1
|
Gesmundo I, Pedrolli F, Cai R, Sha W, Schally AV, Granata R. Growth hormone-releasing hormone and cancer. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09919-4. [PMID: 39422787 DOI: 10.1007/s11154-024-09919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting the synthesis and release of growth hormone (GH), stimulates the proliferation of human normal and malignant cells by binding to GHRH-receptor (GHRH-R) and its main splice variant, SV1. Both GHRH and GHRH-Rs are expressed in various cancers, forming a stimulatory pathway for cancer cell growth; additionally, SV1 possesses ligand independent proliferative effects. Therefore, targeting GHRH-Rs pharmacologically has been proposed for the treatment of cancer. Various classes of synthetic GHRH antagonists have been developed, endowed with strong anticancer activity in vitro and in vivo, in addition to displaying anti-inflammatory, antioxidant and immune-modulatory functions. GHRH antagonists exert indirect effects by blocking the pituitary GH/hepatic insulin-like growth factor I (IGF-I) axis, or directly inhibiting the binding of GHRH on tumor GHRH-Rs. Additionally, GHRH antagonists block the mitogenic functions of SV1 in tumor cells. This review illustrates the main findings on the antitumor effects of GHRH antagonists in experimental human cancers, along with their underlying mechanisms. The development of GHRH antagonists, with reduced toxicity and high stability, could lead to novel therapeutic agents for the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
2
|
Fakir S, Kubra KT, Akhter MS, Uddin MA, Barabutis N. Alleviation of LPS-induced Endothelial Injury due to GHRH Antagonist Treatment. Int J Pept Res Ther 2024; 30:67. [PMID: 39465062 PMCID: PMC11500629 DOI: 10.1007/s10989-024-10653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/29/2024]
Abstract
Background GHRH is produced in the hypothalamus and affects various tissues beyond the pituitary, including the lungs. GHRH antagonists exert anti-inflammatory properties in several experimental models of disease, but their role inprotecting the endothelial barrier during inflammation is less understood. This study investigates the effects ofGHRHAnt on LPS-induced endothelial dysfunction. Methods BPAEC and HMVEC-L cells were exposed to LPS to induce endothelial injury. GHRHAnt was administered eitherpre- or post-LPS treatment. Western blot analysis was used to evaluate protein expression levels. Paracellularpermeability was assessed utilizing FITC-dextran assay to evaluate endothelial barrier function. Results GHRHAnt post-treatment significantly reduced LPS-induced MLC2 phosphorylation and cofilin activation inBPAECs. Furthermore, pretreatment with GHRHAnt enhanced barrier function and ameliorated LPS-inducedhyperpermeability in both human and bovine endothelial cells. Conclusions GHRHAnt treatment mitigates LPS-induced endothelial barrier dysfunction. These findings suggest that GHRHAntcould serve as potential therapeutic agents towards endothelial dysfunction-related illness (e.g. sepsis).
Collapse
Affiliation(s)
- Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Mohammad Shohel Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Mohammad Afaz Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
3
|
Zhang H, Zhang G, Lu S, Zhang X, Yu J. Integrated analysis of ncRNA in hepatocellular carcinoma with CTNNB1 mutations reveals miR-205-5p and miR-3940-3p Axes. Dig Liver Dis 2024:S1590-8658(24)00811-9. [PMID: 38918127 DOI: 10.1016/j.dld.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Catenin beta 1 (CTNNB1) mutations are one of the most common mutations involved in hepatocellular carcinoma (HCC) progression. However, the association between CTNNB1 mutations and HCC remains controversial. METHODS Five tumor samples with wild-type CTNNB1 and three tumor samples with CTNNB1 mutations were collected from patients with HCC for whole transcriptome sequencing. Selected ncRNAs and mRNAs were validated by qPCR in 48 HCC tumors. Selected ncRNA regulatory axes were verified in HCC cells by transfecting mimics and inhibitors of miRNA. RESULTS A network of differentially expressed (DE) lncRNA/circRNA-miRNA-mRNA was constructed to explore the effects of CTNNB1 mutations on ncRNA regulation. TXNRD1, CES1, MATN2, SERPINA5, lncRNA STAT4-210, hsa_circ_0007824, hsa_circ_0008234, hsa-miR-205-5p and hsa-miR-199a-5p were verified at the RNA expression level to validate the sequencing results. The down-up-down axes GLIS3-209/circ_0085440-miR-205-5p-GHRHR and WNK2-213-miR-3940-3p-LY6E were verified at the expression level, and proved to inhibit and promote cell proliferation, respectively. CONCLUSION This study demonstrated CTNNB1 mutations associated ncRNA regulatory axes playing different roles in HCC cell proliferation, providing novel insights into the controversial role of CTNNB1 in HCC.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Guoqing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Siyu Lu
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Jingya Yu
- Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
4
|
Gonigam RL, Weis KE, Ge X, Yao B, Zhang Q, Raetzman LT. Characterization of Somatotrope Cell Expansion in Response to GHRH in the Neonatal Mouse Pituitary. Endocrinology 2023; 164:bqad131. [PMID: 37616545 PMCID: PMC11009787 DOI: 10.1210/endocr/bqad131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
In humans and mice, loss-of-function mutations in growth hormone-releasing hormone receptor (GHRHR) cause isolated GH deficiency. The mutant GHRHR mouse model, GhrhrLit/Lit (LIT), exhibits loss of serum GH, but also fewer somatotropes. However, how loss of GHRH signaling affects expansion of stem and progenitor cells giving rise to GH-producing cells is unknown. LIT mice and wild-type littermates were examined for differences in proliferation and gene expression of pituitary lineage markers by quantitative reverse transcription polymerase chain reaction and immunohistochemistry at postnatal day 5 (p5) and 5 weeks. At p5, the LIT mouse shows a global decrease in pituitary proliferation measured by proliferation marker Ki67 and phospho-histone H3. This proliferative defect is seen in a pituitary cell expressing POU1F1 with or without GH. SOX9-positive progenitors show no changes in proliferation in p5 LIT mice. Additionally, the other POU1F1 lineage cells are not decreased in number; rather, we observe an increase in lactotrope cell population as well as messenger RNA for Tshb and Prl. In the 5-week LIT pituitary, the proliferative deficit in POU1F1-expressing cells observed neonatally persists, while the number and proliferative proportion of SOX9 cells do not appear changed. Treatment of cultured pituitary explants with GHRH promotes proliferation of POU1F1-expressing cells, but not GH-positive cells, in a mitogen-activated protein kinase-dependent manner. These findings indicate that hypothalamic GHRH targets proliferation of a POU1F1-positive cell, targeted to the somatotrope lineage, to fine tune their numbers.
Collapse
Affiliation(s)
- Richard L Gonigam
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiyu Ge
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Boyuan Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Granato G, Gesmundo I, Pedrolli F, Kasarla R, Begani L, Banfi D, Bruno S, Lopatina T, Brizzi MF, Cai R, Sha W, Ghigo E, Schally AV, Granata R. Growth hormone-releasing hormone antagonist MIA-602 inhibits inflammation induced by SARS-CoV-2 spike protein and bacterial lipopolysaccharide synergism in macrophages and human peripheral blood mononuclear cells. Front Immunol 2023; 14:1231363. [PMID: 37649486 PMCID: PMC10462983 DOI: 10.3389/fimmu.2023.1231363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
COVID-19 is characterized by an excessive inflammatory response and macrophage hyperactivation, leading, in severe cases, to alveolar epithelial injury and acute respiratory distress syndrome. Recent studies have reported that SARS-CoV-2 spike (S) protein interacts with bacterial lipopolysaccharide (LPS) to boost inflammatory responses in vitro, in macrophages and peripheral blood mononuclear cells (PBMCs), and in vivo. The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting pituitary GH release, exerts many peripheral functions, acting as a growth factor in both malignant and non-malignant cells. GHRH antagonists, in turn, display potent antitumor effects and antinflammatory activities in different cell types, including lung and endothelial cells. However, to date, the antinflammatory role of GHRH antagonists in COVID-19 remains unexplored. Here, we examined the ability of GHRH antagonist MIA-602 to reduce inflammation in human THP-1-derived macrophages and PBMCs stimulated with S protein and LPS combination. Western blot and immunofluorescence analysis revealed the presence of GHRH receptor and its splice variant SV1 in both THP-1 cells and PBMCs. Exposure of THP-1 cells to S protein and LPS combination increased the mRNA levels and protein secretion of TNF-α and IL-1β, as well as IL-8 and MCP-1 gene expression, an effect hampered by MIA-602. Similarly, MIA-602 hindered TNF-α and IL-1β secretion in PBMCs and reduced MCP-1 mRNA levels. Mechanistically, MIA-602 blunted the S protein and LPS-induced activation of inflammatory pathways in THP-1 cells, such as NF-κB, STAT3, MAPK ERK1/2 and JNK. MIA-602 also attenuated oxidative stress in PBMCs, by decreasing ROS production, iNOS and COX-2 protein levels, and MMP9 activity. Finally, MIA-602 prevented the effect of S protein and LPS synergism on NF-кB nuclear translocation and activity. Overall, these findings demonstrate a novel antinflammatory role for GHRH antagonists of MIA class and suggest their potential development for the treatment of inflammatory diseases, such as COVID-19 and related comorbidities.
Collapse
Affiliation(s)
- Giuseppina Granato
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Iacopo Gesmundo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Pedrolli
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ramesh Kasarla
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura Begani
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Dana Banfi
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Tatiana Lopatina
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
- South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, United States
| | - Wei Sha
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
| | - Ezio Ghigo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrew V. Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
- South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, United States
- Department of Medicine, Divisions of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Riccarda Granata
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Yao N, Pan J, Chen X, Li P, Li Y, Wang Z, Yao T, Qian L, Yi D, Wu Y. Discovery of potential biomarkers for lung cancer classification based on human proteome microarrays using Stochastic Gradient Boosting approach. J Cancer Res Clin Oncol 2023; 149:6803-6812. [PMID: 36807761 DOI: 10.1007/s00432-023-04643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Early identification of lung cancer (LC) will considerably facilitate the intervention and prevention of LC. The human proteome micro-arrays approach can be used as a "liquid biopsy" to diagnose LC to complement conventional diagnosis, which needs advanced bioinformatics methods such as feature selection (FS) and refined machine learning models. METHODS A two-stage FS methodology by infusing Pearson's Correlation (PC) with a univariate filter (SBF) or recursive feature elimination (RFE) was used to reduce the redundancy of the original dataset. The Stochastic Gradient Boosting (SGB), Random Forest (RF), and Support Vector Machine (SVM) techniques were applied to build ensemble classifiers based on four subsets. The synthetic minority oversampling technique (SMOTE) was used in the preprocessing of imbalanced data. RESULTS FS approach with SBF and RFE extracted 25 and 55 features, respectively, with 14 overlapped ones. All three ensemble models demonstrate superior accuracy (ranging from 0.867 to 0.967) and sensitivity (0.917 to 1.00) in the test datasets with SGB of SBF subset outperforming others. The SMOTE technique has improved the model performance in the training process. Three of the top selected candidate biomarkers (LGR4, CDC34, and GHRHR) were highly suggested to play a role in lung tumorigenesis. CONCLUSION A novel hybrid FS method with classical ensemble machine learning algorithms was first used in the classification of protein microarray data. The parsimony model constructed by the SGB algorithm with the appropriate FS and SMOTE approach performs well in the classification task with higher sensitivity and specificity. Standardization and innovation of bioinformatics approach for protein microarray analysis need further exploration and validation.
Collapse
Affiliation(s)
- Ning Yao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Center for Disease Control and Prevention, No.8 Changjiang 2nd Street, Yuzhong District, Chongqing, 400042, China
| | - Jianbo Pan
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xicheng Chen
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Pengpeng Li
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yang Li
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Zhenyan Wang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Tianhua Yao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Li Qian
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dong Yi
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Yazhou Wu
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
7
|
Kubra KT, Akhter MS, Apperley K, Barabutis N. Growth Hormone-Releasing Hormone Antagonist JV-1-36 Suppresses Reactive Oxygen Species Generation in A549 Lung Cancer Cells. ENDOCRINES 2022; 3:813-820. [PMID: 36540765 PMCID: PMC9762825 DOI: 10.3390/endocrines3040067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Growth hormone-releasing hormone (GHRH) and its receptors are expressed in a variety of human cancers, and have been involved in malignancies. GHRH antagonists (GHRHAnt) were developed to suppress tumor progression and metastasis. Previous studies demonstrate the involvement of reactive oxygen species (ROS) in cancer progression. Herein, we investigate the effect of a commercially available GHRH antagonist, namely JV-1-36, in the redox status of the A549 human cancer cell line. Our results suggest that this peptide significantly reduces ROS production in those cells in a time-dependent manner and counteracts H2O2-induced ROS. Our study supports the anti-oxidative effects of JV-1-36 and contributes in our knowledge towards the in vitro effects of GHRHAnt in cancers.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Mohammad S. Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Kaitlyn Apperley
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
8
|
Antagonist of Growth Hormone-Releasing Hormone Potentiates the Antitumor Effect of Pemetrexed and Cisplatin in Pleural Mesothelioma. Int J Mol Sci 2022; 23:ijms231911248. [PMID: 36232554 PMCID: PMC9569772 DOI: 10.3390/ijms231911248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Pleural mesothelioma (PM) is an aggressive cancer with poor prognosis and no effective therapies, mainly caused by exposure to asbestos. Antagonists of growth hormone-releasing hormone (GHRH) display strong antitumor effects in many experimental cancers, including lung cancer and mesothelioma. Here, we aimed to determine whether GHRH antagonist MIA-690 potentiates the antitumor effect of cisplatin and pemetrexed in PM. In vitro, MIA-690, in combination with cisplatin and pemetrexed, synergistically reduced cell viability, restrained cell proliferation and enhanced apoptosis, compared with drugs alone. In vivo, the same combination resulted in a strong growth inhibition of MSTO-211H xenografts, decreased tumor cell proliferation and increased apoptosis. Mechanistically, MIA-690, particularly with chemotherapeutic drugs, inhibited proliferative and oncogenic pathways, such as MAPK ERK1/2 and cMyc, and downregulated cyclin D1 and B1 mRNAs. Inflammatory pathways such as NF-kB and STAT3 were also reduced, as well as oxidative, angiogenic and tumorigenic markers (iNOS, COX-2, MMP2, MMP9 and HMGB1) and growth factors (VEGF and IGF-1). Overall, these findings strongly suggest that GHRH antagonists of MIA class, such as MIA-690, could increase the efficacy of standard therapy in PM.
Collapse
|
9
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
10
|
Cai R, Zhang X, Wang H, Cui T, Halmos G, Sha W, He J, Popovics P, Vidaurre I, Zhang C, Mirsaeidi M, Schally AV. Synthesis of potent antagonists of receptors for growth hormone-releasing hormone with antitumor and anti-inflammatory activity. Peptides 2022; 150:170716. [PMID: 34952135 DOI: 10.1016/j.peptides.2021.170716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
The syntheses and biological evaluation of GHRH antagonists of AVR series with high anticancer and anti-inflammatory activities are described. Compared to our previously reported GHRH antagonist 602 of MIAMI series, AVR analogs contain additional modifications at positions 0, 6, 8, 10, 11, 12, 20, 21, 29 and 30, which induce greater antitumor activities. Five of nineteen tested AVR analogs presented binding affinities to the membrane GHRH receptors on human pituitary, 2-4-fold better than MIA-602. The antineoplastic properties of these analogs were evaluated in vitro using proliferation assays and in vivo in nude mice xenografted with various human cancer cell lines including lung (NSCLC-ADC HCC827 and NSCLC H460), gastric (NCI-N87), pancreatic (PANC-1 and CFPAC-1), colorectal (HT-29), breast (MX-1), glioblastoma (U87), ovarian (SK-OV-3 and OVCAR-3) and prostatic (PC3) cancers. In vitro AVR analogs showed inhibition of cell viability equal to or greater than MIA-602. After subcutaneous administration at 5 μg/day doses, some AVR antagonists demonstrated better inhibition of tumor growth in nude mice bearing various human cancers, with analog AVR-353 inducing stronger suppression than MIA-602 in lung, gastric, pancreatic and colorectal cancers and AVR-352 in ovarian cancers and glioblastoma. Both antagonists induced greater inhibition of GH release than MIA-602 in vitro in cultured rat pituitary cells and in vivo in rats. AVR-352 also demonstrated stronger anti-inflammatory effects in lung granulomas from mice with lung inflammation. Our studies demonstrate the merit of further investigation of AVR GHRH antagonists and support their potential use for clinical therapy of human cancers and other diseases.
Collapse
Affiliation(s)
- Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Xianyang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Haibo Wang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Tengjiao Cui
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States; Department of Medicine, Divisions of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Gabor Halmos
- Department of Biopharmacy, School of Pharmacy, University of Debrecen, Hungary
| | - Wei Sha
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Jinlin He
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Petra Popovics
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Irving Vidaurre
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Chongxu Zhang
- Section of Pulmonary Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Mehdi Mirsaeidi
- Section of Pulmonary Veterans Affairs Medical Center Miami, FL 33125, United States; Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States; Department of Medicine, Divisions of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
11
|
Constitutive signal bias mediated by the human GHRHR splice variant 1. Proc Natl Acad Sci U S A 2021; 118:2106606118. [PMID: 34599099 PMCID: PMC8501799 DOI: 10.1073/pnas.2106606118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The mechanism of functional changes induced by alternative splicing of GHRHR is largely unknown. Here, we demonstrate that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The cryogenic electron microscopy structures of SV1 and molecular dynamics simulations reveal the different functionalities between GHRHR and SV1 at the near-atomic level (i.e., the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins). Our findings provide valuable insights into the functional diversity of class B1 GPCRs that may aid in the design of better therapeutic agents against certain cancers. Alternative splicing of G protein–coupled receptors has been observed, but their functions are largely unknown. Here, we report that a splice variant (SV1) of the human growth hormone–releasing hormone receptor (GHRHR) is capable of transducing biased signal. Differing only at the receptor N terminus, GHRHR predominantly activates Gs while SV1 selectively couples to β-arrestins. Based on the cryogenic electron microscopy structures of SV1 in the apo state or GHRH-bound state in complex with the Gs protein, molecular dynamics simulations reveal that the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins. As suggested by mutagenesis and functional studies, it appears that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The level of SV1 expression in prostate cancer cells is also positively correlated with ERK1/2 phosphorylation but negatively correlated with cAMP response. Our findings imply that constitutive signal bias may be a mechanism that ensures cancer cell proliferation.
Collapse
|
12
|
Gesmundo I, Granato G, Fuentes-Fayos AC, Alvarez CV, Dieguez C, Zatelli MC, Congiusta N, Banfi D, Prencipe N, Leone S, Brunetti L, Castaño JP, Luque RM, Cai R, Sha W, Ghigo E, Schally AV, Granata R. Antagonists of Growth Hormone-Releasing Hormone Inhibit the Growth of Pituitary Adenoma Cells by Hampering Oncogenic Pathways and Promoting Apoptotic Signaling. Cancers (Basel) 2021; 13:cancers13163950. [PMID: 34439107 PMCID: PMC8393969 DOI: 10.3390/cancers13163950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Many studies have demonstrated that the antagonists of growth hormone-releasing hormone (GHRH) exert inhibitory activities in a variety of experimental cancers; however, their potential antitumor role in pituitary adenomas (PAs) remains largely unknown. Here, we show that GHRH antagonists of Miami (MIA) class, MIA-602 and MIA-690, are able to reduce the growth and promote cell death in hormone-secreting PA cell lines, through the inhibition of mechanisms implicated in tumorigenesis and cancer progression. MIA-602 and MIA-690 also decreased the viability of tumor cells derived from human pituitary tumors. Overall, these findings suggest that GHRH antagonists may represent new therapeutic tools for the treatment of PAs, both alone or in combination with standard pharmacological treatments. Abstract Pituitary adenomas (PAs) are intracranial tumors, often associated with excessive hormonal secretion and severe comorbidities. Some patients are resistant to medical therapies; therefore, novel treatment options are needed. Antagonists of growth hormone-releasing hormone (GHRH) exert potent anticancer effects, and early GHRH antagonists were found to inhibit GHRH-induced secretion of pituitary GH in vitro and in vivo. However, the antitumor role of GHRH antagonists in PAs is largely unknown. Here, we show that the GHRH antagonists of MIAMI class, MIA-602 and MIA-690, inhibited cell viability and growth and promoted apoptosis in GH/prolactin-secreting GH3 PA cells transfected with human GHRH receptor (GH3-GHRHR), and in adrenocorticotropic hormone ACTH-secreting AtT20 PA cells. GHRH antagonists also reduced the expression of proteins involved in tumorigenesis and cancer progression, upregulated proapoptotic molecules, and lowered GHRH receptor levels. The combination of MIA-690 with temozolomide synergistically blunted the viability of GH3-GHRHR and AtT20 cells. Moreover, MIA-690 reduced both basal and GHRH-induced secretion of GH and intracellular cAMP levels. Finally, GHRH antagonists inhibited cell viability in human primary GH- and ACTH-PA cell cultures. Overall, our results suggest that GHRH antagonists, either alone or in combination with pharmacological treatments, may be considered for further development as therapy for PAs.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Giuseppina Granato
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Antonio C. Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Clara V. Alvarez
- Centro de Investigaciones Médicas (CIMUS) e Instituto de Investigaciones Sanitarias, University of Santiago de Compostela and Complexo Hospitalario Universitario of Santiago de Compostela, 14004 Santiago de Compostela, Spain; (C.V.A.); (C.D.)
| | - Carlos Dieguez
- Centro de Investigaciones Médicas (CIMUS) e Instituto de Investigaciones Sanitarias, University of Santiago de Compostela and Complexo Hospitalario Universitario of Santiago de Compostela, 14004 Santiago de Compostela, Spain; (C.V.A.); (C.D.)
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 15706 Ferrara, Italy;
| | - Noemi Congiusta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Dana Banfi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Nunzia Prencipe
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.L.); (L.B.)
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.L.); (L.B.)
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Renzhi Cai
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Wei Sha
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Andrew V. Schally
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
- Comprehensive Cancer Center, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
- Correspondence:
| |
Collapse
|
13
|
Recinella L, Chiavaroli A, Orlando G, Ferrante C, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L, Leone S. Growth hormone-releasing hormone antagonistic analog MIA-690 stimulates food intake in mice. Peptides 2021; 142:170582. [PMID: 34051291 DOI: 10.1016/j.peptides.2021.170582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/26/2022]
Abstract
In addition to its metabolic and endocrine effects, growth hormone-releasing hormone (GHRH) was found to modulate feeding behavior in mammals. However, the role of recently synthetized GHRH antagonist MIA-690 and MR-409, a GHRH agonist, on feeding regulation remains to be evaluated. We investigated the effects of chronic subcutaneous administration of MIA-690 and MR-409 on feeding behavior and energy metabolism, in mice. Compared to vehicle, MIA-690 increased food intake and body weight, while MR-409 had no effect. Both analogs did not modify locomotor activity, as well as subcutaneous, visceral and brown adipose tissue (BAT) mass. A significant increase of hypothalamic agouti-related peptide (AgRP) gene expression and norepinephrine (NE) levels, along with a reduction of serotonin (5-HT) levels were found after MIA-690 treatment. MIA-690 was also found able to decrease gene expression of leptin in visceral adipose tissue. By contrast, MR-409 had no effect on the investigated markers. Concluding, chronic peripheral administration of MIA-690 could play an orexigenic role, paralleled by an increase in body weight. The stimulation of feeding could be mediated, albeit partially, by elevation of AgRP gene expression and NE levels and decreased 5-HT levels in the hypothalamus, along with reduced leptin gene expression, in the visceral adipose tissue.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| | | | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| | - Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, 10126, Italy.
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, 10126, Italy.
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL, 33125, United States; Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL33136 and Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL, 33125, United States; Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL33136 and Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, FL, 33125, United States; Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL33136 and Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| |
Collapse
|
14
|
Chang Y, Huang R, Zhai Y, Huang L, Feng Y, Wang D, Chai R, Zhang W, Hu H. A potentially effective drug for patients with recurrent glioma: sermorelin. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:406. [PMID: 33842627 PMCID: PMC8033379 DOI: 10.21037/atm-20-6561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Treatment insensitivity is the main cause of glioma. This study was designed to screen out effective drugs for recurrent gliomas based on the transcriptomics data. Methods A total of 1,018 glioma patients with transcriptome sequencing data and clinical data were included in this study. There were 325 patients in the discovery cohort, including 229 primary patients and 92 recurrent patients. There were 693 patients in the validation cohort, including 422 primary patients and 271 relapsed patients. Drug Resistant Scores (DRS) of 4,865 drugs of each patient were used for screening. The analysis and drawing in this study were mainly based on R language. Results After high-throughput drug screening, we found that recurrent glioma patients were most sensitive to sermorelin. Further analysis revealed that sermorelin was suitable for recurrent patients with high grade, IDH-wildtype and 1p/19q non-codeletion status. GO and KEGG analyses found that sermorelin may inhibit tumor cell proliferation by cell cycle blocking. Moreover, sermorelin was also related to the immune system process and negatively regulated immune checkpoints and M0 macrophages. Lastly, the Kaplan-Meier method showed the patient's benefit from sermorelin was independent of postoperative adjuvant treatment. Conclusions Recurrent glioma patients are sensitive to sermorelin and it makes effect through glioma cells proliferation inhibiting and immune response enhancing.
Collapse
Affiliation(s)
- Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lijie Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuemei Feng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruichao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
15
|
Zhang C, Cui T, Cai R, Wangpaichitr M, Mirsaeidi M, Schally AV, Jackson RM. Growth Hormone-Releasing Hormone in Lung Physiology and Pulmonary Disease. Cells 2020; 9:E2331. [PMID: 33096674 PMCID: PMC7589146 DOI: 10.3390/cells9102331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 01/11/2023] Open
Abstract
Growth hormone-releasing hormone (GHRH) is secreted primarily from the hypothalamus, but other tissues, including the lungs, produce it locally. GHRH stimulates the release and secretion of growth hormone (GH) by the pituitary and regulates the production of GH and hepatic insulin-like growth factor-1 (IGF-1). Pituitary-type GHRH-receptors (GHRH-R) are expressed in human lungs, indicating that GHRH or GH could participate in lung development, growth, and repair. GHRH-R antagonists (i.e., synthetic peptides), which we have tested in various models, exert growth-inhibitory effects in lung cancer cells in vitro and in vivo in addition to having anti-inflammatory, anti-oxidative, and pro-apoptotic effects. One antagonist of the GHRH-R used in recent studies reviewed here, MIA-602, lessens both inflammation and fibrosis in a mouse model of bleomycin lung injury. GHRH and its peptide agonists regulate the proliferation of fibroblasts through the modulation of extracellular signal-regulated kinase (ERK) and Akt pathways. In addition to downregulating GH and IGF-1, GHRH-R antagonist MIA-602 inhibits signaling pathways relevant to inflammation, including p21-activated kinase 1-signal transducer and activator of transcription 3/nuclear factor-kappa B (PAK1-STAT3/NF-κB and ERK). MIA-602 induces fibroblast apoptosis in a dose-dependent manner, which is an effect that is likely important in antifibrotic actions. Taken together, the novel data reviewed here show that GHRH is an important peptide that participates in lung homeostasis, inflammation, wound healing, and cancer; and GHRH-R antagonists may have therapeutic potential in lung diseases.
Collapse
Affiliation(s)
- Chongxu Zhang
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
| | - Tengjiao Cui
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
| | - Renzhi Cai
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
| | - Medhi Wangpaichitr
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
| | - Mehdi Mirsaeidi
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Andrew V. Schally
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Department of Pathology and Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Robert M. Jackson
- Research Service, Miami VAHS, Miami, FL 33125, USA; (C.Z.); (T.C.); (R.C.); (M.W.); (M.M.); (A.V.S.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
16
|
Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol Ther 2019; 203:107395. [DOI: 10.1016/j.pharmthera.2019.107395] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
17
|
Chesnokova V, Melmed S. Growth hormone in the tumor microenvironment. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:568-575. [PMID: 31939481 PMCID: PMC7025769 DOI: 10.20945/2359-3997000000186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Tumor development is a multistep process whereby local mechanisms enable somatic mutations during preneoplastic stages. Once a tumor develops, it becomes a complex organ composed of multiple cell types. Interactions between malignant and non-transformed cells and tissues create a tumor microenvironment (TME) comprising epithelial cancer cells, cancer stem cells, non-tumorous cells, stromal cells, immune-inflammatory cells, blood and lymphatic vascular network, and extracellular matrix. We review reports and present a hypothesis that postulates the involvement of growth hormone (GH) in field cancerization. We discuss GH contribution to TME, promoting epithelial-to-mesenchymal transition, accumulation of unrepaired DNA damage, tumor vascularity, and resistance to therapy. Arch Endocrinol Metab. 2019;63(6):568-75.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shlomo Melmed
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
18
|
Exquisite sensitivity of adrenocortical carcinomas to induction of ferroptosis. Proc Natl Acad Sci U S A 2019; 116:22269-22274. [PMID: 31611400 DOI: 10.1073/pnas.1912700116] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adrenocortical carcinomas (ACCs) are rare and highly malignant cancers associated with poor survival of patients. Currently, mitotane, a nonspecific derivative of the pesticide DDT (1,1-(dichlorobiphenyl)-2,2-dichloroethane), is used as the standard treatment, but its mechanism of action in ACCs remains elusive. Here we demonstrate that the human ACC NCI-H295R cell line is remarkably sensitive to induction of ferroptosis, while mitotane does not induce this iron-dependent mode of regulated necrosis. Supplementation with insulin, transferrin, and selenium (ITS) is commonly used to keep NCI-H295R cells in cell culture. We show that this supplementation prevents spontaneous ferroptosis, especially when it contains polyunsaturated fatty acids (PUFAs), such as linoleic acid. Inhibitors of apoptosis (zVAD, emricasan) do not prevent the mitotane-induced cell death but morphologically prevent membrane blebbing. The expression of glutathione peroxidase 4 (GPX4) in H295R cells, however, is significantly higher when compared to HT1080 fibrosarcoma cells, suggesting a role for ferroptosis. Direct inhibition of GPX4 in H295R cells led to high necrotic populations compared to control, while cotreatment with ferrostatin-1 (Fer-1) completely reverted ferroptosis. Interestingly, the analysis of public databases revealed that several key players of the ferroptosis pathway are hypermethylated and/or mutated in human ACCs. Finally, we also detected that growth hormone-releasing hormone (GHRH) antagonists, such as MIA602, kill H295R cells in a nonapoptotic manner. In summary, we found elevated expression of GPX4 and higher sensitivity to ferroptosis in ACCs. We hypothesize that instead of treatment with mitotane, human adrenocortical carcinomas may be much more sensitive to induction of ferroptosis.
Collapse
|
19
|
Schally AV, Zhang X, Cai R, Hare JM, Granata R, Bartoli M. Actions and Potential Therapeutic Applications of Growth Hormone-Releasing Hormone Agonists. Endocrinology 2019; 160:1600-1612. [PMID: 31070727 DOI: 10.1210/en.2019-00111] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
Abstract
In this article, we briefly review the identification of GHRH, provide an abridged overview of GHRH antagonists, and focus on studies with GHRH agonists. Potent GHRH agonists of JI and MR class were synthesized and evaluated biologically. Besides the induction of the release of pituitary GH, GHRH analogs promote cell proliferation and exert stimulatory effects on various tissues, which express GHRH receptors (GHRH-Rs). A large body of work shows that GHRH agonists, such as MR-409, improve pancreatic β-cell proliferation and metabolic functions and facilitate engraftment of islets after transplantation in rodents. Accordingly, GHRH agonists offer a new therapeutic approach to treating diabetes. Various studies demonstrate that GHRH agonists promote repair of cardiac tissue, producing improvement of ejection fraction and reduction of infarct size in rats, reduction of infarct scar in swine, and attenuation of cardiac hypertrophy in mice, suggesting clinical applications. The presence of GHRH-Rs in ocular tissues and neuroprotective effects of GHRH analogs in experimental diabetic retinopathy indicates their possible therapeutic applications for eye diseases. Other effects of GHRH agonists, include acceleration of wound healing, activation of immune cells, and action on the central nervous system. As GHRH might function as a growth factor, we examined effects of GHRH agonists on tumors. In vitro, GHRH agonists stimulate growth of human cancer cells and upregulate GHRH-Rs. However, in vivo, GHRH agonists inhibit growth of human cancers xenografted into nude mice and downregulate pituitary and tumoral GHRH-Rs. Therapeutic applications of GHRH analogs are discussed. The development of GHRH analogs should lead to their clinical use.
Collapse
Affiliation(s)
- Andrew V Schally
- Veterans Affairs Medical Center, Miami, Florida
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, Florida
| | - Joshua M Hare
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
20
|
Boguszewski CL, Boguszewski MCDS. Growth Hormone's Links to Cancer. Endocr Rev 2019; 40:558-574. [PMID: 30500870 DOI: 10.1210/er.2018-00166] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Several components of the GH axis are involved in tumor progression, and GH-induced intracellular signaling has been strongly associated with breast cancer susceptibility in genome-wide association studies. In the general population, high IGF-I levels and low IGF-binding protein-3 levels within the normal range are associated with the development of common malignancies, and components of the GH-IGF signaling system exhibit correlations with clinical, histopathological, and therapeutic parameters in cancer patients. Despite promising findings in preclinical studies, anticancer therapies targeting the GH-IGF signaling system have led to disappointing results in clinical trials. There is substantial evidence for some degree of protection against tumor development in several animal models and in patients with genetic defects associated with GH deficiency or resistance. In contrast, the link between GH excess and cancer risk in acromegaly patients is much less clear, and cancer screening in acromegaly has been a highly controversial issue. Recent studies have shown that increased life expectancy in acromegaly patients who attain normal GH and IGF-I levels is associated with more deaths due to age-related cancers. Replacement GH therapy in GH deficiency hypopituitary adults and short children has been shown to be safe when no other risk factors for malignancy are present. Nevertheless, the use of GH in cancer survivors and in short children with RASopathies, chromosomal breakage syndromes, or DNA-repair disorders should be carefully evaluated owing to an increased risk of recurrence, primary cancer, or second neoplasia in these individuals.
Collapse
Affiliation(s)
- Cesar Luiz Boguszewski
- Department of Internal Medicine, Endocrine Division (SEMPR), University Hospital, Federal University of Parana, Curitiba, Brazil
| | | |
Collapse
|
21
|
Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of human malignant pleural mesothelioma. Proc Natl Acad Sci U S A 2019; 116:2226-2231. [PMID: 30659154 PMCID: PMC6369772 DOI: 10.1073/pnas.1818865116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with poor prognosis and limited treatment options. MPM remains a serious public health problem, and novel therapeutic strategies are urgently needed. The antitumor properties of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different cancers; however, their influence in MPM remains unexplored. Our work shows that GHRH antagonists MIA-602 and MIA-690 reduce survival, proliferation, and migration of human MPM cell lines and primary MPM cells in vitro by modulating apoptotic and oncogenic pathways. In vivo, GHRH antagonists inhibited the growth of MPM xenografts and blunted the production of growth factors in tumors. Overall, the inhibitory activities described in this study suggest that GHRH antagonists may be considered for development of therapies for MPM. Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 μg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.
Collapse
|
22
|
Agonists of growth hormone-releasing hormone (GHRH) inhibit human experimental cancers in vivo by down-regulating receptors for GHRH. Proc Natl Acad Sci U S A 2018; 115:12028-12033. [PMID: 30373845 DOI: 10.1073/pnas.1813375115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The effects of the growth hormone-releasing hormone (GHRH) agonist MR409 on various human cancer cells were investigated. In H446 small cell lung cancer (SCLC) and HCC827 and H460 (non-SCLC) cells, MR409 promoted cell viability, reduced cell apoptosis, and induced the production of cellular cAMP in vitro. Western blot analyses showed that treatment of cancer cells with MR409 up-regulated the expression of cyclins D1 and D2 and cyclin-dependent kinases 4 and 6, down-regulated p27kip1, and significantly increased the expression of the pituitary-type GHRH receptor (pGHRH-R) and its splice-variant (SV1). Hence, in vitro MR409 exerts agonistic action on lung cancer cells in contrast to GHRH antagonists. However, in vivo, MR409 inhibited growth of lung cancers xenografted into nude mice. MR409 given s.c. at 5 μg/day for 4 to 8 weeks significantly suppressed growth of HCC827, H460, and H446 tumors by 48.2%, 48.7%, and 65.6%, respectively. This inhibition of tumor growth by MR409 was accompanied by the down-regulation of the expression of pGHRH-R and SV1 in the pituitary gland and tumors. Tumor inhibitory effects of MR409 in vivo were also observed in other human cancers, including gastric, pancreatic, urothelial, prostatic, mammary, and colorectal. This inhibition of tumor growth parallel to the down-regulation of GHRH-Rs is similar and comparable to the suppression of sex hormone-dependent cancers after the down-regulation of receptors for luteinizing hormone-releasing hormone (LHRH) by LHRH agonists. Further oncological investigations with GHRH agonists are needed to elucidate the underlying mechanisms.
Collapse
|