1
|
Liang M, Sheng L, Ke Y, Wu Z. The research progress on radiation resistance of cervical cancer. Front Oncol 2024; 14:1380448. [PMID: 38651153 PMCID: PMC11033433 DOI: 10.3389/fonc.2024.1380448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Cervical carcinoma is the most prevalent gynecology malignant tumor and ranks as the fourth most common cancer worldwide, thus posing a significant threat to the lives and health of women. Advanced and early-stage cervical carcinoma patients with high-risk factors require adjuvant treatment following surgery, with radiotherapy being the primary approach. However, the tolerance of cervical cancer to radiotherapy has become a major obstacle in its treatment. Recent studies have demonstrated that radiation resistance in cervical cancer is closely associated with DNA damage repair pathways, the tumor microenvironment, tumor stem cells, hypoxia, cell cycle arrest, and epigenetic mechanisms, among other factors. The development of tumor radiation resistance involves complex interactions between multiple genes, pathways, and mechanisms, wherein each factor interacts through one or more signaling pathways. This paper provides an overview of research progress on an understanding of the mechanism underlying radiation resistance in cervical cancer.
Collapse
Affiliation(s)
| | | | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Muthamilselvan S, Palaniappan A. CESCProg: a compact prognostic model and nomogram for cervical cancer based on miRNA biomarkers. PeerJ 2023; 11:e15912. [PMID: 37786580 PMCID: PMC10541812 DOI: 10.7717/peerj.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 10/04/2023] Open
Abstract
Cervical squamous cell carcinoma, more commonly cervical cancer, is the fourth common cancer among women worldwide with substantial burden of disease, and less-invasive, reliable and effective methods for its prognosis are necessary today. Micro-RNAs are increasingly recognized as viable alternative biomarkers for direct diagnosis and prognosis of disease conditions, including various cancers. In this work, we addressed the problem of systematically developing an miRNA-based nomogram for the reliable prognosis of cervical cancer. Towards this, we preprocessed public-domain miRNA -omics data from cervical cancer patients, and applied a cascade of filters in the following sequence: (i) differential expression criteria with respect to controls; (ii) significance with univariate survival analysis; (iii) passage through dimensionality reduction algorithms; and (iv) stepwise backward selection with multivariate Cox modeling. This workflow yielded a compact prognostic DEmiR signature of three miRNAs, namely hsa-miR-625-5p, hs-miR-95-3p, and hsa-miR-330-3p, which were used to construct a risk-score model for the classification of cervical cancer patients into high-risk and low-risk groups. The risk-score model was subjected to evaluation on an unseen test dataset, yielding a one-year AUROC of 0.84 and five-year AUROC of 0.71. The model was validated on an out-of-domain, external dataset yielding significantly worse prognosis for high-risk patients. The risk-score was combined with significant features of the clinical profile to establish a predictive prognostic nomogram. Both the miRNA-based risk score model and the integrated nomogram are freely available for academic and not-for-profit use at CESCProg, a web-app (https://apalania.shinyapps.io/cescprog).
Collapse
Affiliation(s)
- Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
3
|
González-Ramírez MI, Cardona YT, Agudelo MC, López C, Florez-Acosta JJ, Agudelo-Gamboa S, Garai J, Li L, Orozco-Castaño CA, Zabaleta J, Sánchez GI. miRNAs signature as potential biomarkers for cervical precancerous lesions in human papillomavirus positive women. Sci Rep 2023; 13:9822. [PMID: 37330541 PMCID: PMC10276834 DOI: 10.1038/s41598-023-36421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/03/2023] [Indexed: 06/19/2023] Open
Abstract
Biomarkers to identify women at risk of cervical cancer among those with high-risk HPV infection (hrHPV+) are needed. Deregulated expression of microRNAs (miRNAs) contributes to hrHPV-induced cervical carcinogenesis. We aimed at identifying miRNAs with the capacity to distinguish high (CIN2+) and low (≤ CIN1) grade cervical lesions. We sequenced miRNA libraries from Formalin-Fixed Paraffin-Embedded (FFPE) tissues from women with CIN2+ (n = 10) and age-matched women with ≤ CIN1 (n = 10), randomly and retrospectively selected from a trial that followed women for 24 months after a hrHPV+ test at the screening visit. Five miRNAs differentially expressed were validated by RT-qPCR in an independent set of FFPE tissues with a reviewed diagnosis of CIN2+ (n = 105) and ≤ CIN1 (n = 105). The Ingenuity Pathway Analysis (IPA) was conducted to identify mRNAs inversely correlated with the top 25 differentially expressed miRNAs. Inverse correlations with 401 unique mRNA targets were identified for fourteen of the top 25 differentially expressed miRNAs. Eleven of these miRNAs targeted 26 proteins of pathways deregulated by HPV E6 and E7 oncoproteins and two of them, miR-143-5p and miR-29a-3p, predicted CIN2+ and CIN3+ in the independent validation by RT-qPCR of FFPE tissues from hrHPV-positive women.
Collapse
Affiliation(s)
- Martha I González-Ramírez
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Cra 51D No 62-29 Lab 219, Medellín, 050010, Antioquia, Colombia
| | - Yurley T Cardona
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Cra 51D No 62-29 Lab 219, Medellín, 050010, Antioquia, Colombia
| | - María C Agudelo
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Cra 51D No 62-29 Lab 219, Medellín, 050010, Antioquia, Colombia
| | - Carolina López
- Department of Pathology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia
| | - Juan J Florez-Acosta
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Cra 51D No 62-29 Lab 219, Medellín, 050010, Antioquia, Colombia
| | - Samuel Agudelo-Gamboa
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Cra 51D No 62-29 Lab 219, Medellín, 050010, Antioquia, Colombia
| | - Jone Garai
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Li Li
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Carlos A Orozco-Castaño
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Cra 51D No 62-29 Lab 219, Medellín, 050010, Antioquia, Colombia
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, 110111, Cundinamarca, Colombia
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Gloria I Sánchez
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Cra 51D No 62-29 Lab 219, Medellín, 050010, Antioquia, Colombia.
| |
Collapse
|
4
|
Kniazeva M, Zabegina L, Shalaev A, Smirnova O, Lavrinovich O, Berlev I, Malek A. NOVAprep-miR-Cervix: New Method for Evaluation of Cervical Dysplasia Severity Based on Analysis of Six miRNAs. Int J Mol Sci 2023; 24:ijms24119114. [PMID: 37298066 DOI: 10.3390/ijms24119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies and it is preventable through the yearly diagnosis and management of pre-cancerous cervical disease. The profile of miRNA expression in cervical epithelium cells is altered with cervical dysplasia development and further progression. The NOVAprep-miR-CERVIX is a new approach for the assessment of cervical dysplasia through the analysis of six marker miRNAs. This study aims to evaluate theperformance and diagnostic potency of the new method. Cytological smears from 226 women (NILM, n.114; HSIL, n.112) were included in the study. A VPH test was performed with RealBest DNAHPV HR screen Kit, six marker miRNAs (miR-21, -29b, -145, -451a, -1246, -1290) were assayed using NOVAprep-miR-CERVIX kit. Obtained data were analyzed using the Delta Ct method and random forest machine learning algorithm. The results of the quantitative analysis of six microRNAs were expressed as a miR-CERVIX parameter, which ranged from 0 to 1, where "0" corresponded to the healthy cervical epithelium, while "1" corresponded to high-grade squamous intraepithelial dysplasia. The average value of miR-CERVIX differed in groups of NILM and HSIL samples (0.34 vs. 0.72; p < 0.000005). An estimation of miR-CERVIX allowed for the differentiation between healthy and pre-cancerous samples with sensitivity of 0.79 and specificity of 0.79, as well as to confirm HSIL with specificity of 0.98. Interestingly, the HSIL group included HPV(+) and HPV(-) samples, which were statistically significantly different in terms of miR-CERVIX value. Analysis of CC-associated miRNAs in material of cervical smear might serve as an additional method for the evaluation of cervical dysplasia severity.
Collapse
Affiliation(s)
- Margarita Kniazeva
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Lidia Zabegina
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Andrey Shalaev
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Olga Smirnova
- Department of Gynecological Oncology, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Olga Lavrinovich
- Department of Gynecological Oncology, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Igor Berlev
- Department of Gynecological Oncology, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Anastasia Malek
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| |
Collapse
|
5
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, Renu K, Dey A, Vellingiri B, Prabakaran DS. Exploring the Molecular Pathogenesis, Pathogen Association, and Therapeutic Strategies against HPV Infection. Pathogens 2022; 12:25. [PMID: 36678374 PMCID: PMC9865103 DOI: 10.3390/pathogens12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The human papillomavirus (HPV), commonly documented as the cause of warts, has gained much interest recently due to its possible links to several types of cancer. HPV infection is discussed in this review from multiple angles, including its virology, epidemiology, etiology, immunology, clinical symptoms, and treatment. Recent breakthroughs in molecular biology have led to the development of new methods for detecting and treating HPV in tissue. There is no cure for HPV, and although vaccines are available to prevent infection with the most common HPV viruses, their utilization is limited. Destruction and excision are the primary treatment modalities. This review sheds light on the epidemiology, molecular pathogenesis, the association of several other pathogens with HPV, the latest treatment strategies available to treat the same, and an overview of the progress made and the obstacles still to be overcome in the fight against HPV infection.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
6
|
Kotani K, Iwata A, Kukimoto I, Nishio E, Mitani T, Tsukamoto T, Ichikawa R, Nomura H, Fujii T. Nomogram for predicted probability of cervical cancer and its precursor lesions using miRNA in cervical mucus, HPV genotype and age. Sci Rep 2022; 12:16231. [PMID: 36171233 PMCID: PMC9519568 DOI: 10.1038/s41598-022-19722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide. Although cytology or HPV testing is available for screening, these techniques have their drawbacks and optimal screening methods are still being developed. Here, we sought to determine whether aberrant expression of miRNAs in cervical mucus could be an ancillary test for cervical neoplasms. The presence of miRNAs in 583 and 126 patients (validation and external cohorts) was determined by real-time RT-PCR. Performance of a combination with five miRNAs (miR-126-3p, -451a -144-3p, -20b-5p and -155-5p) was estimated by ROC curve analysis. Predicted probability (PP) was estimated by nomograms comprising -ΔCt values of the miRNAs, HPV genotype and age. A combination of five miRNAs showed a maximum AUC of 0.956 (95% CI: 0.933–0.980) for discriminating cancer. Low PP scores were associated with good prognosis over the 2-year observation period (p < 0.05). Accuracy for identifying cancer and cervical intraepithelial neoplasia (CIN) 3 + by nomogram was 0.983 and 0.966, respectively. PP was constant with different storage conditions of materials. We conclude that nomograms using miRNAs in mucus, HPV genotype and age could be useful as ancillary screening tests for cervical neoplasia.
Collapse
Affiliation(s)
- Kiriko Kotani
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, 1-98Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | - Aya Iwata
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, 1-98Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1, Gakuen, Tokyo, Musashi-murayama, 208-0011, Japan
| | - Eiji Nishio
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, 1-98Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | - Takeji Mitani
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, 1-98Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | - Tetsuya Tsukamoto
- Department of Pathology, School of Medicine, Fujita Health University, 1-98Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | - Ryoko Ichikawa
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, 1-98Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, 1-98Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, 1-98Dengakugakubo, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
7
|
Gao Q, Zeng Q, Wang Z, Li C, Xu Y, Cui P, Zhu X, Lu H, Wang G, Cai S, Wang J, Fan J. Start of an era: circulating cell-free DNA for early detection of cancers. Innovation (N Y) 2022; 3:100259. [PMID: 35647572 PMCID: PMC9133648 DOI: 10.1016/j.xinn.2022.100259] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
Effective screening modalities are currently available for only a small subset of cancers, and they generally have suboptimal performance with complicated procedures. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for early detection of cancers. Genetic and epigenetic alterations in plasma circulating cell-free DNA (cfDNA) have shown the potential to revolutionize methods of early detection of cancers and facilitate subsequent diagnosis to improve survival of patients. The medical interest in cfDNA assays has been inspired by emerging single- and multi-early detection of cancers studies. This review summarizes current technological and clinical advances, in the hopes of providing insights into the development and applications of cfDNA assays in various cancers and clinical scenarios. The key phases of clinical development of biomarkers are highlighted, and the future developments of cfDNA-based liquid biopsies in early detection of cancers are outlined. It is hoped that this study can boost the potential integration of cfDNA-based early detection of cancers into the current clinical workflow. Liquid biopsy, characterized by minimal invasiveness and user friendliness, can identify multiple cancers at the early stage and localize the tissue of origin The state-of-the-art technology facilitates the application of circulating cell-free DNA (cfDNA) assays in the early detection of cancers cfDNA assays are expected to be integrated into the clinical workflow after technological refinement and clinical trial validation The development and application strategies of cfDNA assays in various cancers and clinical scenarios can vary, and the harm-and-benefit should be balanced carefully
Collapse
Affiliation(s)
- Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | | | - Yu Xu
- Burning Rock Biotech, Guangzhou 510320, China
| | - Peng Cui
- Burning Rock Biotech, Guangzhou 510320, China
| | - Xin Zhu
- Burning Rock Biotech, Guangzhou 510320, China
| | - Huafei Lu
- Burning Rock Biotech, Guangzhou 510320, China
| | | | - Shangli Cai
- Burning Rock Biotech, Guangzhou 510320, China
- Corresponding author
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
- Corresponding author
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Corresponding author
| |
Collapse
|
8
|
Yu L, Majerciak V, Zheng ZM. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094943. [PMID: 35563334 PMCID: PMC9105396 DOI: 10.3390/ijms23094943] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Human papillomaviruses (HPV) are a group of small non-enveloped DNA viruses whose infection causes benign tumors or cancers. HPV16 and HPV18, the two most common high-risk HPVs, are responsible for ~70% of all HPV-related cervical cancers and head and neck cancers. The expression of the HPV genome is highly dependent on cell differentiation and is strictly regulated at the transcriptional and post-transcriptional levels. Both HPV early and late transcripts differentially expressed in the infected cells are intron-containing bicistronic or polycistronic RNAs bearing more than one open reading frame (ORF), because of usage of alternative viral promoters and two alternative viral RNA polyadenylation signals. Papillomaviruses proficiently engage alternative RNA splicing to express individual ORFs from the bicistronic or polycistronic RNA transcripts. In this review, we discuss the genome structures and the updated transcription maps of HPV16 and HPV18, and the latest research advances in understanding RNA cis-elements, intron branch point sequences, and RNA-binding proteins in the regulation of viral RNA processing. Moreover, we briefly discuss the epigenetic modifications, including DNA methylation and possible APOBEC-mediated genome editing in HPV infections and carcinogenesis.
Collapse
|
9
|
Guo X, Cheng X. miR-140-Modified Bone Marrow Mesenchymal Stem Cells Enhance Chemotherapy Sensitization in Cervical Squamous Cell Carcinoma Cells via Targeting Microtubule Depolymerization Protein 1 (STMN1). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effect of bone marrow mesenchymal stem cells (BMSCs) on the sensitivity of chemotherapy drugs and microRNAs (miRNAs) is still unclear. This study explored the role of miR-140 modified BMSCs in enhancing paclitaxel sensitivity of cervical squamous cell carcinoma (CSCC). Hela cells, BMSCs
cells, and miR-140 modified BMSCs were transfected with miR-140 mimic, miR-140 inhibitor, and miR-140 NC, respectively. After transfection, they were co-cultured with Hela cells and paclitaxel to set up miR-140 mimic group, miR-140 inhibitor group, and miR-140 NC group (without paclitaxel
treatment) followed by analysis of cell proliferation, apoptosis, ROS generation, expression of miR-140, STMN1, STAT3, p-STAT3, and survivin mRNA and protein. miR-140 inhibitor group showed lowest cell proliferation number and expressions of miR-140, STMN1, STAT3, p-STAT3, and survivin mRNA
and protein with highest number of apoptotic cells, which were all reversed in miR-140 mimic group. There was a positive correlation between STMN1 level and miR-140 expression (r = 0.449, P = 0.108). BMSCs modified with miR-140 inhibitor can target STMN1, enhance the sensitivity
of chemotherapy drugs, and exert an inhibitory effect on CSCC cell proliferation, suggesting that STMN1 might be a therapy target for treating CSCC.
Collapse
Affiliation(s)
- Xiaoli Guo
- Obstetrics and Gynecology Hospital Affiliated to Zhejiang University, Hangzhou City, Zhejiang Province, 310006, China
| | - Xiaodong Cheng
- Obstetrics and Gynecology Hospital Affiliated to Zhejiang University, Hangzhou City, Zhejiang Province, 310006, China
| |
Collapse
|
10
|
Kitsou K, Iliopoulou M, Spoulou V, Lagiou P, Magiorkinis G. Viral Causality of Human Cancer and Potential Roles of Human Endogenous Retroviruses in the Multi-Omics Era: An Evolutionary Epidemiology Review. Front Oncol 2021; 11:687631. [PMID: 34778024 PMCID: PMC8586426 DOI: 10.3389/fonc.2021.687631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Being responsible for almost 12% of cancers worldwide, viruses are among the oldest known and most prevalent oncogenic agents. The quality of the evidence for the in vivo tumorigenic potential of microorganisms varies, thus accordingly, viruses were classified in 4 evidence-based categories by the International Agency for Research on Cancer in 2009. Since then, our understanding of the role of viruses in cancer has significantly improved, firstly due to the emergence of high throughput sequencing technologies that allowed the “brute-force” recovery of unknown viral genomes. At the same time, multi-omics approaches unravelled novel virus-host interactions in stem-cell biology. We now know that viral elements, either exogenous or endogenous, have multiple sometimes conflicting roles in human pathophysiology and the development of cancer. Here we integrate emerging evidence on viral causality in human cancer from basic mechanisms to clinical studies. We analyze viral tumorigenesis under the scope of deep-in-time human-virus evolutionary relationships and critically comment on the evidence through the eyes of clinical epidemiology, firstly by reviewing recognized oncoviruses and their mechanisms of inducing tumorigenesis, and then by examining the potential role of integrated viruses in our genome in the process of carcinogenesis.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Iliopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Al Bitar S, Ballouz T, Doughan S, Gali-Muhtasib H, Rizk N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J Gastrointest Pathophysiol 2021; 12:59-83. [PMID: 34354849 PMCID: PMC8316837 DOI: 10.4291/wjgp.v12.i4.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Tala Ballouz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
12
|
Lack of Conserved miRNA Deregulation in HPV-Induced Squamous Cell Carcinomas. Biomolecules 2021; 11:biom11050764. [PMID: 34065237 PMCID: PMC8160722 DOI: 10.3390/biom11050764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/26/2022] Open
Abstract
Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.
Collapse
|
13
|
MicroRNA Biomarkers of High-Grade Cervical Intraepithelial Neoplasia in Liquid Biopsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650966. [PMID: 33954190 PMCID: PMC8060087 DOI: 10.1155/2021/6650966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 01/16/2023]
Abstract
New prevention strategies are needed to detect cervical intraepithelial neoplasia (CIN). The microRNA expression analysis has already been reported as molecular biomarkers in the early detection of cervical cancer (CC) through minimally invasive samples, such as liquid biopsy, obtained through collection using liquid-based cytology (LBC). In this study, we aimed to identify molecular signatures of microRNAs in cervical precursor lesions from LBC cervical and the molecular pathways potentially associated with the CC progression. We analyzed 31 LBC cervical samples from women who underwent colposcopy. These samples were divided into two groups: the first group was composed of samples without precursor lesions of CC, considering the control group, referred to as healthy female subjects (HFS; n = 11). The second group corresponded to women diagnosed with cervical interepithelial neoplasia grade 3 (CIN 3; n = 20). We performed microRNA and gene expression profiling using the nCounter® miRNA Expression Assays (NanoString Technology) and PanCancer Pathways (NanoString Technology), respectively. A microRNA target prediction was performed by mirDIP, and molecular pathway interaction was constructed using Cytoscape. Bidirectional in silico analyses and Pearson's correlation were performed for associated the relation between genes, and miRNAs differentially expressed related cervical cancer progression were performed. We found that the expression of nine microRNAs was significantly higher, two were downregulated (miR-381-3p and miR-4531), and seven miRNAs were upregulated (miR-205-5p, miR-130a-3p, miR-3136-3p, miR-128-2-5p, let-7f-5p, miR-202-3p, and miR-323a-5p) in CIN 3 (fold change ≥ 2 and p ≤ 0.05). The miRNA expression patterns were independent of hr-HPV infection. We identified four miRNAs (miR-205-5p, miR-130a-3p, miR-4531, and miR-381-3p) that could be used as biomarkers for CIN 3 in LBC samples through multiple logistic regression analyses. We found 16 genes differentially expressed between CIN 3 and HSF samples (fold change ≥ 2 and p ≤ 0.05). We found the correlation between miR-130a-3p and CCND1(R = −0.52; p = 0.0029), miR-205-5p and EGFR (R = 0.53; p = 0.0021), and miR-4531 and SMAD2 (R = −0.54; p = 0.0016). In addition, we demonstrated the most significant pathways of the targets associated with cervical cancer progression (FDR-corrected p < 0.001). This study demonstrated that miRNA biomarkers may distinguish healthy cervix and CIN 3 and regulate important molecular pathways of carcinogenesis.
Collapse
|
14
|
Molina MA, Carosi Diatricch L, Castany Quintana M, Melchers WJ, Andralojc KM. Cervical cancer risk profiling: molecular biomarkers predicting the outcome of hrHPV infection. Expert Rev Mol Diagn 2020; 20:1099-1120. [PMID: 33044104 DOI: 10.1080/14737159.2020.1835472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Cervical cancer affects half a million women worldwide annually. Given the association between high-risk human papillomavirus (hrHPV) infection and carcinogenesis, hrHPV DNA testing became an essential diagnostic tool. However, hrHPV alone does not cause the disease, and, most importantly, many cervical lesions regress to normal in a year because of the host immune system. Hence, the low specificity of hrHPV DNA tests and their inability to predict the outcome of infections have triggered a further search for biomarkers. AREAS COVERED We evaluated the latest viral and cellular biomarkers validated for clinical use as primary screening or triage for cervical cancer and assessed their promise for prevention as well as potential use in the future. The literature search focused on effective biomarkers for different stages of the disease, aiming to determine their significance in predicting the outcome of hrHPV infections. EXPERT OPINION Biomarkers such as p16/Ki-67, hrHPV genotyping, hrHPV transcriptional status, and methylation patterns have demonstrated promising results. Their eventual implementation in the screening programs may support the prompt diagnosis of hrHPV infection and its progression to cancer. These biomarkers will help in making clinical management decisions on time, thus, saving the lives of hrHPV-infected women, particularly in developing countries.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Microbiology, Faculty of Science, Radboud University , Nijmegen, The Netherlands.,Department of Medical Microbiology, Radboud university medical center , Nijmegen, The Netherlands
| | | | - Marina Castany Quintana
- Department of Medical Microbiology, Radboud university medical center , Nijmegen, The Netherlands
| | - Willem Jg Melchers
- Department of Medical Microbiology, Radboud university medical center , Nijmegen, The Netherlands
| | - Karolina M Andralojc
- Department of Medical Microbiology, Radboud university medical center , Nijmegen, The Netherlands.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| |
Collapse
|
15
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
16
|
Loopik DL, Melchers WJ, Vedder JE, van den Brule AJ, Massuger LF, Bekkers RL, Siebers AG. Authors' reply re: Reflex cytology for triage of high-risk human-papillomavirus-positive self-sampled material in cervical cancer screening: a prospective cohort study. BJOG 2020; 127:1714-1715. [PMID: 32864828 DOI: 10.1111/1471-0528.16442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Diede L Loopik
- Department of Obstetrics and Gynaecology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Willem Jg Melchers
- Department of Medical Microbiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Judith Em Vedder
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Adriaan Jc van den Brule
- Department of Pathology, Laboratory for Molecular Diagnostics, Pathologie-DNA, Jeroen Bosch Hospital, s-Hertogenbosch, The Netherlands
| | - Leon Fag Massuger
- Department of Obstetrics and Gynaecology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Ruud Lm Bekkers
- Department of Obstetrics and Gynaecology, Catharina Hospital, Eindhoven, The Netherlands
| | - Albert G Siebers
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands.,PALGA, The Nationwide Network and Registry of Histo- and Cytopathology, Houten, The Netherlands
| |
Collapse
|
17
|
Loopik DL, Melchers W, Vedder J, van den Brule A, Massuger L, Bekkers R, Siebers AG. Reflex cytology for triage of high-risk human papillomavirus positive self-sampled material in cervical cancer screening: a prospective cohort study. BJOG 2020; 127:1656-1663. [PMID: 32506627 PMCID: PMC7689810 DOI: 10.1111/1471-0528.16352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 01/29/2023]
Abstract
OBJECTIVE High-risk human papillomavirus (HrHPV)-positive women detected by self-sampling require an extra visit at the general practitioner for additional cytology testing, but the loss to follow up within this triage is substantial. The aim of this study was to evaluate the clinical utility of reflex cytology on hrHPV-positive self-samples for immediate stratification of women who need referral for colposcopy. DESIGN A prospective cohort study. SETTING Two Dutch cervical cancer-screening laboratories. POPULATION 1014 screenees who tested hrHPV-positive on self-samples between 1 December 2018 and 1 August 2019. METHODS Self-samples were directly used for cytological analysis. Cytological and histological outcomes during follow up were obtained from the Dutch Pathology Registry (PALGA). MAIN OUTCOME MEASURES Test performance of reflex cytology on self-samples was determined for different thresholds and compared with physician-taken cytology and histological outcomes. RESULTS Reflex cytology on self-samples for detecting abnormal cytology showed a sensitivity of 26.4% (95% CI 21.8-31.3) and specificity of 90.5% (95% CI 87.7-92.8). Of all ≥CIN2 cases, 29.4% (95% CI 22.5-37.1) were detected with reflex cytology on self-samples. The positive predictive value for detection of ≥CIN2 was higher with cytology on self-collected samples than on physician-collected samples. Of women who were lost to follow up, 12.9% were found to have abnormal cytology on their self-sampled material. CONCLUSION Cytology testing is achievable on hrHPV-positive self-samples, could decrease the loss to follow up in screening and is easily implementable in the current clinical practice. Of all hrHPV-positive women with abnormal cytology on additional physician-collected samples, 26.4% could have been directly referred for colposcopy if triage with reflex cytology on self-sampled material had been performed. TWEETABLE ABSTRACT Reflex cytology for triage of hrHPV+ self-samples is of added value for direct referral of women for colposcopy.
Collapse
Affiliation(s)
- D L Loopik
- Department of Obstetrics and Gynaecology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Wjg Melchers
- Department of Medical Microbiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Jem Vedder
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Ajc van den Brule
- Department of Pathology, Lab for Molecular Diagnostics, Pathologie-DNA, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Lfag Massuger
- Department of Obstetrics and Gynaecology, Radboud university medical center, Nijmegen, The Netherlands
| | - Rlm Bekkers
- Department of Obstetrics and Gynaecology, Catharina Hospital, Eindhoven, The Netherlands
| | - A G Siebers
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands.,PALGA, the Nationwide Network and Registry of Histo- and Cytopathology, Houten, The Netherlands
| |
Collapse
|
18
|
Poel D, Rustenburg F, Sie D, van Essen HF, Eijk PP, Bloemena E, Elhorst Benites T, van den Berg MC, Vergeer MR, Leemans RC, Buffart TE, Ylstra B, Brakenhoff RH, Verheul HM, Voortman J. Expression of let-7i and miR-192 is associated with resistance to cisplatin-based chemoradiotherapy in patients with larynx and hypopharynx cancer. Oral Oncol 2020; 109:104851. [PMID: 32585557 DOI: 10.1016/j.oraloncology.2020.104851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The majority of patients with locally advanced larynx or hypopharynx squamous cell carcinoma are treated with organ-preserving chemoradiotherapy (CRT). Clinical outcome following CRT varies greatly. We hypothesized that tumor microRNA (miRNA) expression is predictive for outcome following CRT. METHODS Next-generation sequencing (NGS) miRNA profiling was performed on 37 formalin-fixed paraffin-embedded (FFPE) tumor samples. Patients with a recurrence-free survival (RFS) of less than 2 years and patients with late/no recurrence within 2 years were compared by differential expression analysis. Tumor-specific miRNAs were selected based on normal mucosa miRNA expression data from The Cancer Genome Atlas database. A model was constructed to predict outcome using group-regularized penalized logistic ridge regression. Candidate miRNAs were validated by RT-qPCR in the initial sample set as well as in 46 additional samples. RESULTS Thirteen miRNAs were differentially expressed (p < 0.05, FDR < 0.1) according to outcome group. Initial class prediction in the NGS cohort (n = 37) resulted in a model combining five miRNAs and disease stage, able to predict CRT outcome with an area under the curve (AUC) of 0.82. In the RT-qPCR cohort (n = 83), 25 patients (30%) experienced early recurrence (median RFS 8 months; median follow-up 42 months). Class prediction resulted in a model combining let-7i-5p, miR-192-5p and disease stage, able to discriminate patients with good versus poor clinical outcome (AUC:0.80). CONCLUSION The combined miRNA expression and disease stage prediction model for CRT outcome is superior to using either factor alone. This study indicates NGS miRNA profiling using FFPE specimens is feasible, resulting in clinically relevant biomarkers.
Collapse
Affiliation(s)
- Dennis Poel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - François Rustenburg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Cancer Center Amsterdam, the Netherlands
| | - Daoud Sie
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Hendrik F van Essen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Paul P Eijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Maxillofacial Surgery/Oral Pathology, Academic Center for Dentistry Amsterdam (ACTA), the Netherlands
| | - Teresita Elhorst Benites
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands
| | - Madeleine C van den Berg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands
| | - Marije R Vergeer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiation Oncology, Cancer Center Amsterdam, the Netherlands
| | - René C Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Tineke E Buffart
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Antoni van Leeuwenhoek Hospital, Department of Gastrointestinal Oncology, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Henk M Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jens Voortman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Mjelle R, Aass KR, Sjursen W, Hofsli E, Sætrom P. sMETASeq: Combined Profiling of Microbiota and Host Small RNAs. iScience 2020; 23:101131. [PMID: 32422595 PMCID: PMC7229328 DOI: 10.1016/j.isci.2020.101131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
Understanding microbial communities' roles in human health and disease requires methods that accurately characterize the microbial composition and their activity and effects within human biological samples. We present sMETASeq (small RNA Metagenomics by Sequencing), a novel method that uses sequencing of small RNAs to jointly measure host small RNA expression and create metagenomic profiles and detect small bacterial RNAs. We evaluated the performance of sMETASeq on a mock bacterial community and demonstrated its use on different human samples, including colon cancer, oral leukoplakia, cervix cancer, and a panel of human biofluids. In all datasets, the detected microbes reflected the biology of the different sample types.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim 7030, Norway; Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology, NTNU, Trondheim 7491, Norway; K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim 7491, Norway.
| | - Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim 7030, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim 7030, Norway; Department of Medical Genetics, St. Olavs Hospital, Trondheim 7030, Norway
| | - Eva Hofsli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim 7030, Norway; The Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim 7030, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim 7030, Norway; Department of Computer and Information Science, Norwegian University of Science and Technology, NTNU, Trondheim 7491, Norway; Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology, NTNU, Trondheim 7491, Norway; K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim 7491, Norway
| |
Collapse
|
20
|
Zhu H, Zhu H, Tian M, Wang D, He J, Xu T. DNA Methylation and Hydroxymethylation in Cervical Cancer: Diagnosis, Prognosis and Treatment. Front Genet 2020; 11:347. [PMID: 32328088 PMCID: PMC7160865 DOI: 10.3389/fgene.2020.00347] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Recent discoveries have led to the development of novel ideas and techniques that have helped elucidate the correlation between epigenetics and tumor biology. Nowadays, the field of tumor genetics has evolved to include a new type of regulation by epigenetics. An increasing number of studies have demonstrated the importance of DNA methylation and hydroxymethylation in specific genes in the progression of cervical cancer. Determining the methylation and hydroxymethylation profiles of these genes will help in the early prevention and diagnosis, monitoring recurrence, prognosis, and treatment of patients with cervical cancer. In this review, we focus on the significance of aberrant DNA methylation and hydroxymethylation in cervical cancer and the use of these epigenetic signatures in clinical settings.
Collapse
Affiliation(s)
- Hongming Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
A Comprehensive Exploration of the lncRNA CCAT2: A Pan-Cancer Analysis Based on 33 Cancer Types and 13285 Cases. DISEASE MARKERS 2020; 2020:5354702. [PMID: 32908615 PMCID: PMC7060419 DOI: 10.1155/2020/5354702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Whether the lncRNA CCAT2 expression level affects the clinical progression and outcome of cancer patients has not yet been fully elucidated. There is still an inconsistent view regarding the correlation between CCAT2 expression and clinicopathological factors, including survival data. Besides, the regulation mechanism of CCAT2 in human cancer is still unclear. Our study analyzed a large number of publication data and TCGA databases to identify the association of CCAT2 expression with clinicopathological factors and to explore the regulatory mechanisms in human cancers. We designed a comprehensive study to determine the expression of CCAT2 in human cancer by designing a meta-analysis of 20 selected studies and the TCGA database, using StataSE 12.0 to explore the relationship between CCAT2 expression and both the prognosis and clinicopathological features of 33 cancer types and 13285 tumor patients. Moreover, we performed GO and KEGG pathway enrichment analyses on potential target genes of CCAT2 collected from GEPIA and LncRNA2Target V2.0. The level of CCAT2 expression in tumor tissues is higher than that in paired normal tissues and is significantly associated with a poor prognosis in cancer patients. Besides, overexpression of CCAT2 was significantly associated with tumor size, clinical stage, and TNM classification. Meanwhile, CCAT2 expression is the highest in stage II of human cancer, followed by stage III. Finally, 111 validated target gene symbols were identified, and GO and KEGG demonstrated that the CCAT2 validation target was significantly enriched in several pathways, including microRNAs in the cancer pathway. In summary, CCAT2 can be a potential biomarker associated with the progression and prognosis of human cancer.
Collapse
|
22
|
van der Pol Y, Mouliere F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA. Cancer Cell 2019; 36:350-368. [PMID: 31614115 DOI: 10.1016/j.ccell.2019.09.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
Widespread adaptation of liquid biopsy for the early detection of cancer has yet to reach clinical utility. Circulating tumor DNA is commonly detected though the presence of genetic alterations, but only a minor fraction of tumor-derived cell-free DNA (cfDNA) fragments exhibit mutations. The cellular processes occurring in cancer development mark the chromatin. These epigenetic marks are reflected by modifications in the cfDNA methylation, fragment size, and structure. In this review, we describe how going beyond DNA sequence information alone, by analyzing cfDNA epigenetic and immune signatures, boosts the potential of liquid biopsy for the early detection of cancer.
Collapse
Affiliation(s)
- Ymke van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Florent Mouliere
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Snoek BC, Babion I, Koppers-Lalic D, Pegtel DM, Steenbergen RD. Altered microRNA processing proteins in HPV-induced cancers. Curr Opin Virol 2019; 39:23-32. [PMID: 31408800 DOI: 10.1016/j.coviro.2019.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
High-risk human papilloma virus (hrHPV) infections are associated with the development of anogenital cancers, in particular cervical cancer, and a subset of head and neck cancers. Previous studies have shown that microRNAs (miRNAs) contribute to the development and progression of HPV-induced malignancies. miRNAs are small non-coding RNAs that exist as multiple length and sequence variants, termed isomiRs. Efficient processing of miRNAs and generation of isomiRs is accomplished by several processing proteins. Deregulation of Drosha, AGO2, and TENT2, among others, has been observed in HPV-induced cancers and was even found at the precancerous stage. This suggests that miRNA processing proteins may be involved during early cancer development and that the generated isomiRs could provide promising biomarkers for early cancer diagnosis.
Collapse
Affiliation(s)
- Barbara C Snoek
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Iris Babion
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Danijela Koppers-Lalic
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurosurgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Dirk M Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Renske Dm Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands.
| |
Collapse
|
24
|
Polman NJ, de Haan Y, Veldhuijzen NJ, Heideman DAM, de Vet HCW, Meijer CJLM, Massuger LFAG, van Kemenade FJ, Berkhof J. Experience with HPV self-sampling and clinician-based sampling in women attending routine cervical screening in the Netherlands. Prev Med 2019; 125:5-11. [PMID: 31054907 DOI: 10.1016/j.ypmed.2019.04.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/03/2019] [Accepted: 04/28/2019] [Indexed: 01/06/2023]
Abstract
Several countries offer HPV self-sampling for screening non-attendees. It is assumed that screening attendees also prefer self-sampling to clinician-based sampling, however, little research has been conducted with respect to this. Women participating in the IMPROVE-study were randomised (1:1) to self- or clinician-collected HPV testing, and HPV-positive women were retested using the other collection method. Three different questionnaires were sent out among a subset of participating women: Q1) HPV-positive women from both study groups were asked about their experiences with self-sampling and clinician-based sampling (n = 497); Q2) HPV-negative women from the self-sampling group were asked about their experiences with self-sampling (n = 2366); and Q3) HPV-negative women in the clinician-collection group were asked about their experiences with clinician-based sampling (n = 2092). Response rates ranged from 71.6 to 79.4%. Women reported significantly lower levels of shame, nervousness, discomfort and pain during self-sampling compared to clinician-based sampling. However, trust in correct sampling was significantly higher during clinician-based sampling. The majority of women in group Q1 preferred self-sampling (76.5%) to clinician-based sampling (11.9%) in future screening, while 11.6% of women reported to have no preference for either method. To conclude, women from a regular screening population have a positive attitude towards self-sampling but express some concerns with respect to accuracy. The majority prefers self-sampling to clinician-based sampling in future screening. Based on these results, a screening approach where women can choose for either self-sampling or clinician-based sampling seems highly justifiable.
Collapse
Affiliation(s)
- Nicole J Polman
- Cancer Center Amsterdam, Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Yanne de Haan
- Cancer Center Amsterdam, Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nienke J Veldhuijzen
- Department of Epidemiology and Biostatistics, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Daniëlle A M Heideman
- Cancer Center Amsterdam, Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henrica C W de Vet
- Department of Epidemiology and Biostatistics, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Chris J L M Meijer
- Cancer Center Amsterdam, Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leon F A G Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Johannes Berkhof
- Department of Epidemiology and Biostatistics, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Zamanian Azodi M, Rezaei-Tavirani M, Rezaei-Tavirani M, Robati RM. Gestational Diabetes Mellitus Regulatory Network Identifies hsa-miR-145-5p and hsa-miR-875-5p as Potential Biomarkers. Int J Endocrinol Metab 2019; 17:e86640. [PMID: 31497041 PMCID: PMC6678685 DOI: 10.5812/ijem.86640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is pregnancy-related diabetes with vital risks for both mother and the fetus. Molecular studies represent one of the popular approaches for investigating mechanisms associated with the disease nature. One of which is through interaction network analysis via Cytoscape V. 3.6.1. METHODS In this study, the microRNA (miRNA) expression array of GSE98043 from gene expression omnibus (GEO) database was retrieved and screened. We identified 12 differentially expressed (DE) miRNAs (P ≤ 0.05) and nine target hub-bottleneck genes (disease score > 1) for GDM based on miRNA-target interactions created via plugin ClueGO + Cluepedia + STRING. RESULTS MiRNA-target information showed that the miRNAs are mostly up-regulated and hsa-miR-145-5p and hsa-miR-875-5p targets the most genes. Among target genes, IL6, GCG, APOB, and ALB have the highest associations with DE-miRNAs. Gene ontology analysis based on biological processes identification via ClueGO + CluePedia, in addition, showed that target hub-bottlenecks are mainly related to metabolism functions and any changes in this regulatory network could impose fundamental alterations in these processes. CONCLUSIONS It can be concluded that via these introduced miRNAs and their targets, the molecular tests for diagnosis and treatment of GDM can be improved after applying validation approaches.
Collapse
Affiliation(s)
- Mona Zamanian Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Reza Mahmoud Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Babion I, De Strooper LMA, Luttmer R, Bleeker MCG, Meijer CJLM, Heideman DAM, Wilting SM, Steenbergen RDM. Complementarity between miRNA expression analysis and DNA methylation analysis in hrHPV-positive cervical scrapes for the detection of cervical disease. Epigenetics 2019; 14:558-567. [PMID: 30955437 PMCID: PMC6557605 DOI: 10.1080/15592294.2019.1600390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cervical screening by high-risk HPV (hrHPV) testing requires additional risk stratification (triage), as most infections are transient and only a subset of hrHPV-positive women harbours clinically relevant disease. Molecular triage markers such as microRNAs (miRNAs) and DNA methylation markers are particularly promising, as they can be objectively tested directly on hrHPV-positive scrapes and cervicovaginal self-samples. Here, we evaluated the marker potential of 10 candidate miRNAs in 209 hrHPV-positive scrapes of women with underlying precancer (cervical intraepithelial neoplasia, grade 2–3 (CIN2-3)), cancer, or without disease (CIN0/1). A predictive miRNA classifier for CIN3 detection was built using logistic regression, which was compared to and combined with DNA methylation marker FAM19A4. Markers were correlated to histology parameters and hrHPV genotype. A miRNA classifier consisting of miR-149, miR-20a, and miR-93 achieved an area under the curve (AUC) of 0.834 for CIN3 detection, which was not significantly different to that of FAM19A4 methylation (AUC: 0.862, p = 0.591). Combining miRNA and methylation analysis demonstrated complementarity between both marker types (AUC: 0.939). While the miRNA classifier seemed more predictive for CIN2, FAM19A4 methylation was particularly high in HPV16-positive and histologically advanced CIN3, i.e. CIN3 with high lesion volume. The miRNA classifier, FAM19A4 methylation, and the miRNA/methylation combination were highest in cancer-associated scrapes. In conclusion, a panel of three miRNAs is discriminatory for CIN3 in hrHPV-positive scrapes and can complement DNA methylation analysis for the efficient detection of cervical disease. Combined analysis of the two marker types warrants further evaluation as triage strategy in hrHPV-based screening.
Collapse
Affiliation(s)
- Iris Babion
- a Pathology, Cancer Center Amsterdam , Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Lise M A De Strooper
- a Pathology, Cancer Center Amsterdam , Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Roosmarijn Luttmer
- a Pathology, Cancer Center Amsterdam , Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Maaike C G Bleeker
- a Pathology, Cancer Center Amsterdam , Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Chris J L M Meijer
- a Pathology, Cancer Center Amsterdam , Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Daniëlle A M Heideman
- a Pathology, Cancer Center Amsterdam , Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Saskia M Wilting
- b Department of Medical Oncology, Erasmus MC Cancer Institute , Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Renske D M Steenbergen
- a Pathology, Cancer Center Amsterdam , Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|