1
|
Perera S, Shaurya A, Zeppuhar A, Chen F, Zavalij PY, Gaskell K, Isaacs L. Insoluble Acyclic Cucurbit[n]uril-Type Receptors Capture Iodine from the Vapor Phase. Chemistry 2024; 30:e202403176. [PMID: 39331477 DOI: 10.1002/chem.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/29/2024]
Abstract
Nuclear energy makes large contributions toward meeting global energy needs, but societal concerns remain high given the impacts of the intended release of radioactive materials including 129I and 131I. In this paper we explore the use of a homologous series of acyclic CB[n] type hosts (H1-H4) as adsorbents of iodine from the vapor phase. We find that H2-H4, but not H1 - perform well in this application with uptake capacities of 2.2 g g-1, 1.5 g g-1, and 1.9 g g-1, respectively. The chemisorptive uptake process involves partial oxidation of catechol walled H2 to quinone walled host and capture of I3 - and I5 -. Solid H2 can be regenerated by treatment with Na2S2O4 and reused at least five times. The x-ray crystal structure of H2 is also reported.
Collapse
Affiliation(s)
- Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD, 20742, United States
| | - Alok Shaurya
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD, 20742, United States
| | - Andrea Zeppuhar
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD, 20742, United States
| | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD, 20742, United States
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD, 20742, United States
| | - Karen Gaskell
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD, 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD, 20742, United States
| |
Collapse
|
2
|
Perera S, Shaurya A, Baptiste M, Zavalij PY, Isaacs L. Acyclic Cucurbit[n]uril Receptors Function as Solid State Sequestrants for Organic Micropollutants. Angew Chem Int Ed Engl 2024; 63:e202407169. [PMID: 38661568 DOI: 10.1002/anie.202407169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
The accumulation of organic micropollutants (OMP) in aquatic systems is a major societal problem that can be addressed by approaches including nanofiltration, flocculation, reverse osmosis and adsorptive methods using insoluble materials (e.g. activated carbon, MOFs, nanocomposites). More recently, polymeric versions of supramolecular hosts (e.g. cyclodextrins, calixarenes, pillararenes) have been investigated as OMP sequestrants. Herein, we report our study of the use of water insoluble dimethylcatechol walled acyclic cucurbit[n]uril (CB[n]) hosts as solid state sequestrants for a panel of five OMPs. A series of hosts (H1-H4) were synthesized by reaction of glycoluril oligomer (monomer-tetramer) with 3,6-dimethylcatechol and fully characterized by spectroscopic means and x-ray crystallography. The solid hosts sequester OMPs from water with removal efficiencies exceeding 90 % in some cases. The removal efficiencies of the new hosts parallel the known molecular recognition properties of analogous water soluble acyclic CB[n]. OMP uptake by solid host occurs rapidly (≈120 seconds). Head-to-head comparison with CB[6] in batch-mode separation and DARCO activated carbon in flow-through separation mode show that tetramer derived host (H4) performs very well under identical conditions. The work establishes insoluble acyclic CB[n]-type receptors as a promising new platform for OMP sequestration.
Collapse
Affiliation(s)
- Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Alok Shaurya
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Michael Baptiste
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| |
Collapse
|
3
|
Zhang W, Bazan-Bergamino EA, Doan AP, Zhang X, Isaacs L. Pillar[6]MaxQ functions as an in vivo sequestrant for rocuronium and vecuronium. Chem Commun (Camb) 2024; 60:4350-4353. [PMID: 38546190 DOI: 10.1039/d4cc00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The binding affinity of pillar[6]MaxQ toward a panel of neuromuscular blockers and neurotransmitters was measured in phosphate buffered saline by isothermal titration calorimetry and 1H NMR spectroscopy. In vivo efficacy studies showed that P6MQ sequesters rocuronium and vecuronium and reverses their influence on the recovery of the train-of-four (TOF) ratio.
Collapse
Affiliation(s)
- Wanping Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | | | - Anton P Doan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
4
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
5
|
Wang R, Li WB, Deng JY, Han H, Chen FY, Li DY, Jing LB, Song Z, Fu R, Guo DS, Cai K. Adaptive and Ultrahigh-Affinity Recognition in Water by Sulfated Conjugated Corral[5]arene. Angew Chem Int Ed Engl 2023:e202317402. [PMID: 38078790 DOI: 10.1002/anie.202317402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/29/2023]
Abstract
The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109 M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011 M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108 M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.
Collapse
Affiliation(s)
- Ruiguo Wang
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wen-Bo Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Jia-Ying Deng
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Han Han
- College of Chemistry, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong SAR, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Dai-Yuan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Li-Bo Jing
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Zihang Song
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Rong Fu
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Kang Cai
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| |
Collapse
|
6
|
Li JJ, Rong RX, Yang Y, Hu ZY, Hu B, Zhao YY, Li HB, Hu XY, Wang KR, Guo DS. Triple targeting host-guest drug delivery system based on lactose-modified azocalix[4]arene for tumor ablation. MATERIALS HORIZONS 2023; 10:1689-1696. [PMID: 36825769 DOI: 10.1039/d3mh00018d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Host-guest drug delivery systems (HGDDSs) have been studied in an effort to modify the characteristics of therapeutic agents through noncovalent interactions, reduce toxic side effects and improve therapeutic effects. However, it is still an important task to continuously improve the targeting ability of HGDDSs, which is conducive to the development of precision medicine. Herein, we utilize the lactose-modified azocalix[4]arene (LacAC4A) as a triple targeting drug carrier customized for antitumor purposes. LacAC4A integrates three targeting features, passive targeting through the enhancing permeability and retention effect, active targeting by the interactions of lactose and the asialoglycoprotein receptors on the surface of tumor cells, and stimuli-responsive targeting via the reduction of the azo group under a hypoxia microenvironment. After loading doxorubicin (DOX) in LacAC4A, the supramolecular nanoformulation DOX@LacAC4A clearly showed the effective suppression of tumor growth through in vivo experiments. LacAC4A can achieve effective targeting, rapid release, and improve drug bioavailability. This design principle will provide a new material for drug delivery systems.
Collapse
Affiliation(s)
- Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Rui-Xue Rong
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Yan Yang
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Zong-Ying Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Bing Hu
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Ying-Ying Zhao
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Brockett AT, Xue W, King D, Deng CL, Zhai C, Shuster M, Rastogi S, Briken V, Roesch MR, Isaacs L. Pillar[6]MaxQ: A Potent Supramolecular Host for In Vivo Sequestration of Methamphetamine and Fentanyl. Chem 2023; 9:881-900. [PMID: 37346394 PMCID: PMC10281757 DOI: 10.1016/j.chempr.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[6]MaxQ (P6AS) functions as an in vivo sequestration agent for methamphetamine and fentanyl. We use 1H NMR, isothermal titration calorimetry, and molecular modelling to deduce the geometry and strength of the P6AS•drug complexes. P6AS forms tight complexes with fentanyl (Kd=9.8 nM), PCP (17.1 nM), MDMA (25.5 nM), mephedrone (52.4 nM), and methamphetamine (101 nM). P6AS has good in vitro biocompatibility according to MTS metabolic, Adenylate Kinase cell death, and hERG ion channel inhibition assays, and the Ames fluctuation test. The no observed adverse effect level for P6AS is 45 mg/kg. The hyperlocomotion of mice treated with methamphetamine (0.5 mg/kg) can be ameliorated by treatment with P6AS (35.7 mg/kg) 5-minutes later, whereas the hyperlocomotion of mice treated with fentanyl (0.1 mg/kg) can be controlled by treatment with P6AS (5 mg/kg) up to 15-minutes later. P6AS has significant potential for development as a broad spectrum in vivo sequestration agent.
Collapse
Affiliation(s)
- Adam T. Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Shivangi Rastogi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
8
|
Wichitnithad W, Nantaphol S, Noppakhunsomboon K, Thitikornpong W, Rojsitthisak P. Current status and prospects of development of analytical methods for determining nitrosamine and N-nitroso impurities in pharmaceuticals. Talanta 2023; 254:124102. [PMID: 36470020 DOI: 10.1016/j.talanta.2022.124102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Nitrosamine impurities in pharmaceuticals have recently been concerned for several national regulatory agencies to avoid carcinogenic and mutagenic effects in patients. The demand for highly sensitive and specific analytical methods with LOQs in the ppb and sub-ppb ranges is among the most significant challenges facing analytical scientists. In addition, artifactual nitrosamine formation during sample preparation and injection leading to overestimation of nitrosamines has received considerable attention. Numerous analytical methodologies have been reported for quantifying nitrosamine impurities in active pharmaceutical ingredients and medicinal products at the interim limit criteria as preventive measures. In this review, we meticulously discuss those reported gas and liquid chromatographic methods for nitrosamine determination in pharmaceuticals in aspects of chromatographic conditions and sensitivity of detection. We also introduce the potential of novel fluorescence-based methods recently developed to rapidly screen nitrosamine impurities. In addition, the review assesses the nitrosation assay procedure (NAP test), which is expected to be a future preventive measure for screening potential nitrosation and identifying suspected contamination with N-nitroso or other potential mutagenic impurities during the drug development process.
Collapse
Affiliation(s)
- Wisut Wichitnithad
- Department of Analytical Development, Pharma Nueva Co., Ltd., Bangkok, 10900, Thailand; Department of Clinical Development, Pharma Nueva Co., Ltd., Bangkok, 10900, Thailand
| | - Siriwan Nantaphol
- Department of Clinical Development, Pharma Nueva Co., Ltd., Bangkok, 10900, Thailand
| | | | - Worathat Thitikornpong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Knezevic M, Tiefenbacher K. Tweezer-Based C-H Oxidation Catalysts Overriding the Intrinsic Reactivity of Aliphatic Ammonium Substrates. Chemistry 2023; 29:e202203480. [PMID: 36469523 DOI: 10.1002/chem.202203480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The site-selective C-H oxygenation of alkyl chains as well as deactivated positions remains a great challenge for chemists. Here, we report the synthesis and application of four new supramolecular tweezer-based oxidation catalysts. They consist of the well-explored M(pdp/mcp) oxidation moiety and a molecular tweezer capable of binding ammonium salts. All catalysts display preferential oxidation of the strongly deactivated C3/C4 positions, however to different degrees. Furthermore, the best performing catalyst Fe(pdp)Twe was explored with an expanded substrate scope. It was demonstrated that the deactivated positions C3/C4 are also preferentially oxidized in these cases.
Collapse
Affiliation(s)
- Melina Knezevic
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 24, 4058, Basel, Switzerland
| |
Collapse
|
10
|
King D, Wilson CR, Herron L, Deng CL, Mehdi S, Tiwary P, Hof F, Isaacs L. Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ. Org Biomol Chem 2022; 20:7429-7438. [PMID: 36097881 PMCID: PMC9632254 DOI: 10.1039/d2ob01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.
Collapse
Affiliation(s)
- David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Chelsea R Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lukas Herron
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Shams Mehdi
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
11
|
Al-Otaibi JS, Mary YS, Mary YS, Acharjee N, Churchill DG. Theoretical study of glycoluril by highly symmetrical magnesium oxide Mg 12O 12 nanostructure: adsorption, detection, SERS enhancement, and electrical conductivity study. J Mol Model 2022; 28:332. [PMID: 36163521 DOI: 10.1007/s00894-022-05332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 12/07/2022]
Abstract
Using metal substrates that are nanoscale in size, surface-enhanced Raman scattering (SERS) is a technique for enhancing the Raman signal of biomolecules. Numerous industries including sensing materials, adsorption and medical devices, use nanomaterials like nanocages and nanoclusters. To discover a possible novel sensor platform involving a small metal cluster and a curved rigid substrate, we used density functional theoretical (DFT) simulations to explore the adsorption of glycoluril (GLC), a prospective drug intermediate, on a pure magnesium oxide cage (Mg12O12). This well defined cage was used as (i) an exact probable structure that could be used as well as (ii) a general model for MgO nanostructures. We also investigated the mono Al-doped Mg12O12 nanocage version Mg11AlO12. All computations were performed at the M06-2X level of theory. The GLC binds to the Mg12O12 nanocage by way of strong donor-acceptor interactions. The adsorption is releasing - 45.80 kcal mol-1 of energy. Due to Al doping, the energy gap of GLC-Mg11AlO12 (1.91 eV) is reduced from that of GLC-Mg12O12 (4.28 eV) and hence there is an increase in electrical conductivity of GLC-Mg11AlO12. The electronic change in the nanocage's conductivity can be transformed into an electrical signal which can be used to detect the presence of the drug analyte. In addition, when a GLC molecule is present, the work function of the nanocage is also reduced. The MgO nanocage, we conclude, is a work function type as well as a possible electronic sensor for GLC drug detection. GLC desorption from the Mg11AlO12 surface recovers more quickly in comparison with Mg12O12 recovery time. The AIM and NCIs assessed in this study were performed to help analyze the electronic structures of the complexes. Our findings pave the possibility for Mg11AlO12 nanostructures to be used in drug recognition.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | | | | | - Nivedita Acharjee
- Department of Chemistry, Durgapur Government College, District-Paschim Bardhaman, Durgapur, West Bengal, India
| | - David G Churchill
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. .,Therapeutic Bioengineering Section, KAIST Institute for Health Science and Technology (KIHST), Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity
Nor
‐
Seco
‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022; 61:e202207209. [DOI: 10.1002/anie.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Ran Cen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Jisen Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Qing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland, College Park College Park MD 20742 USA
| |
Collapse
|
13
|
Zhai C, Isaacs L. New Synthetic Route to Water‐Soluble Prism[5]arene Hosts and Their Molecular Recognition Properties**. Chemistry 2022; 28:e202201743. [DOI: 10.1002/chem.202201743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Canjia Zhai
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| |
Collapse
|
14
|
Synthesis of Glycoluril Dimers with the Ability to Form Polymeric Self-Associates in Water. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Supramolecular self-assembly in water resulting in polymeric structures is emerging because of its potential in the preparation of adaptive materials with applications in biology and medicine. Here, we report the first example of host molecules based on glycoluril dimers, which self-associate into linear oligomers in water. The degree of polymerization for the resulting supramolecular aggregates was calculated using the isodesmic model and the Carothers equation. The model compound was prepared to enable a deeper understanding of the forces responsible for the self-association of the glycoluril dimer-based monomers in water.
Collapse
|
15
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity Nor‐Seco‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Liu
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Ran Cen
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Jisen Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Qing Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Zhu Tao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Xin Xiao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Lyle Isaacs
- University of Maryland at College Park Department of Chemistry and Biochemistry Building 091 20742 College Park UNITED STATES
| |
Collapse
|
16
|
DiMaggio D, Brockett AT, Shuster M, Murkli S, Zhai C, King D, O'Dowd B, Cheng M, Brady K, Briken V, Roesch MR, Isaacs L. Anthracene-Walled Acyclic CB[n] Receptors: in vitro and in vivo Binding Properties toward Drugs of Abuse. ChemMedChem 2022; 17:e202200046. [PMID: 35238177 PMCID: PMC9119912 DOI: 10.1002/cmdc.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Indexed: 11/07/2022]
Abstract
We report studies of the interaction of six acyclic CB[n]-type receptors toward a panel of drugs of abuse by a combination of isothermal titration calorimetry and 1 H NMR spectroscopy. Anthracene walled acyclic CB[n] host (M3) displays highest binding affinity toward methamphetamine (Kd =15 nM) and fentanyl (Kd =4 nM). Host M3 is well tolerated by Hep G2 and HEK 293 cells up to 100 μM according to MTS metabolic and adenylate kinase release assays. An in vivo maximum tolerated dose study with Swiss Webster mice showed no adverse effects at the highest dose studied (44.7 mg kg-1 ). Host M3 is not mutagenic based on the Ames fluctuation test and does not inhibit the hERG ion channel. In vivo efficacy studies showed that pretreatment of mice with M3 significantly reduces the hyperlocomotion after treatment with methamphetamine, but M3 does not function similarly when administered 30 seconds after methamphetamine.
Collapse
Affiliation(s)
- Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Brona O'Dowd
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Kimberly Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
17
|
Kubik S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022; 11:e202200028. [PMID: 35373466 PMCID: PMC8977507 DOI: 10.1002/open.202200028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Molecular recognition processes in water differ from those in organic solvents in that they are mediated to a much greater extent by solvent effects. The hydrophobic effect, for example, causes molecules that only weakly interact in organic solvents to stay together in water. Such water-mediated interactions can be very efficient as demonstrated by many of the synthetic receptors discussed in this review, some of which have substrate affinities matching or even surpassing those of natural binders. However, in spite of considerable success in designing such receptors, not all factors determining their binding properties in water are fully understood. Existing concepts still provide plausible explanations why the reorganization of water molecules often causes receptor-substrate interactions in water to be strongly exothermic rather than entropically favored as predicted by the classical view of the hydrophobic effect.
Collapse
Affiliation(s)
- Stefan Kubik
- Technische Universität KaiserslauternFachbereich Chemie – Organische ChemieErwin-Schrödinger-Straße 5467663KaiserslauternGermany
| |
Collapse
|
18
|
Supramolecular self-assembly based on Cucurbit[8]urils with sulfanilamide and sulfamethoxazole. J CHEM SCI 2022. [DOI: 10.1007/s12039-021-02017-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Deng CL, Cheng M, Zavalij PY, Isaacs L. Thermodynamics of Pillararene•Guest Complexation: Blinded Dataset for the SAMPL9 Challenge. NEW J CHEM 2022; 46:995-1002. [PMID: 35250257 PMCID: PMC8896905 DOI: 10.1039/d1nj05209h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report an investigation of the complexation between a water soluble pillararene host (WP6) and a panel of hydrophobic cationic guests (G1 - G20) by a combination of 1H NMR spectroscopy and isothermal titration calorimetry in phosphate buffered saline. We find that WP6 forms 1:1 complexes with Ka values in the 104 - 109 M-1 range driven by favorable enthalpic contributions. This thermodynamic dataset serves as blinded data for the SAMPL9 challenge.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
20
|
Brockett AT, Deng C, Shuster M, Perera S, DiMaggio D, Cheng M, Murkli S, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Methamphetamine by a Sulfated Acyclic CB[n]-Type Receptor. Chemistry 2021; 27:17476-17486. [PMID: 34613641 PMCID: PMC8665056 DOI: 10.1002/chem.202102919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/26/2023]
Abstract
We report the synthesis of two new acyclic sulfated acyclic CB[n]-type receptors (TriM0 and Me4 TetM0) and investigations of their binding properties toward a panel of drugs of abuse (1-13) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry. TetM0 is the most potent receptor with Ka ≥106 M-1 toward methamphetamine, fentanyl, MDMA and mephedrone. TetM0 is not cytotoxic toward HepG2 and HEK 293 cells below 100 μM according to MTS metabolic and adenylate kinase release assays and is well tolerated in vivo when dosed at 46 mg kg-1 . TetM0 does not inhibit the hERG ion channel and is not mutagenic based on the Ames fluctuation test. Finally, in vivo efficacy studies show that the hyperlocomotion of mice treated with methamphetamine can be greatly reduced by treatment with TetM0 up to 5 minutes later. TetM0 has potential as a broad spectrum in vivo sequestrant for drugs of abuse.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Chunlin Deng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| |
Collapse
|
21
|
Finnegan TJ, Gunawardana VWL, Badjić JD. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry 2021; 27:13280-13305. [PMID: 34185362 PMCID: PMC8453132 DOI: 10.1002/chem.202101532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Nerve agents are tetrahedral organophosphorus compounds (OPs) that were developed in the last century to irreversibly inhibit acetylcholinesterase (AChE) and therefore impede neurological signaling in living organisms. Exposure to OPs leads to a rapid development of symptoms from excessive salivation, nasal congestion and chest pain to convulsion and asphyxiation which if left untreated may lead to death. These potent toxins are prepared on a large scale from inexpensive staring materials, making it feasible for terrorist groups or states to use them against military and civilians. The existing antidotes provide limited protection and are difficult to apply to a large number of affected individuals. While new prophylactics are currently being developed, there is still need for therapeutics capable of both preventing and reversing the effects of OP poisoning. In this review, we describe how the science of molecular recognition can expand the pallet of tools for rapid and safe sequestration of nerve agents.
Collapse
Affiliation(s)
- Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | | | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| |
Collapse
|
22
|
Cheng M, Isaacs L. Acyclic Cucurbituril Featuring Pendant Cyclodextrins. Supramol Chem 2021; 33:53-62. [PMID: 34305377 PMCID: PMC8294166 DOI: 10.1080/10610278.2021.1927033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
We report the design and synthesis of the acyclic cucurbit[n]uril-β-cyclodextrin chimeric host H1. The goal of the study is to deepen the cavity of the receptor to allow β-CD complexation of moieties on the guest (especially fentanyl) that protrude from the cavity of the primary acyclic CB[n] binding site to enhance binding affinity and deliver new supramolecular antidotes for fentanyl intoxication. 1H NMR spectroscopy was used to deduce the geometry of the complexes between H1 and H2 and the guest panel (G1 - G8 and fentanyl) whereas isothermal titration calorimetry was used to determine the thermodynamic parameters of complexation. Hosts H1 and H2 retain the essential molecular recognition features of CB[n] receptors, but chimeric host H1 binds slightly stronger toward the guest panel than H2 for reasons that remain unclear. Compared to tetraanionic hosts M1 and M2, the dianionic hosts H1 and H2 are less potent receptors which reflects the importance of electrostatic (ion-ion and ion-dipole) interactions in this series of hosts. The work highlights the challenges inherent in the optimization of binding affinity of hosts as potential supramolecular antidotes.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
23
|
Hassan DS, De Los Santos ZA, Brady KG, Murkli S, Isaacs L, Wolf C. Chiroptical sensing of amino acids, amines, amino alcohols, alcohols and terpenes with π-extended acyclic cucurbiturils. Org Biomol Chem 2021; 19:4248-4253. [PMID: 33885685 DOI: 10.1039/d1ob00345c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficiency and scope of two acyclic π-wall extended cucurbiturils, M2 and M3, exhibiting rapidly interconverting helical conformers for chiroptical sensing of amines, amino acids, alcohols, and terpenes at micromolar concentrations in water is evaluated. The formation of 1 : 1 host-guest complexes results in spontaneous induction of circular dichroism signals that can be used for accurate determination of the absolute configuration and enantiomeric composition of the analyte based on a simple mix-and-measure protocol.
Collapse
Affiliation(s)
- Diandra S Hassan
- Chemistry Department, Georgetown University, Washington, DC 20057, USA.
| | | | - Kimberly G Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
24
|
Host−guest inclusion systems of nicotine with acyclic cucurbit[n]urils for controlled heat releases. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Heilmann M, Knezevic M, Piccini G, Tiefenbacher K. Understanding the binding properties of phosphorylated glycoluril-derived molecular tweezers and selective nanomolar binding of natural polyamines in aqueous solution. Org Biomol Chem 2021; 19:3628-3633. [PMID: 33908553 DOI: 10.1039/d1ob00379h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular synthetic platform for the construction of flexible glycoluril-derived molecular tweezers was developed. The binding properties of four exemplary supramolecular hosts obtained via this approach towards 16 organic amines were investigated by means of 1H NMR titration. In this work, we compare the Ka values obtained this way with those of three structurally related molecular tweezers and provide a computational approach towards an explanation of the observed behavior of those novel hosts. The results showcase that certain structural modifications lead to very potent and selective binders of natural polyamines, with observed binding of spermine below 10 nM.
Collapse
Affiliation(s)
- Michael Heilmann
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Melina Knezevic
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - GiovanniMaria Piccini
- ETH Zurich, Department of Chemistry and Applied Biosciences, c/o USI campus, Via Guiseppe Buffi 13, 6900 Lugano, Switzerland
| | - Konrad Tiefenbacher
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058 Basel, Switzerland. and ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
26
|
Murkli S, Klemm J, Brockett AT, Shuster M, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Phencyclidine by Me 4 Cucurbit[8]uril*. Chemistry 2021; 27:3098-3105. [PMID: 33206421 PMCID: PMC7902406 DOI: 10.1002/chem.202004380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We report investigations of the use of cucurbit[8]uril (CB[8]) macrocycles as an antidote to counteract the in vivo biological effects of phencyclidine. We investigate the binding of CB[8] and its derivative Me4 CB[8] toward ten drugs of abuse (3-9, 12-14) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry in phosphate buffered water. We find that the cavity of CB[8] and Me4 CB[8] are able to encapsulate the 1-amino-1-aryl-cyclohexane ring system of phencyclidine (PCP) and ketamine as well as the morphinan skeleton of morphine and hydromorphone with Kd values ≤50 nm. In vitro cytotoxicity (MTS metabolic and adenylate kinase cell death assays in HEK293 and HEPG2 cells) and in vivo maximum tolerated dose studies (Swiss Webster mice) which were performed for Me4 CB[8] indicated good tolerability. The tightest host⋅guest pair (Me4 CB[8]⋅PCP; Kd =2 nm) was advanced to in vivo efficacy studies. The results of open field tests demonstrate that pretreatment of mice with Me4 CB[8] prevents subsequent hyperlocomotion induction by PCP and also that treatment of animals previously dosed with PCP with Me4 CB[8] significantly reduces the locomotion levels.
Collapse
Affiliation(s)
- Steven Murkli
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Jared Klemm
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Adam T. Brockett
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Department of Psychology, University of Maryland, College Park, MD 20742, United States
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Mr. Michael Shuster, Prof. Dr. Volker Briken, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Mr. Michael Shuster, Prof. Dr. Volker Briken, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Department of Psychology, University of Maryland, College Park, MD 20742, United States
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
27
|
Xiao S, Jin LY, Wang JP, Sun GY. The mechanism of the selective binding ability between opiate metabolites and acyclic cucurbit[4]uril: an MD/DFT study. Phys Chem Chem Phys 2021; 23:2186-2192. [PMID: 33438686 DOI: 10.1039/d0cp05728b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Subtle changes in molecular structure often lead to significant differences in host-guest interactions, which result in different host-guest recognition capabilities and dynamics behaviours in complex formation. Herein, we reveal the influence of the guest substituents on host-guest molecular recognition by molecular dynamics (MD) simulation and density functional theory (DFT) approaches. The results suggest that the binding energy barrier of acyclic cucurbit[4]uril (ACB[4]) with opiate metabolites gradually decreases. The methyl group in morphine (MOR) and morphine-3-glucuronide (M3G) strengthens the hydrophobicity of the guest, while depressing the energy loss of the desolvation of polar groups (e.g. hydroxyl) inside the ACB[4] cavity. However, in M3G, the 3-glucuronide group located outside the ACB[4] host cavity effectively alleviates the unfavourable desolvation effect of the hydroxyl and increases the binding constant by two orders of magnitude (compared with normorphine (NMOR)). Our findings stressed the essentiality of the binding mode and intermolecular noncovalent interactions in the host-guest selective binding ability.
Collapse
Affiliation(s)
- Song Xiao
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, China.
| | | | | | | |
Collapse
|
28
|
Niu X, Yang X, Li H, Liu J, Liu Z, Wang K. Application of chiral materials in electrochemical sensors. Mikrochim Acta 2020; 187:676. [DOI: 10.1007/s00604-020-04646-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/15/2020] [Indexed: 01/02/2023]
|
29
|
Murkli S, Klemm J, King D, Zavalij PY, Isaacs L. Acyclic Cucurbit[n]uril-Type Receptors: Aromatic Wall Extension Enhances Binding Affinity, Delivers Helical Chirality, and Enables Fluorescence Sensing. Chemistry 2020; 26:15249-15258. [PMID: 32658342 PMCID: PMC7704778 DOI: 10.1002/chem.202002874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/30/2022]
Abstract
We report the linear extension from M1 to M2 to anthracene walled M3 which adopts a helical conformation (X-ray) to avoid unfavorable interactions between sidewalls. M3 is water soluble (=30 mm) and displays enhanced optical properties (ϵ=1.28×105 m-1 cm-1 , λmax =370 nm) relative to M2. The binding properties of M3 toward guests 1-29 were examined by 1 H NMR and ITC. The M3⋅guest complexes are stronger than the analogous complexes of M2 and M1. The enhanced binding of M3 toward neuromuscular blockers 25, 27-29 suggests that M3 holds significant promise as an in vivo reversal agent. The changes in fluorescence observed for M3⋅guest complexes are a function of the relative orientation of the anthracene sidewalls, guest concentration, Ka , and guest electronics which rendered M3 a superb component of a fluorescence sensing array. The work establishes M3 as a next generation sequestering agent and a versatile component of fluorescence sensors.
Collapse
Affiliation(s)
- Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Jared Klemm
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
30
|
Deng CL, Murkli SL, Isaacs LD. Supramolecular hosts as in vivo sequestration agents for pharmaceuticals and toxins. Chem Soc Rev 2020; 49:7516-7532. [PMID: 33043945 PMCID: PMC7606718 DOI: 10.1039/d0cs00454e] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pharmaceutical agents, drugs of abuse, and toxic substances have a large impact, positive and negative, on modern society. Efforts to mitigate the side effects of pharmaceuticals and counteract the life threatening effects of drugs of abuse and toxins can occur either by pharmacodynamic (PD) approaches based on bioreceptor·drug antagonism or by pharmacokinetic (PK) approaches that seek to reduce the concentration of free drug. In this tutorial review, we present the use of supramolecular hosts (cyclodextrins, calixarenes, (acyclic) cucurbiturils, and pillararenes) as in vivo sequestration agents for neuromuscular blockers, drugs of abuse (methamphetamine and fentanyl), anesthetics, neurotoxins, the pesticide paraquat, and heparin anti-coagulants by the PK approach. The review presents the basic physical and molecular recognition features of the supramolecular hosts and some of the principles used in their selection and structural optimization for in vivo sequestration applications. The influence of host·guest complexation on other relevant in vivo properties of drugs (e.g. distribution, circulation time, excretion, redox properties) is also mentioned. The article concludes with a discussion of future directions.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
31
|
Mutihac RC, Bunaciu AA, Buschmann HJ, Mutihac L. A brief overview on supramolecular analytical chemistry of cucurbit[n]urils and hemicucurbit[n]urils. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Xue W, Zavalij PY, Isaacs L. Pillar[n]MaxQ: A New High Affinity Host Family for Sequestration in Water. Angew Chem Int Ed Engl 2020; 59:13313-13319. [PMID: 32413198 PMCID: PMC7487980 DOI: 10.1002/anie.202005902] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/11/2022]
Abstract
We report the synthesis, X-ray crystal structure, and molecular recognition properties of pillar[n]arene derivative P[6]AS, which we refer to as Pillar[6]MaxQ along with analogues P[5]AS and P[7]AS toward guests 1-18. The ultratight binding affinity of P[5]AS and P[6]AS toward quaternary (di)ammonium ions renders them prime candidates for in vitro and in vivo non-covalent bioconjugation, for imaging and delivery applications, and as in vivo sequestration agents.
Collapse
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
33
|
Knezevic M, Heilmann M, Piccini GM, Tiefenbacher K. Überwindung der intrinsischen Reaktivität bei aliphatischer C‐H‐Oxidation: Bevorzugte C3/C4‐Oxidation von aliphatischen Ammoniumsubstraten. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Melina Knezevic
- Departement Chemie Universität Basel Mattenstrasse 24a 4058 Basel Schweiz
| | - Michael Heilmann
- Departement Chemie Universität Basel Mattenstrasse 24a 4058 Basel Schweiz
| | - Giovanni Maria Piccini
- Departement Chemie und Angewandte Biowissenschaften ETH Zürich c/o USI Campus, Via Giuseppe Buffi 13 CH-6900 Lugano Schweiz
- Facoltàdi Informatica Istituto di Scienze Computazionali Universitàdella SvizzeraItaliana (USI) Via Giuseppe Buffi 13 CH-6900 Lugano Schweiz
| | - Konrad Tiefenbacher
- Departement Chemie Universität Basel Mattenstrasse 24a 4058 Basel Schweiz
- Departement Biosysteme ETH Zürich Mattenstrasse 24 4058 Basel Schweiz
| |
Collapse
|
34
|
Andrae B, Bauer D, Gaß P, Koller M, Worek F, Kubik S. Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Org Biomol Chem 2020; 18:5218-5227. [PMID: 32602497 DOI: 10.1039/d0ob01167c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly toxic nerve agent VX is a methylphosphonothioate that degrades via three pathways in aqueous solution, namely through the hydrolysis of the P-O or P-S bonds, or the cleavage of the C-S bond at the 2-aminoethyl residue. In the latter case, an aziridinium ion and a phosphonothioate is formed. Here it is shown that acyclic or cyclic cucurbiturils inhibit these reactions in phosphate buffer at physiological pH and thus stabilise the nerve agent. When using unbuffered basic solutions as the reaction medium, however, in which the P-S or P-O bonds are normally hydrolysed preferentially, cucurbiturils turned out to strongly shift VX degradation towards the cleavage of the C-S bond. Cucurbit[7]uril, in particular, has a so pronounced effect under suitable conditions that it almost completely suppresses the formation of products resulting from the other degradation pathways. Investigations involving VX analogues in combination with computational methods suggest that one reason for the reaction control exerted by the cucurbiturils is the preorganisation of VX for aziridinium ion formation. In addition, cucurbit[7]uril also lowers the transition state of the reaction by stabilising the positive charge developing on the way to the product. Cucurbiturils thus have a marked effect on the reactivity of a highly toxic nerve agent, which potentially allows using them for decontamination purposes.
Collapse
Affiliation(s)
- Beatrice Andrae
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| | - Daniel Bauer
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| | - Patrick Gaß
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| | - Marianne Koller
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Franz Worek
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| |
Collapse
|
35
|
Knezevic M, Heilmann M, Piccini GM, Tiefenbacher K. Overriding Intrinsic Reactivity in Aliphatic C−H Oxidation: Preferential C3/C4 Oxidation of Aliphatic Ammonium Substrates. Angew Chem Int Ed Engl 2020; 59:12387-12391. [DOI: 10.1002/anie.202004242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/20/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Melina Knezevic
- Department of Chemistry University of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Michael Heilmann
- Department of Chemistry University of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Giovanni Maria Piccini
- Department of Chemistry and Applied Biosciences ETH Zurich c/o USI Campus, Via Giuseppe Buffi 13 CH-6900 Lugano Switzerland
- Facoltàdi Informatica Istituto di Scienze Computazionali Universitàdella SvizzeraItaliana (USI) Via Giuseppe Buffi 13 CH-6900 Lugano Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry University of Basel Mattenstrasse 24a 4058 Basel Switzerland
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 24 4058 Basel Switzerland
| |
Collapse
|
36
|
Lu X, Zebaze Ndendjio SA, Zavalij PY, Isaacs L. Acyclic Cucurbit[ n]uril-Type Receptors: Optimization of Electrostatic Interactions for Dicationic Guests. Org Lett 2020; 22:4833-4837. [PMID: 32520574 PMCID: PMC7576436 DOI: 10.1021/acs.orglett.0c01637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis of acyclic CB[n]-type host (1) is reported. By optimizing the placement of the sulfate groups nearby the electrostatically negative ureidyl C═O portals, the binding affinity of this class of receptors toward hydrophobic (di)ammonium guest molecules (5-23) is maximized. The X-ray crystal structures of 1·6a and 1·6d are reported.
Collapse
Affiliation(s)
- Xiaoyong Lu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sandra A Zebaze Ndendjio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
37
|
Xue W, Zavalij PY, Isaacs L. Pillar[
n
]MaxQ: A New High Affinity Host Family for Sequestration in Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Peter Y. Zavalij
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
38
|
Brady KG, Gilberg L, Sigwalt D, Bistany-Riebman J, Murkli S, Klemm J, Kulhánek P, Šindelář V, Isaacs L. Conformationally Mobile Acyclic Cucurbit[n]uril-Type Receptors Derived from an S-shaped Methylene Bridged Glycoluril Pentamer. Supramol Chem 2020; 32:479-494. [PMID: 33731981 DOI: 10.1080/10610278.2020.1795173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report the synthesis of the conformationally mobile S-shaped glycoluril pentamer building block 3a and two new acyclic CB[n]-type receptors P1 and P2. P1 (9 mM) and P2 (11 mM) have moderate aqueous solubility but their host•guest complexes are poorly soluble. Host P1 does not undergo intermolecular self-association whereas P2 does (Ks = 189±27 M-1). 1H NMR titrations show that P1 and P2 are poor hosts toward hydrophobic (di)cations 6 - 11 (P1: Ka = 375-1400 M-1; P2: Ka = 1950-19800 M-1) compared to Tet1 and Tet2 (Tet1: Ka = 3.09 × 106 to 4.69 × 108 M-1; Tet2: Ka = 4.59 × 108 to 1.30 × 1010 M-1). Molecular modelling shows that P1 and P2 exist as a mixture of three different conformers due to the two S-shaped methylene bridged glycoluril dimer subunits that each possess two different conformations. The lowest energy conformers of P1 and P2 do not feature a well-defined central cavity. In the presence of guests, P2 adapts its conformation to form 1:1 P2•guest complexes; the binding free energy pays the energetic price of conformer selection. This energetically unfavorable conformer selection results in significantly decreased Ka values of P1 and P2 compared to Tet1 and Tet2.
Collapse
Affiliation(s)
- Kimberly G Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Laura Gilberg
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Sigwalt
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Joshua Bistany-Riebman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jared Klemm
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
39
|
Ndendjio SZ, Liu W, Yvanez N, Meng Z, Zavalij PY, Isaacs L. Triptycene Walled Glycoluril Trimer: Synthesis and Recognition Properties. NEW J CHEM 2019; 44:338-345. [PMID: 33867799 DOI: 10.1039/c9nj05336k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the synthesis of a new acyclic CB[n]-type host (1) that features a central glycoluril trimer capped by triptycene sidewalls. Host 1 has good solubility in water (≈ 3 mM) and does not undergo strong self-association (Ks = 480 M-1). We probed the geometry of the complexes by analyzing the complexation induced changes in the 1H NMR spectra and measured the complexation thermodynamics by isothermal titration calorimetry. The conformation of 1 and its packing in the solid state was revealed by single crystal x-ray diffraction measurements.
Collapse
Affiliation(s)
- Sandra Zebaze Ndendjio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Wenjin Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.,School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | - Nicolas Yvanez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.,École Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, F75231 Paris cedex 05, France
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
40
|
Heilmann M, Tiefenbacher K. A Modular Phosphorylated Glycoluril-Derived Molecular Tweezer for Potent Binding of Aliphatic Diamines. Chemistry 2019; 25:12900-12904. [PMID: 31348566 DOI: 10.1002/chem.201902556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/15/2019] [Indexed: 12/16/2022]
Abstract
A molecular tweezer based on a glycoluril-derived framework bearing four phosphate groups was synthesized and shown to be capable of binding organic amines in aqueous solution. This work reports the Ka values for 30 complexes of this molecular tweezer and amine guests, determined by means of 1 H NMR titrations. Both the hydrophobic cavity and the phosphate groups contribute to the binding. Bulkier molecules and molecules bearing negatively charged groups like carboxylates in amino acids bind less tightly due to a steric clash and coulombic repulsion. The narrow cavity and the strong ionic interactions of the phosphate groups with ammonium guests favor binding of aliphatic diamines. These binding properties clearly distinguish this system from structurally related molecular clips and tweezers.
Collapse
Affiliation(s)
- Michael Heilmann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland.,Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
41
|
Leonhard AC, Whitmer JK. Accurate Determination of Cavitand Binding Free Energies via Unrestrained Advanced Sampling. J Chem Theory Comput 2019; 15:5761-5768. [DOI: 10.1021/acs.jctc.9b00348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anne C. Leonhard
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan K. Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
42
|
Das D, Assaf KI, Nau WM. Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology. Front Chem 2019; 7:619. [PMID: 31572710 PMCID: PMC6753627 DOI: 10.3389/fchem.2019.00619] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/28/2019] [Indexed: 02/02/2023] Open
Abstract
The supramolecular chemistry of cucurbit[n]urils (CBn) has been rapidly developing to encompass diverse medicinal applications, including drug formulation and delivery, controlled drug release, and sensing for bioanalytical purposes. This is made possible by their unique recognition properties and very low cytotoxicity. In this review, we summarize the host-guest complexation of biologically important molecules with CBn, and highlight their implementation in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Khaleel I. Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
43
|
Xue W, Zavalij PY, Isaacs L. Triazole functionalized acyclic cucurbit[n]uril-type receptors: host·guest recognition properties. Org Biomol Chem 2019; 17:5561-5569. [PMID: 31112196 PMCID: PMC6572757 DOI: 10.1039/c9ob00906j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the synthesis of three new triazole functionalized acyclic CB[n]-type receptors (2-4) by click chemistry. The compounds have good solubility in water (≥8 mM) and do not undergo strong self-association (Ks ≤ 903 M-1). We measured the binding constants of 2-4 toward guests 9-24 and compared the results to those obtained for the prototypical acyclic CB[n]-type receptor 1. The X-ray crystal structure of 4 is also described.
Collapse
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
44
|
Liu W, Lu X, Meng Z, Isaacs L. A glycoluril dimer-triptycene hybrid receptor: synthesis and molecular recognition properties. Org Biomol Chem 2019; 16:6499-6506. [PMID: 30155536 DOI: 10.1039/c8ob01575a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The strategic combination of the methylene bridged glycoluril dimer and triptycene skeletons delivers acyclic water soluble hybrid receptor 1 which is analogous to cucurbit[6]uril. The molecular recognition properties of host 1 toward hydrophobic cationic guests are investigated in detail by a combination of 1H NMR spectroscopy and isothermal titration calorimetry (ITC) studies. The fluorescence emission of 1 can be selectively and efficiently quenched upon the formation of 1·26 and 1·28 complexes.
Collapse
Affiliation(s)
- Wenjin Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | | | | | | |
Collapse
|
45
|
Zhang B, Dong Y, Li J, Yu Y, Li C, Cao L. Pseudo[
n
,
m
]rotaxanes of Cucurbit[7/8]uril and Viologen‐Naphthalene Derivative: A Precise Definition of Rotaxane. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Beilin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Yunhong Dong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Jie Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Chenyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| |
Collapse
|
46
|
Miskolczy Z, Megyesi M, Toke O, Biczók L. Change of the kinetics of inclusion in cucurbit[7]uril upon hydrogenation and methylation of palmatine. Phys Chem Chem Phys 2019; 21:4912-4919. [DOI: 10.1039/c8cp07231k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The negative activation entropy of tetrahydropalmatine inclusion makes the entry into cucurbit[7]uril significantly slower than in the case of dehydrocorydaline.
Collapse
Affiliation(s)
- Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| | - Mónika Megyesi
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| | - Orsolya Toke
- Laboratory for NMR Spectroscopy
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| |
Collapse
|
47
|
Bauer D, Andrae B, Gaß P, Trenz D, Becker S, Kubik S. Functionalisable acyclic cucurbiturils. Org Chem Front 2019. [DOI: 10.1039/c9qo00156e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Functionalised acyclic cucurbiturils can be prepared in a straightforward fashion and provide access to a wide variety of substituted derivatives.
Collapse
Affiliation(s)
- Daniel Bauer
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- 67663 Kaiserslautern
- Germany
| | - Beatrice Andrae
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- 67663 Kaiserslautern
- Germany
| | - Patrick Gaß
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- 67663 Kaiserslautern
- Germany
| | - Danjano Trenz
- Organic Chemistry II
- Saarland University
- 66123 Saarbrücken
- Germany
| | - Sabine Becker
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Anorganische Chemie
- 67663 Kaiserslautern
- Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- 67663 Kaiserslautern
- Germany
| |
Collapse
|
48
|
Abstract
Two acyclic CB[n]-type hosts (1 and 2) which possess four 2° or 3° amide arms are reported; 1 and 2 are slightly soluble in water and do not self-associate. Host 2 has four 3° amide arms that exist as a mixture of E- and Z-isomers. 1H NMR was used to qualitatively investigate the binding properties of 1 and 2 which indicates they retain the essential binding features of macrocyclic CB[n] hosts (e.g. cavity binding of hydrophobic residues and portal binding of cationic groups). We measured the Ka values of 1 and 2 toward guests 6 - 12, methamphetamine, and fentanyl by ITC to evaluate their potential as in vivo sequestration agents. Neutral hosts 1 and 2 bind less tightly than tetraanionic hosts M1, ACB1, and ACB2. We attribute the lower Ka values to the absence of secondary ion-ion (ammonium•••sulfonate or ammonium•••carboxylate) electrostatic interactions for host•guest complexes of 1 and 2. The secondary amide functionality on 1 decreases affinity by formation of intramolecular NH•••O=C H-bonds. Tertiary amide host 2 binds even more weakly than 1 due to backfolding of the amide N-CH3-groups of 2 into its own cavity. The x-ray crystal structure of 2 supports this conclusion.
Collapse
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
49
|
Liu W, Ai H, Meng Z, Isaacs L, Xu Z, Xue M, Yan Q. Interactions between acyclic CB[n]-type receptors and nitrated explosive materials. Chem Commun (Camb) 2019; 55:10635-10638. [PMID: 31429448 DOI: 10.1039/c9cc05117a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding ability of acyclic CB[n]-type receptors M1, M2 and macrocyclic CB[7] toward explosive materials was investigated. Acyclic M2 demonstrates an overall better binding and solubilizing ability, and lower fluorescence in the presence of aromatic explosive compounds, suggesting its future application for the detection of harmful explosive materials.
Collapse
Affiliation(s)
- Wenjin Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu W, Lu X, Xue W, Samanta SK, Zavalij PY, Meng Z, Isaacs L. Hybrid Molecular Container Based on Glycoluril and Triptycene: Synthesis, Binding Properties, and Triggered Release. Chemistry 2018; 24:14101-14110. [PMID: 30044903 DOI: 10.1002/chem.201802981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Indexed: 12/11/2022]
Abstract
We designed and synthesized a "hybrid" molecular container 1, which is structurally related to both cucurbit[n]uril (CB[n]) and pillar[n]arene type receptors. Receptor 1 was fully characterized by 1 H NMR, 13 C NMR, IR, MS and X-ray single crystal diffraction. The self-association behavior, host-guest recognition properties of 1, and the [salt] dependence of Ka were investigated in detail by 1 H NMR and isothermal titration calorimetry (ITC). Optical transmittance and TEM measurements provide strong evidence that receptor 1 undergoes co-assemble with amphiphilic guest C10 in water to form supramolecular bilayer vesicles (diameter 25.6±2.7 nm, wall thickness ≈3.5 nm) that can encapsulate the hydrophilic anticancer drug doxorubicin (DOX) and the hydrophobic dye Nile red (NR). The release of encapsulated DOX or NR from the vesicles can be triggered by hexamethonium (8 c) or spermine (10) which leads to the disruption of the supramolecular vesicles.
Collapse
Affiliation(s)
- Wenjin Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, P.R. China.,Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Xiaoyong Lu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Soumen K Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, P.R. China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|