1
|
Ishimoto CK, Paulino BN, Neri-Numa IA, Bicas JL. The blue palette of life: A comprehensive review of natural bluish colorants with potential commercial applications. Food Res Int 2024; 196:115082. [PMID: 39614567 DOI: 10.1016/j.foodres.2024.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 12/01/2024]
Abstract
Considering the growing interest for safer, environmentally friendly and healthier products, the search for natural colorants to replace their synthetic has been raised. This is particularly challenging for the rare and usually unstable bluish coloring substances. This comprehensive review describes several bluish pigments which can be obtained from natural sources (plants and mostly microorganisms), covering less known molecules to well established compounds (although no focus is given for anthocyanins). Key information about each compound, including sources, extraction procedures, properties, and potential applications, are presented. Despite many studies on these molecules, toxicological and stability studies are still lacking for many of them. Therefore, this text also discusses the regulatory requirements for approving new coloring substances. Given the increasing robustness of scientific data supporting the biological activities attributed to many of these pigments, it is possible to envisage that some of them may be commercially available for industrial applications in different fields, not only in traditional food or cosmetic uses but in pharmaceutical formulations as well.
Collapse
Affiliation(s)
- Caroline Kie Ishimoto
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Bruno Nicolau Paulino
- Department of Bromatological Analysis, Faculty of Pharmacy, Federal University of Bahia (UFBA), 40170-115 Salvador, BA, Brazil
| | - Iramaia Angelica Neri-Numa
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
2
|
Dufault-Thompson K, Levy S, Hall B, Jiang X. Bilirubin reductase shows host-specific associations in animal large intestines. THE ISME JOURNAL 2024; 18:wrae242. [PMID: 39658189 DOI: 10.1093/ismejo/wrae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/12/2024]
Abstract
Animal gastrointestinal tracts contain diverse metabolites, including various host-derived compounds that gut-associated microbes interact with. Here, we explore the diversity and evolution of bilirubin reductase, a bacterial enzyme that metabolizes the host-derived tetrapyrrole bilirubin, performing a key role in the animal heme degradation pathway. Through an analysis of the bilirubin reductase phylogeny and predicted structures, we found that the enzyme family can be divided into three distinct clades with different structural features. Using these clade definitions, we analyzed metagenomic sequencing data from multiple animal species, finding that bilirubin reductase is significantly enriched in the large intestines of animals and that the clades exhibit differences in distribution among animals. Combined with phylogenetic signal analysis, we find that the bilirubin reductase clades exhibit significant associations with specific animals and animal physiological traits like gastrointestinal anatomy and diet. These patterns demonstrate that bilirubin reductase is specifically adapted to the anoxic lower gut environment of animals and that its evolutionary history is complex, involving adaptation to a diverse collection of animals harboring bilirubin-reducing microbes. The findings suggest that bilirubin reductase evolution has been shaped by the host environment, providing a new perspective on heme metabolism in animals and highlighting the importance of the microbiome in animal physiology and evolution.
Collapse
Affiliation(s)
- Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Sophia Levy
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, Maryland 20742, United States
| | - Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, Maryland 20742, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, 8125 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| |
Collapse
|
3
|
Liao TS, Chen CY, Lin CS, Chang CWT, Takemoto JY, Lin YY. Mesobiliverdin IXα-enriched microalgae feed additive eliminates reliance on antibiotic tylosin to promote intestinal health of weaning piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:1368-1375. [PMID: 37539819 DOI: 10.1111/jpn.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Weaning is a critical period in raising pigs. Novel animal feed additives that promote gut health and regulate immune function of piglets without antibiotics are needed. In this study, we aimed to test the ability of mesobiliverdin IXα-enriched microalgae (MBV IXα-enriched microalgae) to eliminate reliance on antibiotics to promote intestinal health in piglets. Eighty 28-day-old weaned piglets were randomly allocated to four groups each with four replicate pens and five piglets per pen. The dietary treatments were a basal diet as control (NC), basal diet plus 0.05% tylosin (PC), basal diet plus 0.1% or 0.5% MBV IXα-enriched microalgae as low (MBV-SP1) or high (MBV-SP2) dose respectively. All treated animals showed no significant differences in live weight, average daily gain and feed efficiency compared to control animals. Histological examination showed that MBV-SP1 and particularly MBV-SP2 increased the ratio of villus height to crypt depth in the jejunum and ileum compared to NC (p < 0.05). Similarly, tylosin treatment also increased villi lengths and the ratio of villus height to crypt depth in the jejunum and ileum compared to the NC (p < 0.05). MBV-SP1 and particularly MBV-SP2 reduced the levels of inflammatory cytokines interleukin-6 and tumour necrosis factor-alpha in the small intestine. MBV-SP2 and tylosin similarly reduced the lipid peroxidation marker (TBARS value) in the duodenum and ileum. In conclusion, feed supplementation with MBV IXα-enriched microalgae improved gut health by villus height and production of immunomodulators that correlated with down-regulated secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Tz-Shian Liao
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Chuan-Shun Lin
- Animal Technology Research Center, Agricultural Technology Research Institute, Miaoli County, Taiwan
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
4
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
5
|
Simpson AC, Eedara VVR, Singh NK, Damle N, Parker CW, Karouia F, Mason CE, Venkateswaran K. Comparative genomic analysis of Cohnella hashimotonis sp. nov. isolated from the International Space Station. Front Microbiol 2023; 14:1166013. [PMID: 37396358 PMCID: PMC10308117 DOI: 10.3389/fmicb.2023.1166013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
A single strain from the family Paenibacillaceae was isolated from the wall behind the Waste Hygiene Compartment aboard the International Space Station (ISS) in April 2018, as part of the Microbial Tracking mission series. This strain was identified as a gram-positive, rod-shaped, oxidase-positive, catalase-negative motile bacterium in the genus Cohnella, designated as F6_2S_P_1T. The 16S sequence of the F6_2S_P_1T strain places it in a clade with C. rhizosphaerae and C. ginsengisoli, which were originally isolated from plant tissue or rhizosphere environments. The closest 16S and gyrB matches to strain F6_2S_P_1T are to C. rhizosphaerae with 98.84 and 93.99% sequence similarity, while a core single-copy gene phylogeny from all publicly available Cohnella genomes places it as more closely related to C. ginsengisoli. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values to any described Cohnella species are <89 and <22%, respectively. The major fatty acids for strain F6_2S_P_1T are anteiso-C15:0 (51.7%), iso-C16:0 (23.1%), and iso-C15:0 (10.5%), and it is able to metabolize a wide range of carbon compounds. Given the results of the ANI and dDDH analyses, this ISS strain is a novel species within the genus Cohnella for which we propose the name Cohnella hashimotonis, with the type strain F6_2S_P_1T (=NRRL B-65657T and DSMZ 115098T). Because no closely related Cohnella genomes were available, this study generated the whole-genome sequences (WGSs) of the type strains for C. rhizosphaerae and C. ginsengisoli. Phylogenetic and pangenomic analysis reveals that F6_2S_P_1T, C. rhizosphaerae, and C. ginsengisoli, along with two uncharacterized Cohnella strains, possess a shared set of 332 gene clusters which are not shared with any other WGS of Cohnella species, and form a distinct clade branching off from C. nanjingensis. Functional traits were predicted for the genomes of strain F6_2S_P_1T and other members of this clade.
Collapse
Affiliation(s)
- Anna C. Simpson
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| | - V. V. Ramprasad Eedara
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nitin K. Singh
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Namita Damle
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Ceth W. Parker
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| | | | - Christopher E. Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| |
Collapse
|
6
|
Lin YY, Takemoto JY, Chang CWT, Peng CA. Mesobiliverdin IXα ameliorates osteoporosis via promoting osteogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2022; 619:56-61. [PMID: 35738065 DOI: 10.1016/j.bbrc.2022.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Heme oxygenase-1 (HO-1) expression promotes osteogenesis, but the mechanisms remain unclear and therapeutic strategies using it to target bone disorders such as osteoporosis have not progressed. Mesobiliverdin IXα is a naturally occurring bilin analog of HO-1 catalytic product biliverdin IXα. Inclusion of mesobiliverdin IXα in the feed diet of ovariectomized osteoporotic mice was observed to increase femur bone volume, trabecular thickness and osteogenesis serum markers osteoprotegrin and osteocalcin and to decrease bone resorption serum markers cross-linked N-teleopeptide and tartrate-resistant acid phosphatase 5b. Moreover, in vitro exposure of human bone marrow mesenchymal stem cells to mesobiliverdin IXα enhanced osteogenic differentiation efficiency by two-fold over non-exposed controls. Our results imply that mesobiliverdin IXα promotes osteogenesis in ways that reflect the potential therapeutic effects of induced HO-1 expression in alleviating osteoporosis.
Collapse
Affiliation(s)
- Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, UT, United States
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Ching-An Peng
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States.
| |
Collapse
|
7
|
Abstract
Biosyntheses of chlorophyll and heme in oxygenic phototrophs share a common trunk pathway that diverges with insertion of magnesium or iron into the last common intermediate, protoporphyrin IX. Since both tetrapyrroles are pro-oxidants, it is essential that their metabolism is tightly regulated. Here, we establish that heme-derived linear tetrapyrroles (bilins) function to stimulate the enzymatic activity of magnesium chelatase (MgCh) via their interaction with GENOMES UNCOUPLED 4 (GUN4) in the model green alga Chlamydomonas reinhardtii A key tetrapyrrole-binding component of MgCh found in all oxygenic photosynthetic species, CrGUN4, also stabilizes the bilin-dependent accumulation of protoporphyrin IX-binding CrCHLH1 subunit of MgCh in light-grown C. reinhardtii cells by preventing its photooxidative inactivation. Exogenous application of biliverdin IXα reverses the loss of CrCHLH1 in the bilin-deficient heme oxygenase (hmox1) mutant, but not in the gun4 mutant. We propose that these dual regulatory roles of GUN4:bilin complexes are responsible for the retention of bilin biosynthesis in all photosynthetic eukaryotes, which sustains chlorophyll biosynthesis in an illuminated oxic environment.
Collapse
|
8
|
Karg CA, Doppler C, Schilling C, Jakobs F, Dal Colle MCS, Frey N, Bernhard D, Vollmar AM, Moser S. A yellow chlorophyll catabolite in leaves of Urtica dioica L.: An overlooked phytochemical that contributes to health benefits of stinging nettle. Food Chem 2021; 359:129906. [PMID: 33962192 DOI: 10.1016/j.foodchem.2021.129906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/19/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Stinging nettle is appreciated for its antioxidant and anti-inflammatory properties, which renders the plant a popular ingredient in a healthy diet in form of salads or smoothies. The most common use, presumably, is of dried leaves as ingredient in tea mixtures. The plant's health benefits are attributed primarily to phenolic phytochemicals. Here we describe the characterization and quantification of a phylloxanthobilin (PxB), a yellow chlorophyll catabolite, in nettle tea. Despite their abundance in the plant kingdom, chlorophyll catabolites have been overlooked as phytochemicals and as part of human nutrition. Our investigations of tea reveal that one cup of nettle tea contains about 50 µg of PxB with large variations depending on the supplier. When investigating the bioactivities of PxB, our observations show that PxB has antioxidative and anti-inflammatory activities comparable to known bioactive small molecules found in nettle, indicating the phylloxanthobilin to be an overlooked ingredient of nettle tea.
Collapse
Affiliation(s)
- Cornelia A Karg
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany
| | - Christian Doppler
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes-Kepler-University Linz, Krankenhausstrasse 7a, A-4020 Linz, Austria
| | - Charlotte Schilling
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany
| | - Franziska Jakobs
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany; Department of Chemistry, High Point University, One University Parkway High Point, NC 27268, United States
| | - Marlene C S Dal Colle
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany; Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Nadine Frey
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes-Kepler-University Linz, Krankenhausstrasse 7a, A-4020 Linz, Austria
| | - Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany
| | - Simone Moser
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany.
| |
Collapse
|
9
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
10
|
Zhang W, Rhodes JS, Garg A, Takemoto JY, Qi X, Harihar S, Tom Chang CW, Moon KR, Zhou A. Label-free discrimination and quantitative analysis of oxidative stress induced cytotoxicity and potential protection of antioxidants using Raman micro-spectroscopy and machine learning. Anal Chim Acta 2020; 1128:221-230. [DOI: 10.1016/j.aca.2020.06.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
|
11
|
Karg CA, Wang P, Kluibenschedl F, Müller T, Allmendinger L, Vollmar AM, Moser S. Phylloxanthobilins are Abundant Linear Tetrapyrroles from Chlorophyll Breakdown with Activities Against Cancer Cells. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cornelia A. Karg
- Pharmaceutical Biology Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| | - Pengyu Wang
- Pharmaceutical Biology Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| | - Florian Kluibenschedl
- Institute of Organic Chemistry University of Innsbruck Innrain 80‐82 6020 Innsbruck Austria
| | - Thomas Müller
- Institute of Organic Chemistry University of Innsbruck Innrain 80‐82 6020 Innsbruck Austria
| | - Lars Allmendinger
- Pharmaceutical Chemistry Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| | - Angelika M. Vollmar
- Pharmaceutical Biology Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| | - Simone Moser
- Pharmaceutical Biology Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| |
Collapse
|
12
|
Light-Mediated Toxicity of Porphyrin-Like Pigments from a Marine Polychaeta. Mar Drugs 2020; 18:md18060302. [PMID: 32517206 PMCID: PMC7344449 DOI: 10.3390/md18060302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/02/2023] Open
Abstract
Porphyrins and derivatives form one of the most abundant classes of biochromes. They result from the breakdown of heme and have crucial physiological functions. Bilins are well-known representatives of this group that, besides significant antioxidant and anti-mutagenic properties, are also photosensitizers for photodynamic therapies. Recently, we demonstrated that the Polychaeta Eulalia viridis, common in the Portuguese rocky intertidal, holds a high variety of novel greenish and yellowish porphyrinoid pigments, stored as granules in the chromocytes of several organs. On the follow-up of this study, we chemically characterized pigment extracts from the worm’s skin and proboscis using HPLC and evaluated their light and dark toxicity in vivo and ex vivo using Daphnia and mussel gill tissue as models, respectively. The findings showed that the skin and proboscis have distinct patterns of hydrophilic or even amphiphilic porphyrinoids, with some substances in common. The combination of the two bioassays demonstrated that the extracts from the skin exert higher dark toxicity, whereas those from the proboscis rapidly exert light toxicity, then becoming exhausted. One particular yellow pigment that is highly abundant in the proboscis shows highly promising properties as a natural photosensitizer, revealing that porphyrinoids from marine invertebrates are important sources of these high-prized bioproducts.
Collapse
|