1
|
Yang Y, Yue S, Shen L, Dong H, Li H, Zhao X, Guo Q, Zhou X. Ultrasensitive 129Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413426. [PMID: 39836636 DOI: 10.1002/advs.202413426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Magnetic resonance imaging (MRI) is a cornerstone technology in clinical diagnostics and in vivo research, offering unparalleled visualization capabilities. Despite significant advancements in the past century, traditional 1H MRI still faces sensitivity limitations that hinder its further development. To overcome this challenge, hyperpolarization methods have been introduced, disrupting the thermal equilibrium of nuclear spins and leading to an increased proportion of hyperpolarized spins, thereby enhancing sensitivity by hundreds to tens of thousands of times. Among these methods, hyperpolarized (HP) 129Xe MRI, also known as ultrasensitive 129Xe MRI, stands out for achieving the highest polarization enhancement and has recently received clinical approval. It effectively tackles the challenge of weak MRI signals from low proton density in the lungs. HP 129Xe MRI is valuable for assessing structural and functional changes in lung physiology during pulmonary disease progression, tracking cells, and detecting target molecules at pico-molar concentrations. This review summarizes recent developments in HP 129Xe MRI, including its physical principles, manufacturing methods, in vivo characteristics, and diverse applications in biomedical, chemical, and material sciences. In addition, it carefully discusses potential technical improvements and future prospects for enhancing its utility in these fields, further establishing HP 129Xe MRI's importance in advancing medical imaging and research.
Collapse
Affiliation(s)
- Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Yue
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyang Shen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiling Dong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Ćoćić D, Yang L, Puchta R, Shi T, van Eldik R. Investigation of the complete encapsulation process of the noble gases by cryptophanes. J Comput Chem 2025; 46:e27519. [PMID: 39449254 DOI: 10.1002/jcc.27519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Based on DFT calculations (ωB97XD/def2-SVP/SVPfit), the ability and mechanism of noble gas encapsulation by series of cryptophanes were investigated. The focus was set to study the influence of different functionalization groups placed at the "gates" of cryptophanes cavity entrance by which the energy criteria were chosen as a main indicator for selective encapsulation of noble gases. Chosen functionalization groups were CH3, OCH3, OH, NH2, and Cl, and the encapsulation process of these cryptophanes was compared to a cryptophane without any functionalization group on its outer rim. Those groups were selected based on their different chemical properties and based on their size which will subsequently put additional steric restrictions on the cavity entrance. Chosen functionalization groups, beside their steric influence on the energy barrier magnitude, influence also the gating process through its chemical nature by which they can put an additional stabilization on noble gases encapsulation transition states enhancing the encapsulation process. Objective of this study was clearly to get better insights on the influence of those functional groups on the whole encapsulation process of noble gases. Large-size noble gases (Xe and Rn) from all noble gases are best accommodated in the cavities of selected cryptophanes, on the other hand these noble gases require to pass the highest energy barrier through the gating process. From the series of investigated cryptophanes, the cryptophane with the OCH3 functionalization group has been identified as the one with the best capabilities to host investigated noble gases, but on the other side this cryptophane puts the highest energy criteria required for the previous gating process.
Collapse
Affiliation(s)
- Dušan Ćoćić
- Department of Chemistry, University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Liu Yang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ralph Puchta
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
- Central Institute for Scientific Computing (CISC), University of Erlangen-Nuremberg, Erlangen, Germany
- Computer Chemistry Center, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, Shandong, China
| | - Rudi van Eldik
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
3
|
Yuan C, Guo Q, Zeng Q, Yuan Y, Jiang W, Yang Y, Bouchard LS, Ye C, Zhou X. Dual-Signal Chemical Exchange Saturation Transfer (Dusi-CEST): An Efficient Strategy for Visualizing Drug Delivery Monitoring in Living Cells. Anal Chem 2024; 96:1436-1443. [PMID: 38173081 DOI: 10.1021/acs.analchem.3c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We report a dual-signal chemical exchange saturation transfer (Dusi-CEST) strategy for drug delivery and detection in living cells. The two signals can be detected by operators in complex environments. This strategy is demonstrated on a cucurbit[6]uril (CB[6]) nanoparticle probe, as an example. The CB[6] probe is equipped with two kinds of hydrophobic cavities: one is found inside CB[6] itself, whereas the other exists inside the nanoparticle. When the probe is dispersed in aqueous solution as part of a hyperpolarized 129Xe NMR experiment, two signals appear at two different chemical shifts (100 and 200 ppm). These two resonances correspond to the NMR signals of 129Xe in the two different cavities. Upon loading with hydrophobic drugs, such as paclitaxel, for intracellular drug delivery, the two resonances undergo significant changes upon drug loading and cargo release, giving rise to a metric enabling the assessment of drug delivery success. The simultaneous change of Dusi-CEST likes a mobile phone that can receive both LTE and Wi-Fi signals, which can help reduce the occurrence of false positives and false negatives in complex biological environments and help improve the accuracy and sensitivity of single-shot detection.
Collapse
Affiliation(s)
- Chenlu Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| | - Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Weiping Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Louis-S Bouchard
- Departments of Chemistry and Biochemistry and of Bioengineering, California NanoSystems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
- Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
4
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
5
|
Xenon Induces Its Own Preferred Heterochiral Host from Exclusive Homochiral Assembly. J Am Chem Soc 2022; 144:22884-22889. [PMID: 36480928 DOI: 10.1021/jacs.2c12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenon binding represents a formidable challenge, and efficient hosts remain rare. Here we report our findings that while enantiomeric bis(urea)-bis(thiourea) macrocycles form exclusive homochiral dimeric assemblies, xenon is able to overcome the narcissism and induces an otherwise-nonobservable heterochiral assembly as its preferred host. An experimental approach and fitting model were developed to obtain binding constants associated with the invisible assembly species. The determined xenon binding affinity with the heterochiral capsule reaches 1600 M-1, which is 15 times higher than that with the homochiral capsule and represents the highest record for an assembled host. The origin of the large difference in xenon affinity between the two subtle diastereotopic assemblies was revealed by single-crystal analysis. In the heterochiral capsule with S4 symmetry, the xenon atom is more tightly enclosed by van der Waals surroundings of the four thiourea groups arranged in a spherical cross-array, superior to the antiparallel array in the homochiral capsule with D2 symmetry.
Collapse
|
6
|
Zeng Q, Guo Q, Yuan Y, Wang B, Sui M, Lou X, Bouchard LS, Zhou X. Ultrasensitive molecular building block for biothiol NMR detection at picomolar concentrations. iScience 2021; 24:103515. [PMID: 34934931 PMCID: PMC8661548 DOI: 10.1016/j.isci.2021.103515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides structural and functional information, but it did not probe chemistry. Chemical information could help improve specificity of detection. Herein, we introduce a general method based on a modular design to construct a molecular building block Xe probe to help image intracellular biothiols (glutathione (GSH), cysteine (Cys) and homocysteine (Hcy)), the abnormal content of which is related to various diseases. This molecular building block possesses a high signal-to-noise ratio and no background signal effects. Its detection threshold was 100 pM, which enabled detection of intracellular biothiols in live cells. The construction strategy can be easily extended to the detection of any other biomolecule or biomarker. This modular design strategy promotes efficiency of development of low-cost multifunctional probes that can be combined with other readout parameters, such as optical readouts, to complement 129Xe MRI to usher in new capabilities for molecular imaging.
Collapse
Affiliation(s)
- Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baolong Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Meiju Sui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Louis-S. Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Departments of Chemistry and Biochemistry and of Bioengineering, University of California, Los Angeles 90095, USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
8
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Zemerov SD, Lin Y, Dmochowski IJ. Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing. Anal Chem 2021; 93:1507-1514. [PMID: 33356164 DOI: 10.1021/acs.analchem.0c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryptophane host molecules provide ultrasensitive contrast agents for 129Xe NMR/MRI. To investigate key features of cryptophane-Xe sensing behavior, we designed a novel water-soluble cryptophane with a pendant hydrophobic adamantyl moiety, which has good affinity for a model receptor, beta-cyclodextrin (β-CD). Adamantyl-functionalized cryptophane-A (AFCA) was synthesized and characterized for Xe affinity, 129Xe NMR signal, and aggregation state at varying AFCA and β-CD concentrations. The Xe-AFCA association constant was determined by fluorescence quenching, KA = 114,000 ± 5000 M-1 at 293 K, which is the highest reported affinity for a cryptophane host in phosphate-buffered saline (pH 7.2). No hyperpolarized (hp) 129Xe NMR peak corresponding to AFCA-bound Xe was directly observed at high (100 μM) AFCA concentration, where small cryptophane aggregates were observed, and was only detected at low (15 μM) AFCA concentration, where the sensor remained fully monomeric in solution. Additionally, we observed no change in the chemical shift of AFCA-encapsulated 129Xe after β-CD binding to the adamantyl moiety and a concomitant lack of change in the size distribution of the complex, suggesting that a change in the aggregation state is necessary to elicit a 129Xe NMR chemical shift in cryptophane-based sensing. These results aid in further elucidating the recently discovered aggregation phenomenon, highlight limitations of cryptophane-based Xe sensing, and offer insights into the design of monomeric, high-affinity Xe sensors.
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yannan Lin
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Xenon binding by a tight yet adaptive chiral soft capsule. Nat Commun 2020; 11:6257. [PMID: 33288758 PMCID: PMC7721739 DOI: 10.1038/s41467-020-20081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022] Open
Abstract
Xenon binding has attracted interest due to the potential for xenon separation and emerging applications in magnetic resonance imaging. Compared to their covalent counterparts, assembled hosts that are able to effectively bind xenon are rare. Here, we report a tight yet soft chiral macrocycle dimeric capsule for efficient and adaptive xenon binding in both crystal form and solution. The chiral bisurea-bisthiourea macrocycle can be easily synthesized in multi-gram scale. Through assembly, the flexible macrocycles are locked in a bowl-shaped conformation and buckled to each other, wrapping up a tight, completely sealed yet adjustable cavity suitable for xenon, with a very high affinity for an assembled host. A slow-exchange process and drastic spectral changes are observed in both 1H and 129Xe NMR. With the easy synthesis, modification and reversible characteristics, we believe the robust yet adaptive assembly system may find applications in xenon sequestration and magnetic resonance imaging-based biosensing.
Collapse
|
11
|
Du K, Zemerov SD, Hurtado Parra S, Kikkawa JM, Dmochowski IJ. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg Chem 2020; 59:13831-13844. [PMID: 32207611 PMCID: PMC7672707 DOI: 10.1021/acs.inorgchem.9b03634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Collapse
|
12
|
Ćoćić D, Puchta R, van Eldik R. Noble guests in organic cages – encapsulation of noble gases by cryptophane. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1820494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Dušan Ćoćić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Ralph Puchta
- Department of Chemistry and Pharmacy, Inorganic Chemistry, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Chemistry and Pharmacy, Computer Chemistry Center, University of Erlangen-Nuremberg, Erlangen, Germany
- Central Institute for Scientific Computing (ZISC), University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, Inorganic Chemistry, University of Erlangen-Nuremberg, Erlangen, Germany
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
13
|
Du K, Zemerov SD, Carroll PJ, Dmochowski IJ. Paramagnetic Shifts and Guest Exchange Kinetics in Co nFe 4-n Metal-Organic Capsules. Inorg Chem 2020; 59:12758-12767. [PMID: 32851844 DOI: 10.1021/acs.inorgchem.0c01816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the magnetic resonance properties and exchange kinetics of guest molecules in a series of hetero-bimetallic capsules, [ConFe4-nL6]4- (n = 1-3), where L2- = 4,4'-bis[(2-pyridinylmethylene)amino]-[1,1'-biphenyl]-2,2'-disulfonate. H bond networks between capsule sulfonates and guanidinium cations promote the crystallization of [ConFe4-nL6]4-. The following four isostructural crystals are reported: two guest-free forms, (C(NH2)3)4[Co1.8Fe2.2L6]·69H2O (1) and (C(NH2)3)4[Co2.7Fe1.3L6]·73H2O (2), and two Xe- and CFCl3-encapsulated forms, (C(NH2)3)4[(Xe)0.8Co1.8Fe2.2L6]·69H2O (3) and (C(NH2)3)4[(CFCl3)Co2.0Fe2.0L6]·73H2O (4), respectively. Structural analyses reveal that Xe induces negligible structural changes in 3, while the angles between neighboring phenyl groups expand by ca. 3° to accommodate the much larger guest, CFCl3, in 4. These guest-encapsulated [ConFe4-nL6]4- molecules reveal 129Xe and 19F chemical shift changes of ca. -22 and -10 ppm at 298 K, respectively, per substitution of low-spin FeII by high-spin CoII. Likewise, the temperature dependence of the 129Xe and 19F NMR resonances increases by 0.1 and 0.06 ppm/K, respectively, with each additional paramagnetic CoII center. The optimal temperature for hyperpolarized (hp) 129Xe chemical exchange saturation transfer (hyper-CEST) with [ConFe4-nL6]4- capsules was found to be inversely proportional to the number of CoII centers, n, which is consistent with the Xe chemical exchange accelerating as the portals expand. The systematic study was facilitated by the tunability of the [M4L6]4- capsules, further highlighting these metal-organic systems for developing responsive sensors with highly shifted 129Xe resonances.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
14
|
Zeng Q, Guo Q, Yuan Y, Zhang X, Jiang W, Xiao S, Zhang B, Lou X, Ye C, Liu M, Bouchard LS, Zhou X. A Small Molecular Multifunctional Tool for pH Detection, Fluorescence Imaging, and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:1779-1786. [PMID: 35021667 DOI: 10.1021/acsabm.9b01080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A smart multitool platform for theranostics would be useful for monitoring the administration of therapies in vivo. However, the integration of multiple functions into a single small-molecule platform remains a challenge. In this study, we developed a multifunctional probe based on a small-molecule platform. The properties of this probe were investigated via hyperpolarized 129Xe NMR/MRI, fluorescence imaging in cells and in vivo, and photodynamic therapy (PDT) in tumor mouse models. This multifunctional probe shows good pH response across a broad range of pH values. It also exhibits excellent fluorescence in vivo for mapping its biodistribution. Additionally, it produces enough 1O2 radicals for in vivo PDT. The combination of these functionalities into a single small-molecule platform, rather than a bulky nanoconstruct, offers unique possibilities for molecular imaging and therapy.
Collapse
Affiliation(s)
- Qingbin Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Qianni Guo
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoxiao Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Bin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Louis-S Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Department of Chemistry and of Bioengineering, University of California, Los Angeles, California, United States
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
15
|
Ranjan R, Sinha N. Nuclear magnetic resonance (NMR)-based metabolomics for cancer research. NMR IN BIOMEDICINE 2019; 32:e3916. [PMID: 29733484 DOI: 10.1002/nbm.3916] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Nuclear magnetic resonance (NMR) has emerged as an effective tool in various spheres of biomedical research, amongst which metabolomics is an important method for the study of various types of disease. Metabolomics has proved its stronghold in cancer research by the development of different NMR methods over time for the study of metabolites, thus identifying key players in the aetiology of cancer. A plethora of one-dimensional and two-dimensional NMR experiments (in solids, semi-solids and solution phases) are utilized to obtain metabolic profiles of biofluids, cell extracts and tissue biopsy samples, which can further be subjected to statistical analysis. Any alteration in the assigned metabolite peaks gives an indication of changes in metabolic pathways. These defined changes demonstrate the utility of NMR in the early diagnosis of cancer and provide further measures to combat malignancy and its progression. This review provides a snapshot of the trending NMR techniques and the statistical analysis involved in the metabolomics of diseases, with emphasis on advances in NMR methodology developed for cancer research.
Collapse
Affiliation(s)
- Renuka Ranjan
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, India
- School of Biotechnology, Institute of Science Banaras Hindu University, Varanasi, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, India
| |
Collapse
|
16
|
Schnurr M, Joseph R, Naugolny-Keisar A, Kaizerman-Kane D, Bogdanoff N, Schuenke P, Cohen Y, Schröder L. High Exchange Rate Complexes of 129 Xe with Water-Soluble Pillar[5]arenes for Adjustable Magnetization Transfer MRI. Chemphyschem 2018; 20:246-251. [PMID: 30079552 DOI: 10.1002/cphc.201800618] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 01/16/2023]
Abstract
Macrocyclic host structures for generating transiently bound 129 Xe have been used in various ultra-sensitive NMR and MRI applications for molecular sensing of biochemical analytes. They are based on hyperpolarized nuclei chemical exchange saturation transfer (Hyper-CEST). Here, we tested a set of water-soluble pillar[5]arenes with different counterions in order to compare their potential contrast agent abilities with that of cryptophane-A (CrA), the most widely used host for such purposes. The exchange of Xe with such compounds was found to be sensitive to the type of ions present in solution and can be used for switchable magnetization transfer (MT) contrast that arises from off-resonant pre-saturation. We demonstrate that the adjustable MT magnitude depends on the interplay of saturation parameters and found that the optimum MT contrast surpasses the CrA CEST performance at moderate saturation power. Since modification of such water-soluble pillar[5]arenes is straightforward, these compounds can be considered a promising platform for designing various sensors that may complement the field of Xe HyperCEST-based biosensing MRI.
Collapse
Affiliation(s)
- Matthias Schnurr
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Roymon Joseph
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Alissa Naugolny-Keisar
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Nils Bogdanoff
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Patrick Schuenke
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
17
|
Döpfert J, Schnurr M, Kunth M, Rose HM, Hennig A, Schröder L. Time-resolved monitoring of enzyme activity with ultrafast Hyper-CEST spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:679-688. [PMID: 29274298 DOI: 10.1002/mrc.4702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
We propose a method to dynamically monitor the progress of an enzymatic reaction using NMR of hyperpolarized 129 Xe in a host-guest system. It is based on a displacement assay originally designed for fluorescence experiments that exploits the competitive binding of the enzymatic product on the one hand and a reporter dye on the other hand to a supramolecular host. Recently, this assay has been successfully transferred to NMR, using xenon as a reporter, cucurbit[6]uril as supramolecular host, and chemical exchange saturation transfer with hyperpolarized Xe (Hyper-CEST) as detection technique. Its advantage is that the enzyme acts on the unmodified substrate and that only the product is detected through immediate inclusion into the host. We here apply a method that drastically accelerates the acquisition of Hyper-CEST spectra in vitro using magnetic field gradients. This allows monitoring the dynamic progress of the conversion of lysine to cadaverine with a temporal resolution of ~30 s. Moreover, the method only requires to sample the very early onset of the reaction (<0.5% of substrate conversion where the host itself is required only at μM concentrations) at comparatively low reaction rates, thus saving enzyme material and reducing NMR acquisition time. The obtained value for the specific activity agrees well with previously published results from fluorescence assays. We furthermore outline how the Hyper-CEST results correlate with xenon T2 measurements performed during the enzymatic reaction. This suggests that ultrafast Hyper-CEST spectroscopy can be used for dynamically monitoring enzymatic activity with NMR.
Collapse
Affiliation(s)
- Jörg Döpfert
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Matthias Schnurr
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Martin Kunth
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Honor May Rose
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
18
|
Cookson NJ, Fowler JM, Martin DP, Fisher J, Henkelis JJ, Ronson TK, Thorp-Greenwood FL, Willans CE, Hardie MJ. Metallo-cryptophane cages from cis-linked and trans-linked strategies. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1355055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Julie Fisher
- School of Chemistry, University of Leeds, Leeds, UK
| | | | - Tanya K. Ronson
- School of Chemistry, University of Leeds, Leeds, UK
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
19
|
Zeng Q, Guo Q, Yuan Y, Yang Y, Zhang B, Ren L, Zhang X, Luo Q, Liu M, Bouchard LS, Zhou X. Mitochondria Targeted and Intracellular Biothiol Triggered Hyperpolarized 129Xe Magnetofluorescent Biosensor. Anal Chem 2017; 89:2288-2295. [PMID: 28192930 DOI: 10.1021/acs.analchem.6b03742] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biothiols such as gluthathione (GSH), cysteine (Cys), homocysteine (Hcy), and thioredoxin (Trx) play vital roles in cellular metabolism. Various diseases are associated with abnormal cellular biothiol levels. Thus, the intracellular detection of biothiol levels could be a useful diagnostic tool. A number of methods have been developed to detect intracellular thiols, but sensitivity and specificity problems have limited their applications. To address these limitations, we have designed a new biosensor based on hyperpolarized xenon magnetic resonance detection, which can be used to detect biothiol levels noninvasively. The biosensor is a multimodal probe that incorporates a cryptophane-A cage as 129Xe NMR reporter, a naphthalimide moiety as fluorescence reporter, a disulfide bond as thiol-specific cleavable group, and a triphenylphosphonium moiety as mitochondria targeting unit. When the biosensor interacts with biothiols, disulfide bond cleavage leads to enhancements in the fluorescence intensity and changes in the 129Xe chemical shift. Using Hyper-CEST (chemical exchange saturation transfer) NMR, our biosensor shows a low detection limit at picomolar (10-10 M) concentration, which makes a promise to detect thiols in cells. The biosensor can detect biothiol effectively in live cells and shows good targeting ability to the mitochondria. This new approach not only offers a practical technique to detect thiols in live cells, but may also present an excellent in vivo test platform for xenon biosensors.
Collapse
Affiliation(s)
- Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | - Bin Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | - Lili Ren
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | - Xiaoxiao Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | - Qing Luo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Louis-S Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Departments of Chemistry and Biochemistry and of Bioengineering, University of California , Los Angeles California 90095, United States
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
20
|
|
21
|
Abstract
![]()
Molecular imaging holds considerable promise for elucidating biological
processes in normal physiology as well as disease states, by determining
the location and relative concentration of specific molecules of interest.
Proton-based magnetic resonance imaging (1H MRI) is nonionizing
and provides good spatial resolution for clinical imaging but lacks
sensitivity for imaging low-abundance (i.e., submicromolar) molecular
markers of disease or environments with low proton densities. To address
these limitations, hyperpolarized (hp) 129Xe NMR spectroscopy
and MRI have emerged as attractive complementary methodologies. Hyperpolarized
xenon is nontoxic and can be readily delivered to patients via inhalation
or injection, and improved xenon hyperpolarization technology makes
it feasible to image the lungs and brain for clinical applications. In order to target hp 129Xe to biomolecular targets
of interest, the concept of “xenon biosensing” was first
proposed by a Berkeley team in 2001. The development of xenon biosensors
has since focused on modifying organic host molecules (e.g., cryptophanes)
via diverse conjugation chemistries and has brought about numerous
sensing applications including the detection of peptides, proteins,
oligonucleotides, metal ions, chemical modifications, and enzyme activity.
Moreover, the large (∼300 ppm) chemical shift window for hp 129Xe bound to host molecules in water makes possible the simultaneous
identification of multiple species in solution, that is, multiplexing.
Beyond hyperpolarization, a 106-fold signal enhancement
can be achieved through a technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST), which shows
great potential to meet the sensitivity requirement in many applications. This Account highlights an expanded palette of hyper-CEST biosensors,
which now includes cryptophane and cucurbit[6]uril (CB[6]) small-molecule
hosts, as well as genetically encoded gas vesicles and single proteins.
In 2015, we reported picomolar detection of commercially available
CB[6] via hyper-CEST. Inspired by the versatile host–guest
chemistry of CB[6], our lab and others developed “turn-on”
strategies for CB[6]-hyper-CEST biosensing, demonstrating detection
of protein analytes in complex media and specific chemical events.
CB[6] is starting to be employed for in vivo imaging
applications. We also recently determined that TEM-1 β-lactamase
can function as a single-protein reporter for hyper-CEST and observed
useful saturation contrast for β-lactamase expressed in bacterial
and mammalian cells. These newly developed small-molecule and genetically
encoded xenon biosensors offer significant potential to extend the
scope of hp 129Xe toward molecular MRI.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Yang S, Jiang W, Ren L, Yuan Y, Zhang B, Luo Q, Guo Q, Bouchard LS, Liu M, Zhou X. Biothiol Xenon MRI Sensor Based on Thiol-Addition Reaction. Anal Chem 2016; 88:5835-40. [DOI: 10.1021/acs.analchem.6b00403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shengjun Yang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiping Jiang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lili Ren
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yaping Yuan
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bin Zhang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qing Luo
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qianni Guo
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Louis-S. Bouchard
- Department
of Chemistry and Biochemistry, California NanoSystems Institute, The
Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Zhou
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
23
|
Joseph AI, Lapidus SH, Kane CM, Holman KT. Extreme Confinement of Xenon by Cryptophane-111 in the Solid State. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Joseph AI, Lapidus SH, Kane CM, Holman KT. Extreme Confinement of Xenon by Cryptophane-111 in the Solid State. Angew Chem Int Ed Engl 2014; 54:1471-5. [DOI: 10.1002/anie.201409415] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 11/08/2022]
|
25
|
Larive CK, Barding GA, Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Anal Chem 2014; 87:133-46. [PMID: 25375201 DOI: 10.1021/ac504075g] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cynthia K Larive
- Department of Chemistry, University of California-Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
26
|
Joseph AI, El-Ayle G, Boutin C, Léonce E, Berthault P, Holman KT. Rim-functionalized cryptophane-111 derivatives via heterocapping, and their xenon complexes. Chem Commun (Camb) 2014; 50:15905-8. [DOI: 10.1039/c4cc08001g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rim-functionalization of cryptophane-111 narrows the achievable conformational range of the cage, resulting in unprecedentedly crowded Xe@cryptophane complexes.
Collapse
Affiliation(s)
- Akil I. Joseph
- Department of Chemistry
- Georgetown University
- Washington, USA 20057
| | - Gracia El-Ayle
- Department of Chemistry
- Georgetown University
- Washington, USA 20057
| | - Céline Boutin
- CEA
- IRAMIS
- NIMBE
- Laboratoire Structure et Dynamique par Résonance Magnétique
- UMR CEA/CNRS 3299
| | - Estelle Léonce
- CEA
- IRAMIS
- NIMBE
- Laboratoire Structure et Dynamique par Résonance Magnétique
- UMR CEA/CNRS 3299
| | - Patrick Berthault
- CEA
- IRAMIS
- NIMBE
- Laboratoire Structure et Dynamique par Résonance Magnétique
- UMR CEA/CNRS 3299
| | - K. Travis Holman
- Department of Chemistry
- Georgetown University
- Washington, USA 20057
| |
Collapse
|