1
|
Hsiao YC, Dutta A. Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1211-1230. [PMID: 38498762 DOI: 10.1109/tcbb.2024.3378155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Dynamic disease pathways are a combination of complex dynamical processes among bio-molecules in a cell that leads to diseases. Network modeling of disease pathways considers disease-related bio-molecules (e.g. DNA, RNA, transcription factors, enzymes, proteins, and metabolites) and their interaction (e.g. DNA methylation, histone modification, alternative splicing, and protein modification) to study disease progression and predict therapeutic responses. These bio-molecules and their interactions are the basic elements in the study of the misregulation in the disease-related gene expression that lead to abnormal cellular responses. Gene regulatory networks, cell signaling networks, and metabolic networks are the three major types of intracellular networks for the study of the cellular responses elicited from extracellular signals. The disease-related cellular responses can be prevented or regulated by designing control strategies to manipulate these extracellular or other intracellular signals. The paper reviews the regulatory mechanisms, the dynamic models, and the control strategies for each intracellular network. The applications, limitations and the prospective for modeling and control are also discussed.
Collapse
|
2
|
Kjer-Hansen P, Weatheritt RJ. The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts. Nat Struct Mol Biol 2023; 30:1844-1856. [PMID: 38036695 DOI: 10.1038/s41594-023-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Alternative splicing affects more than 95% of multi-exon genes in the human genome. These changes affect the proteome in a myriad of ways. Here, we review our understanding of the breadth of these changes from their effect on protein structure to their influence on interactions. These changes encompass effects on nucleic acid binding in the nucleus to protein-carbohydrate interactions in the extracellular milieu, altering interactions involving all major classes of biological molecules. Protein isoforms have profound influences on cellular and tissue physiology, for example, by shaping neuronal connections, enhancing insulin secretion by pancreatic beta cells and allowing for alternative viral defense strategies in stem cells. More broadly, alternative splicing enables repurposing proteins from one context to another and thereby contributes to both the evolution of new traits as well as the creation of disease-specific interactomes that drive pathological phenotypes. In this Review, we highlight this universal character of alternative splicing as a central regulator of protein function with implications for almost every biological process.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Kolotyeva NA, Gilmiyarova FN, Averchuk AS, Baranich TI, Rozanova NA, Kukla MV, Tregub PP, Salmina AB. Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models. Int J Mol Sci 2023; 24:14709. [PMID: 37834155 PMCID: PMC10572431 DOI: 10.3390/ijms241914709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The development of brain in vitro models requires the application of novel biocompatible materials and biopolymers as scaffolds for controllable and effective cell growth and functioning. The "ideal" brain in vitro model should demonstrate the principal features of brain plasticity like synaptic transmission and remodeling, neurogenesis and angiogenesis, and changes in the metabolism associated with the establishment of new intercellular connections. Therefore, the extracellular scaffolds that are helpful in the establishment and maintenance of local microenvironments supporting brain plasticity mechanisms are of critical importance. In this review, we will focus on some carbohydrate metabolites-lactate, pyruvate, oxaloacetate, malate-that greatly contribute to the regulation of cell-to-cell communications and metabolic plasticity of brain cells and on some resorbable biopolymers that may reproduce the local microenvironment enriched in particular cell metabolites.
Collapse
Affiliation(s)
| | - Frida N. Gilmiyarova
- Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics, Samara State Medical University, 443099 Samara, Russia
| | - Anton S. Averchuk
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Tatiana I. Baranich
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | | | - Maria V. Kukla
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Pavel P. Tregub
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| |
Collapse
|
4
|
Meng Q, Song YL, Zhou C, He H, Zhang N, Zhou H. A hydrogen-deuterium exchange mass spectrometry-based protocol for protein-small molecule interaction analysis. BIOPHYSICS REPORTS 2023; 9:99-111. [PMID: 37753061 PMCID: PMC10518522 DOI: 10.52601/bpr.2023.230006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 09/28/2023] Open
Abstract
Protein-small molecule interaction is vital in regulating protein functions and controlling various cellular processes. Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful methodology to study protein-small molecule interactions, however, to accurately probe the conformational dynamics of the protein upon small molecule binding, the HDX-MS experimental conditions should be carefully controlled and optimized. Here, we present the detailed continuous-labeling, bottom-up HDX-MS protocol for studying protein-small molecule interactions. We took a side-by-side HDX kinetics comparison of the Hsp90N protein with or without the treatment of small molecules (i.e., Radicicol, Geldanamycin) for displaying conformational changes induced by molecular interactions between Hsp90N and small molecules. Our sensitive and robust experimental protocol can facilitate the novice to quickly carry out the structural characterization of protein-small molecule interactions.
Collapse
Affiliation(s)
- Qian Meng
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Li Song
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Han He
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Kurbatov I, Dolgalev G, Arzumanian V, Kiseleva O, Poverennaya E. The Knowns and Unknowns in Protein-Metabolite Interactions. Int J Mol Sci 2023; 24:4155. [PMID: 36835565 PMCID: PMC9964805 DOI: 10.3390/ijms24044155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Increasing attention has been focused on the study of protein-metabolite interactions (PMI), which play a key role in regulating protein functions and directing an orchestra of cellular processes. The investigation of PMIs is complicated by the fact that many such interactions are extremely short-lived, which requires very high resolution in order to detect them. As in the case of protein-protein interactions, protein-metabolite interactions are still not clearly defined. Existing assays for detecting protein-metabolite interactions have an additional limitation in the form of a limited capacity to identify interacting metabolites. Thus, although recent advances in mass spectrometry allow the routine identification and quantification of thousands of proteins and metabolites today, they still need to be improved to provide a complete inventory of biological molecules, as well as all interactions between them. Multiomic studies aimed at deciphering the implementation of genetic information often end with the analysis of changes in metabolic pathways, as they constitute one of the most informative phenotypic layers. In this approach, the quantity and quality of knowledge about PMIs become vital to establishing the full scope of crosstalk between the proteome and the metabolome in a biological object of interest. In this review, we analyze the current state of investigation into the detection and annotation of protein-metabolite interactions, describe the recent progress in developing associated research methods, and attempt to deconstruct the very term "interaction" to advance the field of interactomics further.
Collapse
Affiliation(s)
| | | | | | - Olga Kiseleva
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | |
Collapse
|
6
|
Wang L, Zhang W, Shao Y, Zhang D, Guo G, Wang X. Analytical methods for obtaining binding parameters of drug–protein interactions: A review. Anal Chim Acta 2022; 1219:340012. [DOI: 10.1016/j.aca.2022.340012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
|
7
|
Bongini P, Niccolai N, Trezza A, Mangiavacchi G, Santucci A, Spiga O, Bianchini M, Gardini S. Structural Bioinformatic Survey of Protein-Small Molecule Interfaces Delineates the Role of Glycine in Surface Pocket Formation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1881-1886. [PMID: 33095703 DOI: 10.1109/tcbb.2020.3033384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With a structural bioinformatic approach, we have explored amino acid compositions at PISA defined interfaces between small molecules and proteins that are contained in an optimized subset of 11,351 PDB files. The use of a series of restrictions, to prevent redundancy and biases from interactions between amino acids with charged side chains and ions, yielded a final data set of 45,230 protein-small molecule interfaces. We have compared occurrences of natural amino acids in surface exposed regions and binding sites for all the proteins of our data set. From our structural bioinformatic survey, the most relevant signal arose from the unexpected Gly abundance at enzyme catalytic sites. This finding suggested that Gly must have a fundamental role in stabilizing concave protein surface moieties. Subsequently, we have tried to predict the effect of in silico Gly mutations in hen egg white lysozyme to optimize those conditions that can reshape the protein surface with the appearance of new pockets. Replacing amino acids having bulky side chains with Gly in specific protein regions seems a feasible way for designing proteins with additional surface pockets, which can alter protein surface dynamics, therefore, representing controllable switches for protein activity.
Collapse
|
8
|
Gilmiyarova FN, Kolotyeva NA, Gusyakova OA. Predicted and Experimentally Validated Lactate Characteristics: New Possibilities for Controlling Endothelial Cell Metabolism. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Rabiei M, Kalhor N, Farhadi A, Ramezanpour S, Tahamtani Y, Azarnia M. Synthetic Small Molecules to Induce Insulin Secretion and Pancreatic Beta Cell Specific Gene Expression. Cells Tissues Organs 2022:000522154. [DOI: 10.1159/000522154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Despite various efficient pharmaceuticals which are already used to manage diabetes, new drugs are needed to preserve and restore the function of pancreatic β-cells (pβCs) including cell specific gene expression and insulin production and secretion. Newly developed small molecules (SMs) with potential anti-diabetic activity need to be preliminary tested. Mice insulinoma MIN6 cells (MIN6) can be utilized as an in vitro screening model. These cells have pancreatic β-cells characteristics and can secrete insulin in response to glucose level changes. As well, β-cell-specific gene expression pattern of these cells is similar to that of mouse pancreatic islet cells. It is possible to use this cell line as a research tool to study the function of the pancreatic β-cells. To date, approximately 60 genes have been identified which, are effective in the pβCs embryonic development and insulin production and secretion during puberty, including pancreas/duodenum homeobox protein 1 (Pdx1), neuronal differentiation 1 (Neurod1), neurogenin3 (Ngn3), and insulin-1 precursor (Ins1). In this study, a family of new SMs that are structurally similar to glinides was synthesized through three different synthetic methods and categorized into three categories (C1-C3). Then, these novel SMs were characterized by testing their effects on cell viability, pβCs-specific gene expression, and insulin secretion of MIN6 in four different concentrations and three time points. According to our results, SMs of C1 (1j, 1k, and 1l) and two SMs of C3 (1f, 1I), at 200 μM concentration, were able to increase the expression levels of Pdx1, Neurod1, Ngn3, and Ins1 as well as the insulin secretion after 24 hours. However, C2 (1a, 1b, 1c and 1d) did not show significant bio-activity of MIN6 cells. These investigated molecules can provide a tool for exploring pseudo-islet functionality in MIN6 cells or provide a possible basis for future therapeutic interventions for diabetes.
Collapse
|
10
|
Kim H, Lee S, Yoon J, Song J, Park HG. CRISPR/Cas12a collateral cleavage activity for simple and rapid detection of protein/small molecule interaction. Biosens Bioelectron 2021; 194:113587. [PMID: 34455224 DOI: 10.1016/j.bios.2021.113587] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/26/2022]
Abstract
To realize the full potential of the CRISPR/Cas system and expand its applicability up to the detection of molecular interactions, we herein describe a novel method to identify protein/small molecule interactions by utilizing the CRISPR/Cas12a collateral cleavage activity. This technique employs a single-stranded activator DNA modified with a specific small molecule, which would switch on the CRISPR/Cas12a collateral cleavage activity upon binding to crRNA within the CRISPR/Cas12a system. When the target protein binds to the small molecule on the activator DNA, the bound protein sterically hinders the access of the activator DNA to crRNA, thereby promoting less collateral cleavage activity of CRISPR/Cas12a. As a consequence, fewer reporter probes nearby are cleaved to produce accordingly reduced fluorescence signals in response to target protein. Based on this unique design principle, the two model protein/small molecule interactions, streptavidin/biotin and anti-digoxigenin/digoxigenin, were successfully determined down to 0.03 nM and 0.09 nM, respectively, with a fast and simple detection workflow (11 min). The practical applicability of this method was also verified by reliably detecting target streptavidin spiked in heterogeneous human serum. This work would provide great insight to construct novel strategies to identify protein/small molecule interaction by making the most of the CRISPR/Cas12a system beyond its superior capabilities in genome editing and molecular diagnostics.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seoyoung Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junhyeok Yoon
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Baltoumas FA, Zafeiropoulou S, Karatzas E, Koutrouli M, Thanati F, Voutsadaki K, Gkonta M, Hotova J, Kasionis I, Hatzis P, Pavlopoulos GA. Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review. Biomolecules 2021; 11:1245. [PMID: 34439912 PMCID: PMC8391349 DOI: 10.3390/biom11081245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Technological advances in high-throughput techniques have resulted in tremendous growth of complex biological datasets providing evidence regarding various biomolecular interactions. To cope with this data flood, computational approaches, web services, and databases have been implemented to deal with issues such as data integration, visualization, exploration, organization, scalability, and complexity. Nevertheless, as the number of such sets increases, it is becoming more and more difficult for an end user to know what the scope and focus of each repository is and how redundant the information between them is. Several repositories have a more general scope, while others focus on specialized aspects, such as specific organisms or biological systems. Unfortunately, many of these databases are self-contained or poorly documented and maintained. For a clearer view, in this article we provide a comprehensive categorization, comparison and evaluation of such repositories for different bioentity interaction types. We discuss most of the publicly available services based on their content, sources of information, data representation methods, user-friendliness, scope and interconnectivity, and we comment on their strengths and weaknesses. We aim for this review to reach a broad readership varying from biomedical beginners to experts and serve as a reference article in the field of Network Biology.
Collapse
Affiliation(s)
- Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Sofia Zafeiropoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Mikaela Koutrouli
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Foteini Thanati
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Kleanthi Voutsadaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Maria Gkonta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Joana Hotova
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Ioannis Kasionis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Wang Z, Pisano S, Ghini V, Kadeřávek P, Zachrdla M, Pelupessy P, Kazmierczak M, Marquardsen T, Tyburn JM, Bouvignies G, Parigi G, Luchinat C, Ferrage F. Detection of Metabolite-Protein Interactions in Complex Biological Samples by High-Resolution Relaxometry: Toward Interactomics by NMR. J Am Chem Soc 2021; 143:9393-9404. [PMID: 34133154 DOI: 10.1021/jacs.1c01388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolomics, the systematic investigation of metabolites in biological fluids, cells, or tissues, reveals essential information about metabolism and diseases. Metabolites have functional roles in a myriad of biological processes, as substrates and products of enzymatic reactions but also as cofactors and regulators of large numbers of biochemical mechanisms. These functions involve interactions of metabolites with macromolecules. Yet, methods to systematically investigate these interactions are still scarce to date. In particular, there is a need for techniques suited to identify and characterize weak metabolite-macromolecule interactions directly in complex media such as biological fluids. Here, we introduce a method to investigate weak interactions between metabolites and macromolecules in biological fluids. Our approach is based on high-resolution NMR relaxometry and does not require any invasive procedure or separation step. We show that we can detect interactions between small and large molecules in human blood serum and quantify the size of the complex. Our work opens the way for investigations of metabolite (or other small molecules)-protein interactions in biological fluids for interactomics or pharmaceutical applications.
Collapse
Affiliation(s)
- Ziqing Wang
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Simone Pisano
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Veronica Ghini
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Italy
| | - Pavel Kadeřávek
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Milan Zachrdla
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Philippe Pelupessy
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Morgan Kazmierczak
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | | | - Jean-Max Tyburn
- Bruker BioSpin, 34 rue de l'Industrie BP 10002, 67166 Cedex Wissembourg, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Giacomo Parigi
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
13
|
Kochanowski K, Okano H, Patsalo V, Williamson J, Sauer U, Hwa T. Global coordination of metabolic pathways in Escherichia coli by active and passive regulation. Mol Syst Biol 2021; 17:e10064. [PMID: 33852189 PMCID: PMC8045939 DOI: 10.15252/msb.202010064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Microorganisms adjust metabolic activity to cope with diverse environments. While many studies have provided insights into how individual pathways are regulated, the mechanisms that give rise to coordinated metabolic responses are poorly understood. Here, we identify the regulatory mechanisms that coordinate catabolism and anabolism in Escherichia coli. Integrating protein, metabolite, and flux changes in genetically implemented catabolic or anabolic limitations, we show that combined global and local mechanisms coordinate the response to metabolic limitations. To allocate proteomic resources between catabolism and anabolism, E. coli uses a simple global gene regulatory program. Surprisingly, this program is largely implemented by a single transcription factor, Crp, which directly activates the expression of catabolic enzymes and indirectly reduces the expression of anabolic enzymes by passively sequestering cellular resources needed for their synthesis. However, metabolic fluxes are not controlled by this regulatory program alone; instead, fluxes are adjusted mostly through passive changes in the local metabolite concentrations. These mechanisms constitute a simple but effective global regulatory program that coarsely partitions resources between different parts of metabolism while ensuring robust coordination of individual metabolic reactions.
Collapse
Affiliation(s)
- Karl Kochanowski
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Life Science Zurich PhD Program on Systems BiologyZurichSwitzerland
| | - Hiroyuki Okano
- Department of PhysicsUniversity of California at San DiegoLa JollaCAUSA
| | - Vadim Patsalo
- Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCAUSA
| | - James Williamson
- Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCAUSA
| | - Uwe Sauer
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Terence Hwa
- Department of PhysicsUniversity of California at San DiegoLa JollaCAUSA
- Institute for Theoretical ScienceETH ZurichZurichSwitzerland
| |
Collapse
|
14
|
Awadh AA, Le Gresley A, Forster-Wilkins G, Kelly AF, Fielder MD. Determination of metabolic activity in planktonic and biofilm cells of Mycoplasma fermentans and Mycoplasma pneumoniae by nuclear magnetic resonance. Sci Rep 2021; 11:5650. [PMID: 33707544 PMCID: PMC7952918 DOI: 10.1038/s41598-021-84326-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasmas are fastidious microorganisms, typically characterised by their restricted metabolism and minimalist genome. Although there is reported evidence that some mycoplasmas can develop biofilms little is known about any differences in metabolism in these organisms between the growth states. A systematic metabolomics approach may help clarify differences associated between planktonic and biofilm associated mycoplasmas. In the current study, the metabolomics of two different mycoplasmas of clinical importance (Mycoplasma pneumoniae and Mycoplasma fermentans) were examined using a novel approach involving nuclear magnetic resonance spectroscopy and principle component analysis. Characterisation of metabolic changes was facilitated through the generation of high-density metabolite data and diffusion-ordered spectroscopy that provided the size and structural information of the molecules under examination. This enabled the discrimination between biofilms and planktonic states for the metabolomic profiles of both organisms. This work identified clear biofilm/planktonic differences in metabolite composition for both clinical mycoplasmas and the outcomes serve to establish a baseline understanding of the changes in metabolism observed in these pathogens in their different growth states. This may offer insight into how these organisms are capable of exploiting and persisting in different niches and so facilitate their survival in the clinical setting.
Collapse
Affiliation(s)
- Ammar A. Awadh
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Adam Le Gresley
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Gary Forster-Wilkins
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Alison F. Kelly
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Mark D. Fielder
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| |
Collapse
|
15
|
Wang B, Lv W, Chang M, Zhao C, Shi X, Xu G. Untargeted Defining Protein-Metabolites Interaction Based on Label-Free Kinetic Size Exclusion Chromatography-Mass Spectrometry. Anal Chem 2020; 92:7657-7665. [PMID: 32384235 DOI: 10.1021/acs.analchem.0c00495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The specific interactions between protein and metabolites (PMIs) are closely related to many cellular processes and play a vital role in signal transduction and regulating material and energy metabolism. However, most of the available analytical strategies for PMIs involve chemical modification of metabolites or immobilization of protein, which has restricted current PMIs study mainly to lipid-protein and hydrophobic metabolites. In this work, a label-free online kinetic size exclusion chromatography-mass spectrometry (KSEC-MS) method combined with untargeted metabolomics was developed to define PMIs in a complex system. The metabolite mixture and target protein were injected into the SEC column sequentially without preincubation, and the separation results of KSEC were monitored by global metabolite profiling with mass spectrometry. The potential ligands in the metabolite mixture can be discovered if their migration patterns were affected by the target protein and the variation was positively correlated with the concentration of target protein. To verify this approach, carbonic anhydrase was first selected as a test protein, and acetazolamide as its known inhibitor was successfully defined. Furthermore, human serum albumin (HSA) as the common transport carrier of metabolites was selected as a target protein to demonstrate the usefulness of this approach. Multiple endogenous ligands of HSA were simultaneously defined from the extracted metabolites of human serum; most of them are polar metabolites rather than nonpolar lipids. This approach can provide a novel way for mapping and identifying unknown PMIs in a complex system, especially for polar metabolites-protein interactions.
Collapse
Affiliation(s)
- Bohong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangjie Lv
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
16
|
Kolotyeva NA, Gilmiyarova FN. [The role of small molecules in metabolism regulation (review).]. Klin Lab Diagn 2020; 64:716-722. [PMID: 32040894 DOI: 10.18821/0869-2084-2019-64-12-716-722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 11/17/2022]
Abstract
The paper focuses on intermolecular interactions, particularly interactions between proteins and natural intermediates (small molecules). Molecules with a molecular weight of up to 1000 Da are free in cytoplasmic solution and form a pool of intermediates. Methods of computer modeling for prediction of protein-proteinaceous, protein-ligand, protein - a small molecule of interactions are presented. The program for modeling predicted biological activity in silico is Prediction of Activity Spectrum for Substances (PASS). In the Search Tool for Interacting Chemicals (STITCH) system, it is possible to identify potential protein interaction partners for small molecules. A review of the literature presents modern data on small molecules - metabolic switches, such as α-glycerophosphatedihydroxyacetone phosphate, pyruvate-lactate, oxaloacetate-malate. The molecules we study have different and multiple effects on metabolism and on intercellular interaction systems. Natural intermediates are at the intersection of metabolic pathways of metabolism of proteins, carbohydrates, lipids; they are signal molecules, participate in regulation of protein function, gene expression, enzyme activity. An increasing interest in deciphering protein-small molecule/metabolite interactions at the systemic level will lay a conceptual foundation that provides insight into complex epigenetic regulation under various environmental influences. A complete interplay, including a protein-small molecule interaction, will be crucial to eventually unraveling the complex relationships between the genotype and phenotype and to provide a deeper understanding of health and disease.
Collapse
Affiliation(s)
- N A Kolotyeva
- Samara State Medical University, 43099, Samara, Russia
| | | |
Collapse
|
17
|
Behera S, Behura R, Mohanty M, Dinda R, Mohanty P, Verma AK, Sahoo SK, Jali B. Spectroscopic, cytotoxicity and molecular docking studies on the interaction between 2,4-dinitrophenylhydrazine derived Schiff bases with bovine serum albumin. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Maryam A, Vedithi SC, Khalid RR, Alsulami AF, Torres PHM, Siddiqi AR, Blundell TL. The Molecular Organization of Human cGMP Specific Phosphodiesterase 6 (PDE6): Structural Implications of Somatic Mutations in Cancer and Retinitis Pigmentosa. Comput Struct Biotechnol J 2019; 17:378-389. [PMID: 30962868 PMCID: PMC6434069 DOI: 10.1016/j.csbj.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 01/12/2023] Open
Abstract
In the cyclic guanosine monophosphate (cGMP) signaling pathway, phosphodiesterase 6 (PDE6) maintains a critical balance of the intracellular concentration of cGMP by catalyzing it to 5′ guanosine monophosphate (5′-GMP). To gain insight into the mechanistic impacts of the PDE6 somatic mutations that are implicated in cancer and retinitis pigmentosa, we first defined the structure and organization of the human PDE6 heterodimer using computational comparative modelling. Each subunit of PDE6αβ possesses three domains connected through long α-helices. The heterodimer model indicates that the two chains are likely related by a pseudo two-fold axis. The N-terminal region of each subunit is comprised of two allosteric cGMP-binding domains (Gaf-A & Gaf-B), oriented in the same way and interacting with the catalytic domain present at the C-terminal in a way that would allow the allosteric cGMP-binding domains to influence catalytic activity. Subsequently, we applied an integrated knowledge-driven in silico mutation analysis approach to understand the structural and functional implications of experimentally identified mutations that cause various cancers and retinitis pigmentosa, as well as computational saturation mutagenesis of the dimer interface and cGMP-binding residues of both Gaf-A, and the catalytic domains. We studied the impact of mutations on the stability of PDE6αβ structure, subunit-interfaces and Gaf-cGMP interactions. Further, we discussed the changes in interatomic interactions of mutations that are destabilizing in Gaf-A (R93L, V141 M, F162 L), catalytic domain (D600N, F742 L, F776 L) and at the dimer interface (F426A, F248G, F424 N). This study establishes a possible link of change in PDE6αβ structural stability to the experimentally observed disease phenotypes.
Collapse
Affiliation(s)
- Arooma Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.,Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | | | - Rana Rehan Khalid
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ali F Alsulami
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | | | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| |
Collapse
|
19
|
Label-free evaluation of small-molecule-protein interaction using magnetic capture and electrochemical detection. Anal Bioanal Chem 2019; 411:2111-2119. [PMID: 30739194 DOI: 10.1007/s00216-019-01636-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
The evaluation of interaction between small molecules and protein is an important step in the discovery of new drugs and to study complex biological systems. In this work, an alternative method was presented to evaluate small-molecule-protein interaction by using ligand capture by protein-coated magnetic particles (MPs) and disposable electrochemical cells. The interaction study was conducted using [10]-gingerol from ginger rhizome and a transmembrane protein αVβ3 integrin. Initially, the electrochemical behavior of the natural compound [10]-gingerol was evaluated with the disposable carbon-based electrodes and presented an irreversible oxidation process controlled by diffusion. The analytical curve for [10]-gingerol was obtained in the range of 1.0 to 20.0 μmol L-1, with limit of detection of 0.26 μmol L-1. Then MPs coated with αVβ3 integrin were incubated with standard solutions and extracts of ginger rhizome for [10]-gingerol capture and separation. The bioconjugate obtained was dropped to the disposable electrochemical cells, keeping a permanent magnet behind the working electrode, and the binding process was evaluated by the electrochemical detection of [10]-gingerol. The assay method proposed was also employed to calculate the [10]-gingerol-αVβ3 integrin association constant, which was calculated as 4.3 × 107 M-1. The method proposed proved to be a good label-free alternative to ligand-protein interaction studies. Graphical abstract ᅟ.
Collapse
|
20
|
Reznik E, Christodoulou D, Goldford JE, Briars E, Sauer U, Segrè D, Noor E. Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off between Regulation and Enzymatic Activity. Cell Rep 2018; 20:2666-2677. [PMID: 28903046 DOI: 10.1016/j.celrep.2017.08.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/05/2017] [Accepted: 08/19/2017] [Indexed: 12/21/2022] Open
Abstract
Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurements and the SMRN to make inferences on the sensitivity of enzymes to their regulators. Generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.
Collapse
Affiliation(s)
- Ed Reznik
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Dimitris Christodoulou
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Systems Biology Graduate School, Zurich 8057, Switzerland
| | | | - Emma Briars
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA
| | - Elad Noor
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Stival C, Ritagliati C, Xu X, Gervasi MG, Luque GM, Baró Graf C, De la Vega-Beltrán JL, Torres N, Darszon A, Krapf D, Buffone MG, Visconti PE, Krapf D. Disruption of protein kinase A localization induces acrosomal exocytosis in capacitated mouse sperm. J Biol Chem 2018; 293:9435-9447. [PMID: 29700114 DOI: 10.1074/jbc.ra118.002286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) is a broad-spectrum Ser/Thr kinase involved in the regulation of several cellular activities. Thus, its precise activation relies on being localized at specific subcellular places known as discrete PKA signalosomes. A-Kinase anchoring proteins (AKAPs) form scaffolding assemblies that play a pivotal role in PKA regulation by restricting its activity to specific microdomains. Because one of the first signaling events observed during mammalian sperm capacitation is PKA activation, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. Here, we demonstrate that the anchoring of PKA to AKAP is not only necessary but also actively regulated during sperm capacitation. However, we find that once capacitated, the release of PKA from AKAP promotes a sudden Ca2+ influx through the sperm-specific Ca2+ channel CatSper, starting a tail-to-head Ca2+ propagation that triggers the acrosome reaction. Three-dimensional super-resolution imaging confirmed a redistribution of PKA within the flagellar structure throughout the capacitation process, which depends on anchoring to AKAP. These results represent a new signaling event that involves CatSper Ca2+ channels in the acrosome reaction, sensitive to PKA stimulation upon release from AKAP.
Collapse
Affiliation(s)
- Cintia Stival
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina
| | - Carla Ritagliati
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina
| | - Xinran Xu
- the Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523
| | - Maria G Gervasi
- the Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Guillermina M Luque
- the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Carolina Baró Graf
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina
| | - José Luis De la Vega-Beltrán
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México, and
| | - Nicolas Torres
- the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Alberto Darszon
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México, and
| | - Diego Krapf
- the Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523.,the School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523
| | - Mariano G Buffone
- the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Pablo E Visconti
- the Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Dario Krapf
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina,
| |
Collapse
|
22
|
Guo H, Peng H, Emili A. Mass spectrometry methods to study protein-metabolite interactions. Expert Opin Drug Discov 2017; 12:1271-1280. [DOI: 10.1080/17460441.2017.1378178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal 2017; 37:1-11. [PMID: 28528970 DOI: 10.1016/j.cellsig.2017.05.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023]
Abstract
Cellular signal transmission requires the dynamic formation of spatiotemporally controlled molecular interactions. At the cell surface information is received by receptor complexes and relayed through intracellular signaling platforms which organize the actions of functionally interacting signaling enzymes and substrates. The list of hormone or neurotransmitter pathways that utilize the ubiquitous cAMP-sensing protein kinase A (PKA) system is expansive. This requires that the specificity, duration, and intensity of PKA responses are spatially and temporally restricted. Hereby, scaffolding proteins take the center stage for ensuring proper signal transmission. They unite second messenger sensors, activators, effectors, and kinase substrates within cellular micro-domains to precisely control and route signal propagation. A-kinase anchoring proteins (AKAPs) organize such subcellular signalosomes by tethering the PKA holoenzyme to distinct cell compartments. AKAPs differ in their modular organization showing pathway specific arrangements of interaction motifs or domains. This enables the cell- and compartment- guided assembly of signalosomes with unique enzyme composition and function. The AKAP-mediated clustering of cAMP and other second messenger sensing and interacting signaling components along with functional successive enzymes facilitates the rapid and precise dissemination of incoming signals. This review article delineates examples for different means of PKA regulation and for snapshots of compartmentalized PKA signalosomes.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
24
|
Torres-Quesada O, Röck R, Stefan E. Systematic Quantification of GPCR/cAMP-Controlled Protein Kinase A Interactions. Horm Metab Res 2017; 49:240-249. [PMID: 28427097 DOI: 10.1055/s-0042-110791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The diffusible second messenger cyclic AMP (cAMP) originates from multiple G protein-coupled receptor (GPCR) cascades activating the intracellular key effector protein kinase A (PKA). Spatially and temporally restricted cAMP-fluxes are directly sensed by macromolecular PKA complexes. The consequences are alterations of molecular interactions, which lead to activation of compartmentalized PKA phosphotransferase activities, regulating a vast array of cellular functions. To decode cell-type and cell-compartment specific PKA functions, the spatio-temporal dynamics of small molecule:protein interactions, protein:protein interactions (PPIs), cAMP-mobilization, and phosphotransferase activities need to be determined directly in the appropriate cellular context. A collection of cell-based reporters has been developed to either visualize or quantitatively measure kinase activities or PKA complex formation/dissociation. In this review, we list a collection of unimolecular and bimolecular PKA biosensors, followed by the specification of the modular design of a Renilla luciferase based protein-fragment complementation assay (PCA) platform for measuring PKA network interactions. We discuss the application spectrum of the PCA reporter to identify, quantify, and dissect dynamic and transient PKA complexes downstream of specific GPCR activities. We specify the implementation of a PCA PKA platform to systematically quantify the concurrent involvement of receptor-cAMP signaling, post-translational modifications, and kinase subunit mutations/perturbations in PKA activation. The systematic quantification of transient PKA network interactions will contribute to a better understanding how GPCR-recognized input signals are streamlined through the compartmentalized and cAMP-interacting PKA signalosome.
Collapse
Affiliation(s)
- O Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - R Röck
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - E Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Gilmiyarova F, Kolotyeva N, Radomskaya V, Gusyakova O, Gorbacheva I, Potekhina V. Role of the Metabolic Minor Components in the Regulation of Intermolecular Interaction. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbm.2016.47004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Castrillo JI, Oliver SG. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods Mol Biol 2016; 1303:3-48. [PMID: 26235058 DOI: 10.1007/978-1-4939-2627-5_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,
| | | |
Collapse
|
27
|
Röck R, Mayrhofer JE, Bachmann V, Stefan E. Impact of kinase activating and inactivating patient mutations on binary PKA interactions. Front Pharmacol 2015; 6:170. [PMID: 26347651 PMCID: PMC4539479 DOI: 10.3389/fphar.2015.00170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions.
Collapse
Affiliation(s)
| | | | | | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruck, Austria
| |
Collapse
|
28
|
Application of chemical biology in target identification and drug discovery. Arch Pharm Res 2015; 38:1642-50. [PMID: 26242900 DOI: 10.1007/s12272-015-0643-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Drug discovery and development is vital to the well-being of mankind and sustainability of the pharmaceutical industry. Using chemical biology approaches to discover drug leads has become a widely accepted path partially because of the completion of the Human Genome Project. Chemical biology mainly solves biological problems through searching previously unknown targets for pharmacologically active small molecules or finding ligands for well-defined drug targets. It is a powerful tool to study how these small molecules interact with their respective targets, as well as their roles in signal transduction, molecular recognition and cell functions. There have been an increasing number of new therapeutic targets being identified and subsequently validated as a result of advances in functional genomics, which in turn led to the discovery of numerous active small molecules via a variety of high-throughput screening initiatives. In this review, we highlight some applications of chemical biology in the context of drug discovery.
Collapse
|
29
|
Ravindran MS, Rao SPS, Cheng X, Shukla A, Cazenave-Gassiot A, Yao SQ, Wenk MR. Targeting lipid esterases in mycobacteria grown under different physiological conditions using activity-based profiling with tetrahydrolipstatin (THL). Mol Cell Proteomics 2013; 13:435-48. [PMID: 24345785 DOI: 10.1074/mcp.m113.029942] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetrahydrolipstatin (THL) is bactericidal but its precise target spectrum is poorly characterized. Here, we used a THL analog and activity-based protein profiling to identify target proteins after enrichment from whole cell lysates of Mycobacterium bovis Bacillus Calmette-Guérin cultured under replicating and non-replicating conditions. THL targets α/β-hydrolases, including many lipid esterases (LipD, G, H, I, M, N, O, V, W, and TesA). Target protein concentrations and total esterase activity correlated inversely with cellular triacylglycerol upon entry into and exit from non-replicating conditions. Cellular overexpression of lipH and tesA led to decreased THL susceptibility thus providing functional validation. Our results define the target spectrum of THL in a biological species with particularly diverse lipid metabolic pathways. We furthermore derive a conceptual approach that demonstrates the use of such THL probes for the characterization of substrate recognition by lipases and related enzymes.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| | | | | | | | | | | | | |
Collapse
|
30
|
Rossi A, Cruz AHS, Santos RS, Silva PM, Silva EM, Mendes NS, Martinez-Rossi NM. Ambient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networks. IUBMB Life 2013; 65:930-5. [PMID: 24265200 DOI: 10.1002/iub.1217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/25/2013] [Indexed: 11/12/2022]
Abstract
In this article, the experiments used to construct the ambient pH-signaling network involved in the secretion of enzymes by filamentous fungi have been reviewed, focusing on the phosphate-repressible phosphatases in Aspergillus nidulans. Classic and molecular genetics have been used to demonstrate that proteolysis of the transcription factor PacC at alkaline ambient pH is imperative for its action, implying that the full-length version is not an active molecular form of PacC. It has been hypothesized that the transcriptional regulator PacC may be functional at both acidic and alkaline ambient pH, in either the full-length or the proteolyzed form, if it carries a pal-dependent molecular tag. The products of the pal genes are involved in a metabolic pathway that led to the synthesis of effector molecules that tag the pacC product, perhaps facilitating its proteolysis.
Collapse
Affiliation(s)
- Antonio Rossi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|