1
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
2
|
Abdelrazak Morsy MH, Lilienthal I, Lord M, Merrien M, Wasik AM, Sureda-Gómez M, Amador V, Johansson HJ, Lehtiö J, Garcia-Torre B, Martin-Subero JI, Tsesmetzis N, Tao S, Schinazi RF, Kim B, Sorteberg AL, Wickström M, Sheppard D, Rassidakis GZ, Taylor IA, Christensson B, Campo E, Herold N, Sander B. SOX11 is a novel binding partner and endogenous inhibitor of SAMHD1 ara-CTPase activity in mantle cell lymphoma. Blood 2024; 143:1953-1964. [PMID: 38237141 PMCID: PMC11103171 DOI: 10.1182/blood.2023022241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
ABSTRACT Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.
Collapse
Affiliation(s)
- Mohammad Hamdy Abdelrazak Morsy
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Immuno-oncology, Uppsala University Biomedical Centre, Uppsala, Sweden
| | - Magali Merrien
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Agata Magdalena Wasik
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | | | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Agnes L. Sorteberg
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Birger Christensson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hematopathology Section, Department of Anatomic Pathology, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
- Paediatric Oncology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Zhang SM, Paulin CB, Shu H, Yagüe-Capilla M, Michel M, Marttila P, Ortis F, Bwanika HC, Dirks C, Venkatram RP, Wiita E, Jemth AS, Almlöf I, Loseva O, Hormann FM, Koolmeister T, Linde E, Lee S, Llona-Minguez S, Haraldsson M, Axelsson H, Strömberg K, Homan EJ, Scobie M, Lundbäck T, Helleday T, Rudd SG. Identification and evaluation of small-molecule inhibitors against the dNTPase SAMHD1 via a comprehensive screening funnel. iScience 2024; 27:108907. [PMID: 38318365 PMCID: PMC10839966 DOI: 10.1016/j.isci.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output. The identified small molecules, TH6342 and analogs, accompanied by inactive control TH7126, demonstrated specific, low μM potency against both physiological and oncology-drug-derived substrates. By coupling kinetic studies with thermal shift assays, we reveal the inhibitory mechanism of TH6342 and analogs, which engage pre-tetrameric SAMHD1 and deter oligomerization and allosteric activation without occupying nucleotide-binding pockets. Altogether, our study diversifies inhibitory modes against SAMHD1, and the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.
Collapse
Affiliation(s)
- Si Min Zhang
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Cynthia B.J. Paulin
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Huazhang Shu
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Miriam Yagüe-Capilla
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Maurice Michel
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Petra Marttila
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Florian Ortis
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Henri Colyn Bwanika
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Christopher Dirks
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Rajagopal Papagudi Venkatram
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Femke M. Hormann
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Erika Linde
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sun Lee
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sabin Llona-Minguez
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Kia Strömberg
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Evert J. Homan
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Sean G. Rudd
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
4
|
Gutiérrez-Chamorro L, Felip E, Castellà E, Quiroga V, Ezeonwumelu IJ, Angelats L, Esteve A, Perez-Roca L, Martínez-Cardús A, Fernandez PL, Ferrando-Díez A, Pous A, Bergamino M, Cirauqui B, Romeo M, Teruel I, Mesia R, Clotet B, Riveira-Muñoz E, Margelí M, Ballana E. SAMHD1 expression is a surrogate marker of immune infiltration and determines prognosis after neoadjuvant chemotherapy in early breast cancer. Cell Oncol (Dordr) 2024; 47:189-208. [PMID: 37667113 PMCID: PMC10899429 DOI: 10.1007/s13402-023-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
PURPOSE The lack of validated surrogate biomarkers is still an unmet clinical need in the management of early breast cancer cases that do not achieve complete pathological response after neoadjuvant chemotherapy (NACT). Here, we describe and validate the use of SAMHD1 expression as a prognostic biomarker in residual disease in vivo and in vitro. METHODS SAMHD1 expression was evaluated in a clinical cohort of early breast cancer patients with stage II-III treated with NACT. Heterotypic 3D cultures including tumor and immune cells were used to investigate the molecular mechanisms responsible of SAMHD1 depletion through whole transcriptomic profiling, immune infiltration capacity and subsequent delineation of dysregulated immune signaling pathways. RESULTS SAMHD1 expression was associated to increased risk of recurrence and higher Ki67 levels in post-NACT tumor biopsies of breast cancer patients with residual disease. Survival analysis showed that SAMHD1-expressing tumors presented shorter time-to-progression and overall survival than SAMHD1 negative cases, suggesting that SAMHD1 expression is a relevant prognostic factor in breast cancer. Whole-transcriptomic profiling of SAMHD1-depleted tumors identified downregulation of IL-12 signaling pathway as the molecular mechanism determining breast cancer prognosis. The reduced interleukin signaling upon SAMHD1 depletion induced changes in immune cell infiltration capacity in 3D heterotypic in vitro culture models, confirming the role of the SAMHD1 as a regulator of breast cancer prognosis through the induction of changes in immune response and tumor microenvironment. CONCLUSION SAMHD1 expression is a novel prognostic biomarker in early breast cancer that impacts immune-mediated signaling and differentially regulates inflammatory intra-tumoral response.
Collapse
Affiliation(s)
- Lucía Gutiérrez-Chamorro
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Eudald Felip
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Eva Castellà
- Department of Pathology, Hospital Germans Trias i Pujol, IGTP (Health Research Institute Germans Trias I Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Vanessa Quiroga
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Ifeanyi Jude Ezeonwumelu
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Laura Angelats
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Anna Esteve
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Laia Perez-Roca
- Banc de Tumors, Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Anna Martínez-Cardús
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Pedro Luis Fernandez
- Department of Pathology, Hospital Germans Trias i Pujol, IGTP (Health Research Institute Germans Trias I Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Angelica Ferrando-Díez
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Anna Pous
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Milana Bergamino
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Beatriz Cirauqui
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Marga Romeo
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Iris Teruel
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Ricard Mesia
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Mireia Margelí
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain.
| | - Ester Ballana
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain.
| |
Collapse
|
5
|
Morsy MHA, Lilienthal I, Lord M, Merrien M, Wasik AM, Sureda-Gómez M, Amador V, Johansson HJ, Lehtiö J, Garcia-Torre B, Martin-Subero JI, Tsesmetzis N, Tao S, Schinazi RF, Kim B, Sorteberg AL, Wickström M, Sheppard D, Rassidakis GZ, Taylor IA, Christensson B, Campo E, Herold N, Sander B. SOX11 is a novel binding partner and endogenous inhibitor of SAMHD1 ara-CTPase activity in mantle cell lymphoma. Blood 2024; 143:1953-1964. [PMID: 38774451 PMCID: PMC7615944 DOI: 10.1182/blood.2023022241/2210808/blood.2023022241.pdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.
Collapse
Affiliation(s)
- Mohammad Hamdy Abdelrazak Morsy
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 21561, Alexandria, Egypt
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Immuno-oncology, Uppsala University Biomedical Centre (BMC), SE-751 24, Uppsala, Sweden
| | - Magali Merrien
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Agata Magdalena Wasik
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Beatriz Garcia-Torre
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Agnes L Sorteberg
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgios Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Birger Christensson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Section, Department of Anatomic Pathology, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
- Paediatric Oncology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| |
Collapse
|
6
|
Helleday T, Rudd SG. Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Mol Oncol 2022; 16:3792-3810. [PMID: 35583750 PMCID: PMC9627788 DOI: 10.1002/1878-0261.13227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
The exploitation of the DNA damage response and DNA repair proficiency of cancer cells is an important anticancer strategy. The replication and repair of DNA are dependent upon the supply of deoxynucleoside triphosphate (dNTP) building blocks, which are produced and maintained by nucleotide metabolic pathways. Enzymes within these pathways can be promising targets to selectively induce toxic DNA lesions in cancer cells. These same pathways also activate antimetabolites, an important group of chemotherapies that disrupt both nucleotide and DNA metabolism to induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can also be targeted to refine the use of these chemotherapeutics, many of which remain standard of care in common cancers. In this review article, we will discuss both these approaches exemplified by the enzymes MTH1, MTHFD2 and SAMHD1. © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Oncology and Metabolism, Weston Park Cancer CentreUniversity of SheffieldUK
| | - Sean G. Rudd
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
7
|
Targeting SAMHD1: to overcome multiple anti-cancer drugs resistance in hematological malignancies. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Merrien M, Wasik AM, Ljung E, Morsy MHA, de Matos Rodrigues J, Carlsten M, Rassidakis GZ, Christensson B, Kolstad A, Jerkeman M, Ek S, Herold N, Wahlin BE, Sander B. Clinical and biological impact of SAMHD1 expression in mantle cell lymphoma. Virchows Arch 2021; 480:655-666. [PMID: 34738194 PMCID: PMC8989861 DOI: 10.1007/s00428-021-03228-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 01/08/2023]
Abstract
SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) that restricts viral replication in infected cells and limits the sensitivity to cytarabine by hydrolysing its active metabolite, as recently shown in acute myeloid leukemia. Cytarabine is an essential component in the Nordic mantle cell lymphoma protocols (MCL2 and MCL3) for induction and high-dose chemotherapy treatment before autologous stem cell transplantation for younger patients with mantle cell lymphoma (MCL). We here investigated the expression of SAMHD1 in a population-based cohort of MCL (N = 150). SAMHD1 was highly variably expressed in MCL (range, 0.4% to 100% of positive tumor cells). Cases with blastoid/pleomorphic morphology had higher SAMHD1 expression (P = 0.028) and SAMHD1 was also correlated to tumor cell proliferation (P = 0.016). SAMHD1 expression showed moderate correlation to the expression of the transcriptional regulator SOX11 (P = 0.036) but genetic silencing of SOX11 and SAMHD1 by siRNA in MCL cell lines did not suggest mutual regulation. We hypothesized that expression of SAMHD1 could predict short time to progression in patients treated with Cytarabine as part of high-dose chemotherapy. Despite the correlation with known biological adverse prognostic factors, neither low or high SAMHD1 expression correlated to PFS or OS in patients treated according to the Nordic MCL2 or MCL3 protocols (N = 158).
Collapse
Affiliation(s)
- Magali Merrien
- Department of Laboratory Medicine, Div. of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Agata M Wasik
- Department of Laboratory Medicine, Div. of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Elin Ljung
- Department of Pathology, Karolinska University Hospital, Solna, Sweden
| | - Mohammad H A Morsy
- Department of Laboratory Medicine, Div. of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | | | - Mattias Carlsten
- PO Haematology and Unit of Haematology, Department of Medicine at Huddinge, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Solna, Sweden
| | - Georgios Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Birger Christensson
- Department of Laboratory Medicine, Div. of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Arne Kolstad
- Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Mats Jerkeman
- Department of Oncology, Lund University, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Solna, Sweden
| | - Björn E Wahlin
- PO Haematology and Unit of Haematology, Department of Medicine at Huddinge, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Div. of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden.
| |
Collapse
|
9
|
Schott K, Majer C, Bulashevska A, Childs L, Schmidt MHH, Rajalingam K, Munder M, König R. SAMHD1 in cancer: curse or cure? J Mol Med (Berl) 2021; 100:351-372. [PMID: 34480199 PMCID: PMC8843919 DOI: 10.1007/s00109-021-02131-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Human sterile α motif and HD domain-containing protein 1 (SAMHD1), originally described as the major cellular deoxyribonucleoside triphosphate triphosphohydrolase (dNTPase) balancing the intracellular deoxynucleotide (dNTP) pool, has come recently into focus of cancer research. As outlined in this review, SAMHD1 has been reported to be mutated in a variety of cancer types and the expression of SAMHD1 is dysregulated in many cancers. Therefore, SAMHD1 is regarded as a tumor suppressor in certain tumors. Moreover, it has been proposed that SAMHD1 might fulfill the requirements of a driver gene in tumor development or might promote a so-called mutator phenotype. Besides its role as a dNTPase, several novel cellular functions of SAMHD1 have come to light only recently, including a role as negative regulator of innate immune responses and as facilitator of DNA end resection during DNA replication and repair. Therefore, SAMHD1 can be placed at the crossroads of various cellular processes. The present review summarizes the negative role of SAMHD1 in chemotherapy sensitivity, highlights reported SAMHD1 mutations found in various cancer types, and aims to discuss functional consequences as well as underlying mechanisms of SAMHD1 dysregulation potentially involved in cancer development.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Alla Bulashevska
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Liam Childs
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany.
| |
Collapse
|
10
|
Bühler MM, Lu J, Scheinost S, Nadeu F, Roos-Weil D, Hensel M, Thavayogarajah T, Moch H, Manz MG, Haralambieva E, Marques Maggio E, Beà S, Giné E, Campo E, Bernard OA, Huber W, Zenz T. SAMHD1 mutations in mantle cell lymphoma are recurrent and confer in vitro resistance to nucleoside analogues. Leuk Res 2021; 107:106608. [PMID: 33979727 DOI: 10.1016/j.leukres.2021.106608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Marco M Bühler
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, Laboratory of Pathology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Sebastian Scheinost
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Damien Roos-Weil
- Gustave Roussy, INSERM U1170, Villejuif and Université Paris-Saclay Orsay, France
| | | | - Tharshika Thavayogarajah
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Eugenia Haralambieva
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Ewerton Marques Maggio
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, Laboratory of Pathology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain; Department of Hematology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, Laboratory of Pathology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Olivier A Bernard
- Gustave Roussy, INSERM U1170, Villejuif and Université Paris-Saclay Orsay, France
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Xagoraris I, Vassilakopoulos TP, Drakos E, Angelopoulou MK, Panitsas F, Herold N, Medeiros LJ, Giakoumis X, Pangalis GA, Rassidakis GZ. Expression of the novel tumour suppressor sterile alpha motif and HD domain-containing protein 1 is an independent adverse prognostic factor in classical Hodgkin lymphoma. Br J Haematol 2021; 193:488-496. [PMID: 33528031 DOI: 10.1111/bjh.17352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
The expression patterns and prognostic significance of sterile alpha motif and HD domain-containing protein 1 (SAMHD1) protein in the neoplastic Hodgkin and Reed Sternberg (HRS) cells of Hodgkin lymphoma (HL) were investigated in a cohort of 154 patients with HL treated with standard regimens. SAMHD1 expression was assessed by immunohistochemistry using diagnostic lymph node biopsies obtained prior to treatment. Using an arbitrary 20% cut-off, SAMHD1 was positive in HRS cells of 48/154 (31·2%) patients. SAMHD1 expression was not associated with clinicopathologic parameters, such as age, gender, stage or histologic subtype. In 125 patients with a median follow-up of 90 months (7-401 months), SAMHD1 expression in HRS cells significantly correlated with inferior freedom from progression (FFP) (P = 0·025), disease-specific survival (DSS) (P = 0·013) and overall survival (OS) (P = 0·01). Importantly, in multivariate models together with disease stage, histology subtype and type of treatment as covariates, SAMHD1 expression retained an independent significant association with unfavourable FFP (P = 0·005) as well as DSS (P = 0·022) and OS (P = 0·018). These findings uncover the significance of a novel, adverse prognostic factor in HL that may have therapeutic implications since SAMHD1 inhibitors are now available for clinical use.
Collapse
Affiliation(s)
- Ioanna Xagoraris
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete Medical School, Heraklion Crete, Greece
| | - Maria K Angelopoulou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Fotios Panitsas
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolas Herold
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Theme Paediatrics, Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xanthoula Giakoumis
- Department of Haematology, Athens Medical Center, Psychikon Branch, Athens, Greece
| | - Gerassimos A Pangalis
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece.,Department of Haematology, Athens Medical Center, Psychikon Branch, Athens, Greece
| | - George Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|