCs harboring different combinations of mutated and wild-type genes. Conclusions Our results indicate that CTCs could represent a non-invasive source of cancer cells from which to determine genetic markers as the disease progresses and identify potential therapeutic targets in IBC patients. Electronic supplementary material The online version of this article (doi:10.1007/s10549-017-4176-x) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Tonnessen-Murray CA, Lozano G, Jackson JG. The Regulation of Cellular Functions by the p53 Protein: Cellular Senescence. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026112. [PMID: 27881444 DOI: 10.1101/cshperspect.a026112] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transformed cells have properties that allow them to survive and proliferate inappropriately. These characteristics often arise as a result of mutations caused by DNA damage. p53 suppresses transformation by removing the proliferative or survival capacity of cells with DNA damage or inappropriate cell-cycle progression. Cellular senescence, marked by morphological and gene expression changes, is a critical component of p53-mediated tumor suppression. In response to stress, p53 can facilitate an arrest and senescence program in cells exposed to stresses such as DNA damage and oncogene activation, preventing transformation. Senescent cells are evident in precancerous adenoma-type lesions, whereas proliferating, malignant tumors have bypassed senescence, either by p53 mutation or inactivation of the p53 pathway by other means. Tumors that have retained wild-type p53 often show a p53-mediated senescence response to chemotherapy. This response is actually detrimental in some tumor types, as senescent cells can drive relapse by persisting and producing cytokines and chemokines through an acquired secretory phenotype.
Collapse
Affiliation(s)
- Crystal A Tonnessen-Murray
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112
| | - Guillermina Lozano
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
25
|
SASP: Tumor Suppressor or Promoter? Yes! Trends Cancer 2016; 2:676-687. [PMID: 28741506 DOI: 10.1016/j.trecan.2016.10.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 01/07/2023]
Abstract
Cellular senescence is a permanent growth arrest in cells with damage or stress that could lead to transformation. Some tumor cells also undergo senescence in response to chemotherapy. Senescent cells secrete cytokines and other factors of the senescence-associated secretory phenotype (SASP) that contribute to tumor suppression by enforcing arrest and recruiting immune cells that remove these damaged or oncogene-expressing cells from organisms. However, some cells can develop a SASP comprising factors that are immunosuppressive and protumorigenic by paracrine mechanisms. Likewise, the SASP in treated cancers can either contribute to durable responses or drive relapse. Here, we discuss the studies that have demonstrated a complex and often conflicting role for the SASP in tumorigenesis and treatment response.
Collapse
|