1
|
Park JE, Lee E, Singh D, Kim EK, Park B, Park JH. The effect of inhaler prescription on the development of lung cancer in COPD: a nationwide population-based study. Respir Res 2024; 25:229. [PMID: 38822332 PMCID: PMC11140980 DOI: 10.1186/s12931-024-02838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/04/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND COPD is associated with the development of lung cancer. A protective effect of inhaled corticosteroids (ICS) on lung cancer is still controversial. Hence, this study investigated the development of lung cancer according to inhaler prescription and comorbidties in COPD. METHODS A retrospective cohort study was conducted based on the Korean Health Insurance Review and Assessment Service database. The development of lung cancer was investigated from the index date to December 31, 2020. This cohort included COPD patients (≥ 40 years) with new prescription of inhalers. Patients with a previous history of any cancer during screening period or a switch of inhaler after the index date were excluded. RESULTS Of the 63,442 eligible patients, 39,588 patients (62.4%) were in the long-acting muscarinic antagonist (LAMA) and long-acting β2-agonist (LABA) group, 22,718 (35.8%) in the ICS/LABA group, and 1,136 (1.8%) in the LABA group. Multivariate analysis showed no significant difference in the development of lung cancer according to inhaler prescription. Multivariate analysis, adjusted for age, sex, and significant factors in the univariate analysis, demonstrated that diffuse interstitial lung disease (DILD) (HR = 2.68; 95%CI = 1.86-3.85), a higher Charlson Comorbidity Index score (HR = 1.05; 95%CI = 1.01-1.08), and two or more hospitalizations during screening period (HR = 1.19; 95%CI = 1.01-1.39), along with older age and male sex, were independently associated with the development of lung cancer. CONCLUSION Our data suggest that the development of lung cancer is not independently associated with inhaler prescription, but with coexisting DILD, a higher Charlson Comorbidity Index score, and frequent hospitalization.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Eunyoung Lee
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, US
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Eun Kyung Kim
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Bumhee Park
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Joo Hun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| |
Collapse
|
2
|
Beckstead J, Mehrotra K, Wilson K, Fingleton B. Asthma is associated with a lower incidence of metastatic colorectal cancer in a US patient cohort. Front Oncol 2023; 13:1253660. [PMID: 37860183 PMCID: PMC10584144 DOI: 10.3389/fonc.2023.1253660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
In previous pre-clinical studies, we examined the contribution of interleukin 4 receptor (IL4R) signaling in the progression and metastasis of colorectal cancer (CRC). Aberrant activation of this receptor can result in atopic diseases such as asthma. We hypothesized that further evidence for the contribution of excessive IL4R being associated with CRC progression could be seen in medical records, and specifically that chronic asthma patients were more likely to be diagnosed with metastatic CRC. To test this hypothesis, we took advantage of the Synthetic Derivative, a resource developed at Vanderbilt University Medical Center that hosts de-identified data taken from the electronic medical record. We developed search protocols that produced retrospective cohorts of invasive CRC patients and cancer-free equivalents. In comparing 787 metastatic CRC patients to 238 non-metastatic patients, we actually found significantly fewer asthmatics went on to develop metastatic CRC (P=0.0381). By comparing these groups together against 1197 cancer-free patients, even fewer asthmatic patients would develop invasive CRC (P<0.0001). While these results are clearly in opposition to our original hypothesis, they still support a link between chronic asthma and metastatic CRC development. One intriguing possibility, that will be examined in the future, is whether treatment for chronic asthma may be responsible for the reduction in metastatic cancer.
Collapse
Affiliation(s)
| | | | | | - Barbara Fingleton
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
Duan R, Li B, Yang T. Pharmacological therapy for stable chronic obstructive pulmonary disease. Chronic Dis Transl Med 2023; 9:82-89. [PMID: 37305108 PMCID: PMC10249181 DOI: 10.1002/cdt3.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 04/09/2023] Open
Abstract
In recent years, emphasis has shifted from preventing and treating chronic obstructive pulmonary disease (COPD) to early prevention, early treatment, and disease stabilization, with the main goal of improving patients' quality of life and reducing the frequency of acute exacerbations. This review summarizes pharmacological therapies for stable COPD.
Collapse
Affiliation(s)
- Ruirui Duan
- Department of Pulmonary and Critical Care MedicineChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory MedicineBeijingChina
- National Center for Respiratory Medicine LaboratoriesBeijingChina
| | - Baicun Li
- National Center for Respiratory MedicineBeijingChina
- National Center for Respiratory Medicine LaboratoriesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Ting Yang
- Department of Pulmonary and Critical Care MedicineChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory MedicineBeijingChina
- National Center for Respiratory Medicine LaboratoriesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
| |
Collapse
|
4
|
Pitre T, Kiflen M, Ho T, Seijo LM, Zeraatkar D, de Torres JP. Inhaled corticosteroids, COPD, and the incidence of lung cancer: a systematic review and dose response meta-analysis. BMC Pulm Med 2022; 22:275. [PMID: 35843928 PMCID: PMC9290283 DOI: 10.1186/s12890-022-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background There has been debate on whether inhaled corticosteroids (ICS) reduce the incidence of lung cancer amongst patients with Chronic Obstructive Lung Disease (COPD). We aimed to perform a systematic review and dose–response meta-analysis on available observational data. Methods We performed both a dose response and high versus low random effects meta-analysis on observational studies measuring whether lung cancer incidence was lower in patients using ICS with COPD. We report relative risk (RR) with 95% confidence intervals (CI), as well as risk difference. We use the GRADE framework to report our results. Results Our dose–response suggested a reduction in the incidence of lung cancer for every 500 ug/day of fluticasone equivalent ICS (RR 0.82 [95% 0.68–0.95]). Using a baseline risk of 7.2%, we calculated risk difference of 14 fewer cases per 1000 ([95% CI 24.7–3.8 fewer]). Similarly, our results suggested that for every 1000 ug/day of fluticasone equivalent ICS, there was a larger reduction in incidence of lung cancer (RR 0.68 [0.44–0.93]), with a risk difference of 24.7 fewer cases per 1000 ([95% CI 43.2–5.4 fewer]). The certainty of the evidence was low to very low, due to risk of bias and inconsistency. Conclusion There may be a reduction in the incidence for lung cancer in COPD patients who use ICS. However, the quality of the evidence is low to very low, therefore, we are limited in making strong claims about the true effect of ICS on lung cancer incidence.
Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02072-1.
Collapse
|
5
|
Tareke AA, Debebe W, Alem A, Bayileyegn NS, Zerfu TA, Ayana AM. Inhaled Corticosteroids and the Risk of Lung Cancer in Chronic Obstructive Pulmonary Disease Patients: A Systematic Review and Meta-Analysis. Pulm Med 2022; 2022:9799858. [PMID: 36046848 PMCID: PMC9420625 DOI: 10.1155/2022/9799858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/26/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background The global prevalence of chronic obstructive pulmonary disease (COPD) is increasing, and the risk of lung cancer in these patients is high. The use of inhaled corticosteroids (ICSs) in COPD patients could help to decrease potential lung cancer risk. We planned to conduct this systematic review and meta-analysis to determine the role of ICS in the risk of lung cancer among COPD patients. Methods A comprehensive search of PubMed, Science Direct, Google Scholar, and Cochrane library and a manual search of the list of references were conducted. Studies with cohort, case-control, and randomized clinical trial designs for any ICS use reporting the incidence/hazard ratio (HR) of lung cancer were included. The random-effects model was used to pool hazard ratios. Subgroup analysis and metaregression analysis were employed. Funnel plot and Egger regression test were used to assess publication bias. Results Combining the results of 14 observations, the pooled HR for cancer risk reduction was 0.69 (95% CI 0.59-0.79), p value ≤ 0.001. The use of ICS in COPD patients showed a 31% reduction in the risk of lung cancer. Subgroup meta-analysis showed a significant reduction in the risk of lung cancer as well. Conclusion The use of ICS in COPD patients reduces the risk of lung cancer. The risk reduction was independent of smoking status and latency period. Future studies should focus on the optimum dose and controlling confounders like asthma.
Collapse
Affiliation(s)
- Amare Abera Tareke
- Department of Biomedical Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Wondwosen Debebe
- Department of Biomedical Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Addis Alem
- Department of Biomedical Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | | | - Taddese Alemu Zerfu
- College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia
- Global Academy of Agriculture & Food Security (GAAFS), University of Edinburg, UK
| | - Andualem Mossie Ayana
- Department of Biomedical Sciences, Faculty of Medicine, Jimma University, Jimma, Ethiopia
| |
Collapse
|
6
|
Cazzola M, Ora J, Calzetta L, Rogliani P, Matera MG. Advances in inhaled corticosteroids for the treatment of chronic obstructive pulmonary disease: what is their value today? Expert Opin Pharmacother 2022; 23:917-927. [PMID: 35575510 DOI: 10.1080/14656566.2022.2076592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION As of today, there is still a need to determine which COPD patients may benefit from ICS therapy, whether ICSs are useful in COPD patients without chronic bronchitis, and whether long-acting bronchodilators can reduce the risk of exacerbations in frequent exacerbators even if ICSs are not used, and whether combination therapy including ICSs is helpful in infrequent exacerbators to optimise the use of ICSs in COPD. Nevertheless, in recent years, a fair amount of evidence has been produced that, at least in part, can help define the role of ICSs in COPD better. AREAS COVERED Herein, the authors provide an overview of current use of ICS in COPD and discuss their value to the current treatment armamentarium. The article includes discussion of which patients will benefit best from the use of ICSs, their potential uses and adverse effects. EXPERT OPINION There is growing agreement on why, in whom, and when ICS therapy can be used in COPD, although the consensus is still lacking because of the heterogeneity of COPD. The use of blood eosinophil counts (BECs) is only helpful in T2 inflammation, while there is a lack of biomarkers indicating the presence of T1 and T17 immunity, which is poorly responsive to ICS. Identifying ICS-sensitive endotypes using specific biomarkers that have yet to be identified and validated is likely to demonstrate that ICSs can influence the natural course of COPD in at least a subset of patients.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Josuel Ora
- Unit of Respiratory Medicine, "Tor Vergata" Hospital Foundation, Rome, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Unit of Respiratory Medicine, "Tor Vergata" Hospital Foundation, Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
7
|
Impact of COPD Treatment on Survival in Patients with Advanced Non-Small Cell Lung Cancer. J Clin Med 2022; 11:jcm11092391. [PMID: 35566517 PMCID: PMC9104207 DOI: 10.3390/jcm11092391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with a poor prognosis in patients with non-small cell lung cancer (NSCLC). However, the impact of COPD treatment on the survival of patients with advanced NSCLC remains uncertain. We retrospectively investigated COPD patients among patients newly diagnosed with advanced NSCLC between September 2005 and August 2019 at a university hospital. The clinical characteristics, lung function, and survival outcomes were analyzed and compared between patients who did and did not receive COPD treatment. Among 221 patients with advanced NSCLC and COPD, 124 patients received treatment for COPD and 97 patients did not receive treatment for COPD. Forced expiratory volume in 1 s (FEV1) % predicted value was greater in the no-treatment group than in the COPD treatment group (p < 0.001). The median overall survival (OS) of the treatment group was 10.7 months, while that of the no-treatment group was 8.7 months (p = 0.007). In the multivariate analysis, COPD treatment was independently associated with improved OS (hazard ratio 0.71, 95% confidence interval 0.53−0.95, and p = 0.021). COPD treatment was associated with improved OS in patients with advanced NSCLC and COPD. Therefore, pretreatment spirometry and maximal treatment for COPD may offer a chance of optimal management for patients with advanced NSCLC.
Collapse
|
8
|
Patel B, Priefer R. Impact of chronic obstructive pulmonary disease, lung infection, and/or inhaled corticosteroids use on potential risk of lung cancer. Life Sci 2022; 294:120374. [DOI: 10.1016/j.lfs.2022.120374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/24/2022]
|
9
|
Cai SX, Chen WS, Zeng W, Cheng XF, Lin MB, Wang JS. Roles of HDAC2, eIF5, and eIF6 in Lung Cancer Tumorigenesis. Curr Med Sci 2021; 41:764-769. [PMID: 34403101 DOI: 10.1007/s11596-021-2389-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The expression levels of histone deacetylase 2 (HDAC2), eukaryotic initiation factor 5 (eIF5), and eukaryotic initiation factor 6 (eIF6), and relationship between HDAC2 and eIF5 or eIF6 in lung cancer tissues were investigated, in order to charify the relationship between HDAC2 and the prognosis of lung cancer patients and its influence on the expression of eIF5 and eIF6. METHODS The expression of HDAC2, eIF5, and eIF6 in lung cancer tissues was detected by quantitative reverse transcription polymerase chain reaction. The expression correlation between HDAC2 and eIF5 or eIF6 was tested using a t test. The correlation between HDAC2 and eIF5 or eIF6 was analyzed using the TCGA database. The identified cells were constructed with small interfering siRNA and HDAC2 overexpression plasmid. The proliferation and migration ability of the identified cells was investigated by CCK8 and Transwell assays, respectively. RESULTS HDAC2, eIF5, and eIF6 were overexpressed in lung cancer tissues, and HDAC2 expression level was negatively correlated with the prognosis of lung cancer patients. HDAC2 expression level was positively correlated with eIF5 and eIF6 expression levels. HDAC2 could regulate the expression of eIF5 and eIF6. The regulation of proliferation and invasion of lung cancer cells by HDAC2 depended on eIF5 and eIF6. CONCLUSION HDAC2, eIF5, and eIF6 were closely related with lung cancer tumorigenesis, which might be potential biological markers and therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Shao-Xin Cai
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Wen-Shu Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Wei Zeng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Xue-Fei Cheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Meng-Bo Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jin-Si Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China. .,Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
10
|
Prekovic S, Schuurman K, Mayayo-Peralta I, Manjón AG, Buijs M, Yavuz S, Wellenstein MD, Barrera A, Monkhorst K, Huber A, Morris B, Lieftink C, Chalkiadakis T, Alkan F, Silva J, Győrffy B, Hoekman L, van den Broek B, Teunissen H, Debets DO, Severson T, Jonkers J, Reddy T, de Visser KE, Faller W, Beijersbergen R, Altelaar M, de Wit E, Medema R, Zwart W. Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun 2021; 12:4360. [PMID: 34272384 PMCID: PMC8285479 DOI: 10.1038/s41467-021-24537-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive. Here, we study the mechanisms of glucocorticoid response, focusing on lung cancer. We show that GR activation induces reversible cancer cell dormancy characterised by anticancer drug tolerance, and activation of growth factor survival signalling accompanied by vulnerability to inhibitors. GR-induced dormancy is dependent on a single GR-target gene, CDKN1C, regulated through chromatin looping of a GR-occupied upstream distal enhancer in a SWI/SNF-dependent fashion. These insights illustrate the importance of GR signalling in non-lymphoid solid cancer biology, particularly in lung cancer, and warrant caution for use of glucocorticoids in treatment of anticancer therapy related side-effects.
Collapse
Affiliation(s)
- Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Isabel Mayayo-Peralta
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna G Manjón
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Buijs
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Selçuk Yavuz
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Max D Wellenstein
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alejandro Barrera
- Department of Biostatistics & Bioinformatics, and Centre for Genomic & Computational Biology, Duke University Medical Centre, Durham, NC, USA
| | - Kim Monkhorst
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Huber
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Ben Morris
- Division of Molecular Carcinogenesis and Robotics and Screening Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and Robotics and Screening Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Theofilos Chalkiadakis
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Balázs Győrffy
- Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.,TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Liesbeth Hoekman
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology and BioImaging Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Donna O Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tesa Severson
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Timothy Reddy
- Department of Biostatistics & Bioinformatics, and Centre for Genomic & Computational Biology, Duke University Medical Centre, Durham, NC, USA
| | - Karin E de Visser
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William Faller
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis and Robotics and Screening Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rene Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
11
|
Aloe C, Wang H, Vlahos R, Irving L, Steinfort D, Bozinovski S. Emerging and multifaceted role of neutrophils in lung cancer. Transl Lung Cancer Res 2021; 10:2806-2818. [PMID: 34295679 PMCID: PMC8264329 DOI: 10.21037/tlcr-20-760] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
It has long been recognized that cigarette smoking is a shared risk factor for lung cancer and the debilitating lung disease, chronic obstructive pulmonary disease (COPD). As the severity of COPD increases, so does the risk for developing lung cancer, independently of pack years smoked. Neutrophilic inflammation increases with COPD severity and anti-inflammatories such as non-steroidal anti-inflammatory drugs (NSAIDs) can modulate neutrophil function and cancer risk. This review discusses the biology of tumour associated neutrophils (TANs) in lung cancer, which increase in density with tumour progression, particularly in smokers with non-small cell lung cancer (NSCLC). It is now increasingly recognized that neutrophils are responsive to the tumour microenvironment (TME) and polarize into distinct phenotypes that operate in an anti- (N1) or pro-tumorigenic (N2) manner. Intriguingly, the emergence of the pro-tumorigenic N2 phenotype increases with tumour growth, to suggest that cancer cells and the surrounding stroma can re-educate neutrophils. The neutrophil itself is a potent source of reactive oxygen species (ROS), arginase, proteases and cytokines that paradoxically can exert a potent immunosuppressive effect on lymphocytes including cytotoxic T cells (CTLs). Indeed, the neutrophil to lymphocyte ratio (NLR) is a systemic biomarker that is elevated in lung cancer patients and prognostic for poor survival outcomes. Herein, we review the molecular mechanisms by which neutrophil derived mediators can suppress CTL function. Selective therapeutic strategies designed to suppress pathogenic neutrophils in NSCLC may cooperate with immune checkpoint inhibitors (ICI) to increase CTL killing of cancer cells in the TME.
Collapse
Affiliation(s)
- Christian Aloe
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
12
|
García-Mulero S, Alonso MH, Pardo J, Santos C, Sanjuan X, Salazar R, Moreno V, Piulats JM, Sanz-Pamplona R. Lung metastases share common immune features regardless of primary tumor origin. J Immunother Cancer 2021; 8:jitc-2019-000491. [PMID: 32591432 PMCID: PMC7319789 DOI: 10.1136/jitc-2019-000491] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 01/13/2023] Open
Abstract
Background Only certain disseminated cells are able to grow in secondary organs to create a metastatic tumor. Under the hypothesis that the immune microenvironment of the host tissue may play an important role in this process, we have categorized metastatic samples based on their immune features. Methods Gene expression data of metastatic samples (n=374) from four secondary sites (brain, bone, liver and lung) were used to characterize samples based on their immune and stromal infiltration using gene signatures and cell quantification tools. A clustering analysis was done that separated metastatic samples into three different immune categories: high, medium and low. Results Significant differences were found between the immune profiles of samples metastasizing in distinct organs. Metastases in lung showed a higher immunogenic score than metastases in brain, liver or bone, regardless of their primary site of origin. Also, they preferentially clustered in the high immune group. Samples in this cluster exhibited a clear inflammatory phenotype, higher levels of immune infiltrate, overexpression of programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) pathways and upregulation of genes predicting clinical response to programmed cell death protein 1 (PD-1) blockade (T-cell inflammatory signature). A decision tree algorithm was used to select CD74 as a biomarker that identify samples belonging to this high-immune subtype of metastases, having specificity of 0.96 and sensitivity of 1. Conclusions We have found a group of lung-enriched metastases showing an inflammatory phenotype susceptible to be treated with immunotherapy.
Collapse
Affiliation(s)
- Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - M Henar Alonso
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer Group, Aragón Health Research Institute (IIS Aragón), Aragón i + D Foundation (ARAID), Zaragoza, Spain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Sanjuan
- Department of Pathology, University Hospital Bellvitge (HUB-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramón Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Josep María Piulats
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
13
|
Zhou L, Gu W, Kui F, Gao F, Niu Y, Li W, Zhang Y, Guo L, Wang J, Guo Z, Du G. The mechanism and candidate compounds of aged citrus peel ( chenpi) preventing chronic obstructive pulmonary disease and its progression to lung cancer. Food Nutr Res 2021; 65:7526. [PMID: 34262419 PMCID: PMC8254466 DOI: 10.29219/fnr.v65.7526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is an important risk factor for developing lung cancer. Aged citrus peel (chenpi) has been used as a dietary supplement for respiratory diseases in China. Objective To explore the mechanism and candidate compounds of chenpi preventing COPD and its progression to lung cancer. Methods The active components and potential targets of chenpi were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Disease-associated targets of COPD and lung cancer were collected in the Gene Cards and TTD database. The component-target network and PPI network were constructed using the Cytoscape 3.8.0 software. David database was used for GO and KEGG enrichment analysis. The main active components were verified by using the autodock Vina 1.1.2 software. Mouse lung cancer with COPD was induced by cigarette smoking (CS) combined with urethane injection to confirm preventing the effect of hesperetin (the candidate compound of chenpi) on COPD progression to lung cancer and its underlying mechanisms. Results The network analysis revealed that the key active components of chenpi (nobiletin, naringenin, hesperetin) regulate five core targets (AKT1, TP53, IL6, VEGFA, MMP9). In addition, 103 potential pathways of chenpi were identified. Chenpi can prevent COPD and its progression to lung cancer by getting involved in the PI3K-Akt signaling pathway and MAPK signaling pathway. Molecular docking indicated that hesperetin had better binding activity for core targets. In mouse lung cancer with COPD, treatment with hesperetin dose-dependently improved not only lung tissue injury in COPD but also carcinoma lesions in lung cancer. Meanwhile, hesperetin could suppress the protein expression of AKT1, IL6, VEGFA, MMP9 and up-regulate the protein expression of TP53, and thus reduced the risk of COPD progression to lung cancer. Conclusion Hesperetin is a candidate compound of chenpi that helps in preventing COPD and its progression to lung cancer by regulating AKT1, IL6, VEGFA, MMP9 and TP53.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Lijuan Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Junru Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| |
Collapse
|
14
|
Thoracic CT screening: using routinely detectable COPD information. Clin Imaging 2021; 78:310-312. [PMID: 34140204 DOI: 10.1016/j.clinimag.2021.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/25/2021] [Indexed: 11/21/2022]
Abstract
Efforts to collect thoracic CT images with standardized quality from individuals undergoing longitudinal lung cancer screening have been highlighted as an important opportunity to increase the yield of crucial clinical information obtainable to advance the public health benefits of lung cancer screening.
Collapse
|
15
|
Lin P, Fu S, Li W, Hu Y, Liang Z. Inhaled corticosteroids and risk of lung cancer: A systematic review and meta-analysis. Eur J Clin Invest 2021; 51:e13434. [PMID: 33053199 DOI: 10.1111/eci.13434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Current studies investigating the association between inhaled corticosteroid (ICS) use and risk of lung cancer have yielded inconsistent findings. The aim of this systematic review and meta-analysis was to pool all currently available data to estimate this association. METHODS We systematically searched MEDLINE (1946 to July 2020), EMBASE (1974 to July 2020) and the Cochrane Library (June 2020) via Ovid to identify relevant articles investigating the association between the ICS use and the risk of lung cancer. Random-effects analysis was used to calculate pooled relative risks (RRs) with 95% confidence intervals (CIs). RESULTS Ten articles including 234 920 patients were analysed. ICS use was identified to have a decreased risk of lung cancer in chronic obstructive pulmonary disease (8 studies, 1806 patients; RR = 0.73, 95% CI: 0.61-0.87, P < .01; I2 = 60.0 %), asthma (1 study, 41 438 patients; RR = 0.44, 95% CI: 0.34-0.57, P < .01) and mixed (1 study, 46 225 patients; RR = 0.79, 95% CI: 0.69-0.90, P < .01) patients. The findings of reduced risk of lung cancer were consistent in all subgroup analyses except for the short-term follow-up (≤5 years) (RR = 0.94, 95% CI: 0.81-1.07, P = .34) and free of immortal time bias (RR = 0.94, 95% CI: 0.82-1.08, P = .38) subgroups. CONCLUSIONS The present study suggested that ICS use was associated with decreased risk of lung cancer. However, our findings should be interpreted with caution because most original studies were judged to be at high risk of immortal time bias.
Collapse
Affiliation(s)
- Ping Lin
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Siyu Fu
- Center of Infectious Diseases, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Weijing Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuehong Hu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zongan Liang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Suissa S, Dell'Aniello S, Gonzalez AV, Ernst P. Inhaled corticosteroid use and the incidence of lung cancer in COPD. Eur Respir J 2020; 55:13993003.01720-2019. [PMID: 31744837 DOI: 10.1183/13993003.01720-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/09/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inhaled corticosteroids (ICS) are suggested for potential chemoprevention of lung cancer. Several observational studies in patients with chronic obstructive pulmonary disease (COPD) reported inconsistent results, either significant reductions in lung cancer incidence with ICS use or no effect. We assessed this association, using an approach that avoided biases affecting some of the studies. METHODS A cohort of patients with COPD, new users of long-acting bronchodilators over 2000-2014, was formed using the Quebec healthcare databases, and followed until 2015 for a first diagnosis of lung cancer. A 1-year delay after cohort entry was used to avoid protopathic bias and a 1-year latency period was included after the initiation of ICS use. A time-dependent Cox regression model was used to estimate the hazard ratio (HR) of lung cancer associated with ICS exposure, adjusted for covariates. RESULTS The cohort involved 63 276 subjects, including 63% receiving ICS, with 3743 lung cancers occurring during a mean follow-up of 5 years. The adjusted HR of lung cancer associated with any ICS exposure was 1.01 (95% CI 0.94-1.08), relative to no ICS use. The HR with longer time (>4 years) since ICS initiation was 0.92 (95% CI 0.83-1.03), while with higher mean daily ICS dose (>1000 μg fluticasone equivalents) was 1.36 (95% CI 1.03-1.81). CONCLUSIONS Inhaled corticosteroid use is not associated with a reduction in lung cancer incidence in patients with COPD. Observational studies reporting such reduction may have been affected by time-related biases and the inclusion of patients with asthma. The proposition of a randomised trial warrants some caution.
Collapse
Affiliation(s)
- Samy Suissa
- Center for Clinical Epidemiology, Lady Davis Institute - Jewish General Hospital, Montreal, QC, Canada .,Depts of Epidemiology and Biostatistics and of Medicine, McGill University, Montreal, QC, Canada
| | - Sophie Dell'Aniello
- Center for Clinical Epidemiology, Lady Davis Institute - Jewish General Hospital, Montreal, QC, Canada.,Depts of Epidemiology and Biostatistics and of Medicine, McGill University, Montreal, QC, Canada
| | - Anne V Gonzalez
- Center for Clinical Epidemiology, Lady Davis Institute - Jewish General Hospital, Montreal, QC, Canada.,Depts of Epidemiology and Biostatistics and of Medicine, McGill University, Montreal, QC, Canada
| | - Pierre Ernst
- Center for Clinical Epidemiology, Lady Davis Institute - Jewish General Hospital, Montreal, QC, Canada.,Depts of Epidemiology and Biostatistics and of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Nitric Oxide Metabolites and Lung Cancer Incidence: A Matched Case-Control Study Nested in the ESTHER Cohort. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6470950. [PMID: 31565153 PMCID: PMC6745103 DOI: 10.1155/2019/6470950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
Studies suggest that nitric oxide (NO) may have a possible role in lung carcinogenesis. This study is aimed to evaluate the association of the NO metabolites, namely, nitrite and nitrate, with lung cancer incidence. We conducted a matched case-control study (n = 245 incident lung cancer cases and n = 735 controls) based on the German ESTHER cohort (n = 9,940). Controls were matched to cases on age, sex, smoking status (never/former/current smoking), and pack-years of smoking. The sum of nitrite and nitrate was measured in urine samples using a colorimetric assay and was standardized for renal function by urinary creatinine. Conditional logistic regression models, adjusted for lifestyle factors, asthma prevalence, and family history of lung cancer, were used to estimate odds ratios (ORs) and 95% confidence intervals (95% CI). Among incident lung cancer cases, high nitrite/nitrate levels were statistically significantly associated with current smoking, a low BMI, and the oxidative stress biomarker 8-isoprostane levels. Nitrite/nitrate levels in the top quintile were statistically significantly associated with lung cancer incidence: the OR (95% CI) was 1.37 (1.04-1.82) for comparison with the bottom quintile. This association was unaltered after additional adjustment for 8-isoprostane levels and C-reactive protein (CRP). In conclusion, this large cohort study suggested that subjects with high urinary nitrite/nitrate concentrations had an increased risk of lung cancer and this association was independent of smoking, CRP, 8-isoprostane levels, and other established lung cancer risk factors. Further studies are needed to validate these findings and to confirm the hypothesis that pathologically high levels of NO are involved in lung cancer development.
Collapse
|
18
|
Caramori G, Ruggeri P, Mumby S, Ieni A, Lo Bello F, Chimankar V, Donovan C, Andò F, Nucera F, Coppolino I, Tuccari G, Hansbro PM, Adcock IM. Molecular links between COPD and lung cancer: new targets for drug discovery? Expert Opin Ther Targets 2019; 23:539-553. [DOI: 10.1080/14728222.2019.1615884] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gaetano Caramori
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Paolo Ruggeri
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Federica Lo Bello
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Filippo Andò
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Nucera
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
- Faculty of Science, Ultimo, and Centenary Institute, Centre for Inflammation, University of Technology Sydney, Sydney, Australia
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
19
|
Seijo LM, Peces-Barba G. Inhaled Corticosteroids and Lung Cancer in COPD. Arch Bronconeumol 2019; 55:407-408. [PMID: 30837158 DOI: 10.1016/j.arbres.2019.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Luis M Seijo
- Clínica Universidad de Navarra, Madrid, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España
| | - Germán Peces-Barba
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España; Hospital Fundación Jiménez Díaz, Madrid, España.
| |
Collapse
|
20
|
Intriguing relationship between antihypertensive therapy and cancer. Pharmacol Res 2019; 141:501-511. [DOI: 10.1016/j.phrs.2019.01.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
|