2
|
Ábrányi-Balogh P, Bajusz D, Orgován Z, Keeley AB, Petri L, Péczka N, Szalai TV, Pálfy G, Gadanecz M, Grant EK, Imre T, Takács T, Ranđelović I, Baranyi M, Marton A, Schlosser G, Ashraf QF, de Araujo ED, Karancsi T, Buday L, Tóvári J, Perczel A, Bush JT, Keserű GM. Mapping protein binding sites by photoreactive fragment pharmacophores. Commun Chem 2024; 7:168. [PMID: 39085342 PMCID: PMC11292009 DOI: 10.1038/s42004-024-01252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Fragment screening is a popular strategy of generating viable chemical starting points especially for challenging targets. Although fragments provide a better coverage of chemical space and they have typically higher chance of binding, their weak affinity necessitates highly sensitive biophysical assays. Here, we introduce a screening concept that combines evolutionary optimized fragment pharmacophores with the use of a photoaffinity handle that enables high hit rates by LC-MS-based detection. The sensitivity of our screening protocol was further improved by a target-conjugated photocatalyst. We have designed, synthesized, and screened 100 diazirine-tagged fragments against three benchmark and three therapeutically relevant protein targets of different tractability. Our therapeutic targets included a conventional enzyme, the first bromodomain of BRD4, a protein-protein interaction represented by the oncogenic KRasG12D protein, and the yet unliganded N-terminal domain of the STAT5B transcription factor. We have discovered several fragment hits against all three targets and identified their binding sites via enzymatic digestion, structural studies and modeling. Our results revealed that this protocol outperforms screening traditional fully functionalized and photoaffinity fragments in better exploration of the available binding sites and higher hit rates observed for even difficult targets.
Collapse
Affiliation(s)
- Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Aaron B Keeley
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Nikolett Péczka
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Tibor Viktor Szalai
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology & HUN-REN-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Márton Gadanecz
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Laboratory of Structural Chemistry and Biology & HUN-REN-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | | | - Tímea Imre
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- MS Metabolomics Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Takács
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Signal Transduction and Functional Genomics Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ivan Ranđelović
- National Tumor Biology Laboratory and Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
- KINETO Lab Ltd, Budapest, Hungary
| | - Marcell Baranyi
- KINETO Lab Ltd, Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - András Marton
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- Waters Research Center, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Qirat F Ashraf
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Elvin D de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Tamás Karancsi
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- Waters Research Center, Budapest, Hungary
| | - László Buday
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Signal Transduction and Functional Genomics Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - József Tóvári
- National Tumor Biology Laboratory and Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - András Perczel
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Laboratory of Structural Chemistry and Biology & HUN-REN-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
3
|
McCarthy WJ, van der Zouwen AJ, Bush JT, Rittinger K. Covalent fragment-based drug discovery for target tractability. Curr Opin Struct Biol 2024; 86:102809. [PMID: 38554479 DOI: 10.1016/j.sbi.2024.102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024]
Abstract
An important consideration in drug discovery is the prioritization of tractable protein targets that are not only amenable to binding small molecules, but also alter disease biology in response to small molecule binding. Covalent fragment-based drug discovery has emerged as a powerful approach to aid in the identification of such protein targets. The application of irreversible binding mechanisms enables the identification of fragment hits for challenging-to-target proteins, allows proteome-wide screening in a cellular context, and makes it possible to determine functional effects with modestly potent ligands without the requirement for extensive compound optimization. Here, we provide an overview of recent approaches to covalent fragment-based screening and discuss how these have been applied to establish the tractability of unexplored binding sites on protein targets.
Collapse
Affiliation(s)
- William J McCarthy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Antonie J van der Zouwen
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK. https://twitter.com/Jake_T_Bush
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
4
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
5
|
Ogasawara D, Konrad DB, Tan ZY, Carey KL, Luo J, Won SJ, Li H, Carter T, DeMeester KE, Njomen E, Schreiber SL, Xavier RJ, Melillo B, Cravatt BF. Chemical tools to expand the ligandable proteome: diversity-oriented synthesis-based photoreactive stereoprobes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582206. [PMID: 38464067 PMCID: PMC10925180 DOI: 10.1101/2024.02.27.582206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chemical proteomics enables the global assessment of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, been limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically-defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these 'photo-stereoprobes' interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible nanoBRET assays. Integrated phenotypic analysis and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and discovering and characterizing bioactive small molecules by cell-based screening.
Collapse
|
6
|
Pang Z, Cravatt BF, Ye L. Deciphering Drug Targets and Actions with Single-Cell and Spatial Resolution. Annu Rev Pharmacol Toxicol 2024; 64:507-526. [PMID: 37722721 DOI: 10.1146/annurev-pharmtox-033123-123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.
Collapse
Affiliation(s)
- Zhengyuan Pang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA;
| | - Li Ye
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|