1
|
Pilesi E, Tesoriere G, Ferriero A, Mascolo E, Liguori F, Argirò L, Angioli C, Tramonti A, Contestabile R, Volontè C, Vernì F. Vitamin B6 deficiency cooperates with oncogenic Ras to induce malignant tumors in Drosophila. Cell Death Dis 2024; 15:388. [PMID: 38830901 PMCID: PMC11148137 DOI: 10.1038/s41419-024-06787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Vitamin B6 is a water-soluble vitamin which possesses antioxidant properties. Its catalytically active form, pyridoxal 5'-phosphate (PLP), is a crucial cofactor for DNA and amino acid metabolism. The inverse correlation between vitamin B6 and cancer risk has been observed in several studies, although dietary vitamin B6 intake sometimes failed to confirm this association. However, the molecular link between vitamin B6 and cancer remains elusive. Previous work has shown that vitamin B6 deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, suggesting that genome instability may correlate the lack of this vitamin to cancer. Here we provide evidence in support of this hypothesis. Firstly, we show that PLP deficiency, induced by the PLP antagonists 4-deoxypyridoxine (4DP) or ginkgotoxin (GT), promoted tumorigenesis in eye larval discs transforming benign RasV12 tumors into aggressive forms. In contrast, PLP supplementation reduced the development of tumors. We also show that low PLP levels, induced by 4DP or by silencing the sgllPNPO gene involved in PLP biosynthesis, worsened the tumor phenotype in another Drosophila cancer model generated by concomitantly activating RasV12 and downregulating Discs-large (Dlg) gene. Moreover, we found that RasV12 eye discs from larvae reared on 4DP displayed CABs, reactive oxygen species (ROS) and low catalytic activity of serine hydroxymethyltransferase (SHMT), a PLP-dependent enzyme involved in thymidylate (dTMP) biosynthesis, in turn required for DNA replication and repair. Feeding RasV12 4DP-fed larvae with PLP or ascorbic acid (AA) plus dTMP, rescued both CABs and tumors. The same effect was produced by overexpressing catalase in RasV12 DlgRNAi 4DP-fed larvae, thus allowing to establish a relationship between PLP deficiency, CABs, and cancer. Overall, our data provide the first in vivo demonstration that PLP deficiency can impact on cancer by increasing genome instability, which is in turn mediated by ROS and reduced dTMP levels.
Collapse
Affiliation(s)
- Eleonora Pilesi
- Dept. of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Giulia Tesoriere
- Dept. of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Angelo Ferriero
- Dept. of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Elisa Mascolo
- Dept. of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Francesco Liguori
- Experimental Neuroscience and Neurological Disease Models, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- CNR, Institute for Systems Analysis and Computer Science, 00185, Rome, Italy
| | - Luca Argirò
- Dept. of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Chiara Angioli
- Dept. of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, 00185, Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza, University of Rome, 00185, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, University of Rome, 00185, Rome, Italy
| | - Cinzia Volontè
- Experimental Neuroscience and Neurological Disease Models, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- CNR, Institute for Systems Analysis and Computer Science, 00185, Rome, Italy
| | - Fiammetta Vernì
- Dept. of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
2
|
Liu L, Yu H, Bai J, Xu Q, Zhang Y, Zhang X, Yu Z, Liu Y. Positive Association of Serum Vitamin B6 Levels with Intrapulmonary Lymph Node and/or Localized Pleural Metastases in Non-Small Cell Lung Cancer: A Retrospective Study. Nutrients 2023; 15:nu15102340. [PMID: 37242223 DOI: 10.3390/nu15102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between vitamin B levels and the development and progression of lung cancer remains inconclusive. We aimed to investigate the relationship between B vitamins and intrapulmonary lymph nodes as well as localized pleural metastases in patients with non-small cell lung cancer (NSCLC). This was a retrospective study including patients who underwent lung surgery for suspected NSCLC at our institution from January 2016 to December 2018. Logistic regression models were used to evaluate the associations between serum B vitamin levels and intrapulmonary lymph node and/or localized pleural metastases. Stratified analysis was performed according to different clinical characteristics and tumor types. A total of 1498 patients were included in the analyses. Serum vitamin B6 levels showed a positive association with intrapulmonary metastasis in a multivariate logistic regression (odds ratio (OR) of 1.016, 95% confidence interval (CI) of 1.002-1.031, p = 0.021). After multivariable adjustment, we found a high risk of intrapulmonary metastasis in patients with high serum vitamin B6 levels (fourth quartile (Q4) vs. Q1, OR of 1.676, 95%CI of 1.092 to 2.574, p = 0.018, p for trend of 0.030). Stratified analyses showed that the positive association between serum vitamin B6 and lymph node metastasis appeared to be stronger in females, current smokers, current drinkers, and those with a family history of cancer, squamous cell carcinoma, a tumor of 1-3 cm in diameter, or a solitary tumor. Even though serum vitamin B6 levels were associated with preoperative NSCLC upstaging, B6 did not qualify as a useful biomarker due to weak association and wide confidence intervals. Thus, it would be appropriate to prospectively investigate the relationship between serum vitamin B6 levels and lung cancer further.
Collapse
Affiliation(s)
- Lu Liu
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Hang Yu
- Department of Respiratory and Critical Medicine, Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Jingmin Bai
- Department of Radiotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Qing Xu
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yong Zhang
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xinsheng Zhang
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhimeng Yu
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yinghua Liu
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
3
|
Obeid R, Möller C, Geisel J. Circulating pyridoxal 5′-phosphate in serum and whole blood: implications for assessment of vitamin B6 status. J LAB MED 2023. [DOI: 10.1515/labmed-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Objectives
Concentrations of pyridoxal 5′-phosphate (PLP) in serum and whole blood are routinely measured. The suitability of these markers in capturing vitamin B6 insufficiency is not well studied.
Methods
In 212 subjects, concentrations of PLP and thiamine pyrophosphate (TPP) were simultaneously measured in EDTA-whole blood using Chromsystems® (52052) method on HPLC devices. The whole blood PLP concentrations were compared to serum PLP concentrations measured using reagents from Immundiagnostik® (KC 2100). The whole blood TPP concentrations measured with the Chromsystems® (52052) were compared to those measured by the Chromsystems® (35000) method. Concentrations of homocysteine (tHcy) and cystathionine (Cys) were measured and used to judge the PLP methods.
Results
Serum PLP concentrations were on average 41% lower than whole blood PLP [mean (SD)=55.4 (83.0) vs. 131 (217) nmol/L]. Serum and whole blood PLP showed a strong correlation [Pearson correlation coefficient=0.724, p<0.001, n=204]. Eighty-five samples showed discrepant results for PLP status (serum PLP ≤30 nmol/L, but whole blood PLP >51 nmol/L) while 102 samples showed coherent results (reference group). The discrepancy group showed higher odds ratio for elevated tHcy >12.0 μmol/L compared to the reference group [OR (95% confidence intervals, CI)=2.1 (1.2–4.0)]. The OR (95% CI) of elevated Cys >300 nmol/L was 1.9 (1.0–3.5) in the discrepancy group compared to the reference group. TPP concentrations were 6% lower when using the Chromsystems®, 52052 compared to levels measured with Chromsystems®, 35000.
Conclusions
Serum and whole blood PLP concentrations disagree in a substantial number of samples. Serum PLP was better in reflecting elevated tHcy and Cys compared to whole blood PLP. Whole blood PLP underestimates the prevalence of vitamin B6 insufficiency. Methods of measuring TPP concentrations in whole blood were exchangeable.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine , Saarland University Hospital , Homburg/Saar , Germany
| | - Christoph Möller
- Department of Clinical Chemistry and Laboratory Medicine , Saarland University Hospital , Homburg/Saar , Germany
| | - Jürgen Geisel
- Department of Clinical Chemistry and Laboratory Medicine , Saarland University Hospital , Homburg/Saar , Germany
| |
Collapse
|
4
|
Montégut L, de Cabo R, Zitvogel L, Kroemer G. Science-Driven Nutritional Interventions for the Prevention and Treatment of Cancer. Cancer Discov 2022; 12:2258-2279. [PMID: 35997502 PMCID: PMC10749912 DOI: 10.1158/2159-8290.cd-22-0504] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
In population studies, dietary patterns clearly influence the development, progression, and therapeutic response of cancers. Nonetheless, interventional dietary trials have had relatively little impact on the prevention and treatment of malignant disease. Standardization of nutritional interventions combined with high-level mode-of-action studies holds the promise of identifying specific entities and pathways endowed with antineoplastic properties. Here, we critically review the effects of caloric restriction and more specific interventions on macro- and micronutrients in preclinical models as well as in clinical studies. We place special emphasis on the prospect of using defined nutrition-relevant molecules to enhance the efficacy of established anticancer treatments. SIGNIFICANCE The avoidance of intrinsically hypercaloric and toxic diets contributes to the prevention and cure of cancer. In addition, specific diet-induced molecules such as ketone bodies and micronutrients, including specific vitamins, have drug-like effects that are clearly demonstrable in preclinical models, mostly in the context of immunotherapies. Multiple trials are underway to determine the clinical utility of such molecules.
Collapse
Affiliation(s)
- Léa Montégut
- Equipe labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Laurence Zitvogel
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, ClinicObiome, Villejuif, France
- INSERM U1015, Paris, France
- Equipe labellisée par la Ligue contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
5
|
Dugué PA, Hodge AM, Ulvik A, Ueland PM, Midttun Ø, Rinaldi S, MacInnis RJ, Li SX, Meyer K, Navionis AS, Flicker L, Severi G, English DR, Vineis P, Tell GS, Southey MC, Milne RL, Giles GG. Association of Markers of Inflammation, the Kynurenine Pathway and B Vitamins with Age and Mortality, and a Signature of Inflammaging. J Gerontol A Biol Sci Med Sci 2022; 77:826-836. [PMID: 34117761 DOI: 10.1093/gerona/glab163] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation is a key feature of aging. We aimed to (i) investigate the association of 34 blood markers potentially involved in inflammatory processes with age and mortality and (ii) develop a signature of "inflammaging." METHODS Thirty-four blood markers relating to inflammation, B vitamin status, and the kynurenine pathway were measured in 976 participants in the Melbourne Collaborative Cohort Study at baseline (median age = 59 years) and follow-up (median age = 70 years). Associations with age and mortality were assessed using linear and Cox regression, respectively. A parsimonious signature of inflammaging was developed and its association with mortality was compared with 2 marker scores calculated across all markers associated with age and mortality, respectively. RESULTS The majority of markers (30/34) were associated with age, with stronger associations observed for neopterin, cystatin C, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), several markers of the kynurenine pathway and derived indices KTR (kynurenine/tryptophan ratio), PAr index (ratio of 4-pyridoxic acid and the sum of pyridoxal 5'-phosphate and pyridoxal), and HK:XA (3-hydroxykynurenine/xanthurenic acid ratio). Many markers (17/34) showed an association with mortality, in particular IL-6, neopterin, C-reactive protein, quinolinic acid, PAr index, and KTR. The inflammaging signature included 10 markers and was strongly associated with mortality (hazard ratio [HR] per SD = 1.40, 95% CI: 1.24-1.57, p = 2 × 10-8), similar to scores based on all age-associated (HR = 1.38, 95% CI: 1.23-1.55, p = 4 × 10-8) and mortality-associated markers (HR = 1.43, 95% CI: 1.28-1.60, p = 1 × 10-10), respectively. Strong evidence of replication of the inflammaging signature association with mortality was found in the Hordaland Health Study. CONCLUSION Our study highlights the key role of the kynurenine pathway and vitamin B6 catabolism in aging, along with other well-established inflammation-related markers. A signature of inflammaging based on 10 markers was strongly associated with mortality.
Collapse
Affiliation(s)
- Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Norway
| | | | - Sabina Rinaldi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sherly X Li
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Medical Research Council Epidemiology Unit, University of Cambridge, UK
| | | | - Anne-Sophie Navionis
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia
- WA Centre for Health and Ageing of the University of Western Australia, Perth, Australia
| | - Gianluca Severi
- Centre for Research into Epidemiology and Population Health (CESP), Faculté de Medicine, Université Paris-Saclay, Inserm, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Dallas R English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Norway
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Chen Y, Chen J, Guo D, Yang P, Chen S, Zhao C, Xu C, Zhang Q, Lin C, Zhong S, Zhang S. Tryptophan Metabolites as Biomarkers for Esophageal Cancer Susceptibility, Metastasis, and Prognosis. Front Oncol 2022; 12:800291. [PMID: 35296014 PMCID: PMC8918692 DOI: 10.3389/fonc.2022.800291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Perturbation of tryptophan (TRP) metabolism contributes to the immune escape of cancer; however, the explored TRP metabolites are limited, and their efficacy in clarifying the susceptibility and progression of esophageal cancer (EC) remains ambiguous. Our study sought to evaluate the effects of the TRP metabolic profile on the clinical outcomes of EC using a Chinese population cohort; and to develop a risk prediction model targeting TRP metabolism. METHOD A total of 456 healthy individuals as control subjects and 393 patients with EC who were followed up for one year as case subjects were enrolled. Quantification of the plasma concentrations of TRP and its metabolites was performed using HPLC-MS/MS. The logistic regression model was applied to evaluate the effects of the clinical characteristics and plasma metabolites of the subjects on susceptibility and tumor metastasis events, whereas Cox regression analysis was performed to assess the overall survival (OS) of the patients. RESULTS Levels of creatinine and liver enzymes were substantially correlated with multiple metabolites/metabolite ratios in TRP metabolism, suggesting that hepatic and renal function would exert effects on TRP metabolism. Age- and sex-matched case-control subjects were selected using propensity score matching. Plasma exposure to 5-HT was found to be elevated 3.94-fold in case subjects (N = 166) compared to control subjects (N = 203), achieving an AUC of 0.811 for predicting susceptibility event. Subsequent correlation analysis indicated that a higher plasma exposure to 5-HIAA significantly increased the risk of lymph node metastasis (OR: 2.16, p = 0.0114). Furthermore, it was figured out that OS was significantly shorter for patients with elevated XA/KYN ratio (HR: 1.99, p = 0.0016), in which medium and high levels of XA/KYN versus low level had a significantly lower OS (HR: 0.48, p = 0.0080 and HR: 0.42, p = 0.0031, respectively). CONCLUSION This study provides a pivotal basis for targeting endogenous TRP metabolism as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jianliang Chen
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Dainian Guo
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Peixuan Yang
- Health Management Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuang Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, China;Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Chengkuan Zhao
- Department of Pharmacology, Shantou Chaonan Minsheng Hospital, Shantou, China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Qiuzhen Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Chaoxian Lin
- Department of Pharmacology, Shantou Chaonan Minsheng Hospital, Shantou, China
| | - Shilong Zhong
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Du X, Yang Y, Zhan X, Huang Y, Fu Y, Zhang Z, Liu H, Zhang L, Li Y, Wen Q, Zhou X, Zuo D, Zhou C, Li L, Hu S, Ma L. Vitamin B6 prevents excessive inflammation by reducing accumulation of sphingosine-1-phosphate in a sphingosine-1-phosphate lyase-dependent manner. J Cell Mol Med 2020; 24:13129-13138. [PMID: 32967056 PMCID: PMC7701526 DOI: 10.1111/jcmm.15917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 09/05/2020] [Indexed: 12/24/2022] Open
Abstract
Vitamin B6 is necessary to maintain normal metabolism and immune response, especially the anti‐inflammatory immune response. However, the exact mechanism by which vitamin B6 plays the anti‐inflammatory role is still unclear. Here, we report a novel mechanism of preventing excessive inflammation by vitamin B6 via reduction in the accumulation of sphingosine‐1‐phosphate (S1P) in a S1P lyase (SPL)‐dependent manner in macrophages. Vitamin B6 supplementation decreased the expression of pro‐inflammatory cytokines by suppressing nuclear factor‐κB and mitogen‐activated protein kinases signalling pathways. Furthermore, vitamin B6–reduced accumulation of S1P by promoting SPL activity. The anti‐inflammatory effects of vitamin B6 were inhibited by S1P supplementation or SPL deficiency. Importantly, vitamin B6 supplementation protected mice from lethal endotoxic shock and attenuated experimental autoimmune encephalomyelitis progression. Collectively, these findings revealed a novel anti‐inflammatory mechanism of vitamin B6 and provided guidance on its clinical use.
Collapse
Affiliation(s)
- Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhan
- Department of laboratory medicine, The first Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zelin Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijie Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yanfen Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Laisheng Li
- Department of laboratory medicine, The first Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Ulvik A, Midttun Ø, McCann A, Meyer K, Tell G, Nygård O, Ueland PM. Tryptophan catabolites as metabolic markers of vitamin B-6 status evaluated in cohorts of healthy adults and cardiovascular patients. Am J Clin Nutr 2020; 111:178-186. [PMID: 31557280 DOI: 10.1093/ajcn/nqz228] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/20/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vitamin B-6 status is routinely measured as pyridoxal 5'-phosphate (PLP) in plasma. Low concentrations of PLP are associated with rheumatic, cardiovascular, and neoplastic diseases. We have previously shown that vitamin B-6 status affects the kynurenine (Kyn) pathway of tryptophan (Trp) catabolism. OBJECTIVE This study aimed to comprehensively evaluate the use of Kyns as potential markers of functional vitamin B-6 status across 2 large cohorts. METHODS We measured circulating concentrations of the first 6 metabolites in the Trp catabolic pathway by LC-MS-MS in the community-based Hordaland Health Study (HUSK; n = 7017) and cardiovascular patient-based Western Norway Coronary Angiography Cohort (WECAC; n = 4161). Cross-sectional and longitudinal associations of plasma PLP with Kyns were estimated using linear and nonlinear regression-based methods. RESULTS 3'-Hydroxykynurenine (HK), a substrate, and all 4 products formed directly by the PLP-dependent enzymes kynurenine transaminase and kynureninase contributed to the explanation of circulating PLP in multivariable-adjusted regression models. The construct HK:(kynurenic acid + xanthurenic acid + 3'-hydroxyanthranilic acid + anthranilic acid), termed HK ratio (HKr), was related to plasma PLP with standardized regression coefficients (95% CIs) of -0.47 (-0.49, -0.45) and -0.46 (-0.49, -0.43) in HUSK and WECAC, respectively. Across strata of cohort and sex, HKr was 1.3- to 2.7-fold more sensitive, but also 1.7- to 2.9-fold more specific to changes in PLP than a previously proposed marker, HK:xanthurenic acid. Notably, the association was strongest at PLP concentrations < ∼20 nmol/L, a recognized threshold for vitamin B-6 deficiency. Finally, PLP and HKr demonstrated highly sex-specific and corroborating associations with age. CONCLUSIONS The results demonstrate that by combining 5 metabolites in the Kyn pathway into a simple index, HKr, a sensitive and specific indicator of intracellular vitamin B-6 status is obtained. The data also underscore the merit of evaluating alterations in Kyn metabolism when investigating vitamin B-6 and health.
Collapse
Affiliation(s)
| | | | | | | | - Grethe Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Ottar Nygård
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Zuo H, Ueland PM, Midttun Ø, Tell GS, Fanidi A, Zheng W, Shu X, Xiang Y, Wu J, Prentice R, Pettinger M, Thomson CA, Giles GG, Hodge A, Cai Q, Blot WJ, Johansson M, Hultdin J, Grankvist K, Stevens VL, McCullough ML, Weinstein SJ, Albanes D, Ziegler RG, Freedman ND, Caporaso NE, Langhammer A, Hveem K, Næss M, Buring JE, Lee I, Gaziano JM, Severi G, Zhang X, Stampfer MJ, Han J, Zeleniuch-Jacquotte A, Marchand LL, Yuan J, Wang R, Koh W, Gao Y, Ericson U, Visvanathan K, Jones MR, Relton C, Brennan P, Johansson M, Ulvik A. Vitamin B6 catabolism and lung cancer risk: results from the Lung Cancer Cohort Consortium (LC3). Ann Oncol 2019; 30:478-485. [PMID: 30698666 PMCID: PMC6442648 DOI: 10.1093/annonc/mdz002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Increased vitamin B6 catabolism related to inflammation, as measured by the PAr index (the ratio of 4-pyridoxic acid over the sum of pyridoxal and pyridoxal-5'-phosphate), has been positively associated with lung cancer risk in two prospective European studies. However, the extent to which this association translates to more diverse populations is not known. MATERIALS AND METHODS For this study, we included 5323 incident lung cancer cases and 5323 controls individually matched by age, sex, and smoking status within each of 20 prospective cohorts from the Lung Cancer Cohort Consortium. Cohort-specific odds ratios (ORs) and 95% confidence intervals (CIs) for the association between PAr and lung cancer risk were calculated using conditional logistic regression and pooled using random-effects models. RESULTS PAr was positively associated with lung cancer risk in a dose-response fashion. Comparing the fourth versus first quartiles of PAr resulted in an OR of 1.38 (95% CI: 1.19-1.59) for overall lung cancer risk. The association between PAr and lung cancer risk was most prominent in former smokers (OR: 1.69, 95% CI: 1.36-2.10), men (OR: 1.60, 95% CI: 1.28-2.00), and for cancers diagnosed within 3 years of blood draw (OR: 1.73, 95% CI: 1.34-2.23). CONCLUSION Based on pre-diagnostic data from 20 cohorts across 4 continents, this study confirms that increased vitamin B6 catabolism related to inflammation and immune activation is associated with a higher risk of developing lung cancer. Moreover, PAr may be a pre-diagnostic marker of lung cancer rather than a causal factor.
Collapse
Affiliation(s)
- H Zuo
- Department of Global Public Health and Primary Care, University of Bergen, Bergen.
| | - P M Ueland
- Department of Clinical Science, University of Bergen, Bergen; Laboratory of Medicine and Pathology, Haukeland University Hospital, Bergen
| | | | - G S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen
| | - A Fanidi
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France; MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - W Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - X Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Y Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - J Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - R Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle
| | - M Pettinger
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle
| | - C A Thomson
- Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, USA
| | - G G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - A Hodge
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Q Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - W J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - M Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå
| | - J Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - K Grankvist
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - V L Stevens
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta
| | - M L McCullough
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta
| | - S J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - D Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - R G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - N D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - N E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - A Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - K Hveem
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - M Næss
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - J E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston
| | - I Lee
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston
| | - J M Gaziano
- Division of Aging, Brigham and Women's Hospital, Boston; VA Boston Healthcare System, Boston, USA
| | - G Severi
- Human Genetics Foundation (HuGeF), Torin, Italy; CESP (U1018 INSERM), Université Paris-Saclay, USQ, Villejuif, France
| | - X Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - M J Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston
| | - J Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis
| | | | - L L Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu
| | - J Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - R Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh
| | - W Koh
- Duke-NUS Medical School, Singapore and Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Y Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - U Ericson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - K Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health and Johns Hopkins Sidney Kimmel Comprehensive Center, School of Medicine, Baltimore, USA
| | - M R Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health and Johns Hopkins Sidney Kimmel Comprehensive Center, School of Medicine, Baltimore, USA
| | - C Relton
- Institute of Genetic Medicine, Newcastle University, Newcastle; MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - P Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - M Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
10
|
Song Z, Liu J, Hou Y, Yuan W, Yang B. Study on the interaction between pyridoxal and CopC by multi-spectroscopy and docking methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:214-221. [PMID: 30321861 DOI: 10.1016/j.saa.2018.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
The interaction between pyridoxal hydrochloride (HQ) and apoCopC was investigated using Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), circular dichroism (CD), fluorescence spectroscopy, three-dimensional (3D) fluorescence spectroscopy, fluorescence lifetime, TNS fluorescence and docking methods. FTIR, CD, TNS fluorescence and fluorescence lifetime experiments suggested that the apoCopC conformation was altered by HQ with an increase in the random coil content and a reduction in the β-sheet content. In addition, the data from fluorescence spectroscopy, 3D fluorescence spectroscopy and molecular docking revealed that the binding site of HQ was located in the hydrophobic area of apoCopC, and a redshift of the HQ fluorescence spectra was observed. Furthermore, ITC and fluorescence quenching data manifested that the binding ratio of HQ and apoCopC was 1:1, and the forming constant was calculated to be (7.06 ± 0.21) × 105 M-1. The thermodynamic parameters ΔH and ΔS suggested that the formation of a CopC-HQ complex depended on the hydrophobic force. Furthermore, the average binding distance between tryptophan in apoCopC and HQ was determined by means of Förster non-radioactive resonance energy transfer and molecular docking. The results agreed well with each other. As a redox switch in the modulation of copper, the interaction of apoCopC with small molecules will affect the action of the redox switch. These findings could provide useful information to illustrate the copper regulation mechanism.
Collapse
Affiliation(s)
- Zhen Song
- Taiyuan Normal University Department of Chemistry, Jinzhong 030619, China
| | - Jin Liu
- Hubei Provincial Corps Hospital, Chinese People's Armed Police Forces, Wuhan 430061, China
| | - Yuxin Hou
- Taiyuan Normal University Department of Chemistry, Jinzhong 030619, China
| | - Wen Yuan
- Taiyuan Normal University Department of Chemistry, Jinzhong 030619, China
| | - Binsheng Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
11
|
Gohla A. Do metabolic HAD phosphatases moonlight as protein phosphatases? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:153-166. [DOI: 10.1016/j.bbamcr.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
|
12
|
Yang J, Li H, Deng H, Wang Z. Association of One-Carbon Metabolism-Related Vitamins (Folate, B6, B12), Homocysteine and Methionine With the Risk of Lung Cancer: Systematic Review and Meta-Analysis. Front Oncol 2018; 8:493. [PMID: 30430082 PMCID: PMC6220054 DOI: 10.3389/fonc.2018.00493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Studies on serum one-carbon metabolism factors (folate, B6, B12, homocysteine, and methionine) with lung cancer (LC) risk have produced inconsistent results. We aimed to systematically evaluate the association between them. Methods: This study was reported in accordance with the PRISMA Statement and was registered with PROSPERO (no. CRD42018086654). Relevant studies were searched in PubMed, Embase, MEDLINE, and CNKI up to February 2018. Random-effects models were used to estimate the pooled standardized mean differences (SMD) or odds ratios (OR), as well as their 95% confidence interval (CI). Sensitivity and subgroup analysis were performed to identify the source of heterogeneity. Publication bias was also assessed. Results: A total of 14 articles (8,097 patients) were included. The concentration of serum folate and vitamin B6 of LC patients were lower than the controls [SMD -0.53, 95% CI (-0.70, -0.35), p = 0.001 and SMD -0.28, 95%CI (-0.53, -0.02), p = 0.001, respectively]. While the concentration of homocysteine of the cases was higher than the controls [SMD 0.41, 95% CI (0.24, 0.59), p = 0.001]. However, there were no significant differences between LC patients and the controls in terms of vitamin B12 and methionine [SMD -0.09, 95% CI (-0.27, 0.09), p = 0.202 and SMD -0.13, 95% CI (-0.36, 0.10), p = 0.001]. Subgroup analysis showed that these results were more significant in Europe, Asia, former and current smokers, and the male population (p-value < 0.05). Conclusions: Serum folate and vitamin B6 might be protective factors against lung carcinogenesis and homocysteine could contribute to LC risk.
Collapse
Affiliation(s)
- Jia Yang
- Oncology Department of LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjia Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibin Deng
- Oncology Department of LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongqi Wang
- Oncology Department of LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|