1
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
2
|
Ning G, Wang H, Fu M, Liu J, Sun Y, Lu H, Fan X, Zhang Y, Wang H. Dual Signals Electrochemical Biosensor for Point‐of‐care Testing of Amino Acids Enantiomers. ELECTROANAL 2021. [DOI: 10.1002/elan.202100240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Guyang Ning
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Haiyang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Mingxuan Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Jiaxian Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Yuena Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Haijun Lu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Xinyu Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Yufan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Huan Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| |
Collapse
|
3
|
Han J, Wzorek A, Klika KD, Soloshonok VA. Recommended Tests for the Self-Disproportionation of Enantiomers (SDE) to Ensure Accurate Reporting of the Stereochemical Outcome of Enantioselective Reactions. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26092757. [PMID: 34067099 PMCID: PMC8124418 DOI: 10.3390/molecules26092757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight the necessity of conducting tests to gauge the magnitude of the self-disproportionation of enantiomers (SDE) phenomenon to ensure the veracity of reported enantiomeric excess (ee) values for scalemic samples obtained from enantioselective reactions, natural products isolation, etc. The SDE always occurs to some degree whenever any scalemic sample is subjected to physicochemical processes concomitant with the fractionation of the sample, thus leading to erroneous reporting of the true ee of the sample if due care is not taken to either preclude the effects of the SDE by measurement of the ee prior to the application of physicochemical processes, suppressing the SDE, or evaluating all obtained fractions of the sample. Or even avoiding fractionation altogether if possible. There is a clear necessity to conduct tests to assess the magnitude of the SDE for the processes applied to samples and the updated and improved recommendations described herein cover chromatography and processes involving gas-phase transformations such as evaporation or sublimation.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Karel D. Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Correspondence: (K.D.K.); (V.A.S.)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
- Correspondence: (K.D.K.); (V.A.S.)
| |
Collapse
|
4
|
Tran DBA, Manfred KM, Peverall R, Ritchie GAD. Continuous-Wave Cavity-Enhanced Polarimetry for Optical Rotation Measurement of Chiral Molecules. Anal Chem 2021; 93:5403-5411. [PMID: 33769036 DOI: 10.1021/acs.analchem.0c04651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Precise optical rotation measurements play an important role in the analysis of chiral molecules in various fields, especially in biological chemistry and pharmacology. In this paper, we demonstrate a new variant of continuous-wave cavity-enhanced polarimetry for detecting the optical activity of two enantiomers of a chiral molecule at 730 nm. It is based on a signal-reversing technique for which the chiral specific rotation is directly determined by the cavity ring-down signal from two counter-propagating beams in a bow-tie cavity. In particular, we ensure reproducible excitation of both modes by broadening the linewidth of a diode laser source by application of a radio frequency perturbation to its injection current. The performance of the polarimeter is demonstrated for the specific rotation of (+)- and (-)-α-pinene in different environments, including the pure vapor, open air, and the liquid phase; the detection precision ranges between 10-5 and 10-4 degrees per cavity pass depending on the environment. The apparatus is a robust and practical tool for quantifying chirality and can be developed for the entire visible and near-infrared spectral regions.
Collapse
Affiliation(s)
- Dang-Bao-An Tran
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Katherine M Manfred
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Robert Peverall
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Grant A D Ritchie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
5
|
Liu M, Han Y, Zhong H, Zhang X, Wang F. Supramolecular Chirogenesis Induced by Platinum(II) Tweezers with Excellent Environmental Tolerance. Angew Chem Int Ed Engl 2020; 60:3498-3503. [PMID: 33118695 DOI: 10.1002/anie.202012901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/17/2020] [Indexed: 11/06/2022]
Abstract
Supramolecular chirogenesis has emerged as an effective strategy to access symmetry breaking in artificial systems. However, the chirogenic signals suffer from high susceptibility toward environmental variations. An effective strategy has been developed to address this issue by constructing platinum(II)-based tweezer/guest complexes stabilized by two-fold donor-acceptor and PtII -PtII metal-metal interactions. Upon guest encapsulation, the two pincers on the achiral PtII tweezer undergo a stereospecific twist to minimize steric repulsion, thus locking tweezer/guest complexes into the preferred chiral conformations. The induced chiroptical effects display outstanding solvent and temperature tolerance, ascribed to the balance between electrostatic and desolvation effects for the involved non-covalent interactions. Moreover, hierarchical and multi-component supramolecular assembly of tweezer/guest complexes provide a convenient way to modulate chirogeneic signals for their intensities.
Collapse
Affiliation(s)
- Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
6
|
Liu M, Han Y, Zhong H, Zhang X, Wang F. Supramolecular Chirogenesis Induced by Platinum(II) Tweezers with Excellent Environmental Tolerance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
7
|
Lehmann A, Alaasar M, Poppe M, Poppe S, Prehm M, Nagaraj M, Sreenilayam SP, Panarin YP, Vij JK, Tschierske C. Stereochemical Rules Govern the Soft Self-Assembly of Achiral Compounds: Understanding the Heliconical Liquid-Crystalline Phases of Bent-Core Mesogens. Chemistry 2020; 26:4714-4733. [PMID: 31859404 PMCID: PMC7186843 DOI: 10.1002/chem.201904871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Indexed: 11/16/2022]
Abstract
A series of bent-shaped 4-cyanoresorcinol bisterephthalates is reported. Some of these achiral compounds spontaneously form a short-pitch heliconical lamellar liquid-crystalline phase with incommensurate 3-layer pitch and the helix axis parallel to the layer normal. It is observed at the paraelectric-(anti)ferroelectric transition, if it coincides with the transition from random to uniform tilt and with the transition from anticlinic to synclinic tilt correlation of the molecules in the layers of the developing tilted smectic phase. For compounds with long chains the heliconical phase is only field-induced, but once formed it is stable in a distinct temperature range, even after switching off the field. The presence of the helix changes the phase properties and the switching mechanism from the naturally preferred rotation around the molecular long axis, which reverses the chirality, to a precession on a cone, which retains the chirality. These observations are explained by diastereomeric relations between two coexisting modes of superstructural chirality. One is the layer chirality, resulting from the combination of tilt and polar order, and the other one is the helical twist evolving between the layers. At lower temperature the helical structure is replaced by a non-tilted and ferreoelectric switching lamellar phase, providing an alternative non-chiral way for the transition from anticlinic to synclinic tilt.
Collapse
Affiliation(s)
- Anne Lehmann
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Mohamed Alaasar
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
- Department of ChemistryCairo University12613GizaEgypt
| | - Marco Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Silvio Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Marko Prehm
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Mamatha Nagaraj
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Sithara P. Sreenilayam
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Yuri P. Panarin
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Jagdish K. Vij
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Carsten Tschierske
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| |
Collapse
|
8
|
The self-disproportionation of enantiomers (SDE) of amino acids and their derivatives. Amino Acids 2019; 51:865-889. [PMID: 30903285 DOI: 10.1007/s00726-019-02729-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
This review covers the phenomenon of the self-disproportionation of enantiomers (SDE) of amino acids and their derivatives in all its guises from phase transformations (recrystallization, sublimation, and distillation), to the application of force fields, through to chromatography including HPLC, MPLC, gravity-driven column chromatography, and SEC. The relevance of the SDE phenomenon to amino acid research and to marketed pharmaceuticals is clear given the potential for alteration of the enantiomeric excess of a portion of a scalemic sample. In addition, the possible contribution of the SDE phenomenon to the genesis of prebiotic homochirality is considered.
Collapse
|
9
|
Wang X, Liu C, Jiang Y, Wang C, Wang T, Bai M, Jiang J. Room temperature chiral reorganization of interfacial assembly of achiral double-decker phthalocyanine. Phys Chem Chem Phys 2018; 20:7223-7229. [DOI: 10.1039/c7cp08647d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral reorganization with amplification of the Cotton effect is achieved at room temperature and atmospheric pressure in the solid-state.
Collapse
Affiliation(s)
- Xiqian Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Chenxi Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Yuying Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Ming Bai
- Marine College
- Shandong University at Weihai
- Weihai 264209
- China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
10
|
Asselin P, Berger Y, Huet TR, Margulès L, Motiyenko R, Hendricks RJ, Tarbutt MR, Tokunaga SK, Darquié B. Characterising molecules for fundamental physics: an accurate spectroscopic model of methyltrioxorhenium derived from new infrared and millimetre-wave measurements. Phys Chem Chem Phys 2017; 19:4576-4587. [PMID: 28124691 DOI: 10.1039/c6cp08724h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Precise spectroscopic analysis of polyatomic molecules enables many striking advances in physical chemistry and fundamental physics. We use several new high-resolution spectroscopic devices to improve our understanding of the rotational and rovibrational structure of methyltrioxorhenium (MTO), the achiral parent of a family of large oxorhenium compounds that are ideal candidate species for a planned measurement of parity violation in chiral molecules. Using millimetre-wave and infrared spectroscopy in a pulsed supersonic jet, a cryogenic buffer gas cell, and room temperature absorption cells, we probe the ground state and the Re[double bond, length as m-dash]O antisymmetric and symmetric stretching excited states of both CH3187ReO3 and CH3185ReO3 isotopologues in the gas phase with unprecedented precision. By extending the rotational spectra to the 150-300 GHz range, we characterize the ground state rotational and hyperfine structure up to J = 43 and K = 41, resulting in refinements to the rotational, quartic and hyperfine parameters, and the determination of sextic parameters and a centrifugal distortion correction to the quadrupolar hyperfine constant. We obtain rovibrational data for temperatures between 6 and 300 K in the 970-1015 cm-1 range, at resolutions down to 8 MHz and accuracies of 30 MHz. We use these data to determine more precise excited-state rotational, Coriolis and quartic parameters, as well as the ground-state centrifugal distortion parameter DK of the 187Re isotopologue. We also account for hyperfine structure in the rovibrational transitions and hence determine the upper state rhenium atom quadrupole coupling constant eQq'.
Collapse
Affiliation(s)
- Pierre Asselin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005, Paris, France and CNRS, UMR 8233, MONARIS, F-75005, Paris, France.
| | - Yann Berger
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005, Paris, France and CNRS, UMR 8233, MONARIS, F-75005, Paris, France.
| | - Thérèse R Huet
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Laurent Margulès
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Roman Motiyenko
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Richard J Hendricks
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Michael R Tarbutt
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Sean K Tokunaga
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France and CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France.
| | - Benoît Darquié
- CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France. and Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France
| |
Collapse
|
11
|
Patyk E, Katrusiak A. Conformational and H-bonding preferences for facile racemate crystallization of ribose. Chirality 2014; 26:806-10. [PMID: 25116722 DOI: 10.1002/chir.22359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 11/09/2022]
Abstract
Recalcitrant crystallization and syrup formation are frequent features of natural sugars. This is the case of D-ribose, yielding low-quality crystals of mixed α- and β-pyranose anomers. However, large crystals of DL-ribose can be grown easily. The crystal structures of stable D-ribose forms I and II as well as DL-form II have been analyzed in terms of their compatibility with the molecular aggregation. The comparison of the potential energy of all conformers and their OH···O hydrogen-bonding patterns is consistent with the preferential racemate crystallization in terms of departures from the optimized isolated ribose molecule and its directional interactions. This analysis is aimed at rationalizing the interplay between the molecular structure and spontaneous crystallization of chiral compounds.
Collapse
Affiliation(s)
- Ewa Patyk
- Department of Materials Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
12
|
González-Campo A, Amabilino DB. Biomolecules at interfaces: chiral, naturally. Top Curr Chem (Cham) 2013; 333:109-56. [PMID: 23460199 DOI: 10.1007/128_2012_405] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Interfaces are a most important environment in natural and synthetic chemistries for a wide variety of processes, such as catalysis, recognition, separation, and so on. Naturally occurring systems have evolved to one handedness and the study of interfaces where biomolecules are located is a potentially revealing pursuit with regard to understanding the reasons and importance of stereochemistry in these environments. Equally, the spontaneous resolution of achiral and chiral compounds at interfaces could lead to explanations regarding the emergence of single handedness in proteins and sugars. Also, the attachment of biomolecules to surfaces leads to systems capable of stereoselective processes which may be useful for the applications mentioned above. The review covers systems ranging from small biomolecules studied under ultrapure conditions in vacuum to protein adsorption to surfaces in solution, and the techniques that can be used to study them.
Collapse
Affiliation(s)
- Arántzazu González-Campo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | | |
Collapse
|
13
|
Saleh N, Zrig S, Roisnel T, Guy L, Bast R, Saue T, Darquié B, Crassous J. A chiral rhenium complex with predicted high parity violation effects: synthesis, stereochemical characterization by VCD spectroscopy and quantum chemical calculations. Phys Chem Chem Phys 2013; 15:10952-9. [DOI: 10.1039/c3cp50199j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Viedma C, Ortiz JE, de Torres T, Cintas P. Enantioenrichment in sublimed amino acid mixtures. Chem Commun (Camb) 2012; 48:3623-5. [PMID: 22388769 DOI: 10.1039/c2cc18129k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A real amplification of an initial enantiomeric excess can be detected when two amino acids are sublimed at high temperature, even if one of the components is a racemic compound that does not convert into a conglomerate by sublimation.
Collapse
Affiliation(s)
- Cristóbal Viedma
- Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
15
|
Rosen BM, Roche C, Percec V. Self-assembly of dendritic dipeptides as a model of chiral selection in primitive biological systems. Top Curr Chem (Cham) 2012; 333:213-53. [PMID: 23306867 DOI: 10.1007/128_2012_398] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biological macromolecules are homochiral, composed of sequences of stereocenters possessing the same repeated absolute configuration. This chapter addresses the mechanism of homochiral selection in polypeptides. In particular, the relationship between the stereochemistry (L or D) of structurally distinct α-amino acids is explored. Through functionalization of Tyr-Xaa dipeptides with self-assembling dendrons, the effect of stereochemical sequence of the dipeptide on the thermodynamics of self-assembly and the resulting structural features can be quantified. The dendritic dipeptide approach effectively isolates the stereochemical information of the shortest sequence of stereochemical information possible in polypeptide, while simultaneously allowing for dendron driven tertiary and quaternary structure formation and subsequent transfer of chiral information from the dipeptide to the dendritic sheath. This approach elucidates a mechanism of selecting a homochiral relationship between dissimilar but neighboring α-amino acids through thermodynamic preference for homochirality in solution-phase and bulk supramolecular helical polymerization.
Collapse
Affiliation(s)
- Brad M Rosen
- DuPont Central Research & Development, Experimental Station, Wilmington, DE, 19880, USA
| | | | | |
Collapse
|